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Abstract. In this paper we give a complete solution to the following
problem: given a complex matrix pencil, with known Kronecker normal
form, describe the possible Kronecker structures of pencils which are small
perturbations of the given pencil.

Short title: Pencils under small perturbations

1. Introduction

The problem stated in the abstract will henceforth be called the perturbation
problem. The concept of ‘Kronecker structure’, as it appears in the statement,
calls for a precise definition. For this purpose, we shall introduce the concept of
skeleton of a pencil, which, roughly speaking, is what we obtain from the Kro-
necker normal form by disregarding the actual values of the pencil’s eigenvalues.
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Given a pencil A, we are interested in the skeletons ¥ such that, in any neigh-
bourhood of A, ¥ occurs as the skeleton of a pencil in that neighbourhood. The
set of all such skeletons is denoted by S4. The solution given to the perturbation
problem implies a characterization of S 4.

In the last few years this and related questions have been studied in the
literature. For example, in [9] a complete description is given for the Jordan
structures of a perturbed square complex matrix; as we shall see, this essentially
is a complete solution to the perturbation problem, when the given pencil is
nonsingular. In [11] some perturbation results for complex pencils are proved,
together with a complete characterization of the closure of the equivalence orbit
of a complex pencil. In [6] the perturbation problem is completely solved for
those special pencils arising in Linear Control Theory.

In February 1987, during a visit to Bilbao (Spain), I pointed out to the authors
of [6] the relevance of the results of [11] to the problem under discussion. As a mat-
ter of fact, the complete description of the closure of orbits given by A. Pokrziwa
is so intimately and obviously related to the perturbation problem, that it is only
natural to suspect that a small addition to his paper would completely solve our
problem. Some weeks after that visit I confirmed those suspitions. It turns out
out that the elements of 54 are precisely the skeletons of equivalence orbits in
whose closure A lies. In 1990, I. Hoyos sent me a copy of her thesis [8] where,
among other results, a key perturbation theorem is obtained without direct use
of [11]; that was one of the motivations to write down this paper, as it seems
desirable to recognize the depth and importance of the results of [11].

The present paper describes how a complete solution to the perturbation
problem may be obtained from [11], combined with results of [2, 9]. In section
3 we state and prove the main perturbation theorem. In section 4 we consider
an inverse perturbation problem; Theorem 4.1 shows, again as a consequence of
[11], that the perturbation theorem of section 3 is the best possible in a precise
given sense. Theorem 5.3 is a quantitative refinement of Theorem 4.1.

This work has been presented to the Portuguese Mathematical Society Jubilee
Conference held in Lisbon 1990.



Integer sequences. N is the set of positive integers. A sequence, say (k; :
i € N), where the k; ’s are integers, will be denoted by the corresponding upper
case latin letter: K in the current example. If M = (m; : ¢ € N) is another
such sequence, we denote by K + M the componentwise sum. We write K < M
whenever ky + -+ ky < my + -+ 4+ my, for all w € N. All sequences to
be considered below are monotonic: some are decreasing, others are increasing
(here, decreasing and increasing are meant in the weak sense). Therefore < will
always be a majorization relation in the sense of (e.g.) [10], where the symbols
<w and <% are used.

Now let (K,);er be a family of sequences, indexed by a set T. Assuming
K, = (k;; : i € N) is decreasing for all 7 € T, and {k,; : 7 € T} is bounded
from above, the union of the family, denoted by

UK, :T7€T) or U Ko

T€T

is the sequence (uy,us,...), where u; is the j-th greatest element of the family
(kri 7 €T, i € N). The reader may easily check that

ul+---+uw:sup{zszﬂ~ : 5, >0 and Zsr=w}.

7T 1=1 TET

With the help of this formula, one may prove the following result, that will be
extensively used in the sequel.

Lemma 1.1. Let K, and M, be decreasing sequences such that M, < K., for

each T € T. Then
UM< JE-.

T7€T T€T
|

For ¢ € Z the constant sequence (c,c,c,...) will be denoted by [¢]. Note that if
K is decreasing and k; < ¢, then K U [c] = [¢].

We say that K is a partition if K is a decreasing sequence of nonnegative
integers, and k; is positive for only a finite number of 7 ’s. For partitions K
and M we write K < M whenever K < M and the sum of all %, s equals the
sum of all m; ’s (cf [10]). As usual, the conjugate of a partition K, denoted by



K= (!’%s : s € N), is defined by k, == #{i: k; > s}. Then Kisa partition as well.
We shall use, with no further comments, the following properties of partitions:

K=K, (K+My=KUM, and K<M& M <K.

2. Preliminary Results

We assume the reader is familiar with the Weirstrass-Kronecker theory of pencils
(see [5, ch.12]). Our discussion involves only complex pencils. So an m X n pencil
is a polynomial matrix, A4 = AA; + Ay, where A and p are independent variables
and A; and A, are m x n complex matrices. Sometimes it will be convenient to
represent A by A(M, p).

For any pair (o, 3) € C* such that («, 3) # (0, 0), define

(o, B) = {(za,20) : z€ C, z5#0}.

The set of all (v, 3) is the projective complex line, that we denote by P(C). We
identify P(C) with C* := CU {00} in the usual way: a given {(«, 3) € P(C) is
identified with «/3; here, of course, we convention «/0 = oo, for any nonzero .
(Cf [1, §4.2,84.3].)

We say (o, 0) € P(C), or o/ € C=, is an eigenvalue of A = A(\, p),
whenever rank A(q, 3) < rank A. Define the following pencils:

Ts(Ap) = A+ uN, and Rs(A p) := AL 0] + u[0 I4],

where I, is the s x s identity matrix, N, is the usual upper triangular, nilpotent
Jordan block of order s, and the 0's denote zero columns [thus R, is s x (s +1)].
R, and its transposed, which we denote by s, are called right and left Kronecker
pencils, respectively. Pencils of the form J.(A — ap, 1), with a € C, or J(u, A)
are called Jordan pencils; note that « is the unique eigenvalue of the former pencil
and oo is the unique eigenvalue of the latter.

According to a well-known theorem of Weirstrass and Kronecker (see, e.g.,
[5, Vol.2]), any pencil A is strictly equivalent to a direct sum of Jordan pencils
and Kronecker pencils, which are called Jordan and Kronecker components of A ;
such direct sum, known as Kronecker normal form of A, is unique up to the order
of the components. Here we are using the following convention: the Kronecker
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pencil Ry [Lo] is said to occur p times in A iff the Kronecker normal form of
A has p zero columns [rows]. To simplify forthcoming formulas, we encode the
Kronecker structure of a pencil differently from [11].

Definition 2.1. Given a pencil A4 and o € C we let M(a, A) = (m;(a, A) :
j €N), H(A) = (h;(A) : j € N), and V(A) = (v;(A) : 7 € N) be the sequences
defined as follows: m;(«,.A) is the number of Jordan components of A, with
eigenvalue «, having at least j rows; h;(A) [v;(A)] is the number of Kronecker
components of A of type R, [L], such that s < j.

We denote by h(A) [v(A)] the total number of right [left] Kronecker compo-
nents of A.

For any subset X of C™ we define

M(X, A) = |) M(a, A). (1)

acX

The skeleton of A is the sequence of integer sequences
SK(A) := (M (a1, A), ..., M(ay, A), H(A), V(A)),

where oy, ..., o, are the distinct eigenvalues of A, ordered in such a way that
the p partitions M{a;, A) occur in (say) increasing lexicographical order.

Remarks. (a) Letters ‘A" and ‘v’ hold for ‘horizontal’ and ‘vertical’ blocks. h(A) is
the maximum h;(A), and v(A) is the maximum v;(A). As v(A) = h(A) + m — n, we
have chosen not to use v(A).

(b) The union in (1) is essentially extended to the finite set of eigenvalues of A
inside X; therefore M (X, A) is a partition.

(c) Of course we have p = 0 if and only if A has no eigenvalue; in that case

SK(A) = (H(A),V(A)).

Examples.
(1) For a 2 x 2 Jordan pencil, SK(72) = ((1,1,0,0,0,...), 0], [0]).
(2) A 2 x 3 zero pencil has skeleton ([3], [2]).

(3) SK(Ry) = ((0,0,1,1,1,...), [0]).



Lemma 2.2.

(a) An s x s pencil A is strictly equivalent to the s x s Jordan pencil with
eigenvalue (o, 8) € P(C) off A has only one eigenvalue, tank A = s and
rank A(w, 3) = s — 1.

(b) For s >0, an s X (s + 1) pencil A is strictly equivalent to the Kronecker
pencil R, iff rank A(a, 8) = s for all (o, 8) € P(C); that is, iff A has mazimum
rank and no eigenvalue. [ |

We now fix four complex numbers, a, b, ¢, d, such that ad # be. Given A we
define a new pencil A by changing variables in A:

A(X @) == A(aA + b, cA + du) . (2)
The Mobius (linear fractional) transformation, given by
P(z) == (az +b)/(cz +d), forze C™, (3)

then naturaly arises, because « is an eigenvalue of A iff ¥(a) is an eigenvalue
of A. We stress the fact that 1 is a topological automorphism of C*. (See [1,
§18.10] and [3, pp.43 fi] for details).

The following theorem is surely known but we did not find it in the literature.
So we give a sketchy proof.

Theorem 2.3. With the above notation the pencils A and A have the same
skeleton and M(a, A) = M(¥(a), A) for all a in C*°.

Proof. Without loss of generality we assume that A is in Kronecker normal
form. Thus A also splits into a direct sum of pencils each of which is obtained
from a component of A by the same change of variables. Moreover the number
of zero rows [columns] is the same in A and A. Therefore we may work out each
block separately, that is, we only need to prove our theorem in the following two
special cases: (a) A is a Jordan pencil; (b) A is a Kronecker pencil. In each case
we may apply Lemma 2.2 to obtain the desired result. [ ]



The following result comes out as a consequence of [9, Th.5].

Theorem 2.4. Let T be an n x n nonsingular complex pencil and let U be an
open subset of C™, such that no eigenvalue of T lies on the boundary of U.
Moreover let W be a closed subset of C™. Then for all pencils S sufficiently close
to T

M{U,S) < MU, T) and MW, S)<M(W,T). (4)

Proof. Note that the statement involving U implies the statement involving
W because, given a closed W, there is U satisfying the hypotheses of the theorem,
such that U D W and no eigenvalue of 7 lies on U\W.

The statement concerning U is (in essence) a particular case of [9, Th.5]. In
fact, each eigenvalue 7 of T(\, ) contained in U may be individually treated:
if 7 is finite, apply [9, Th.5] to the holomorphic function 7 (A, 1) in a small disk
centered at 7; if 7 = oo, apply [9, Th.5] to the holomorphic function 7 (1, ) in a
small disk centered at the origin. [ |

Remark 2.5. It is easy to give an independent elementary proof of the above result
based on [2] or [9, Th.1]. First we change variables in 7T, according to (2)-(3), in such
a way that, in the new pencil, 7 = NI} + ,uf“g, the matrix 7} is nonsingular; then we
apply [2] or [9, Th.1] to AT+ TpT7 "

To close this section we point out that, in the notation of Definition 2.1,
Theorem 3 of [11] has the following formulation: a pencil A lies in the closure of
the equivalence orbit of a pencil S iff the following relations hold:

H(S)< H(A), V(S§)=<V(A) (5)
h(S)] + M(a, S) < [R(A)] + M (cx, A) (6)

for all @« € C*. Here, nothing essentially changes if we substitute ‘v’ for ‘A’
throughout. Note that condition (6) is equivalent to

[R(8)] + M(W,S) < [h(A)] + M(W, A), foral W cCC™. (7)

In fact, for any pencil P, the union of all sequences [A(P)]+ M («a, P) (for o € W)
is [R(P)] + M (W, P). So (7) follows from (6) by a straightforward application of
Lemma 1.1.



3. The Main Perturbation Result

The following theorem is obtained as a combination of the results of [11] and [9,
Th.5]. The reader should recall the notations of Definition 2.1.

Theorem 3.1. Let A be a pencil and let W be a closed subset of C*. There
exists a neighborhood Q of A such that any S in Q satisfies

H(S)= H(A), V(S)=V(A) (8)
(W(S)] + M(W,S) < [h(A)] + M(W, A). (9)

Conditions (8) were proved by A. Pokrziwa [11, Th.1 (4)-(5)]. Note that (9) is
the same majorization occurring in (7), but the quantification on W is different.
Here, I will offer a proof of (9) that I obtained (but not published) in 1987.
For that purpose a lemma is first stated and proved. This lemma has also been
obtained by I. Hoyos, in her PhD thesis, by a different method.

Lemma 3.2. For a fited « € C™ let U, be a neighbourhood of o such that
U \{a} contains no eigenvalue of A. Given a sequence of pencils (Sy, : k € N)
converging to A, for sufficiently large k we have

(W (Sk)] + MUy, Sk) < [A(A)] + M (U, A) . (10)

Proof. The pencils under consideration are m x n, with m and n fixed. So we
only have a finite number of possible skeletons and a finite number of possibilities
for the left hand side of (10). Therefore, we only need to prove the Lemma when
all the Sy have the same skeleton and M (U,, Sg) is independent of k ; henceforth
we assume these conditions hold. So we have only to prove the existence of k
satisfying (10). For each k, there exist unitary matrices @y and F; such that
Sk = Qw7 1Py, where T has the block triangular form

r Fu - *
:rk:{ 0’“ g* ] with Fj = e 1|
¢ 0 For

here, we assume that: (i) F is an upper triangular block matrix with s blocks,
Fiks .- Fsk, along the diagonal; (ii) the integer s and the dimensions of the F;;
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and G do not depend on k; (iii) each Fy; is a square, nonsingular pencil, with
only one eigenvalue, denoted &, and &1, ..., &, are the distinet eigenvalues of
Sy; (iv) Gy has no eigenvalue, H(Gy) = H(Sk) and V(Gi) = V(Si) (cf. [13, 14]).
These conditions imply that Sy, is strictly equivalent to Fip @ - - & F o & Gy, (see
[5, 12]). We may assume that (Qx), (Py) and (& : k € N) are convergent, and
denote by &; the limit of (& : kK € N), fori=1,...,s. Without loss of generality
we assume: &y # oo if & # 0o, and & # 0 if & # 0. (So far, we followed the
idea of [11, pp.107-108]).

Let V, be a closed neighborhood of «, small enough so that V, C U, and no
& lies in V,\{a}. Define, for w € [0, 1]:

Fald+ pwll — &), 1) if & # 0
Fix =Fi (Ap) =

Fi(As p+ Aw/E) if &=occ.
Let 8 = Qi7T% Py, where 7% is the pencil obtained from 7} by replacing
Figy-o o Fax with Fi%, ..., F, respectively, and leaving the other blocks in-
variant.

We point out that the eigenvalue of ;" lies on the straight line segment [Ex, &
(we put [€,00] := {£/w: 0 <w < 1}). We have one of two situations: either (I)
a = &, for some t € {1,...,s}, or (II) @ is none of the &’s. For large enough k
we have: in case (I), [€u, &] is a subset of V,, and [, &;] NV, is empty if j # ¢; in
case (II), no [&i, &] intersects Vi,. So, in both cases, M (Vy, Fif) = M(Va, Fir),
and therefore M(V,,S,”) = M(V,, S). Combined with Theorem 2.4 this yields,
for large enough £,

M(V,,S) < M(a,Sy). (11)

All S,lC have the same spectrum, namely {&;,...,&:}, and we have only a finite
number of possible s-tuples (M (&;,8}), ..., M(&,, Si)). Therefore, there exists
a subsequence of (S;) with all entries in the same orbit. So we may assume,
without loss of generality, that all pencils S}, lie in the same orbit. By [11], (6)
holds with S = Sj; taking into account (11) and h(S}) = h(Sy) we obtain

M (Va, Sk) <= M(a, A) + [R(A) — h(Sk)], (12)

for large enough k. By [11, Th.1], M (v, Sx) < [R(A) — h(Sy)] for all v € U,\V,
and large enough k. Combining the last relation with (12) and Lemma 1.1, we
obtain (10). o



Proof of (9). For each &« € W, let U, be an open neighborhood of « such that
Ux\{} contains no eigenvalue of A. As W is compact, there exists o, ..., a, in
W such that U :=U,, U---UU,, contains W. By Lemma 3.2, (10) holds for all
Sy, sufficiently close to A and all @ € {ay, ..., @, }. Applying Lemma 1.1 we get

[R(S)] + M(U,S) < [h(A)] + M (U, A),

for all Sy sufficiently close to A. As M(W,8) < M(U,S) and M(W, A) =
M (U, A), our claim (9) follows easily. [ |

Theorem 3.3. Let ay,...,ap, be the distinct eigenvalues of A and, for each t,
let U, be a newghbourhood of oy whose closure contains no other eigenvalue of A.
Define Uy := C*\(U1 U ---UU,). There exists a neighborhood ! of A such that
any S in Q satisfies (8) and

[W(S)] + M(Us, S) < [B(A)] + M(aw, A), for t=1,....,p  (13)
max M(Up, S) < h(A) — h(S). (14)

Proof. Applying (9) to the closed sets Uy, ..., U,, we obtain (13). Applying (9)
to Uy, we get [h(S)] + M (U, S) < [h(A)], which is equivalent to (14). |

Note that we may easily obtain (9) from (13)-(14). Thus Theorem 3.3 is an
alternative formulation of Theorem 3.1.

4. A Converse Result

The following theorem shows that Theorem 3.1 is, in a certain sense, a best
possible result. The reader should compare (15} with (8), and (16)-(17) with

(13)-(14). As a corollary, we characterize the set of skeletons, S4, defined in the
introduction.

Theorem 4.1. Let p and q be nonnegative integers, (My,..., M, H, V) the
skeleton of an m x n pencil, and A an m x n pencil having p (distinct) eigenval-
ues, ai,...,0p. We are also given p + 1 pairwise disjoint sets Xo, ..., X, such
that XoU---U X, ={1,...,q}. Denote by h the mazimum of H = (hy, ha,...).
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We assume these entities satisfy

H<HA), V<V(A) (15)
B+ [ Ms<[m(A)] + M(ay, A), fort=1,...,p (16)
max | J EMS < h(A)—h. (17)

Finally, let U, be a neighbourhood of a; whose closure contains no eigenvalue of
A other than oy, and let {15 : s € Xo} be a set of pairwise distinct elements of
C=\(U1U---UU,) indezed by Xo.

For any neighbourhood 0 of A there exists a pencil § in Q with q (distinct)

ergenvalues, o1, ..., 0y, satisfying the following conditions:
Os =Ty, forsée Xg (18)
g, €Uy, forse X, andte{l,...,p}
H(S)=H and V(§)=V (19)
M(os,8) =M, forse{l,...,q}. (20)

Proof. Let N = F ® G be an m x n pencil, in Kronecker normal form, such
that H(G) = H, V(G) =V, M(,F) = U{M; : s € X}, fort =1,...,p, and
M(15, F) = M, for s € Xo. By [11], (15)-(17) mean that .4 lies in the closure of
the orbit of M. Therefore there exist invertible complex matrices, P and (@, such
that PN Q@ lies in €2.

Let o4, for s € X; U---U X, be any pairwise distinct complex numbers
satisfying (18). For a fixed ¢ € {1,...,p} let us denote by J;; the i-th greatest
Jordan component of ' with eigenvalue ;. Clearly Jy; has order m;(ay, N)
(recall: 77;(ay, N) is the i-th coordinate of M (7, N), the conjugate of M (y:, N)).
Assume o is finite (the case o, = 0o is similar). We now perturb the diagonal of
Ji; to obtain the following pencil

P (o, — Q’t),ujs,i‘l ;

SEX:

where [y, is the m;; X my,; identity matrix, with the notation (m,; : ¢ € N)
for the conjugate of M,. Note that J; and I,; have the same order, because
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M(ap, N) = B{M, : s € X,}. J/, has spectrum {o, : s € X,} with precisely one
Jordan component with eigenvalue o, and this component has order 7 ;.

Let us perturb in the way just described all the Jordan blocks occurring in
N, and let N’ be the resulting pencil. Clearly, S := PAN’Q satisfies (19)-(20).
Moreover, by appropriate choice of the o, (s € Xp) our perturbation may be
made small enough so that PA'Q still lies in 2. So the theorem holds with
Si= PN'Q. |

Corollary 4.2. The skeleton ¥ = (M), ..., My, H,V) lies in Sy tff there exist
parrwise disjoint sets Xy, ..., X,, satisfying XoU---U X, = {1,...,q}, and the
conditions (15)-(17). That is, ¥ belongs to Sa iff A lies in the closure of an
equivalence orbit with skeleton . O

Remark 4.3. The sequence of sets Xy, ..., X, represents the way we wish to
locate the eigenvalues of the perturbed pencil & with respect to those of A: §
is supposed to have a cluster of |X;| distinct eigenvalues around «, for each
t € {1,...,p}; the sum of the multiplicities of the eigenvalues in that cluster may
be (i) less than, (ii) equal to, or (iii) greater than the multiplicity of a;. In case (i)
we are, in a certain sense, “deflating” oy by a perturbation. If X, is empty, that
means we decided to rule out the possibility of S having an eigenvalue nearby oy:
in this extreme case, we may say that «; has been banished from the eigenvalue
list.

The eigenvalues o, for s € X are unrelated to the spectrum of A; we call
them alien eigenvalues by obvious reasons: they may blossom in almost every
place of C* for convenient choices of arbitrarily small perturbations of A. Alien
eigenvalues are bound by the condition that no one of them is allowed to coincide
with one ay, otherwise that eigenvalue would have been labeled as a member of
a;’s cluster. The other restriction on alien eigenvalues, namely (17) [or (14)],
involves the maximum of U{M; : s € X}, which is nothing but the maximum
number of Jordan blocks with the same alien eigenvalue. So the number of Jordan
blocks of the perturbed pencil § corresponding to any given alien eigenvalue is at
most h(A)—h(S) [clearly this equals v(.A)~v(S)]. Thus, roughly speaking, alien
eigenvalues may be brought into existence at the cost of destruction of Kronecker
blocks.

12



5. A Quantitative Refinement

In our final result we obtain a quantitative refinement of Theorem 4.1. Roughly
speaking, we give a relation between positive real numbers ¢ and &, such that,
given a pencil A, we may always find a pencil § inside a neighbourhood of A
of radius ¢, satisfying (19)-(20), with each cluster {os; : s € X;} of nonalien
eigenvalues arbitrarily prescribed in a neighbourhood of oy of radius k. It turns
out that x and ¢ have the same order of magnitude, for appropriate choices of
the metrics in the space of pencils and in C*.

For pencils, distances are afforded by the following norm: if P = AL + uM
is an m x n pencil the norm of P is defined as the greatest singular value of the
m X 2n complex matrix [L, M].

To measure distances between eigenvalues we shall use the chordal metric of
C™. Recall that C* is naturally identified with a Riemann sphere, say RS :=
{(&,1,€) : € +7n*+ (* = (}, by means of the stereographic projection (see e.g.
[4, pp.50-52] for details). The chordal distance between two points z,w € C,

denoted d*(z,w), is the distance between the stereographic images of 2z and w in
RS. We have

d(zw) = |z — w] {(L+ 2P) 1+ P} (21)

If (21, 22), (21, 22) € P(C) satisfy 2z1/z; = z and w;/wy = w then (21) may be
written in a nice symmetric way
* 2 2 2 2y 71/2
d*(z,w) = lzrws — 2w [ {4+ 2P + 2P+ o+ wo)} . (22)
This identity also holds in case z = oo or w = oo. As 1/z is representable by

z9/z and formula (22) is invariant under the interchanging of the subindices 1, 2,
it follows that d*(1/z, 1/w) = d*(z, w).

Lemma 5.1. Let 0,0’ € C™ satisfy d*(o,0") < p, where p is any positive real
number such that p < /2/2. There exist b,c € C such that be = 0, ¢’ =
(o +b)/(co + 1) and max{|b|, |c|} < 2p/(1 — V2 p).

Proof. First assume that |o| < 1, i.e., the stereographic image of ¢ lies in the
south hemisphere of RS. As d*(o,0") < v/2/2, we have ¢’ # oco. Let us put ¢ := 0
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and b := ¢’ — g. We easily get
(L+1o) (1 + |0’ ") < 2[1+ (Jb] + |o1)?] < 2(2 + 20| + [5*] < 4(1 + [8l/V2)?.

Combining this with d*(e,0’) < p and (21) we obtain |b]/(1+ |b]/v/2) < 4p, that
is, |b] < 2p/(1 — +/2 p). The proof is complete in case |o| < 1.

Now let |o| > 1 (this includes the case 0 = 00). As d*(1/0,1/0") < v/2/2, we
have 1/0’ # oo, etc, ete. The proof is the same as before, taking the inverses of
o and ¢’ and reversing the roles of b and c. [ |

Lemma 5.2. Let P’ be a nonsingular pencil with exactly one eigenvalue o' € C™.
If o € C™ satisfies d*(0,0’) < p, where p < \/2/2, then there exists a pencil P
with the same skeleton as P’, having o as (unique) eigenvalue and satisfying
1P =PIl < IP'lI20/(1 — V2 p).

Proof. Write P’ = AL + uM and define P := (A + bu)L + (e + u)M, where b
and c are as given in Lemma 5.1. Clearly P has the same skeleton as P’ and has
eigenvalue o, because ¢’ = (¢ + b)/(co + 1). Moreover

[P—P|l = IBAL+cuM| = |BL, M| = L, M(bT@er)] < /P mas{]b, cl}.
Therefore, by Lemma 5.1, |P — P’ < ||Pl|2p/(1 — V2 p). [

Theorem 5.3. For a nonzero pencil A, let us adopt all notations and assump-
tions of Theorem 4.1 up to (17) inclusive. Moreover, let us be given a real k
satisfying 0 < & < V2/2, and a set {o1....,04} of q distinct elements of C™
such that, for all t € {1,...,q},

oy # oy forve Xy, and d*(os,04) < Kk forse X;. (23)

Then there exists a pencil S satisfying || A — S|| < [|A|25/(1 — V2 &) and the
conditions (19) and (20).

Proof. Given oy,. .., 0y, let § be a positive real number satisfying § < d*(z,w)/10,
for all distinet z,w in {ay,...,a,} U{os: s € Xp}. We shall apply Theorem 4.1
with U; := {z : d*(2, %) < 6} and 74 := gy, for s € Xj.

Choose a real p so that 0 < p < k and d*(0,, ) < 6 for all s in X; U--- U X,
and choose a positive 7, satisfying

0+ (AL +m20/(1 = V2p) < ||Al125/(1 ~ V2K). (24)
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Such 7 exists because (24) is equivalent to n(1 + f,) < (fix — fo)||A|l [here, f.
denotes 2z/(1—+/2z)], Ais nonzero, and f, > f,. By Theorem 4.1, there exists
an m x n pencil & such that || A —&'|| < n, with distinct eigenvalues o7, ..., 0}
satisfying (18)-(20) (with S and o, replaced by & and ¢’). A closer look at the
proof of Theorem 4.1 shows that we may further assume d*(os, 0l) < d*(os, );

therefore, by (24),
d*(og,00) < p, forallse{1,...,q}. (25)
Let P and @ be complex unitary matrices such that

" Fi oo %
*

O F,

where G has no eigenvalues, H(G) = H(S'), V(G) = V(S') and each F; is
square nonsingular with o} as unique eigenvalue, for s = 1,...,¢ (cf. [13, 14]).
According to (25), Lemma 5.2 yields, for each s, a pencil £ with the same skeleton
as F;, having eigenvalue o, and satisfying [|£, — F|| < ||S"|2p/(1 — V2 p), for
s=1,...,q

Let S be the pencil obtained from S by replacing (in the representation (26))
each block F, by £ and leaving all other blocks invariant. Clearly S satisfies
(19)-(20). Moreover

IS = &'l = sup{||Es = Fill : s=1,....4} < |8'l120/(1 = V2p).

As [[A—S8'|| < n we have ||S'|| < ||A]| +71. We thus obtain the following sequence
of inequalities, the last of which is (24):

IA=S] < JA=S|+IS =Sl <n+|8lI20/(1 — V2p)
< 4+ (Al +m)20/(1 = V2 p) < | A 26/(1 - V2k).

The theorem is proved.
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