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Large Scale
Nonconvex

Optimization

Introduction by the Guest Editors

This issue of SIAG/OPT Views-and-News is de-
voted to Large Scale Nonconvex Optimization.

There has been remarkable progress in nonlinear op-
timization algorithms and software in the last few
years. The supremacy of SQP and augmented La-
grangian methods has been challenged by interior
methods, and the competition between these ap-
proaches has revitalized the area. The article by
Gould gives a perspective of the current state of non-
linear programming algorithms and raises a variety
of questions that require investigation.

There has been much work in extending the areas
of application of nonlinear programming. The arti-
cles by Sachs, and Biegler and Waechter discuss the
formulation and solution of optimization problems
whose constraints are differential (or differential-
algebraic) equations. This area, which has been
studied since the 1970s, is now drawing much at-
tention thanks to the robustness, flexibility and ef-
ficiency of differential equation solvers, and the de-
velopment of a wide range of practical applications.

General-purpose nonlinear programming algo-
rithms are having a profound effect in the area of
mathematical programming with complementarity
constraints (MPCC). This area has been growing in
importance in the last 10 years with the develop-
ment of its theoretical foundations and the recogni-
tion that many economic and engineering applica-
tions can be formulated as MPCCs. The survey by
Leyffer provides an overview of recent developments
in this field.

Bussieck and Pruessner discuss one of the most
challenging problems in nonlinear optimization,
namely the solution of problems involving both dis-
crete and continuous variables. Problems of this
type arise naturally in many engineering and man-
agement applications. They combine the difficulties
of nonlinear optimization with the combinatorial na-
ture of integer optimization. The authors argue that
integer nonlinear optimization is a wide open field
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with opportunities for novel approaches.
We hope that the five papers contained in this

volume encourage researchers working in nonlinear
optimization to branch out into some of these new
emerging areas.

Sven Leyffer and Jorge Nocedal March 10,
2003

Some Reflections on the Current
State of Active-Set and

Interior-Point Methods for
Constrained Optimization

Nicholas I. M. Gould
Computational Science & Engineering Department,

Rutherford Appleton Laboratory, Chilton, Didcot,

Oxfordshire, UK, OX11 0QX.

1. Introduction

This is an exciting time to be working in constrained
nonlinear optimization. New ideas abound. Collab-
orations and alliances are forged, rivalry is intense,
competition fierce. Why should this be? After all,
surely the importance of optimization was recognised
many decades ago. So why, now, should there be so
much activity and why did it take so long?

I believe that the answer is complicated, but cer-
tainly one of the main reasons is that, finally, we
really are starting to believe that we have the right
(theoretical and practical) tools to tackle the prob-
lems we have long been asked to solve. What was the
stimulus for this? Well, without doubt in part what
has been called the “interior-point” revolution. But
also the fight-back from the traditionalists, those
who promote earlier “active-set” approaches. And
finally, the recognition from practitioners that, yes
indeed, we can now solve sizable nonlinear program-
ming problems, so that there has been a shift away
from linear models and the thinking that lead to
these.

In this short article, I hope to explain the salient
points of both approaches, the symbiosis that has
arisen, and how both approaches have impacted on
nonlinear optimization. But I also want to look to
the future, and to see how things may develop.

2. History

2.1 Active-set methods

In the beginning, there was linear programming: as
simple an approximation to the real world as one
could possibly make, but nonetheless one of the most
important (and most studied) problems in the his-
tory of computational mathematics. As we all know,
linear programming is concerned with (say) minimiz-
ing a linear function of n unknown parameters (vari-
ables) over a feasible region described by m linear
equations and/or inequalities. A solution will (al-
most always) occur at a vertex of the feasible region,
and the archetypical active-set solution algorithm,
the Simplex method, aims to find such a solution by
moving through a sequence of objective-improving,
feasible, adjacent vertices. Thus, the search is to
determine which of the constraints “define” the so-
lution (the active ones), and which may be safely dis-
carded, and this defining characteristic extends eas-
ily to more general constrained optimization prob-
lems. Such an algorithm may explore an exponen-
tial (in terms of m − n) number of active “sets” in
the worst case, is known to depend linearly on these
parameters on the average, and in practice really
seems to behave just as its average-case performance
predicts. Thus for a problem involving, say, a mil-
lion degrees of freedom, it is reasonable to expect
a few millions iterations. While this might at first
sound impractical, it is vital to recognise that for
linear constraints the dominant cost per iteration is
usually the solution of a system of linear equations,
and that each system is a rank-one modification of
its predecessor. Thus the cost per iteration is of-
ten very small, and it is this feature that has kept
the Simplex method for linear programming compet-
itive over the past 50 years. Most commercial linear
programming systems (such as CPLEX, Xpress and
OSL) still have Simplex components (albeit with nu-
merous enhancements such as advanced crash and
pre-solve procedures, steepest edge exchange rules,
and hyper-sparsity exploiting linear solvers, etc.),
and the active-set paradigm also extends into the
nonlinear world by virtue of successful and widely-
used packages like MINOS [25] and SNOPT [14].
Our experience is that to build a successful active-
set method requires considerable care, since round-
ing errors have ample opportunities to build up and
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cause havoc over the large number of iterations that
occur, even in the linear and quadratic programming
cases.

2.2 Interior-point methods

Knowing that the Simplex method might take an
exponential number of steps started a race to find
alternatives whose worst-case complexity was poly-
nomial in m−n. The first-reported polynomial algo-
rithm, the ellipsoid method, has alas not turned out
to be effective in practice [1]. Fortunately the next
competitor, Karmarkar’s method [21], proved to be
a major advance, and started a frenetic research
feeding-frenzy on interior-point methods which has
continued to this day. Karmarkar’s genius was to
produce a nonlinear iteration that attempted to stay
well away from the boundary of the feasible re-
gion (and thus avoid the influence of the myriad
of vertices) until it approached optimality. It was
soon recognised that the method (and many of its
successors) may be interpreted as the approximate
minimization of a sequence of logarithmic barrier
functions—or, if we prefer, as following the “central
path” defined as the trajectory of such minimizers as
a function of the barrier parameter—and these per-
spectives have obvious and important consequences
for its use for nonlinear problems.

The current state for linear (and many convex)
problems is primal-dual variants (in which, as the
name suggest, duality plays a strong role and pri-
mal and dual variables are treated equally) whose
worst-case behaviour to achieve a close-to optimal
solution varies like O(

√
m− n) in theory and signif-

icantly better (perhaps O(log(m− n))?) in practice
[26, 38]. All of the major commercial systems con-
tain interior-point solvers (again with a large num-
ber of enhancements). It is interesting to note that
although such methods require considerably fewer
iterations than their active-set rivals, the cost per
iteration is significantly higher—there is, in general,
no rank-one update for the crucial linear systems—
so that there is still fierce and healthy competition
between the two competing ideologies. Certainly,
active-set interior-point hybrids are now popular and
successful. It remains to be seen that, if in the long
term as problem sizes grow, the superior complexity
bounds for interior-point methods proves decisive,

but I believe this will be the case.

3. Where are we now?

Thus far, all seems perfect. But how do these ideas
extend into the nonlinear, nonconvex world?

3.1 The trouble with SQP . . .

Extending active-set methods would at a first glance
appear to be easy, simply replacing the solution over
the whole feasible set by that over a sequence of ac-
tive sets in which the inactive inequalities are dis-
carded. However, the resulting subproblems are still
nonlinear, and thus in principle will each require
an infinite iteration. Early attempts to “truncate”
such subproblems suffered from a nasty phenomenon
known as zig-zagging in which constraints continu-
ally entered and left the active set.

A more successful idea is to replace the general
problem by a sequence of “simple”, tractable approx-
imations. For instance, one might replace the objec-
tive and constraints by linear approximations (the
so-called Successive Linear Programming or SLP ap-
proach [11]) or perhaps the objective by a quadratic
approximation (the Successive Quadratic Program-
ming or SQP approach [2, 19]). The advantage here
is that the subproblem (a linear or quadratic pro-
gram) is significantly easier to solve than the non-
linear approximation of the previous paragraph. In-
deed if the quadratic approximation is convex (or
a linear approximation used), we have polynomial-
time subproblem-solution methods at our disposal.
Having solved the subproblem, we can use its solu-
tion as the next trial iterate, and we might embed
such a scheme within a linesearch, a trust-region or
a filter globalization scheme. But caution is needed
here, since there are a number of potential pitfalls.

Firstly, it is well known that the globaliza-
tion scheme may interfere catastrophically with the
SLP/SQP step (the Maratos effect) and avoiding ac-
tion may result in extra computation [2, 19].

Secondly, to obtain fast ultimate convergence,
it is usually vitally important to use some 2nd
derivative information/approximation (and thus ul-
timately some form of SQP iteration). If we are
“lucky” enough to have (and use) exact 2nd deriva-
tives, the resulting nonconvex QP may have a num-
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ber of local minimizers, some of which may not be
consistent with our overall globalization scheme (the
SQP step may be “uphill”). Although many active-
set QP solvers can ensure that the step is downhill,
I do not currently know how to guarantee this for
interior-point QP solvers. If we must resort to “ap-
proximate” (say secant-approximation) 2nd deriva-
tives, it is known that requirements of sparsity and
positive-definiteness together conflict with stability
[28], so we may be restricted to dense updates, and
thus problems with few degrees of freedom—it is
worth noticing that all of the successful SQP and
SQP-like methods we are aware of (such as MINOS,
SNOPT and filterSQP[10]) rely on having relatively
few degrees of freedom.

Thirdly, if there is one lesson we should have
learned from large-scale unconstrained minimiza-
tion, it is to aim to solve the subproblem as
inaccurately as possible consistent with overall
convergence—the truncated Newton approach [8],
along with its practical manifestation via the lin-
ear (preconditioned) conjugate-gradient method, is
one of the key ideas to have evolved in the uncon-
strained case during the 20th century. So it is clearly
desirable to truncate the LP/QP solution process.
But how? We are aware of almost no work in this
area (but see [24] for an exception), and it is of vital
practical importance. Again, it would seem easier to
stop “early” with an active-set QP solver than with
an interior-point one.

Finally, we would ultimately expect that the ac-
tive sets for our LP/QP subproblems will settle down
as we approach the solution to the overall prob-
lem [27]. This suggests that we should be exploit-
ing a priori information about candidate active sets
to warm start subsequent subproblem solves. This
would seem to be one area in which active-set meth-
ods have a clear edge, since the ability to warm start
interior-point methods is in its infancy—there has
been some work in the LP case [15, 40], but to our
knowledge none for QPs. In practice, by contrast,
we have observed that it is still sometimes faster
(especially in the degenerate case) to “cold-start”
an interior-point QP than “warm start” active set
QP code, simply because even slightly incorrect ac-
tive set predictions can have dramatic undesirable
consequences for active-set methods [20].

We have currently suspended development of

the large-scale SQP method that we had intended
including in GALAHAD [18] despite having pro-
duced both effective active-set and interior-point
QP solvers. Our experience has been that with-
out QP truncation, the cost of the QP solution
so dominates that other non-SQP approaches (such
as IPOPT [33], KNITRO [4] and LOQO [32]), in
which truncation is possible, have made significant
progress even before our QP code had solved its first
subproblem!—see also [23] for further evidence that
interior-point methods appear to scale better than
SQP ones. We are more enthusiastic about an SLP-
QP approach we are currently developing [3], since
LP truncation is in principle easier and since the QP
phase is restricted to a problem with equality con-
straints for which a truncated conjugate-gradient it-
eration is possible.

3.2 Whither interior-point methods . . . ?

As I mentioned above, we produced two (noncon-
vex) quadratic programming packages for GALA-
HAD. Considerable numerical experience has indi-
cated to us that the interior-point version, QPB is
almost always vastly superior for large problems [7].
Since we have now all but given up our SQP de-
velopments, we have now turned to what we con-
sider to be the other possibility, namely to solve gen-
eral constrained optimization problems by sequen-
tial barrier-function minimization, using the lessons
learned when designing and evaluating QPB.

We were warned as children that barrier-function
methods are beastly because of the effects the barrier
has close to the boundary. It later turned out that
these fears were almost groundless, and that actually
observed inefficiencies were to a large degree due to
using the wrong dual variable updates following a
reduction in the barrier parameter [36]. Without
doubt, the problem does become very poorly con-
ditioned near the solution, but this itself does not
cause failure since even search direction calculations
that might result in large numerical errors do not,
because all such errors are confined to uninteresting
subspaces [16, 37, 39]. But being prematurely close
to the boundary certainly is bad in that it can be
painfully slow to escape. For example, if we wish to
minimize −x for x ∈ [0, 1] and start with x0 very
close to zero, the Newton barrier correction (with



Volume 14 Number 1 April 2003 5

modest barrier parameter) results in a new point
x1 ≈ 2x0. Thus an initial point x0 = 2−40 ≈ 10−12

will take roughly 40 iterations to move to the centre
of the feasible region. The lesson here is, I believe, to
stay away from the boundary unless there are good
reasons to get close (such as if a particular constraint
is active at optimality). I strongly believe that it
pays to stay close to “the” central path since this
avoids as best as possible premature contact with
the boundary, although since different scalings re-
sult in different central paths, it is far from obvious
which path is actually the one to follow!

An important question if we are to use an interior-
point approach is how we should handle equality
constraints. To a certain extent, I suggest this de-
pends on quite what sort of constraints they are.
If they (or some of them) are linear, I believe that
it often pays to use a “phase-1” procedure to find
a “well-centred” feasible point for these constraints,
and thereafter to ensure that they remain satisfied
on all subsequent iterations. The reasoning is sim-
ply that dealing with a nonlinear objective is tricky
enough without having to cope with non-convexity
in subspaces that the constraints rule out—we cer-
tainly have seen the advantages even in the “simple”
case of nonconvex quadratic programming of using
feasible rather than infeasible interior point meth-
ods.

Nonlinear equality constraints are altogether more
tricky, and it is in this area that the most signifi-
cant differences between competing modern interior
point methods occur. Some methods (like IPOPT,
KNITRO, LOQO and INTOPT [22]) prefer to treat
them explicitly by gradually moving towards feasibil-
ity but balancing the requirements of optimality us-
ing a penalty function or filter. Others like [29] and
the method we are developing for GALAHAD replace
equalities by one-sided inequalities (which are then
handled using interior-point technology) and other-
sided penalization. At this stage I do not think we
know which of this approaches is best, but it is likely
that actually there is very little difference.

There are two important side issues here, though.
Firstly, if we really believe we have good methods for
handling equations, is it better to treat inequalities
by converting them to equations using slack vari-
ables and then simply treat the slack variables using
interior-point methods? From a linear-algebraic per-

spective there is little difference, but there seem to
be ardent devotees of both schools of thought [6], so
I do not really believe we have exhausted or settled
this question. Secondly, if we plan to use equality
constraints explicitly, it is vital that there is some co-
herence between the search direction employed and
the merit function used to ensure their ultimate sat-
isfaction. Several cautionary examples [5, 34] attest
to the pitfalls that may befall the unwary.

The asymptotic behaviour of interior-point meth-
ods is relatively well understood even in the non-
convex case, at least under non-degeneracy assump-
tions: the barrier parameter may be reduced at a su-
perlinear rate so that the overall iteration converges
superlinearly for primal-dual methods [17] and 2-
step superlinearly for primal-only methods [9], al-
though the latter requires some care when reducing
the barrier parameter. Some progress has been made
in the degenerate case, but we do not currently have
as complete an understanding as in the linear pro-
gramming case where degeneracy does not hinder
convergence to a well-defined point in the centre of
the face of optimally active constraints. In prac-
tice, asymptotic convergence behaviour appears to
behave just as one would hope from the linear pro-
gramming experience.

So what are the outstanding issues? The effects of
constraint scaling, and just how one might re-scale
to improve convergence are not well understood.
Just as importantly, since as we have hinted we re-
ally wish to truncate the calculation of the Newton-
barrier search direction, we need to discover how to
precondition the conjugate-gradient scheme that we
will undoubtedly use; it is already clear that any pre-
conditioner has to reflect the dominant barrier terms
in the Hessian matrix of the barrier function, but
just how much more is needed is unknown. Finally,
another area where there is room for improvement
is in extrapolation for better points on the central
path. This has proved to be most useful in the lin-
ear programming case, but things are certainly more
complicated for nonlinear problems because of pos-
sible bizarre behaviour [13] of the central path (mul-
tiplicity, bifurcation, and even non-existence).
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4. Conclusions

I hope I have persuaded the reader that these are in-
deed exciting times in nonlinear optimization. With
interior-point and (to some extent) active set ap-
proaches we now have a realistic chance of solv-
ing very large nonlinear programming problems.
Of course there are difficulties, but the ingenuity
and vigour with which the research community is
currently addressing such challenges makes me ex-
tremely optimistic about future progress. Even in
the last few months we have heard of a number of
new and interesting proposals [12, 29, 35, 30, 31],
and we eagerly await to see how these complement
the already large corpus of algorithms and software.
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Ekkehard W. Sachs
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”PDE Constrained Optimization” and ”Optimiza-
tion of PDEs” were the themes of several conferences
in the past two years, that took place in Santa Fe,
New Mexico, the Weierstrass Institute in Berlin, the
University of Heidelberg, and at the Mathematical
Research Institute in Oberwolfach, Germany. This
field also played an important role at a recent work-
shop at the IMA in Minneapolis during the optimiza-
tion year. Since there is so much interest in this field,
the question arises: Is this a hot new area or is there
already some tradition in this field? The answer is:
both is true.

Back in the seventies ...
Back in the early 70s, when the author was a starting
Ph.D. student at the Technical University of Darm-
stadt, Germany, we had a seminar on a new topic.
No longer optimization in finite dimensions or with
ordinary differential equations but instead ”Opti-
mal Control of Partial Differential Equations”. The
standard applications in those days were the con-
trol of the heat equation or the wave equation, that
still serve as work horses in standard test examples
for numerical methods. Hence already decades ago,
there was research performed in the area of optimiza-
tion of PDEs. Actually, there were also text books
and conference proceedings available that dealt with
the subject of optimal control of PDEs, like e.g.
the books by Butkovski [2] and Lions [4] published
around 1970 and later the proceedings by Ray and
Lainiotis [5].
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In the following decades, various schools around
the world were established, which worked on differ-
ent aspects of these problems like the existence of op-
timal controls, necessary optimality conditions, du-
ality theory, controllability and observability, feed-
back control laws, numerical methods and applica-
tions.

PDE constrained optimization is more ...
In today’s research environment, the term ”PDE-
constrained optimization” includes more than just
”Optimal Control of PDEs”. For example, there is a
large community, which solves optimal design prob-
lems. These optimization problems often include
also systems described by partial differential equa-
tions, but they depend on a finite number of design
variables, in contrast to optimal control problems,
where the control variable usually lies in a function
space. Another example of a large area of PDE con-
strained optimization problems are parameter esti-
mation problems for PDEs. In this case, certain pa-
rameters in a PDE are the variables and they are
adjusted in such a way that the output given by the
PDE solution matches certain measured data.

In this note, I want to focus on the numerical as-
pects of PDE constrained optimization, since there
is a lot of interest in this aspect by the people com-
ing from optimization or the PDE community.
• What is different with PDE constrained optimiza-
tion compared to finite dimensional optimization?
• Do we need to care about this topic at all, if the
PDE is discretized and we finally come up with a
finite dimensional optimization problem?
These are some typical questions that arise, when
an optimizer looks at PDE constrained optimiza-
tion. For a list of citations and literature, I refer
to the proceedings of the workshops in Santa Fe [1]
and Berlin [3], that have been published or are under
way.

Discretization leads to finite dimensional
optimization ... what’s new?
Obviously the resulting finite dimensional optimiza-
tion problem is large scale or very large scale, when
a discretized PDE is included in the constraints. Al-
though the progress in using direct solvers for the
linearized state equation has been substantial in the
past decade, one tends to use iterative solvers for
the inner iteration of an SQP method or an interior
point method for very large problems. This leads

to the question of inexact solves of the subproblems
and how this fits into the convergence theories and
algorithms. This has been already investigated by
many researchers and is a well developed research
area.

In the discretization process, however, it is crucial
which type of discretization is being used. Unfortu-
nately, there is no all-purpose discretization method
for all types of PDEs. The type of discretization
and solution technique for the PDE can be quite dif-
ferent depending on the problem, e.g. finite differ-
ences, finite elements, Ritz-Galerkin, discontinuous
Galerkin, wavelets, multigrid, hierarchical basis, etc.
This can affect the optimization routine being used.
Often the cost of solving the PDE numerically is
the dominating factor in overall computational cost
and using an efficient method for solving the PDE
can save a lot of computing time. However, in the
case of using a sophisticated PDE solver, often the
optimization method has to be adapted to this spe-
cial method. A good example are multigrid meth-
ods, where first control problems without constraints
have been solved efficiently, a trend that started with
Hackbusch’s papers in the early 80s. In the past
years various authors have weaved multigrid meth-
ods into optimization routines or vice versa. These
methods can be used for control constrained prob-
lems or even more generally constrained optimiza-
tion problems.

If iterative solvers for the resulting subproblems
of optimization routines, often linear systems, are
used, like KKT systems, it is mandatory for an ef-
ficient code to care about preconditioning, if PDEs
are involved. Rather than using a preconditioner for
the whole KKT system, various research groups have
tried to utilize the structure of the KKT system in a
clever way for better preconditioners, among others
see [3]. This way, it also easier to incorporate pre-
conditioners from the PDE community directly into
the optimization code.

First discretize, then optimize ... or vice
versa
Another point of discussion that has been raised over
the past decades and resurfaces in periodic time in-
tervals is the following: PDE constrained optimiza-
tion problems are posed in function spaces. One ap-
proach is to discretize the problem first, and then
to optimize the finite-dimensional version. An al-
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ternative approach is to optimize first and then to
discretize. This would mean, e.g., to derive the nec-
essary optimality conditions for the infinite dimen-
sional problem using the function space formulation
and then to discretize these. One could go further
by deriving even the Newton or SQP step in infinite
dimensions and then to discretize this step. Which
approach is better and more efficient was a topic of
many discussions at each of the conferences men-
tioned above - and also in the seminar in the seven-
ties mentioned in the beginning.

The frequency of the discussion and lack of a de-
cisive argument point to the conclusion that there
is no clear answer to this question and the best way
to answer it, is problem dependent. The combina-
tion of SQP methods and multiple shooting methods
for the solution of optimization problems with ODE
constraints, where the optimal control has a com-
plicated switching structure, shows that both ap-
proaches sometimes have to be combined.

Think infinite dimensional ... at least some-
times
One advantage of keeping the infinite dimensional
flavor of the problem as long as possible is that cer-
tain infinite dimensional effects are better retained
than in the discretized version. The necessary op-
timality conditions, e.g. for a hyperbolic control
problem, can lead to an adjoint differential equa-
tion, which has a solution in a quite different space
than the state equation. Therefore it might be effi-
cient to use a different discretization scheme for the
adjoint equation. Since this plays the role of a La-
grange multiplier, it could result in a Newton-SQP
step with a nonsymmetric KKT matrix. This will
not occur, if the discretization takes place at the
level of the original optimization problem. But then
the Lagrange multiplier has to approximate the so-
lution of the adjoint equation with a discretization
scheme, that is not suitable for the adjoint and could
result in unnecessarily fine mesh refinements.

Another instance, where it pays to discretize late,
is the regularity of the Lagrange multipliers. If
the PDE constrained optimization problem exhibits
state constraints, then the corresponding Lagrange
multipliers in the infinite dimensional case are often
very irregular, sometimes represented as discontinu-
ous functions or even as distributions. If the user is
aware of this, he can use appropriate discretization

schemes for these multipliers to take into account
their nonsmoothness.

A further example, how the infinite dimensional
formulation can influence the numerical behavior,
came up in quasi-Newton methods. It is well known,
that these methods converge locally superlinearly
under the usual regularity assumptions on the Hes-
sian in finite dimensions. However, in infinite dimen-
sions an additional assumption shows up. The initial
approximation of the Hessian and the true Hessian
do not only need to be close, but they are required to
differ only by a compact operator. There are many
optimal control problems, where this property can
be checked. If one looks at the discretized problem,
it seems as if this would not play any role, since ev-
erything is finite dimensional (and hence compact).
But one can see numerically, that this effect indeed
shows up in the local convergence behavior. Hence
one can take extra care in choosing the initial quasi-
Newton matrix using the knowledge from the infinite
dimensional problem.

Other difficulties ...
A more obvious difference between an infinite and fi-
nite dimensional formulation is the identification of
active indices. In any finite dimensional optimiza-
tion problem with inequality constraints, the small-
est absolute value of all inactive constraints is a posi-
tive number. This is not the case, if one has a contin-
uum of inequality constraints, which depend contin-
uously on the index. There has been work by Dunn
in the late seventies where an additional assumption
is imposed on the slope of the constraint function
when it passes from the inactive to the active set.
This has been used in the context of convergence
analyses for algorithms. These types of conditions
have shown up here and there in various research
papers analyzing convergence of numerical methods
for optimization problems over function space and
in particular with PDEs.

On the more theoretical side occurs a phenomenon
which is called the 2-norm-discrepancy and should
have also some effect on the numerical behavior, but
this has not been investigated too closely from a nu-
merical point of view. If the solution of the PDE
is differentiated in the Fréchet sense with respect to
controls, which are also functions, it is often neces-
sary to use supremum norms for the function spaces.
On the other hand, if one deals with second order
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sufficiency conditions, then this involves positive def-
initeness of the Hessian on certain subspaces. This
is formulated in an inner product or L2 norm set-
ting. This yields a gap in the proper formulation of
the function spaces which sometimes can be patched
with a smoothness argument arising from the PDE
formulation.

A few words about applications ...
Let me close this note with a few comments on ap-
plications and a biased selection. For a more com-
plete picture check the proceedings mentioned be-
fore. There are many systems in engineering and
economics that are described by partial differential
equations and almost canonically there are also op-
timization problems associated with them.

A standard case where this occurs is when mathe-
matical modelling techniques yield a certain type of
PDE like a diffusion process, but within the PDEs
there are various coefficients not exactly known. The
area of parameter identification or inverse problems
deals with the problem to determine the unknown
parameters from measurements taken. This is an
optimization problem with a PDE and it is a fairly
difficult one, although it exhibits quite a bit of struc-
ture.

Mathematical finance is often referred to as a hot
new area. The value of an option for a certain un-
derlying like a stock or stock index can be described
by the Black-Scholes model. This involves a par-
tial differential equation and if one tries to adapt
some of its parameters so that the market prices are
met better, then one arrives at a parameter identi-
fication problem. A portfolio optimization involving
options leads to an optimization problem with PDE
constraints, given by the Black-Scholes model.

Another example is from food sterilization. Here
the product quality is optimized under the con-
straint, that sterility of the product is preserved.
This leads to a nonlinear optimization problem with
inequality and equality constraints coming from an
optimal control problem with PDEs and control and
state constraints.

A fairly recent development is the use of simpler
models replacing the PDE in the optimization. Some
of the technical terms are multilevel optimization,
reduced order models, proper orthogonal decompo-
sition, neural networks, etc. Although the PDE itself
disappeared from the numerical solution of the op-

timization problem, it is important to investigate,
for example, the quality of approximation by these
surrogate models, their construction and efficiency
etc.

This article is a review of some of the aspects of
PDE constrained optimization. Obviously it is not
complete and biased, but hopefully serves the pur-
pose to motivate a novice in this area to take a closer
look at this interesting and challenging field.
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1. Introduction

The dynamic behavior of many physical systems
can be described by ordinary and partial differen-
tial equations, which express, for example, conserva-
tion laws on momentum, mass and energy coupled
with algebraic equations, which represent constitu-
tive relations or design specifications. In particular,
the development of powerful commercial modeling
and simulation tools for systems described by or-
dinary differential and algebraic equations (DAEs)
has led designers, engineers, and researchers to con-
sider DAE optimization as a natural extension of
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these simulation tools in order to systematize and
automate decisions required for science and engi-
neering studies. In the past decade new numeri-
cal algorithms for solving those problems have been
proposed, but the design of powerful methods re-
mains an active research area. In this article, we
discuss some of the currently most popular solution
approaches and finish with some open research ques-
tions.

The DAE optimization problem can be stated in
a fairly general form as follows:

min
z(t),y(t),u(t),tf ,p

ϕ(z(tf ), y(tf ), u(tf ), tf , p) (1)

s.t.
dz(t)
dt

= F (z(t), y(t), u(t), t, p) (2)

0 = G (z(t), y(t), u(t), t, p) (3)
z(t0) = z0 (4)
Hs (z(ts), y(ts), u(ts), ts, p) = 0

for s ∈ {1, . . . , nS} (5)
(zL, yL, uL) ≤ (z(t), y(t), u(t))

≤ (zU , yU , uU ) (6)
(pL, tLf ) ≤ (p, tf ) ≤ (pU , tUf ) (7)

The “unknowns” in this optimization problem are
the differential state variables z(t), algebraic state
variables y(t), and control variables u(t), all func-
tions of the scalar “time” parameter t ∈ [t0, tf ], as
well as time-independent parameters p, and possi-
bly the final time tf . As constraints the above for-
mulation includes bounds on all those variables (6)-
(7), the differential and algebraic equations (2)-(3)
with initial conditions (4), and additional point con-
straints (5) for a finite number of time points ts.

Note that the DAE system (2)-(3) is given without
loss of generality in a semi-explicit form. Here, we
assume that this system is index one, which implies
that the matrix ∂G/∂y is nonsingular for all values
of (z, y, u, p). Since a number of standard proce-
dures can be applied to reduce high index algebraic
equations to index one [2], this is not really a severe
restriction.

Practical applications of dynamic optimization in-
clude:

• Design and control of chemical and mechani-
cal processes for the handling of abnormal op-
erations, severe disturbances and transitions to
different operating points [4];

• Data assimilation, system identification and
model predictive control requiring the on-line
solution of a dynamic optimization problem
with a nonlinear dynamic process model [1];

• Design and operation of aerospace applications
including trajectories for aircraft, rockets and
satellites [6];

• Conflict resolution of trajectories for multiple
aircraft in a cooperative or noncooperative set-
ting [30];

• Analysis and tuning of electronic circuits [27].

2. Dynamic Optimization Meth-
ods

To solve the dynamic optimization problem (1)-(7)
a number of approaches can be taken. In particu-
lar, DAE optimization problems can be solved us-
ing a variational approach [29] or by various strate-
gies that apply a Nonlinear Programming (NLP)
solver to the DAE model. The indirect or vari-
ational approach is based on the solution of the
first order necessary conditions for optimality ob-
tained from Pontryagin’s Maximum Principle [29].
For problems without inequality constraints, the op-
timality conditions can be formulated as a set of
differential-algebraic equations. The resulting two-
point boundary value problem has been addressed
by single shooting, invariant embedding, multiple
shooting or some discretization method such as col-
location on finite elements or finite differences. A
review of these approaches can be found in [14, 21].

On the other hand, if the problem requires the
handling of active inequality constraints, finding the
correct switching points as well as suitable boundary
conditions for state and adjoint variables is difficult
and NLP strategies must be used. Methods that ap-
ply NLP solvers can be separated into three groups:
the sequential and simultaneous strategies and an
intermediate strategy based on multiple shooting.

2.1 Sequential Methods

In a sequential method, the control variables are of-
ten represented as piecewise polynomials [4, 18], and
optimization is performed with respect to the poly-
nomial coefficients. Given initial conditions and a
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guess of the discretized optimal control profile, the
model (2)-(4) is integrated with a DAE solver at each
iteration. This produces values of the objective func-
tion (1) and constraints (5)-(6) (at fixed points ts in
time) which are used by a NLP solver to find the
optimal coefficient values in the control discretiza-
tion. The gradients of the objective and constraint
functions with respect to the control coefficients and
parameters are calculated from sensitivity equations
of the DAE system.

The sequential approach is a feasible path method;
in every iteration the DAE system has to be solved.
However, this procedure is stable only if the system
does not contain increasing forward modes1. Oth-
erwise, solving the DAE system for a given set of
control parameters may be difficult or impossible.
See [14, 21] for a review of these methods.

The data seen by the NLP solver corresponds to
a small dense NLP with typically O(100) variables
and O(1000) (inequality) constraints. The dominant
cost for the optimization is due to computing the
state equations and their sensitivities (using a di-
rect [26] or adjoint [13, 22] approach). Because of
this cost, second derivatives are rarely available and
dense quasi-Newton SQP methods (such as [20]) are
best suited for this approach.

2.2 Multiple shooting methods

These methods serve as a bridge between sequen-
tial approaches and a complete discretization of the
state and control variables. Here, the time domain is
partitioned into a moderate number (say, O(50)) of
time elements, t0 < t1 < . . . < ti < . . . < tf , and the
DAE model is integrated separately in each element
[11, 24]. Control variables and path constraints (5)-
(6) are treated in the same manner as in the sequen-
tial approach, and equality constraints are added to
the NLP in order to link the elements and ensure
that the states are continuous across each element
boundary. Sensitivities are obtained with respect to
both the control variable coefficients as well as the
initial conditions, z0,i, of the states in each element.

As with sequential approaches, accuracy of the
state profiles is governed by the DAE solver (not
seen by the optimizer) and the cost of the optimiza-

1We define increasing forward modes as profiles whose mag-
nitudes become unbounded as time increases.

tion is dominated by the DAE state and sensitivity
calculations. The resulting NLP problem is moder-
ately large (with O(10000) variables) and reduced
space SQP methods (see [19, 24, 34]) appear best
suited for these approaches. Compared to sequential
approaches, they can better handle DAEs with for-
ward increasing modes. On the other hand, multiple
shooting approaches lead to larger, more structured
NLPs with dense sensitivity blocks.

2.3 Simultaneous methods

Simultaneous methods fully discretize the DAE sys-
tem by approximating not only the control variables,
but also the state variables by piecewise polynomial
functions over finite elements, t0 < t1 < . . . < tf ,
often by implicit Runge-Kutta methods. In [6] this
approximation is given by Hermite-Simpson poly-
nomials and leads to sparse equations of relatively
low order approximation errors. Alternatively, one
can apply collocation on finite elements and use a
monomial basis representation [3] for the differential
profiles. Algebraic states and control profiles are
represented analogously by Lagrange interpolation
profiles. The NLP formulation now has as variables
all the polynomial coefficients and as constraints the
DAE (2)-(3) enforced at all collocation points (in-
termediate time points within the finite elements).
Further constraints are on continuity of the differen-
tial state variables at element boundaries. Control
and algebraic state profiles are allowed to have dis-
continuities at those boundaries.

Simultaneous methods directly couple the solution
of the DAE system with the optimization problem;
the DAE system is solved only once, at the opti-
mal point. Moreover, simultaneous approaches have
advantages for problems with path constraints and
with instabilities that occur for a range of inputs.
Because they can be seen as extensions of boundary
value solvers, they are able to “pin down” increas-
ing modes in the forward direction by enforcing the
appropriate boundary condition. In addition, these
methods allow the direct enforcement of state and
control variable bounds (6), at the same level of dis-
cretization as the state variables of the DAE system.

The degree of accuracy of the solution of the DAE
system is now determined by the number of the fi-
nite elements, which could be O(100) or larger, thus
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leading to very large, sparse, and structured NLPs
with O(106) variables. On the other hand, exact first
and second derivatives are straightforward to evalu-
ate and an additional DAE solver is not needed.

These NLPs are usually solved using variations of
Successive Quadratic Programming (SQP) or Inte-
rior Point (IP) methods. In both cases, full-space
approaches take advantage of the DAE optimization
problem structure and the sparsity of the model dur-
ing the computation of the optimization step, ob-
tained by the solution of a QP. They are best suited
for problems where the ratio of state variables to con-
trol variables is small, say O(10), [8, 7]. Here, second
derivatives of the objective function and constraints
are desired, as are measures to deal with directions of
negative curvature in the Hessian matrix [8, 17]. A
recent monograph [6] provides a detailed description
of the simultaneous approach with full-space meth-
ods, along with mesh refinement strategies and case
studies in mechanics and aerospace.

However, if the ratio of state to control variables
is large as in many process control applications, a
reduced space approach might be preferrable, where
the (linearized) equality constraints and associated
variables are eliminated. Often these correspond to
the collocation equations and the state variable co-
efficients. In an active set approach, a reduced QP
in the space of the remaining variables (often the
control variables) is solved. Alternatively, in an in-
terior point approach, a dense linear system is solved
in the same reduced space, and for very large prob-
lems, iterative methods can be applied here in order
to avoid having to construct the reduced Hessian ex-
plicitly. In this way, dynamic optimization problems
with up to 2, 000, 000 variables and 4, 500 degrees of
freedom have been solved [9].

3. Open Problems

We close with a brief discussion of challenges in
dynamic optimization, focusing on the simultaneous
approach, which puts the strongest demands on the
NLP algorithm.

Dynamic Optimization Formulations
For optimal control problems where control vari-

ables are discretized at the same level as the state
variables, a number of open questions relate to con-

vergence to the solution of the original variational
problem. A number of studies have shown (e.g.,
[31, 33, 28]) that the Karush Kuhn Tucker (KKT)
conditions of the simultaneous NLP can be made
consistent with the optimality conditions of the
variational problem as the maximum element size
approaches zero. Nevertheless, these consistency
properties alone do not imply that the sequence
of approximate solutions will converge at all, and
several studies report stability problems due to poor
discretizations, high index inequality constraints
and singular arcs [25, 15, 5]. Special cases of
these have been analyzed rigorously in [10, 32, 16].
Related to this question is the optimal placement of
finite elements. Optimization formulations that fa-
cilitate movement and addition of finite elements in
order to satisfy accuracy and consistency properties
are reported in [9], but a more rigorous analysis is
needed to put this strategy on a more fundamental
basis.

Improvements to NLP Algorithms
Since the heart of the simultaneous approach is

a robust and efficient large-scale NLP solver, im-
provement in the NLP algorithm will immediately
lead to advances in the DAE optimization method.
Over the past few years interior point NLP methods
[36, 12, 35] have pushed the size of problems that
could be solved, because they avoid the combina-
torial bottleneck of identifying the active inequality
constraints, and because they allow a straightfoward
exploitation of the structure of the KKT matrix and
the direct use of second derivatives. In particular,
our experience with our interior point code, IPOPT
[37], is very promising, although many open ques-
tions regarding general purpose IP-NLP solvers re-
main, including the following issues.

Warm starts are needed for nonlinear model
predictive control (NMPC) and other applications
where DAE optimization must be performed repeat-
edly with only slightly perturbed data. Whereas this
is naturally handled in active set SQP methods, bet-
ter warm start strategies need to be developed for IP
algorithms. Some experience along these lines is re-
ported in [23].

Efficient preconditioners for iterative linear
solvers, such as conjugate gradient methods, are
still needed within a reduced space approach, par-
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ticularly within an IP framework where the barrier
Hessian becomes increasingly ill-conditioned. In [9]
we observed that separating the reduced Hessian of
the barrier term from the reduced Hessian of the
original problem leads to a significant reduction in
CG iterations, but at the expense of constructing
this additional term. Finally, because second
derivatives can be incorporated directly or can be
differenced along conjugate gradient steps, improved
provisions must be made to deal with nonpositive
eigenvalues in the reduced space of the constraint
set. Here we especially need to consider singular
control problems, which have characteristics similar
to inverse problems.

As a result, the development of algorithms for
DAE constrained optimization remains an active and
interesting research area, with close ties to the de-
velopment of efficient and robust NLP methods.
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Biegler. A reduced space interior point strategy for
optimization of differential algebraic systems. Com-
puters and Chemical Engineering, 24(1):39–51, 2000.

[16] A. Dontchev, W. Hager, and V. Veliov. Second order
Runge Kutta approximations in constrained opti-
mal control. SIAM Journal on Numerical Analysis,
38:202–220, 2000.

[17] A. Forsgren and P. E. Gill. Primal-dual interior meth-
ods for nonconvex nonlinear programming. SIAM
Journal on Optimization, 8(4):1132–1152, 1998.

[18] P. E. Gill, L. Jay, M. Leonard, L. Petzold, and
V. Sharma. An SQP method for the optimal con-
trol of large-scale dynamical systems. Journal of
Computational and Appied Mathematics, 120:197–
213, 2000.

[19] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An
SQP algorithm for large-scale constrained optimiza-
tion. SIAM Journal on Optimization, 12(4):979–
1006, 2002.

[20] P. E. Gill, W. Murray, M. A. Saunders, and M. H.
Wright. User’s guide for NPSOL (version 4.0): A
Fortran package for nonlinear programming. Techni-
cal report, Systems Optimization Laboriatory, Stan-
ford University, Stanford, CA, USA, 1986.

[21] M. Groetschel, S. O. Krumke, and J. Rambau, edi-
tors. Online Optimization of Large Scale Systems.
Springer, Berlin, 2001.

[22] L. Hasdorff. Gradient Optimization and Nonlinear Con-
trol. Wiley, New York, 1976.
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1. Introduction

An exciting new application of nonlinear program-
ming techniques is mathematical programs with
complementarity constraints (MPCC),

minimize f(x)
subject to c(x) ≥ 0

0 ≤ x1 ⊥ x2 ≥ 0,
(1)

where x = (x0, x1, x2) and ⊥ is the complementar-
ity operator, which requires that either a component
x1i = 0 or the corresponding component x2i = 0. It
is straightforward to include equality constraints in
(1). Problems of this type arise in many engineering
and economic applications; see the survey [6], the
monographs [12, 13], and the growing collections of
test problems [9, 4].

One attractive way of solving (1) is to replace the
complementarity condition by a set of nonlinear in-
equalities, such as X1x2 ≤ 0, and then solve the
equivalent nonlinear program (NLP),

minimize f(x)
subject to c(x) ≥ 0

x1, x2 ≥ 0, X1x2 ≤ 0,
(2)

where X1 = diag(x1). Unfortunately, it has
been shown [15] that (2) violates the Mangasarian-
Fromovitz constraint qualification (MFCQ) at any
feasible point. This failure of MFCQ implies that the
multiplier set is unbounded, the central path fails to
exist, the active constraint normals are linearly de-
pendent, and linearizations of (2) can become incon-
sistent arbitrarily close to a solution. In addition,
early numerical experience with this approach has
been disappointing [2]. As a consequence, solving
MPCCs via NLPs such as (2) has been commonly
regarded as numerically unsafe.

The failure of MFCQ in (2) can be traced to
the formulation of the complementarity constraint
as X1x2 ≤ 0. Consequently, algorithmic approaches
have focused on avoiding this formulation. Instead,
researchers have developed special purpose algo-
rithms for MPCCs, such as branch-and-bound meth-
ods [2], implicit nonsmooth approaches [13], piece-
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wise SQP methods [12], and perturbation and penal-
ization approaches [5] analyzed in [16]. All of these
techniques, however, require significantly more work
than a standard NLP approach to (2).

Recently, exciting new developments have demon-
strated that the gloomy prognosis about the use of
(2) may have been premature. Standard NLP solvers
have been used to solve a large class of MPCCs,
written as NLPs, reliably and efficiently. This short
note surveys these novel developments and summa-
rizes open questions and possible extensions of these
ideas.

The remainder is organized as follows. The next
section provides a summary of certain stationar-
ity concepts for MPCCs and establishes an im-
portant relationship with the Karush-Kuhn-Tucker
(KKT) conditions of (2). This relationship is piv-
otal in the success of NLP solvers. The develop-
ment of two important classes of solvers, sequential
quadratic programming (SQP) and interior-point
methods (IPMs), is charted in the subsequent two
sections. The note concludes by providing a brief
description of open problems.

2. The NLP Revolution

The resurgence of interest in the analysis of NLP
solvers applied to (2) is motivated by the success
of SQP methods in particular. A simple but key
observation of Scholtes is that strong stationarity is
equivalent to the KKT conditions of (2).

A point x∗ is called strongly stationary if and only
if there exist multipliers λ ≥ 0, ν̂1, and ν̂2 such that

∇f∗ −∇c∗T
λ−




0
ν̂1

ν̂2


 = 0

c(x∗) ≥ 0
x∗1, x

∗
2 ≥ 0

x∗1j = 0 or x∗2j = 0
c∗i λi = 0, x∗1j ν̂1j = 0, x∗2j ν̂2j = 0

ν̂1j ≥ 0, ν̂2j ≥ 0, if x∗1j = x∗2j = 0.

(1)

These are the KKT conditions of the relaxed NLP
[15], which contains no complementarity condition
and is therefore well behaved.

The KKT conditions of (2) are similar to (1), and
this similarity will be exploited. Formally, a point
x∗ is called is a KKT point of (2) if and only if there

exist multipliers λ ≥ 0, ν1 ≥ 0, ν2 ≥ 0, and ξ ≥ 0,
such that

∇f∗ −∇c∗T
λ−




0
ν1 −X2ξ
ν2 −X1ξ


 = 0

c(x∗) ≥ 0
x∗1, x

∗
2 ≥ 0

X∗
1x2 ≤ 0

ci(x)λi = 0, x1jν1j = 0, x2jν2j = 0.

(2)

Note that complementarity between ξ and X∗
1x2 ≤ 0

follows trivially. Now observe that (1) and (2) are
equivalent if we set

ν̂1 = ν1 −X2ξ (3)
ν̂2 = ν2 −X1ξ. (4)

Hence there exists a minimal value of ξ, namely,

ξi =





0 if x∗1i = x∗2i = 0

max
(

0,
−ν̂1i

x∗2i

)
if x∗2i > 0

max
(

0,
−ν̂2i

x∗1i

)
if x∗1i > 0,

(5)

from which it follows that the unboundedness of the
multipliers of (2) has a very special structure: the
multipliers form a ray.

The fact that the KKT conditions of (2) are equiv-
alent to strong stationarity implies the existence of
bounded multipliers. This can be exploited in the
analysis of SQP methods and in the design of robust
IPM methods for MPECs.

3. SQP Lead the Way

SQP methods have recently been shown to solve
MPCCs reliably as NLPs, despite the common folk-
lore that this approach is doomed. Over 150 prob-
lems were solved, and the SQP solver obtained
quadratic convergence for all but two problems [7].

This success of SQP methods has motivated re-
newed interest in the theoretical properties of SQP
methods. In [1] it is shown that an SQP method
with elastic mode converges locally. The key idea is
to consider a penalized version of (2). The penalty
problem satisfies MFCQ; and near a strongly sta-
tionary point, a sufficiently large penalty parameter
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can be found, similar to (5). Convergence can thus
be established by using standard techniques.

In [8] it is shown that SQP converges superlin-
early near a strongly stationary point. The proof
is divided into two parts. First, it is shown that if
x

(k)T

1 x
(k)
2 = 0 at some iteration k, then the SQP ap-

proximation of (2) about this point is equivalent to
the SQP approximation of the relaxed NLP. Since
the latter is a well behaved problem, superlinear
convergence follows. The second part of the proof
assumes that x

(k)T

1 x
(k)
2 > 0, and it is shown that

each QP basis remains bounded away from singular-
ity. Again, convergence can be established by using
standard techniques.

One undesirable assumption in [8] is that all QP
approximations are consistent. This is trivially true
if x

(k)T

1 x
(k)
2 = 0 for some k, and it can be shown

to hold if the lower-level problem satisfies a cer-
tain mixed-P property [12]. In practice [7], a simple
heuristic is implemented that relaxes the lineariza-
tion of the complementarity constraint.

4. Interior-Point Methods

In contrast to SQP methods, interior-point methods
(IPMs) are not as robust at solving MPCCs. Using
default settings, they solve about 80% of MPCCs.
This is still remarkable, however, considering that
the constraint gradients are dependent and the cen-
tral path fails to exist.

The reason for the nonexistence of the central path
is the complementarity constraint. Clearly,

x1 ≥ 0 , x2 ≥ 0, and X1x2 ≤ 0

have no interior. As a consequence, multipliers can
become unbounded, resulting in slow progress (if
any) toward the solution.

Three approaches to remedy this situation are be-
ing investigated. The first two are related to [16]
and either relax the complementarity constraint or
penalize it. The third approach mixes a simple active
set heuristic with the IPM to identify and remove in-
dices of bi-active constraints (x1i = 0 = x2i) [3]. It
is not clear at present, however, what convergence
properties this approach possesses.

The relaxation scheme [11, 14] introduces a pa-
rameter τ > 0 and relaxes the complementarity con-

straint to

x1 ≥ 0 , x2 ≥ 0 and X1x2 ≤ τ.

A standard primal-dual method is then applied, and
the parameter τ is controlled in conjunction with
the barrier parameter. It can be shown that near
a strongly stationary point, the multipliers remain
bounded and the central path exists.

An alternative to relaxation is to introduce an `1

penalty for the complementarity constraint and add
ρxT

1 x2 to the objective. The resulting penalized NLP
satisfies MFCQ and is well behaved. In addition,
since x1, x2 ≥ 0, no absolute values are required, and
the problem is smooth. Near a strongly stationary
point, a sufficiently large (but finite) penalty param-
eter exists, and any IPM method converges to this
stationary point. We are investigating techniques for
updating the penalty parameter, ρ.

The two schemes can be shown to be equivalent in
the sense that for every relaxation τ there exists a
penalty parameter ρ such that both approaches give
the same solution. We prefer to control the penalty
parameter, however, as it allows us to control the
multipliers directly.

Interior-point methods for MPCCs have also been
considered in [12], for example, the penalty interior-
point algorithm (PIPA). This is a hybrid SQP-IPM
method that aims to remain interior only with re-
spect to the variables in the complementarity con-
straint, by perturbing it to

x1 ≥ 0 , x2 ≥ 0, and X1x2 = τ.

Note that the last constraint is an equation. It
is possible to construct a simple example where
x∗1 = x∗2 = 0 and the central path fails to exist.
Thus, this perturbation is suitable only for prob-
lems without bi-active constraints. In [10] another
example is constructed that shows that PIPA may
fail to converge, even when strict complementarity
(x∗1 + x∗2 > 0) holds. The reason for this adverse
behavior is the trustregion used in PIPA, which is
controlled by the norm of the infeasibility.

5. Conclusion and Outlook

The underlying theme of the preceding two sections
has been to show that small modifications enable
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NLP solvers to work for MPCCs. Both SQP meth-
ods and IPM solvers either perturb or penalize the
complementarity constraint. The key to proving
convergence in both cases is the equivalence between
strong stationarity (1) and the KKT conditions (2).

The robust solution of MPCCs as NLPs has har-
nessed the power of large-scale NLP solvers to this
new and exciting class of problem. Despite this suc-
cess, however, there still remain some open ques-
tions.

An important open question is whether global
convergence results can be established and—more
important—whether these results can be strength-
ened to provide convergence to B-stationary points
[15]. For instance, it is easy to construct exam-
ples for which the NLP approaches converge to
a feasible C-stationary point. Unfortunately, C-
stationary points allow trivial first-order descent di-
rections (and are really a misnomer!). Convergence
to B-stationary points that are not strongly station-
ary can be observed in practice, even though the
multiplier of the complementarity constraint ξ di-
verges to infinity.

Some MPCCs require global solutions to be ob-
tained. For instance, in the context of brittle frac-
ture identification, the global minimum corresponds
to the first structural failure. Local minima are phys-
ically meaningless in this case. Finding global min-
ima for large NLPs is a challenging problem, and suc-
cess is likely to involve the use of robust NLP tech-
niques in conjunction with complementarity solvers.
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Recently, the area of Mixed Integer Nonlinear
Programming (MINLP) has experienced tremendous
growth and a flourish of research activity. In this
article we will give a brief overview of past devel-
opments in the MINLP arena and discuss some of
the future work that can foster the development of
MINLP in general and, in particular, robust solver
technology for the practical solution of problems.

1. Introduction

Mixed Integer Nonlinear Programming (MINLP)
refers to mathematical programming with contin-
uous and discrete variables and nonlinearities in
the objective function and constraints. The use of
MINLP is a natural approach of formulating prob-
lems where it is necessary to simultaneously optimize
the system structure (discrete) and parameters (con-
tinuous).

MINLPs have been used in various applications,
including the process industry and the financial, en-
gineering, management science and operations re-
search sectors. It includes problems in process flow
sheets, portfolio selection, batch processing in chem-
ical engineering (consisting of mixing, reaction, and
centrifuge separation), and optimal design of gas or
water transmission networks. Other areas of interest
include the automobile, aircraft, and VLSI manufac-
turing areas. An impressive collection of MINLP ap-
plications can be found in [14] and [15]. The needs
in such diverse areas have motivated research and
development in MINLP solver technology, particu-
larly in algorithms for handling large-scale, highly
combinatorial and highly nonlinear problems.

The general form of a MINLP is

minimize f(x, y)
subject to g(x, y) ≤ 0

x ∈ X
y ∈ Y integer

(1)

The function f(x, y) is a nonlinear objective func-
tion and g(x, y) a nonlinear constraint function. The
variables x, y are the decision variables, where y is re-
quired to be integer1 valued. X and Y are bounding-
box-type restrictions on the variables. We refer to [9]
for more information about MINLP fundamentals in
textbook format.

2. Algorithms

MINLP problems are precisely so difficult to solve,
because they combine all the difficulties of both of
their subclasses: the combinatorial nature of mixed
integer programs (MIP) and the difficulty in solv-
ing nonconvex (and even convex) nonlinear programs
(NLP). Because subclasses MIP and NLP are among
the class of theoretically difficult problems (NP-
complete), so it is not surprising that solving MINLP
can be a challenging and daring venture. Fortu-
nately, the component structure of MIP and NLP
within MINLP provides a collection of natural algo-
rithmic approaches, exploiting the structure of each
of the subcomponents.

Solution Approaches

Methods for solving MINLPs include innovative ap-
proaches and related techniques taken and extended
from MIP. Outer Approximation (OA) methods
[5, 6], Branch-and-Bound (B&B) [16, 23], Extended
Cutting Plane methods [33], and Generalized Ben-
der’s Decomposition (GBD) [13] for solving MINLPs
have been discussed in the literature since the early
1980’s. These approaches generally rely on the suc-
cessive solutions of closely related NLP problems.
For example, B&B starts out forming a pure contin-
uous NLP problem by dropping the integrality re-
quirements of the discrete variables (often called the
relaxed MINLP or RMINLP). Moreover, each node
of the emerging B&B tree represents a solution of
the RMINLP with adjusted bounds on the discrete
variables.

In addition, OA and GBD require the succes-
sive solution of a related MIP problem. Both al-
gorithms decompose the MINLP into an NLP sub-

1Other special types of discrete variables known from the
“linear world” such as SOS, semi-continuous, and semi-integer
variables can also be handled by most algorithms.
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problem that has the discrete variables fixed and a
linear MIP master problem. The main difference be-
tween GBD and OA is in the definition of the MIP
master problem. OA relies on tangential planes (or
linearizations), effectively reducing each subproblem
to a smaller feasible set, whereas the master MIP
problem generated by GBD is given by a dual rep-
resentation of the continuous space.

The approaches described above only guarantee
global optimality under (generalized) convexity. De-
terministic algorithms for global optimization of
nonconvex problems require the solution of subprob-
lems obtained via convex relaxations of the original
problem in a branch-and-bound context, and have
been quite successful in solving MINLPs [7, 29].

3. Software

Although theoretical algorithmic ideas for solving
MINLP have been around for a while, the practi-
cal implementation of such concepts is much more
difficult. Memory limitations, efficient numerical lin-
ear algebra routines, suitable algorithmic tolerances,
and determining default solver options are some of
the key issues faced when extending algorithms to
large-scale, general-purpose software. In this section
we give a brief and possibly incomplete historical
overview of practical general purpose MINLP soft-
ware.

Commercial MINLP Software Packages

Best to our knowledge, the earliest commercial soft-
ware package that could solve MINLP problems was
SCICONIC [10, 27] in the mid 1970’s. Rather than
handling nonlinearities directly, linked SOS variables
provided a mechanism to represent discretized non-
linear functions and allowed solving the problem via
MIP. In the mid 1980’s Grossman and Kocis [17]
developed GAMS/DICOPT [12], a general purpose
MINLP algorithm based on the outer approxima-
tion method. In the early 1990’s LINDOs [25] and
What’s Best [24] B&B code using the Generalized
Reduced Gradient (GRG) code for subproblems was
extended to solve MINLPs.

Since then a number of excellent academic as well
as commercial codes have surfaced, including al-
phaECP [34] and mittlp [28], both of which are based

on extended cutting plane methods, and MINLP BB
[19] and SBB [12], which use branch-and-bound to
solve relaxed NLP subproblems. Even on the fron-
tier of global MINLP, reliable and large-scale pack-
ages have materialized including alphaBB [1] and
BARON [29], which use convex relaxations in a
branch-and-bound framework.

Modeling Languages

The emergence of algebraic modeling languages in
the mid to late 1980’s and early 1990’s has greatly
simplified the process of modeling, in particular the
formulation of MINLP type problems. Also, from a
MINLP solver perspective, a modeling system deliv-
ers reliable black-box-type function evaluations and
first and second order derivative information. Fi-
nally, the common solver interface of a modeling
system allows MINLP algorithms to deploy exist-
ing NLP and MIP solvers to solve subproblems in a
seamless way. A collection of MINLP models can be
found in libraries such as MacMINLP [18] (AMPL
[11] models), chapter 12 of [8] (GAMS [4] models)
and as a superset MINLPLib [4] (GAMS models).
The latter is available as part of the MINLP World.
MINLP World is a forum for discussion and dissem-
ination of information about all aspects of MINLP
[20].

4. Recent Developments

With the recent progress made in global optimiza-
tion, the importance of modeling systems has taken
on a more significant role. In particular, most global
solvers require more than black-box function eval-
uations. These solvers need structural information
of algebraic expressions to build convex relaxations.
AlphaBB and the modeling language MINOPT [26],
as well as the recent release of GAMS/BARON [29]
have shown the feasibility of this concept.

Another important advancement is the implemen-
tation of open algorithms. AIMMS-OA [2] is an outer
approximation method similar to GAMS/DICOPT,
but with the distinct feature that it allows user mod-
ification for fine-tuning the method for a particular
problem. Such an open approach allows advanced
users to adjust the algorithm to suit the problem at
hand.
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Recent research has also focused on combining of
Random Search (RS), such as Tabu, Scatter Search,
Simulated Annealing or Genetic Algorithms, with
NLP methods. Recent implementations like OQNLP
[12, 30] and LaGO [21, 22] have proven to be quite
successful.

Finally, the area of Disjunctive Programming uses
disjunctions and logic propositions to represent the
discrete decisions in the continuous and discrete
space respectively. Disjunctive programs, conve-
niently modeled and automatically reformulated in
big M or convex region models, give access to a rich
area of applications. Widespread interest in such
models has spawned a new computing environment
(LogMIP [31]), developed specifically for generalized
disjunctive programming.

5. Future Directions

Progress in the MINLP arena has been significant
in recent years, and we are now able to solve large-
scale problems efficiently using a wide variety of ap-
proaches. However, MINLP has yet to reach the
level of maturity that MIP has achieved. While the
MIP community has benefited greatly from prepro-
cessing to reduce model sizes and to detect spe-
cial structure, MINLP technology is still lagging
behind. NLP and MINLP preprocessing, simi-
lar to global methods, will require the delivery of
structural information from the modeling languages.
Progress on reliable large-scale NLP codes with
restarting capabilities will have an immediate impact
on MINLP. Furthermore, combining individual algo-
rithms (e.g. branch-and-bound and extended cut-
ting plane method) with sophisticated search strate-
gies (e.g. non-trivial B&B selection strategies) and
heuristics to quickly determine integer solutions will
help to close the gap. If research and development
continues at the current level of activity, MINLP will
soon achieve a stage of maturity enjoyed by the other
areas in mathematical programming.
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Bulletin

1. Workshop Announcement

3rd Annual McMaster Optimization
Conference: Theory and Applications
(MOPTA 03) July 30 - August 1, 2003,

McMaster University Hamilton, Ontario, Canada
http://www.cas.mcmaster.ca/˜mopta

The 3rd annual McMaster Optimization Confer-
ence (MOPTA 03) will be held at the campus of Mc-
Master University. It will be hosted by the Advanced
Optimization Lab at the Department of Computing
and Software and it is co-sponsored by the Fields
Institute and MITACS.

SCOPE: The conference aims to bring together a
diverse group of people from both discrete and con-
tinuous optimization, working on both theoretical
and applied aspects. We aim to bring together re-
searchers from both the theoretical and applied com-
munities who do not usually get the chance to inter-
act in the framework of a medium-scale event.

Distinguished researchers will give one-hour long
invited talks on topics of wide interest. Invited
speakers include:

Laurent El Ghaoui, University of California,
Berkeley, CA Lisa K. Fleischer, Carnegie Mellon
University, Pittsburg, PA Minyue Fu, University
of Newcastle, NSW, Australia Masakazu Kojima,
Tokyo Institute of Technology, Tokyo, Japan George
Nemhauser, Georgia Institute of Technology, At-
lanta, GA Arkadi Nemirovski, TECHNION, Haifa,
Israel Stratos Pistikopoulos, Imperial College, Lon-
don, UK Margaret H. Wright, Courant Institute,
New York University, NY

CONTRIBUTED TALKS Each accepted paper
will be allotted a 25 minute talk. Authors wish-
ing to speak should submit an abstract via the con-
ference WEB page in ASCII or LaTex source, to
terlaky@mcmaster.ca by April 30, 2003. Please use
”MOPTA 03” in the email subject line. Notification
of acceptance / Program available: May 31, 2003.
Deadline for early registration: June 30, 2003.

On behalf of the Organizing Committee Tams Ter-
laky, terlaky@mcmaster.ca (Chair, McMaster Uni-
versity)

Further information is available at
http://www.cas.mcmaster.ca/m̃opta/

http://www.gamsworld.org/minlp
http://www-iam.mathematik.hu-berlin.de/~eopt/index_en.html
http://www-iam.mathematik.hu-berlin.de/~eopt/index_en.html
http://titan.princeton.edu/MINOPT/manual.pdf
http://at8.abo.fi/~hasku/
http://www.ceride.gov.ar/logmip/eng/documentation/logmip_manual.pdf
http://www.ceride.gov.ar/logmip/eng/documentation/logmip_manual.pdf
http://www.abo.fi/~twesterl/A-ECPManual.pdf
http://www.cas.mcmaster.ca/~mopta
http://www.cas.mcmaster.ca/~mopta/ 
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2. Workshop Announcement

High Performance Methods for
Mathematical Optimization 2003

HPMMO2003
Monday June 23, 2003, Tilburg University, The

Netherlands

http://fewcal.uvt.nl/sturm/hpmmo2003/
This short workshop has an informal character.

Discussion is stimulated. The main discussion top-
ics are: semidefinite programming, interior point
method, spectral bundle method, nonnegative poly-
nomials and sum-of-squares decompositions

3. Call for papers

A Special Issue of the IN-
FORMS Journal on Computing:
http://joc.pubs.informs.org/CallSpecialIssueCompBio.html

Computational Molecular Biology/Bioinformatics
Guest Editor: Harvey J. Greenberg,

Harvey.Greenberg@cudenver.edu
University of Colorado at Denver

Associate Editors:
Dan Gusfield, gusfield@cs.ucdavis.edu,

University of California, Davis
William Hart, wehart@sandia.gov

Sandia National Labs
Giuseppe Lancia, lancia@dei.unipd.it

University of Udine
David Rocke, dmrocke@ucdavis.edu

University of California, Davis
Ying Xu, xyn@ornl.gov

Oak Ridge National Labs

Computational biology, or bioinformatics, has
emerged from the Human Genome Project as one
of the new frontiers for biomedical research. As
problems become better defined, it becomes evident
that operations research techniques can be applied
with great success. Although some computational,
mathematical, and statistical techniques have been
used for more than a century, it is the recent
explosion of data that has brought this to an in-
formation science that requires new algorithms and
models to understand complex biological systems.
We invite research papers that apply OR to these

problems. Some examples and elaboration are at
http://joc.pubs.informs.org/CallSpecialIssueCompBio.html

Deadline: August 1, 2003 Expected publication:
Fall 2004

You can submit electronically a postscript or pdf
file to the Editor, or to any Associate Editor with
cc: Harvey.Greenberg@cudenver.edu.

4. Book announcement

Four Colors Suffice:
How the Map Problem Was Solved

Robin Wilson

On October 23, 1852, Professor Augustus De Mor-
gan wrote a letter to a colleague, unaware that he
was launching one of the most famous mathemati-
cal conundrums in history–one that would confound
thousands of puzzlers for more than a century. This
is the amazing story of how the ”map problem” was
solved.

Cloth — 2003 — 24.95 — ISBN: 0-691-11533-8
280 pp. — 5 x 8 — 24 halftones. 173 line illus.

A sample chapter is available at
http://pup.princeton.edu/titles/7495.html

5. Book announcement

Least Squares Support Vector Machines
J.A.K. Suykens, T. Van Gestel, J. De Brabanter,

B. De Moor, J. Vandewalle
This book focuses on Least Squares Support Vec-

tor Machines (LS-SVMs) which are reformulations
to standard SVMs. LS-SVMs are closely related to
regularization networks and Gaussian processes but
additionally emphasize and exploit primal-dual in-
terpretations from optimization theory. The authors
explain the natural links between LS-SVM classifiers
and kernel Fisher discriminant analysis. Bayesian
inference of LS-SVM models is discussed, together
with methods for imposing sparseness and employ-
ing robust statistics.

The framework is further extended towards unsu-
pervised learning by considering PCA analysis and
its kernel version as a one-class modelling problem.

http://fewcal.uvt.nl/sturm/hpmmo2003/
http://joc.pubs.informs.org/CallSpecialIssueCompBio.html
http://joc.pubs.informs.org/CallSpecialIssueCompBio.html
http://pup.princeton.edu/titles/7495.html
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This leads to new primal-dual support vector ma-
chine formulations for kernel PCA and kernel CCA
analysis. Furthermore, LS-SVM formulations are
given for recurrent networks and control. In gen-
eral, support vector machines may pose heavy com-
putational challenges for large data sets. For this
purpose, a method of fixed size LS-SVM is proposed
where the estimation is done in the primal space in
relation to a Nystrm sampling with active selection
of support vectors. The methods are illustrated with
several examples.

Readership: Graduate students and researchers in
neural networks; machine learning; data-mining; sig-
nal processing; circuit, systems and control theory;
pattern recognition; and statistics.

World Scientific, 308pp., Nov. 2002, ISBN 981-
238-151-1

http://www.wspc.com/books/compsci/5089.html
http://www.esat.kuleuven.ac.be/sista/lssvmlab/book.html

6. Software Announcement

LS-SVMlab:
Least Squares - Support Vector Machines
Matlab/C Toolbox

http://www.esat.kuleuven.ac.be/sista/lssvmlab/
Toolbox: Matlab LS-SVMlab1.4 - Linux and

Windows Matlab/C code. Basic and advanced ver-
sions. Functional and object oriented interface.

Tutorial User’s Guide (100pp.): Examples
and demos. Matlab functions with help.

Solving and handling: Classification, Regres-
sion; Tuning, cross-validation, fast loo, receiver op-
erating characteristic (ROC) curves; Small and un-
balanced data sets; High dimensional input data;
Bayesian framework with three levels of infer-
ence; Probabilistic interpretations, error bars; hy-
perparameter selection, automatic relevance deter-
mination (ARD); input selection, model compari-
son; Multi-class encoding/decoding; Sparseness; Ro-
bustness, robust weighting, robust cross-validation;
Time series prediction; Fixed size LS-SVM, Nys-
trom method; kernel principal component analayis
(kPCA), ridge regression; Unsupervised learning;
Large scale problems

Related links, publica-
tions, presentations and book:

http://www.esat.kuleuven.ac.be/sista/lssvmlab/

Chairman’s Column

First, I would like to thank our new editor Jos
Sturm and the guest editors Sven Leyffer and Jorge
Nocedal for this excellent edition of Views-and-
News. This is an exciting and interesting issue on
the state-of-the-art of several areas of optimization.

The previous SIAG/OPT Views-and-News dated
Feb./2002 contained comments on 9/11 and on the
quote the world has changed. Since then we have
had an extremely successful Seventh SIAM Confer-
ence on Optimization in Toronto, Canada. Worries
about lack of participants were unfounded. Here is
the history of total attendance at our meetings:
• June 12-14, 1984, Boulder, CO, attendance 248
• May 17-20, 1987, Houston, TX, attendance 399
• April 3-5, 1989, Boston, MA, attendance 468
• May 11-13, 1992, Chicago, IL, attendance 440
• May 20-22, 1996, Victoria, BC, Canada, atten-
dance 465
• May 10-12, 1999, Atlanta, GA, attendance 442
• May 20-22, 2002, Toronto, Canada , attendance
414.
Plenary lectures and other information are available
at the conference web site.

However, we are now in the middle of one of the
consequences of 9/11, war in Iraq. Changes in our
world are rapid. As this article is being written, the
war appears to be over. New alliances appear to be
forming. Who would believe that France-Germany-
Russia would meet to discuss strategy to counter an
American-British led alliance? However, this is not
a forum to discuss politics. But, as we see divisions
grow between many countries, history suggests that
the global openness and freedom that we are en-
joying now may be threatened. Border restrictions
are threatening international travel. What does this
mean for our community? Will it threaten scientific
cooperation between countries? Will sanctions and
boycotts come into the scientific community?

My hope is that it does not. I hope that scientific
cooperation and travel between all countries remains
open. I hope that SIAM continues to have interna-
tional meetings at locations around the world.

http://www.wspc.com/books/compsci/5089.html
http://www.esat.kuleuven.ac.be/sista/lssvmlab/book.html
http://www.esat.kuleuven.ac.be/sista/lssvmlab/
http://www.esat.kuleuven.ac.be/sista/lssvmlab/
http://mdob.larc.nasa.gov/staff/natalia/siagopt/
http://mdob.larc.nasa.gov/staff/natalia/siagopt/
http://mason.gmu.edu/~asofer/siopt/
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The next big meeting in Optimization is in Copen-
hagen, 18th International Symposium on Mathemat-
ical Programming, ISMP 2003. From the prelimi-
nary list of registrants it appears that this meeting
will be large and international. Let us hope that this
is an indicator of the future.

Henry Wolkowicz, SIAG/OPT Chair
University of Waterloo
Department of Combinatorics and Optimization
Waterloo, Ontario
CANADA N2L 3G1
hwolkowicz@uwaterloo.ca
http://orion.math.uwaterloo.ca/˜hwolkowi

Comments from the editor

This is the first Views-and-News issue that ap-
pears under my editorship. I have maintained the
style as developed by Juan Meza and his predeces-
sors.

We have negotiated with SIAM that printed
issues of the newsletter continue to be shipped to
our SIAG’s members as before. If you are reading
this newsletter in its printed form, please also take
a look at the electronic version, available from
http://fewcal.uvt.nl/sturm/siagopt/.Regardless
of whether you prefer reading in print or not,
I believe that we will all appreciate the unique

benefits of the electronic version. The newsletter
has been compiled using hyperref, a LaTeX package
producing clickable links to resources, webpages,
and references.

I would like to thank the guest editors of this the-
matic issue on Large Scale Non-Convex Opti-
mization, Sven Leyffer and Jorge Nocedal. They
have really delivered an issue that is of high interest
and also very accessible to the readership of Views-
and-News. I expect that this issue will both increase
awareness of new developments in this area, and at-
tract new researchers to work on non-convex opti-
mization. For this, I also like to thank the contribut-
ing authors.

I hope that you share the enthusiasm regarding
this issue, and keep sending me material for publica-
tion in this newsletter. In particular, I am much less
in touch with the applied world than the previous
editor, and I very much welcome short contributed
articles that outline a case study in which optimiza-
tion played a crucial role. I need your help with this.

Jos F. Sturm, Editor
Tilburg University
P.O. Box 90.153
NL-5000 LE Tilburg
The Netherlands
j.f.sturm@uvt.nl
http://fewcal.uvt.nl/sturm

http://www.ismp2003.dk/
http://www.ismp2003.dk/
http://orion.math.uwaterloo.ca/~hwolkowi
http://fewcal.uvt.nl/sturm/siagopt/
http://xxx.lanl.gov/hypertex/
http://fewcal.uvt.nl/sturm
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