
SIAG/OPT Views-and-News
A Forum for the SIAM Activity Group on Optimization

Volume 16 Numbers 1-2 October 2005

Contents

Tributes to George Dantzig and Leonid
Khachiyan
George Dantzig: A Personal Perspective
Walter Murray . 1
Leonid Khachiyan, 1952–2005: An Appreciation
Michael Todd . 4

Algebraic Methods for Integer Programming
Introduction by the Guest Editor
Karen Aardal . 7
Second Generation Lift-And-Project Algorithms
Daniel Bienstock . 7
Short Rational Generating Functions and Their
Applications to Integer Programming
Kevin Woods and Ruriko Yoshida 15
Lattice Basis Reduction in Integer Linear Optimiza-
tion: Some Basic Topics
Karen Aardal . 20

Article
Optimizing the Quality of Mesh Elements
Todd S. Munson . 27

Bulletin . 35
Chairman’s Column
Kurt M. Anstreicher .35
Comments from the Editor
Lúıs N. Vicente . 37

Tributes to
George Dantzig

and
Leonid Khachiyan

George Dantzig:
A Personal Perspective

Walter Murray
Department of Management Science and Engineering,

Terman Center, Stanford University,

Stanford, CA 94305, USA (walter@stanford.edu).

My earliest memory of George is from 1969. He
was being helped by Dick Cottle (a role Dick played
the whole time I knew George) into a boat going to
the Island of Bender, which is just off Bandol in the
south of France. Even then he seemed a frail old
man. It was only later I came to realize that George
was a lot tougher both physically and mentally than
his outward appearance would suggest.

It is not my intent here to catalog George’s math-
ematical contribution. Anyone interested in that
could not do better than to start with Dick’s re-
cent book “The Basic George B. Dantzig”. I shall
attempt to shine some light on one facet, the view
from where I stood. I would not be writing this if
George was simply a great mathematician, to me
he was much more and it is this extra dimension
that set him apart. Nonetheless, I shall make one

2 SIAG/OPT Views-and-News

mathematical comment. To me George had impec-
cable mathematical taste and instinct. This is not
entirely divorced from his character. He was patient
and always took the long view. Perhaps he knew he
would live to be ninety. This contrasts sharply with
the almost frenetic rush to publish quickly that now
permeates much of science. George was driven by
curiosity and had much in common with his name-
sake “Curious George”.

Even when George was alive the celebrations of his
many birthday milestones gave occasion to reflect on
George’s life. He has been repeatedly referred to as
the “Father of Linear Programming”. For his 90th
birthday, I commented that perhaps more correctly
George should be referred to as the “Father of Lin-
ear Programmers”. In all the years I knew George I
never heard him make one derogatory remark about
anyone in the field (and there were many occasions
when he would have had just cause). It was as if we
were part of his family and George never spoke ill
of his family. George was an intensely loyal man. It
is not that George was incapable of being deroga-
tory; indeed his invective on some topics such as
lawyers or the higher administration of the Univer-
sity was, in typical George fashion, at an extreme
point. Of course it was always delivered in a calm
quiet voice. George never needed to raise his voice
to get attention. He was in particularly good form
when Condoleezza Rice was Provost and she forced
the OR Department to merge with the EES Depart-
ment. George never used his status to get his own
way and was always happy to rely only on the force
of his argument.

I now think that “Father” is not quite the cor-
rect term. Fathers are often strict and need to keep
their children on the path they have determined. In
my own life George reminds me much more of my
Grandmother. She had lived though two world wars
and outlived two husbands (my two Grandfathers).
Nothing I ever did fazed her in the least. Whenever
I was in trouble, which was quite frequent, I always
went to her first. She would always be on my side no
matter how wrong I had been. She had her idiosyn-
crasies, just like George, but that just made her all
the more endearing.

George was fun. He always had a half smile on
his face as if he was mentally recalling some amus-
ing story. You could always tell he was about to

say something outrageous when he pursed his lips to
try and suppress the smile. Faculty meetings with
George present were never boring. George liked to
take a rise out of certain people. He only chose those
he knew would take it in the spirit it was intended
and could handle the public embarrassment it some-
times entailed. His favorite targets were Pete Veinott
and Curtis Eaves. Both laughed louder than the rest
of us when the comments were made. Of course nei-
ther could respond in kind. That would have been
like punching a teddy bear.

George’s concern for people in the field seemed to
have no limits. It was not just lowly people, but
would be extended to everyone, including senior fac-
ulty. If he thought somebody’s work was suffering
or they were not getting sufficient grant money, then
George would find some way to help, often without
them knowing. It was not just his willingness to help
but the fact he must have been continually check-
ing on everybody to see they were all right. When
George asked how you were doing he really wanted
to know. Had George not been Jewish he would have
got my vote for Pope.

George wrote wonderful letters for people, even
for people he did not know. If I ever wanted sup-
port for some cause, such as a student applying for
a fellowship, I could always rely on George to put
his weight behind it. Given that he was very busy
he sometimes would ask me to write the letter and
would sign anything I wrote without question. It
was always easier and more fun to write a letter in
George’s name than my own. I just had to lay it on
with a trowel. Maybe George knew Disraeli.

His attitude to the efforts of people in the field was
like that of a doting parent, whatever the quality
of the work he always saw the positive side of it.
Michael Saunders and I once pointed out to George
that the work of a student was really very similar
to some work that had been published. George’s
response was to praise the student for rediscovering
not any old rubbish but really good stuff. It may be
that the discovery of the Simplex method was due to
George’s positive outlook. George told me that Von
Neumann had commented that had he discovered
the Simplex algorithm he would have dismissed it as
impractical.

It was not just students who George encouraged.
Over the years George must have received a lot of

Volume 16 Numbers 1-2 October 2005 3

mail and met many people from many walks of life
who suggested improvements in the Simplex algo-
rithm and other things. He listened to them pa-
tiently much as you would with a child. As recently
as 1999 I got email from a professor at a foreign uni-
versity who claimed to have discovered how to mod-
ify the Simplex algorithm to avoid artificial variables
and that the new algorithm did not appear to need
more iterations than the number of rows or variables.
The evidence supporting this claim came from tests
on problems with no more than ten rows or variables.
The message concluded by mentioning he had spo-
ken recently with Prof. Dantzig about the method
and George had found it interesting and suggested
he contact me. This was typical of George being a
little mischievous.

George slowed physically towards the end but his
mind and wit remained as sharp as ever. He also
refused to let his physical infirmity hinder him. The
extensive celebrations for 90th birthday that he at-
tended were a testimony to that. A few months ear-
lier he had also attended the 50th birthday party
of Mukund Thapa. Mukund’s parties always have
a loud rock band, which George hated, and In-
dian food, which was also something not to George’s
taste. Nonetheless George showed up. Each time he
attended Mukund’s parties he would pointedly tear
off the corners of a paper serviette, form them into
plugs and then place them in his ears. Remarkably
he could still carry on a conversation.

In the last year or so George had trouble walking
without assistance. When he needed help, some-
one would put their arm around him and he would
put his arm on their shoulder. Then while hugging
him you would shuffle along. Even if the distance
was short the journey could take some time. He did
not seem to resent the need to be helped and it was
an opportunity to demonstrate affection for George.
The last time I helped George was when we were
at Dick’s house to celebrate George’s 90th birthday.
We were in the garden and George needed to move
from there through the kitchen, the hall and into the
dining room. George would use these opportunities
to chat. It always seemed very personal since being
physically very close we talked in a whisper. What-
ever the conversation, it always ended with the same
phase, “Whatever you do Walter, do not grow old”.
I am not sure what alternatives George thought I

had, but I did not like to disagree with him. If he
had seen me skiing or driving, he would have seen
I was doing my best to comply. I did wonder if he
thought it was just me unsuitable for old age or that
he thought it good advice for everyone. Maybe he
was a fan of the film “Logan’s Run” or subscribed
to the idea it would be better if we were all born old
and got progressively younger

The last time I saw George was when he was in
the hospital just prior to his death. I was accom-
panied by Peter Glynn and Gerd Infanger. George
was attached to a number of tubes and was obvi-
ously heavily medicated. He was drifting in and out
of consciousness and was struggling to breath. His
frail body barely made a ripple in the blanket that
covered him. It was a hard sight to observe. Af-
ter some time the Nurse said “Prof. Dantzig, Peter,
Gerd and Walter are here to see you.”. There was
a brief pause and then in a clear voice George said,
“I am overwhelmed.”. Even in his distressed state
George was trying to make us feel better. A few days
later George died at home. His last words were to
ask his caregiver if it was all right to leave now. Hav-
ing been told that it was, he then added, “Will you
miss me?”. Courage was described by Hemingway
as grace under pressure. There are few who have
the grace of George.

I never heard George complain (and you do not
get to ninety without having a lot to moan about),
raise his voice, be in a bad temper, or not be pleased
to see me. He was a fabulous human being and if I
had to choose between inheriting his mathematical
talent or his human qualities I would not hesitate in
choosing the latter.

4 SIAG/OPT Views-and-News

Leonid Khachiyan, 1952–2005:
An Appreciation

Michael Todd
School of Operations Research, Cornell University, Ithaca,

NY 14953, USA (miketodd@cs.cornell.edu).

Leonid Khachiyan died of a heart attack a few
days before his 53rd birthday in South Brunswick,
NJ. He is survived by his wife of 20 years, Olga Pis-
chikova Reynberg, and teenage daughters Anna and
Nina, student and student-to-be at Rutgers Univer-
sity, where Khachiyan had taught since 1990. Previ-
ously he was a researcher at the Computing Center of
the USSR Academy of Sciences, an adjunct professor
at the Moscow Institute of Physics and Technology,
and a visiting scientist at Cornell University.

This article is a tribute to Leo Khachiyan as a
friend and an optimizer. I’ll also give references for
some of his key papers.

Leo was famous in the optimization community
for his use of the ellipsoid algorithm to demon-
strate that linear programming, in the Turing ma-
chine model, had a polynomial-time algorithm; for
this work, he received the Fulkerson Prize of the
American Mathematical Society and the Mathemat-
ical Programming Society. This was an astonish-
ing result, not only in settling a long-open prob-
lem in complexity, but also in introducing radically
new viewpoints and techniques to linear program-
ming. While the ellipsoid method had been devel-
oped by David Yudin and Arkadi Nemirovski and,
independently, by Naum Shor in 1976–77, for con-
vex optimization, Khachiyan used it in a tour-de-
force to crack the complexity problem for linear pro-
gramming. Since the algorithm was designed for
the real-number model, and required an estimate of
the distance to an optimal solution, Khachiyan had
to establish a number of bounds on sizes of solu-
tions, volumes of polyhedra, and the precision re-
quired to carry out the computations, to achieve his
goal. The result was first published in a 4-page note
without proofs in Soviet Mathematics Doklady in
February 1979 [3]. It was brought to the attention
of Western researchers in a presentation at the Mon-
treal Mathematical Programming Symposium in Au-
gust 1979 and in a later publication by Peter Gács
and Laci Lovász. Their presentation was far clearer
than the original to those not used to thinking in

the varying coordinate systems viewpoint of the So-
viet researchers. Khachiyan’s later 1980 paper [4] in
the journal USSR Computational Mathematics and
Mathematical Physics provided the proofs for the
results in his earlier work.

After its development in 1947 by George Dantzig,
the simplex method had sloughed off the challenge
of a number of alternative algorithms, notably iter-
ative methods based on fictitious play in 2-person
games, in the ’50s, and had found itself successfully
applied to a wider range of vastly larger-scale prob-
lems through the ’50s and ’60s. Then, in the ’70s, it
ran into a theoretical no-man’s-land with the new-
found notion of polynomial-time algorithms and Vic-
tor Klee and George Minty’s discovery of a class of
problems for which Dantzig’s pivot rule for the sim-
plex method led to an exponential number of piv-
ots. While more recent versions, such as the dual
steepest-edge variant that appears to be the best at
present, remain highly competitive with the more
recent interior-point methods and an indispensable
part of the arsenal of any optimizer, they still exhibit
exponential behavior on some examples. (To some
extent, their good behavior in practice has been ex-
plained via analyses of the expected behavior of the
simplex method by a number of authors, and by the
more recent smoothed analysis of Daniel Spielman
and Shang-Hua Teng.)

Leo’s result was a bombshell in this environment.
The use of the ellipsoid method, with its approxima-
tion of the polyhedral feasible region by ellipsoids,
seemed counter to all we held dear: vertices, edges,
phase 1 – phase 2, and even finite convergence to an
exact solution in exact arithmetic. Instead we had
to start with gigantic spheres, and then generate a
sequence of shrinking ellipsoids until one was found
sufficiently small that its center could be rounded
to give an exact solution — assuming that all the
data was rational. This was a pretty wild way to ap-
proach a problem that we knew had a finite solution
via pivoting, and in fact bore some resemblance to
the iterative methods tried in the ’50s, but with a
twist: the changing shapes of the ellipsoids gave a
sort of variable-metric slant to the earlier relaxation
methods.

It was natural that such a result would get a huge
amount of press. Linear programming was big busi-
ness, and leading papers around the world tried to

Volume 16 Numbers 1-2 October 2005 5

educate their readers to the significance of the re-
sult, with very spotty results. The ensuing brouhaha
has been well documented in Gene Lawler’s arti-
cle [7]. The effect on the optimization community
was more rational. Many people tried, and failed,
to turn Leo’s result into a practical method for the
solution of large-scale linear programming problems.
(Part of the problem lies in the fact that the algo-
rithm seems to require in practice a number of it-
erations close to its worst case bound: it also leads
to very ill-conditioned linear systems.) A lot of at-
tention was turned to the amazing theory of Yudin
and Nemirovski on the informational complexity of
nonlinear programming. And a few people, notably
Martin Grötschel, Laci Lovász, and Lex Schrijver,
realized that the ellipsoid method could be used as a
powerful tool in combinatorial optimization, thereby
lending a (very) little credence to some of the out-
rageous claims that had been made in the popular
press. (Just one example: the Guardian headlined
its story: “Soviet Answer to the ‘Traveling Sales-
men.’ ” Of course, the ellipsoid method has not shed
any light on the complexity of the Traveling Sales-
man Problem.) And the ellipsoid method was the
first theoretically good algorithm for the burgeoning
field of semidefinite programming.

So Khachiyan became famous: but what of his
other research and its significance? Interestingly, his
first work was concerned with the convergence rate of
iterative processes for solving matrix games, and he
obtained some negative results: the error decreased
at best inversely with the iteration count. His fourth
paper, at the age of 26, was the Doklady announce-
ment that LP was in P. The ideas in that work, esti-
mating the sizes of solutions, looking at rational or
integer solutions, and using geometric ideas in com-
binatorics and optimization, appear in much of Leo’s
subsequent research. He extended the polynomial al-
gorithm to convex quadratic programming with M.
K. Kozlov and S. P. Tarasov, and then considered the
size of solutions and the complexity of solving convex
polynomial programming problems, in either contin-
uous or integer variables. He wrote a lovely survey of
results in this area for the Proceedings of the 1983
International Congress of Mathematicians [5]. Let
me mention a couple of results from that work. He
bounded the size of a solution to a system of con-
vex polynomial inequalities by a 2-stage exponential

function, and showed by a simple example (x1 ≥ h,
x2 ≥ x2

1, ..., xn ≥ x2
n−1) that this was the best pos-

sible. Yet he showed that such a solution when the
degree was fixed could be “compactly represented”
in polynomial space using a solution of just polyno-
mial size to a reduced subsystem, consistent if and
only if the original system was; moreover, this char-
acterization could be found by a polynomial algo-
rithm. Finally, he extended Lenstra’s well-known
result in integer programming by showing that there
was a polynomial algorithm for finding an exact so-
lution to a convex polynomial programming problem
in real and/or integer variables, if the degree and the
number of variables was fixed.

Another beautiful result [9], with Tarasov and
I. I. Erlikh, replaced the sequence of circumscrib-
ing ellipsoids in the usual ellipsoid method with a
sequence of inscribed ellipsoids (each inscribed in
the current localizing set). This method allowed a
decrease in the complexity of approximately solv-
ing a convex minimization problem by the factor n,
the dimension of the problem, and thereby obtained
the optimal (worst-case) complexity. The cost was
that each iteration required the finding of an (ap-
proximately) largest volume inscribed ellipsoid; the
authors suggested doing this via the original ellip-
soid method (but without further function oracle
calls)! This paper also had a surprising geometric
theorem concerning volumes of inscribed ellipsoids,
which Leo later improved. This concern with vol-
umes led to later work on the complexity of poly-
tope volume computation and on the conductance
of Markov chains (involving another neat geometric
inequality) to bound the mixing time for randomized
methods.

After coming to the States, Leo’s work continued
some of its old themes, like his work on the com-
plexity of maximal volume ellipsoids inscribed in a
polytope and his fascinating paper on rounding poly-
topes [6], and added some new ones. He wrote a se-
ries of papers with Bahman Kalantari on various ma-
trix scaling and balancing problems, and a series of
papers with Mike Grigoriadis on fast approximations
of multicommodity flows, of matrix games in sublin-
ear time, and of block-angular convex programming
problems, establishing a link to the work of Dantzig
and Philip Wolfe on the decomposition principle. In-
deed, one of their papers is entitled “Coordination

6 SIAG/OPT Views-and-News

Complexity of Parallel Price-Directive Decomposi-
tion” [2].

In [1], Michael Fredman and Khachiyan estab-
lished the surprising result that there is a quasi-
polynomial-time algorithm for testing the duality
of monotone disjunctive normal forms. This work
had many applications, and led to a number of pa-
pers with Endre Boros, Vladimir Gurvich, his stu-
dent Khaled Elbassioni, and others on various topics
in combinatorics: hypergraphs, polymatroids, ma-
troids, and enumerating all minimal solutions of im-
plicitly stated monotone systems, with applications
in minimal hypergraph traversals, data mining, ma-
chine learning, reliability theory, and in integer and
stochastic programming. Finally, I want to mention
his work with his student Lorant Porkolab. Porko-
lab and Khachiyan extended Leo’s earlier work on
convex polynomial programming to consider much
more general formulae in the first-order theory of the
reals and obtain related results. One consequence
of their work [8] is that testing the feasibility of
an inequality-constrained semidefinite programming
problem in real or integer matrices of fixed dimen-
sion can be performed in polynomial time.

Let me conclude by telling a couple of stories that
illustrate Leo’s humor and sharp wit. Leo was very
modest and kind to his friends, but he was also ex-
tremely cynical about politics and intolerant of con-
descension and pomposity. Since he had received the
Young Investigators Award in Science and Technol-
ogy, the Party Secretary at the Computing Center
at the USSR Academy of Sciences indicated that it
might be good for him to join the Party. Leo ex-
plained that he replied, with all innocence, “What
party?” and added that he thought that was the
right response. Later, he was looking at houses to
buy near Rutgers, and was being shown around by
a real estate agent, who was obviously trying to em-
pathize as much as possible. She indicated that one
house she showed him was close to the local syn-
agogue, since she knew many Russian immigrants
were Jewish, but Leo said he wasn’t Jewish. Some-
what flustered, she said there were many churches
close by. Leo saw his opening, and replied, “Actu-
ally, all I really believe in is the Communist Party.”
This caused some consternation, until finally the re-
altor saw a way to form a bond: “Well, they had
some good ideas at the beginning.”

Leonid Khachiyan was a great scholar and a much-
loved father, husband, and friend. He will be sorely
missed.

REFERENCES

[1] M. L. Fredman and L. G. Khachiyan, On the com-
plexity of dualization of monotone disjunctive
normal forms, J. Algorithms, 21 (1996), pp.
618–628.

[2] M. D. Grigoriadis and L. G. Khachiyan, Coor-
dination complexity of parallel price-directive
decomposition, Math. Oper. Res., 21 (1996),
pp. 321–340.

[3] L. G. Khachiyan, A polynomial algorithm in lin-
ear programming, Doklady Akademiia Nauk
SSSR, 224 (1979), pp. 1093–1096. (English
Translation: Soviet Mathematics Doklady, 20
(1979), pp. 191–194.)

[4] L. G. Khachiyan, Polynomial algorithms in
linear programming, Zhurnal Vychislitel’noi
Matematiki i Matematicheskoi Fiziki, 20
(1980), pp. 51–68. (English Translation:
USSR Computational Mathematics and
Mathematical Physics, 20 (1980), pp. 53–72.)

[5] L. G. Khachiyan, Convexity and complexity in
polynomial programming, in Proceedings of
the International Congress of Mathemati-
cians, Warsaw, PWN, Warsaw, (1984), pp.
1569–1577.

[6] L. G. Khachiyan, Rounding of polytopes in the
real number model of computation, Math.
Oper. Res., 21 (1996), pp. 307–320.

[7] E. L. Lawler, The great mathematical Sputnik of
1979, The Sciences, 1980, pp. 12–15.

[8] L. Porkolab and L. G. Khachiyan, On the com-
plexity of semidefinite programs, J. Global
Optim., 10 (1997), pp. 351–365.

[9] S. P. Tarasov, L. G. Khachiyan, and I. I. Er-
likh, The method of inscribed ellipsoids, So-
viet Mathematics Doklady, 37 (1988), pp.
226–230.

Volume 16 Numbers 1-2 October 2005 7

Algebraic Methods
for Integer

Programming

Introduction by the Guest Editor

While linear programming based methods, such
as branch-and-bound, have dominated integer
programming, especially computational integer
programming, we have recently seen a variety
of new methods being explored. Some of these
methods have been surprisingly efficient on problem
instances that are difficult for branch-and-bound. In
this issue we will present summaries of three recent
lines of research in integer programming. First Dan
Bienstock describes new results on lift-and-project
methods. This theory dates back to the 1990s
where Sherali and Adams, and Lovász and Schrijver
provided the first corner stones. Bienstock, together
with Zuckerberg and Ozbay, have developed new
stronger variants of lift-and-project. Next, Kevin
Woods and Ruriko Yoshida give an overview of
how to use rational function representations of
integer feasibility and optimization problems. This
idea was pioneered by Barvinok and led to the
well-known result that counting integer points in
rational polyhedra can be done in polynomial time
in fixed dimension. Recently, similar algorithms
have been developed and also implemented with
encouraging results, see the LattE home page
http://www.math.ucdavis.edu/˜latte. These results
are also reviewed by Woods and Yoshida. The last
contribution is by Aardal, who describes how lattice
basis reduction can be used in integer programming.
An emphasis is made on Lenstra’s algorithm, but
other results, both theoretical and computational,
are reviewed briefly.

Karen Aardal, June 2005.

Second Generation
Lift-And-Project Algorithms

Daniel Bienstock
Department of Industrial Engineering

and Operations Research,

Columbia University, USA (dano@columbia.edu).

Abstract: We briefly describe some recent contri-
butions to the theory of lift-and-project algorithms
for 0/1 integer programming.

1. Lift-and-project algorithms

Lift-and-project methods for 0/1 integer program-
ming proceed by reformulating a given integer pro-
gram through the addition of (potentially many) new
variables and constraints. The objective of the re-
formulation is to make the combinatorial structure
of a problem more explicit — even though the refor-
mulation does not change the underlying combina-
torial problem, the resulting continuous relaxation is
tighter due to the richness of the new variables and
constraints.

This is the ’lift’ phase. The ’project’ component
of the algorithms, not always present, concerns the
efficient solution of the “lifted” formulation by pro-
jection back to the original space of variables. In
the case of linear reformulations, this amounts to an
appropriate application of the Farkas’ lemma.

The initial motivation for such algorithms lies in
the observation that, frequently, given a polyhedron
P ⊆ Rn, if Q ⊆ RN (for some N > n) is such that
P is the projection of Q to Rn, then the polyhedral
structure of Q is simpler than that of P.

Our recent work [3], [4] provides new lifting al-
gorithms with provably stronger guarantees. The
purpose of this note is to place these results in the
context of prior algorithms.

2. The Sherali-Adams and
Lovász-Schrijver operators

Sherali and Adams [16] and Lovász and Schrijver [12]
described the first formal reformulation methodolo-
gies. Here we will describe a single lifting algo-
rithm that constitutes an amalgam of ideas from [16]
and [12].

http://www.math.ucdavis.edu/~latte

8 SIAG/OPT Views-and-News

To describe this algorithm, consider the feasible
set

F = {x ∈ {0, 1}n : Ax ≥ b } (1)

for a 0/1 integer program, where A is a matrix
and b is a vector of appropriate dimensions. Let
1 ≤ t ≤ n be a fixed integer, and consider a
lifted formulation using the 0/1 variables v[Y, N],
for all pairs of disjoint Y , N ⊆ {1, 2, . . . , n} with
|Y ∪N | ≤ min{t+1, n}. The interpretation of these
variables is that v[Y, N] = 1 if and only if

xj = 1, for all j ∈ Y, and xj = 0, for all j ∈ N. (2)

Now, (2) is a logical statement — the challenge is
how to approximate it with, for example, linear in-
equalities. This is one of the tasks undertaken by the
lifting algorithms, which furthermore impose on the
v variables additional constraints implied by Ax ≥ b.
As examples of inequalities that (2) implies, we have

v ≥ 0, v[∅, ∅] = 1, (3)
v[Y ∪ j, N] + v[Y, N ∪ j] = v[Y, N], ∀ j (4)

for all appropriate Y, N . Note that (4) amounts to
the familiar inclusion-exclusion principle of combi-
natorics. Further, consider row h of Ax ≥ b; namely∑

i ahixi ≥ bh. Then for any disjoint Y , N with
|Y ∪N | ≤ t, we must also have:∑

j

ahi v[Y ∪ i,N] − bh v[Y, N] ≤ 0. (5)

In order to see that (5) is valid, first note that (4)
implies that v[Y, N] = 0 whenever Y ∩N 6= ∅ (proof
by induction on |Y ∩ N |). Suppose that x ∈ F . If
v[Y, N] = 0, then by definition all terms on the left-
hand side of (5) are zero as well. And if v[Y, N] = 1,
then for any 1 ≤ i ≤ n, xi = v[Y ∪ i,N] as desired.

For given 1 ≤ t ≤ n, the collection of inequal-
ities (3)–(5) is known as the level-t Sherali-Adams
reformulation; and the procedure that generates the
reformulation is denoted by SAt. Note that we can
“project” back to the space of the original variables
by setting xj = v[{j}, ∅], for 1 ≤ j ≤ n. Also note
that (3), (4) imply that v[Y, N] ≤ 1 for all Y , N
enumerated. It can be shown [16], also see [11] that
for t = n the reformulation yields an integral poly-
hedron.

In order to see the relationship between this opera-
tor and the Lovász-Schrijver operators [12], consider
the case t = 1 and assume n > 1. Using equation
(4), we can eliminate all v[Y, N] with N 6= ∅. The
remaining variables will be of the form v[Y, ∅] with
|Y | ≤ 2. Consider the (n+1)×(n+1) matrix M with
rows and columns indexed by the sets S with |S| ≤ 1
(i.e., the singletons and the empty set) defined by:

MS,T = v[S ∪ T, ∅],

for all S, T with cardinality ≤ 1. Then:

(LS.1) M is symmetric; its (∅, ∅)-entry equals 1
(this last property follows from v[∅, ∅] = 1).

(LS.2) For any S with |S| ≤ 1, MS,S = M∅,S =
MS,∅; for any singletons S, T , MS,T ≤ MS,∅ ≤ 1.

For convenience, let us order the rows of M so
that the ∅-row is the zeroth (and similarly with the
columns); denote the entries of M by mij , where 0 ≤
i, j ≤ n with the obvious meaning. Then e.g. the
last condition can be restated as m0i = mi0 = mii

for all 0 ≤ i ≤ n.
Consider an arbitrary row h of Ax ≥ b and let

1 ≤ j ≤ n. The inequality obtained from (5) using
Y = {j} and N = ∅ is then:∑

i≥1

ahimij − bhm∅,j ≥ 0. (6)

In other words:

(LS.3) column j of M satisfies each constraint of
Ax ≥ b, in homogenized form.

Suppose now that we consider (5) using Y = ∅
and N = {j}. Then we obtain∑

i≥1

ahiv[{i}, {j}] − bhv[∅, {j}] ≥ 0 (7)

(comment: summing over all j is correct since
v[{j}, {j}] = 0 by (4)). But using (4, v[{i}, {j}] =
v[{i}, ∅] − v[{i, j}, ∅] for each 1 ≤ i ≤ n (and sim-
ilarly v[∅, {j}] = v[∅, ∅] − v[{i}, ∅]); substituting in
(7) now yields:∑

i≥1

aij(mi0 −mij) − bh(m00 −mj0) ≥ 0. (8)

Volume 16 Numbers 1-2 October 2005 9

In other words:

(LS.4) the vector obtained by subtracting column
j of M from the zeroth column also satisfies each
constraint of Ax ≥ b, in homogenized form.

Requirements (LS1)-(LS4) constitute the
Lovász-Schrijver operator N (or, more precisely,
“projecting” by setting xj = mj0 for 1 ≤ j ≤ n
describes the operator), what we have done here is
to show that this is equivalent to the SA1 operator.

An additional and independent insight is that
conditions (LS.1) and (LS.2) will hold if matrix
M is of the form wwT , for some 0/1-vector w. This
is certainly the case if x is a 0/1-vector, in which
case wT = (1xT). But what additional implications
can be imposed, that are consistent with M = wwT ?
One such condition is:

(LS.5) M is positive-semidefinite.

By imposing this condition, in addition to (LS.1)-
(LS.4) one obtains the Lovász-Schrijver operator
N+.

2.1 An extended operator

The matrix-oriented approach described in the pre-
vious section can be extended to arbitrary 1 < t ≤ n.
Namely, one defines a matrix M , with rows and
columns indexed by all subsets of variables with car-
dinality ≤ t. If we have run the level-2t Sherali-
Adams operator, with vector v, then we would set
MS,T = v[S ∪ T, ∅]. But we do not strictly need
to run the operator and still directly impose ap-
propriate constraints on M . These constraints are
generalizations of (LS.1)-(LS.4). More precisely,
(LS.1) is unchanged, but a more general version of
(LS.2) is needed (namely: the ∅-row and -column
are equal to the main diagonal, and MS,T ≤ MS′,T ′

if |S ∪ T | ≤ |S′ ∪ T ′|). Constraints (LS.3)-(LS.4)
remain unchanged.

However, there is something more substantial that
can be said with regards to (LS.2). Namely, we can
impose that MS,T = MS′,T ′ whenever |S∪T | = |S′∪
T ′|. The point is that this condition goes far beyond
the symmetry requirement of the Lovász-Schrijver
operator, and that it really becomes effective for t >

1.
With regards to the Sherali-Adams operator, the

conditions we just described yield an operator that
lies “between” the level-t and the level-2t operators
in terms of the constraints that it imposes. Finally,
we can also impose positive semidefiniteness on M .

The procedure we just described is meant as a sim-
ple example of how the algebra of subsets of variables
can be used to produce more general procedures than
the SAt, N and N+ operators.

3. Subset algebra operators

In this section we describe the approach used in [3],
[18]. In order to describe the core of this method,
consider an arbitrary statement that could be made
about a 0/1 vector x. For example:

K: “
∑

j xj is a prime number”.

Now, corresponding to this statement we could in-
troduce a new 0/1 variable, v[K], with the intention
that

v[K] = 1, precisely when K holds. (9)

Of course, (9) is a purely logical statement and the
challenge would be to approximate it by imposing
constraints involving variable v[K] that can be cast
in the language of convex optimization.

In our method we proceed in two steps. First, we
use statements that are described by set-theoretic
expressions, and are somewhat more pliable than the
example of K given above. At the same time, the
statements are amenable to effective approximation
by linear inequalities, while providing sharp informa-
tion on the underlying combinatorial structure of the
set F . Second, having chosen a set of new variables
v[K] we will then proceed by creating a “matrix of
variables” M as in Section 2.1.

Set covering

The first operator is simplest to describe in the con-
text of set covering problems, that is to say when
the matrix A in (1) is 0/1 and b is the vector of
1s. Borrowing notation from Section 2., for each
1 ≤ j ≤ n, let Yj denote the expression “xj = 1”
(this is a set-theoretic expression in that it describes

10 SIAG/OPT Views-and-News

a subset of the n-hypercube). Similarly, let Nj de-
note the expression “xj = 0”. Finally, a set S
of column indices is called an intersection of sup-
ports if, for some pair i, i′ of rows of A, S =
{1 ≤ k ≤ n : aik = 1 and ai′k = 1 }.

The operator we describe creates a collection of
variables corresponding to each intersection of sup-
ports S. Each of these variables is indexed by a
set-theoretic expression:

(S.0) αS = ∩j∈SNj ,

(S.1) βk
S = (∩j∈S−kNj) ∩ Yk, for each k ∈ S, and

(S.2) τS , where τS is the set-theoretic expression that
states “

∑
j∈X xj ≥ 2”.

As discussed above, we stress that the definitions in
(S.0)-(S.2) give the intended meaning for the new
variables — we have to introduce constraints that
are consistent with this meaning. Further, from an
algorithmic standpoint we want to use the symbol
τS , rather than the exact set-theoretic formula which
is straightforward, but of exponential length in terms
of the Nj and Yj :

∪{ (∩j∈P Yj) ∩ (∩j∈S−P Nj) : P ⊆ S, |P | ≥ 2 } .

In addition, for each intersection of supports S,
we introduce, for each h /∈ S, the variable indexed
by the expression Yh ∩ αS ; for each k ∈ S and each
h /∈ S the expression Yh∩βk

S ; and for each 1 ≤ h ≤ n,
the expression Yh ∩ τS .

In total, thus, when the matrix A has m rows there
are O(m2n2) variables. The constraints that we im-
pose are the following. Let S be an intersection of
supports. Corresponding to S, we have

v[αS] +
∑
k∈S

v[βk
S] + v[τS] = 1 (10)

v[Yh ∩ αS] +
∑
k∈S

v[Yh ∩ βk
S] + v[Yh ∩ τS]

= v[Yh], ∀ h /∈ S, (11)

v[βh
S] + v[Yh ∩ τS] = v[Yh], ∀ h ∈ S, (12)∑

h∈S

v[Yh ∩ τS] ≥ 2 v[τS]. (13)

The first three constraints state that
∑

j∈S xj must
equal 0, 1, or at least 2; (13) makes an additional

(obvious) statement regarding the ≥ 2 case. Fur-
thermore, for each row r of A, we impose the ho-
mogenizations:∑

h/∈S

arhv[Yh ∩ αS] ≥ v[αS], (14)

∑
h/∈S

arhv[Yh ∩ βk
S] + arkv[βk

S]

≥ v[βk
S], ∀ k ∈ S, (15)∑

h

arhv[Yh ∩ τS] ≥ v[τS]. (16)

The last set of constraints is∑
h

aihv[Yh] ≥ 1, for each row i of A. (17)

The number of constraints is O(m3n). This con-
cludes the description of the formulation (the vari-
ables are assumed nonnegative and upper bounded
by 1). We have:

Lemma 3..1 Consider any feasible solution v̂ to the
system just described. Then the vector with entries
v̂[Yh], 1 ≤ h ≤ n, satisfies each inequality valid for
F with coefficients 0, 1 or 2.

Proof Sketch. For simplicity, consider an inequality
valid for F of the form:∑

h∈T

xh ≥ 2, (18)

for some set T . Since (18) is valid for F , there are
two rows i, i′ of A whose supports are contained in
T . Let i′ be as desired; without loss of generality the
supports of i and i′ are not disjoint, or else (18) is
trivially satisfied by (17).

Let S be the intersection of the supports of i, and
i′. Now if we can argue that v̂ satisfies:∑

h∈T−S

v̂[Yh ∩ αS] ≥ 2 v̂[αS], (19)∑
h∈T−S

v̂[Yh ∩ βk
S] + v[βk

S]

≥ 2 v̂[βk
S], ∀k ∈ S, (20)∑

h∈T−S

v̂[Yh ∩ τS] ≥ 2 v̂[τS], (21)

Volume 16 Numbers 1-2 October 2005 11

then by (10 - 12) we will be done. Note that we
already have (21): it is (13). (19) follows by applying
(14) to rows i and i′ and adding. Finally, pick any
k ∈ S.

Since (18) is valid for F , there is another row i′′

of A whose support is contained in T , and such that
ai′′k = 0. As a result, applying (15) with r = i′′

yields (20), as desired.
Two characteristics differentiate the reformulation

operator described from the SAt, N and N+: first,
the new variables depend on the structure of the con-
straints, and second, the new variables are indexed
by set-theoretic expressions far more complex than
simple conjunctions of Yj and Nj terms. With re-
gards to the second point, note that, for example,
an αS expression involves S terms; and furthermore
in order to describe a τS expression using conjunc-
tions of the Yj and Nj we would need almost 2|S|

terms.
The operator given above can be significantly gen-

eralized. For this we need a new definition:

Definition 3..2
(a) The pitch of an inequality αT x ≥ β with non-
negative coefficients is the smallest integer k, such
that the sum of the k smallest nonzero αj is at least
β.
(b) Given a feasible region (1), we denote by P k

A,b

the polyhedron defined by all valid inequalities of
pitch ≤ k.

Thus, an inequality with coefficients of value (say)
0, 1, 2, 3 or 4 has pitch ≤ 4. The following result is
proved in [3]:

Theorem 3..3 [3] For each integer k ≥ 2 there is
an integer gk with the following property. Given a
set-covering problem (1) with m rows and n columns,
there is a polyhedron Lk such that:

(i) Lk is described by a system of O((n + m)gk)
inequalities in O((n + m)gk) variables, that is
computable in time O((n + m)gk) , and whose
coefficients are integral and with absolute value
at most k,

(ii) FA,e ⊆ π(Lk) ⊆ P k
A,e.

3.1 Lift-and-project and Chvátal-
Gomory rank.

Here we outline some of the theoretical impact of
Theorem 3..3. This concerns, in particular, the com-
parison between the relaxation implicit in the for-
mulation provided by Theorem 3..3, and Chvátal-
Gomory closures of the continuous relaxation of F
of fixed rank.

We remind the reader of the definition of the
Chvátal-Gomory cuts. Given F , where A has m
rows, denote by R the continuous relaxation of F .
Suppose we choose multipliers πi ≥ 0 for 1 ≤ i ≤ m,
and multipliers 0 ≤ γj for 1 ≤ j ≤ n. Then the
following inequality is valid for F

∑
j

⌈
πT A− γj

⌉
xj ≥

πT b−
∑

j

γj

 , (22)

and is denoted a rank-≤ 1 inequality. The set of all
such inequalities, together with the bounds 0 ≤ xj ≤
1 defines the rank-1 closure of R. Using the rank-1
closure of F to generate more valid inequalities in a
similar way, one then obtains the rank-2 closure of
R, and so on. The rank of a valid inequality for F
is the smallest integer q such that the rank-q closure
implies the inequality — a classical result is that
each valid inequality for F has rank that depends
on n only. Furthermore, many commercial integer
programming systems produce low-rank cuts, while
at the same time separating over the rank-1 closure
of an arbitrary set R is NP-hard (also see [8], [5]).

To consider how Theorem 3..3 relates to the rank-
1 closure of a set covering problem, consider an in-
equality (22) that is not dominated. If its right-hand
side is k (say), then its pitch is ≤ k, and so the for-
mulation produced by Theorem 3..3 satisfies (22).
On the other hand, if the right-hand side is “large”
(greater than k) then the continuous relaxation of
F satisfies (22) within additive error ≤ 1, and thus
within relative error ≤ 1

k . Thus, by appropriately
choosing k, we will satisfy all rank-≤ 1 inequalities
within arbitrarily small tolerance while still using a
polynomial-size formulation.

In fact, something much stronger can be proved.
The issue here is that if we have polyhedra of
the form A′ = {A′x ≥ b′, x ∈ [0, 1]n} and A′′ =
{A′′x ≥ b′′, x ∈ [0, 1]n} such that whenever x ∈ A′′

then A′x ≥ (1 − ε)b′ (ε small), it may still be the

12 SIAG/OPT Views-and-News

case that min
{
cT x : x ∈ A′′} is much smaller than

min
{
cT x : x ∈ A′}. Thus, if both A′ A′′ are relax-

ations of the same set integer program, A′ may still
be far stronger even though (seemingly) A′′ closely
approximates A′ (the reason behind this situation is
that the xj are upper bounded by 1 — this can be
used to generate small examples of such A′, A′′).

However, this pathological behavior cannot hap-
pen when A′ is the rank-1 closure of a set R. This is
due to the structure of rank-1 cuts: if

∑
j αjxj ≥ β

is a rank-≤ 1 cut, then so is
∑

j 6=k αjxj ≥ β − αk,
for any given 1 ≤ k ≤ n (or, more precisely, it is
implied by inequalities defining the rank-1 closure).
The following theorem is proved in [4].

Theorem 3..4 For each integer q > 0 and 0 < ε <
1 there are integers d = d(q, ε) and u = u(q, ε) with
the following property. Let A be an m × n nonneg-
ative matrix, and b ∈ Rm

+ . Assume we are given
the set of minimal covers arising from each row of
Ax ≥ b, and let νA,b denote the number of such cov-
ers. Then, in time O((n + m + νA,b)d) we can com-
pute a formulation described by O

(
(n + m + νA,b)d

)
rows and columns, with coefficients that are integral
and with absolute value at most u, and whose feasible
region R̂ satisfies

(i) F ⊆ π(R̂),

(ii) for any c ∈ Rn
+, min{cT x : x ∈ π(R̂)∩RA,b} ≥

(1− ε)τ (q)
A,b(c).

The formulation described by the theorem is pre-
cisely that given by Theorem 3..3. We refer the
reader to [4] for details. Note that when (1) is a
set-covering problem, then the minimal covers are
defined by rows of A. In the set-covering case, there-
fore, Theorem 3..4 says that in polynomial-time we
can approximate arbitrarily closely the strength of a
fixed-rank closure, thereby avoiding the pathological
situation described above.

A good example is that provided by a set-covering
problem defined by a full-circulant matrix:

F = {x ∈ {0, 1}n :
∑
j 6=k

xj ≥ 1,

for each 1 ≤ k ≤ n }, (23)

and the optimization problem v∗ =
min

{∑
j xj : x ∈ F

}
. Clearly, v∗ = 2. By

Theorem 3..3 we have a polynomial-size formulation
that proves v∗ = 2. In contrast to this, in [4], [3]
the following is shown:

1. For each fixed 1 ≤ t, the Sherali-Adams level-
t SAt operator, and the Lovász-Schrijver t-
iterated operator N t

+ can only prove v∗ ≥
1 + t+1

n + o(1
n) (i.e. an underestimate by nearly

a factor of 2).

2. The valid inequality
∑

j xj ≥ 2 has rank ≥ n−3
for both the SA and N+ operators (i.e. it re-
quires exponential time to prove the inequality
using SA or N+).

In fact, similar negative results can be shown for a
much stronger operator than either SA or N+. The
weakness of the operators stems from the use of sim-
ple “monomials” with up to t variables when forming
the new variables for a lifted formulation. In a sense
this approach is too “pedantic” and it simply does
not adequately capture the combinatorial structure
of the problem. We expect that a similar result may
well hold for the Lasserre operator in [10], for similar
reasons. For earlier negative results, see [9], [11], [7].

Theorem 3..4 requires that the set of minimal cov-
ers for a problem 1 be given explicitly. What can be
said if that is not the case? Note that the problem of
detecting whether some minimal cover is violated by
a fractional vector x̂ is (weakly) NP-hard (see [15] for
background). Still, in the context of an approxima-
tion result like Theorem 3..4 this is a difficulty that
can probably be circumvented. A more significant
obstacle is that the number of minimal covers may
be exponentially large. In order to deal with such
a difficulty, one would have to extend our subset-
algebra lifting procedure so as to handle minimal
covers implicitly, via the ellipsoid method. A result
along these lines is provided in the online version
of [4].

3.2 Packing problems, tree-width, and
the Sherali-Adams operator

The operators and results described above concern
covering-type problems, i.e. problems (1) where A ≥
0. What can be said about packing-type problems,
that is feasible regions of the form

F = {x ∈ {0, 1}n : Ax ≤ b } (24)

Volume 16 Numbers 1-2 October 2005 13

where A ≥ 0? Ideally, a result such as Theorem 3..3
would apply here, as well, paving the way to a result
like Theorem 3..4.

Up to date, the best we have been able to do in
this regard is to prove a structural result concerning
the strength of the Sherali-Adams operator. This
result involves two concepts.

One is that of tree-width. For an integer w, a graph
G is said to be of tree-width ≤ w if G is contained in
a chordal graph H such that the clique number of H
is ≤ w + 1. This definition, while succinct, does not
really do justice to the richness of this concept — see
[17] and [2] (and references therein) for additional
material. A simple way to view tree-width is that
the higher the tree-width of a graph, the higher its
“complexity”, from a fundamental perspective.

The second concept is that of clique graph. Given
a matrix A, its clique graph has a vertex for every
column, and an edge between two vertices j1 and j2

if there exists some row i with ai,j1 6= 0 and ai,j2 6= 0.
(Again, this is an old concept, refer to [15]).

Armed with these two concepts, we can define the
tree-width of a valid inequality

∑
j αjxj ≥ β for a

packing set (24): this is the minimum tree-width of
the clique graph of any row-submatrix A′ of A, such
that

∑
j αjxj ≥ β is valid for {x ∈ {0, 1}n : A′x ≤

b′ }. Here, A′ is obtained from A by removing some
rows, and correspondingly for b′. The main result
proved in [2] is:

Theorem 3..5 Consider a packing set F as in (24).
Let k ≥ 1, and suppose that a vector x̂ ∈ Rn satisfies
the constraints imposed by the level-k Sherali–Adams
operator applied to F . Then

(1) x̂ satisfies every valid inequality αT x ≤ β
whose tree-width is at most k − 1.

(2) Suppose A is 0/1 and b is integral. Then x̂
satisfies every valid inequality αT x ≤ β whose tree-
width is at most min{k, n− 1}.

As a result, in polynomial-time the Sherali-Adams
operator produces a formulation whose solutions
are guaranteed to satisfy a number of classical in-
equalities for vertex-packing problems, such as the
odd-hole and odd-wheel inequalities. This result
was already known (it is essentially given in [12]).
But Theorem 3..5 is stronger than this, and it cov-
ers far more complex inequalities, such as antiweb-

wheels [6]. In essence tree-width provides a means
for parameterizing the “complexity” of a valid in-
equality for packing problems.

Note that odd-holes, odd-wheels, and the antiweb-
wheels (and other inequalities) that can be sepa-
rated in polynomial time in [6] all have bounded
Chvátal-Gomory rank. We conjecture that the tech-
niques used to obtain Theorem 3..5, perhaps applied
to a stronger operator than Sherali-Adams (possi-
bly using positive-semidefiniteness) will yield results
for packing problems similar to those we described
above for covering problems, mainly the polynomial-
time approximation of fixed-rank Chvátal-Gomory
closures.

3.3 Computation

Of course, a critical research goal would be to ef-
fectively implement the subset algebra lifting oper-
ator described above. Using today’s computing ma-
chinery this would be quite difficult because of the
large size of the resulting formulations. An inter-
esting possibility would be to experiment with clas-
sical techniques such as column generation and La-
grangian relaxation — but we feel that at least some
theoretical understanding of how to apply such tech-
niques in this context would be needed, since the
formulations we produce are very highly structured.

At the same time, we strongly feel that the use of
ever more powerful convex relaxations of 0/1 inte-
ger programs is likely to produce good results in the
future. On the one hand, this approach leverages
the very robustly growing field of convex optimiza-
tion, which is backed up by strong theory and very
careful computation. There is also an equally ro-
bust concurrent effort at adapting tools from nondif-
ferentiable optimization to approximate the solution
of very large structured linear and convex programs
(see, e.g., [14], [1], [13]). Finally, computational ma-
chinery continues to improve, especially with regards
to memory. All of this leads us to believe that our
ability to solve large convex optimization problems
will dramatically improve over the next decade; com-
bined with effective reformulation procedures this
should lead to much better techniques for proving
stronger bounds for 0/1 integer programs.

We would contrast this with the “classical” ap-
proach of attempting to apply branch-and-cut di-

14 SIAG/OPT Views-and-News

rectly to a formulation. For difficult combinato-
rial problems this is likely to generate an excessive
amount of enumeration; i.e., the algorithms will not
scale with problem size no matter how much com-
putational power is available.

REFERENCES

[1] D. Bienstock and G. Iyengar, Solving fractional pack-
ing problems in O*(1/epsilon) iterations, Proc. 26th
Ann. Symp. Theory of Computing (Chicago, 2004),
pp. 146–155 (CORC report TR-2003-03).

[2] D. Bienstock and N. Ozbay, Tree-width and the Sherali-
Adams operator, Discrete Optimization, 1 (2004),
pp. 13–22.

[3] D. Bienstock and M. Zuckerberg, Subset algebra lift oper-
ators for 0-1 integer programming, SIAM J. Optim.,
15 (2004) pp. 63–95.

[4] D. Bienstock and M. Zuckerberg, Approximate fixed-rank
closures of covering problems, CORC report TR-
2003-01, Math. Program., to appear.

[5] A. Caprara and A. Letchford, On the separation of split
cuts and related inequalities, Math. Program., 94
(2003), pp. 279–294.

[6] E. Cheng and S. de Vries, Antiweb-wheel inequalities and
their separation problems over the stable set poly-
topes, Math. Program., 92 (2002), pp. 153–175.

[7] W. Cook and S. Dash, On the matrix-cut rank of poly-
hedra, Math. Oper. Res., 26 (2001), pp. 19–30.

[8] G. Cornuéjols and Y. Li, A connection between cutting
plane theory and the geometry of numbers, Math.
Program., 93 (2002), pp. 123–127.

[9] M.X. Goemans and L. Tunçel, When does the positive
semidefiniteness constraint help in lifting procedures,
manuscript (2000).

[10] J. B. Lasserre, An explicit exact SDP relaxation for non-
linear 0-1 programs, in Lecture Notes in Computer
Science, K. Aardal and A. M. H. Gerards, editors,
(2001), pp. 293-303.

[11] M. Laurent, A Comparison of the Sherali-Adams,
Lovász-Schrijver and Lasserre relaxations for 0-1
programming, Math. Oper. Res., 28 (2003), pp. 470–
496.

[12] L. Lovász and A. Schrijver, Cones of matrices and set-
functions and 0-1 optimization, SIAM J. Optim., 1
(1991), pp. 166–190.

[13] A. Nemirovski, Prox-method with rate of convergence
O(1/t) for variational inequalities with Lipschitz
continuous monotone operators and smooth convex-
concave saddle point problems, SIAM J. Optim., 15
(2004), pp. 229–251.

[14] Y. Nesterov, Smooth minimization of non-smooth func-
tions, Math. Program., 103 (2005), 127 - 152.

[15] G.L. Nemhauser and L. A. Wolsey, Integer and Com-
binatorial Optimization, John Wiley & Sons, New
York, 1988.

[16] S. Sherali and W. Adams, A hierarchy of relaxations be-
tween the continuous and convex hull representations
for zero-one programming problems, SIAM J. Dis-
crete Math., 3 (1990), pp. 411–430.

[17] N. Robertson and P. D. Seymour, Graph minors II:
Algorithmic aspects of tree-width, J. Algorithms, 7
(1986), pp. 309–322.

[18] M. Zuckerberg, A Set Theoretic Approach to Lifting Pro-
cedures for 0,1 Integer Programming, Ph.D. Thesis,
Columbia University, 2004.

Volume 16 Numbers 1-2 October 2005 15

Short Rational Generating
Functions and Their Applications

to Integer Programming

Kevin Woods
Department of Mathematics, University of California,

Berkeley, CA 94720-3840, USA

(kwoods@math.berkeley.edu).

Ruriko Yoshida
Department of Mathematics, Duke University,

Durham, NC 27708-0320, USA (ruriko@math.duke.edu).

Abstract: In this paper, we provide an overview
of rational generating function tools for encoding in-
teger points inside a rational polyhedron, and we ex-
amine their applications to solving integer program-
ming problems.

1. Introduction

In the 1980’s, H.W. Lenstra, Jr. developed an al-
gorithm to detect integer points in a rational poly-
hedron using the LLL-algorithm [17, 20], and this
algorithm runs in time polynomial in the input size
if we fix the dimension. Lenstra used this algorithm
to show that integer programming problems with a
fixed number of variables can be solved in polyno-
mial time. A later algorithm of similar structure, by
Lovász and Scarf [21], was implemented by Cook,
et al. [9]. In addition, Aardal and collaborators
[1, 2, 3] have written fairly effective modifications of
the LLL-procedure for testing integer feasibility. In
the 1990’s, based on work by the geometers Brion,
Khovanski, Lawrence, and Pukhlikov, Barvinok dis-
covered an algorithm to count integer points in ratio-
nal polytopes, and this algorithm also runs in poly-
nomial time if we fix the dimension [5, 6]. The idea
of the algorithm is to encode all the integer points
inside a rational polyhedron into a rational generat-
ing function. In particular, if P ⊂ Rd is a rational
polyhedron, define the generating function

f(P ;x) =
∑

s∈P∩Zd

xs,

where xs denotes xs1
1 · · ·xsd

d with s = (s1, . . . , sd).
After computing f(P ;x) as a rational function, we
evaluate |P ∩ Zd| = f(P ; 1, . . . , 1).

Example 1..1 Suppose P is the one-dimensional
polytope [0, N]. Then f(P ;x) = 1+x+x2+ · · ·+xN ,
f(P ;x) can be represented by the rational function
1−xN+1

1−x , and f(P ; 1) = N + 1, the number of integer
points in P .

Note that the rational function representation of
f(P ;x) in Example 1..1 is “short”. In general,
the number of terms in the representation will be
bounded by a polynomial in the input size. Also
note that substituting x = 1 yields a denominator
equal to zero in the rational function, so some an-
alytic technique must be used to evaluate f(P ; 1).
In this particular case, we could take the limit as x
approaches 1 and apply l’Hospital’s rule. In general,
we must use more complicated residue calculus [5].

Shortly after Barvinok introduced his algorithm,
Dyer and Kannan [16] showed that a particular step
of his counting algorithm, which originally relied on
Lenstra’s result, could be replaced by a short-vector
computation using the LLL-algorithm. This result
gives a new proof that integer programming prob-
lems with a fixed number of variables can be solved
in polynomial time: using binary search, one can
turn Barvinok’s counting oracle into an algorithm
that solves integer programming problems. This al-
gorithm was proposed by Barvinok in [6]. We call
this integer programming algorithm the BBS algo-
rithm.

In this report, we will provide a brief overview
of how to encode the integer points inside a given
polyhedron into a short rational generating function
(Section 2.), and then we will survey applications to
solving integer programming problems (Section 3.).

2. Computing short rational gen-
erating functions

In 1993, Barvinok [5] gave an algorithm that, given
a rational polyhedron P ⊂ Rd, computes f(P ;x) as
a rational function in polynomial time (when the di-
mension of the polyhedron is fixed). In this section,
we outline the steps of Barvinok’s algorithm. For a
more lengthy and detailed exposition, see [6].

Let {c1, . . . , cd} be a basis for the lattice Zd, and
let β1, . . . , βd ∈ Q be given. We define the ratio-
nal unimodular cone K = {x ∈ Rd : ci · x ≤
βi, for all i}, where a ·b is the standard dot product.

16 SIAG/OPT Views-and-News

Computing the generating function of a unimodular
cone is “easy”. In fact, if {u1, . . . , ud} is the (nega-
tive) dual basis of Zd such that

ui · cj =
{
−1, if i = j
0, if i 6= j

,

and if v = −
∑d

i=1 bβicui, then (by Lemma 4.1 of [6])

f(K;x) =
xv

(1− xu1) · · · (1− xud)
. (1)

Example 2..1 Suppose we have a rational unimod-
ular cone K ⊂ R2, such that

K = {(x1, x2) ∈ R2 : x1 ≤ 4, 2x1 + x2 ≤ 10}.

In our example, c1 = (1, 0) and c2 = (2, 1) form
a basis of Z2. Then, we have that u1 = (−1, 2),
u2 = (0, −1), and v = − [4(−1, 2) + 10(0, −1)] =
(4, 2). Therefore

f(K;x1, x2) =
x4

1x
2
2

(1− x−1
1 x2

2)(1− x−1
2)

.

The idea of Barvinok’s algorithm, then, is to re-
duce the case of computing f(P ;x) to the case of
computing the generating functions for a collection
of unimodular cones. We do this in three steps: first
reduce to the case of general rational cones, then
to the case of simplicial cones (rational cones with
exactly d extreme rays), and then finally to unimod-
ular cones. If v is a vertex of P , then define the
supporting cone, cone(P, v), of P at v, as follows.
Suppose that P is defined by P = {x ∈ Rd : ci · x ≤
βi, for i = 1, . . . ,m}, for some ci ∈ Qd, βi ∈ Q. For
a vertex, v, of P , let Iv = {i : ci ·v = βi}, and define

cone(P, v) = {x ∈ Rd : ci · x ≤ βi, for i ∈ Iv}.

Then the following theorem from [8] allows us to
compute f(P,x) by computing the generating func-
tions of the cones cone(P, v), where v is a vertex of
P .

Theorem 2..2 (Brion’s Theorem) Let P be a ratio-
nal polyhedron. Then

f(P ;x) =
∑

v

f
(
cone(P, v);x

)
,

where the sum runs over all vertices v of P .

Example 2..3 Let P be the one-dimensional poly-
tope [0, N]. Then v0 = 0 and v1 = N are the ver-
tices of P , cone(P, v0) = [0,∞) and cone(P, v1) =
(−∞, N], and so

f(P ;x) = f(cone(P, v0);x) + f(cone(P, v1);x)

= 1
1−x + xN

1−x−1 = 1−xN+1

1−x .

Note that, since the dimension d is fixed, we
may compute the vertices of P in polynomial time
(see [22] for details). Next, by triangulating these
cones, we reduce to the case of simplicial cones.
There are efficient algorithms, when the dimension
is fixed, to perform triangulations (see [4, 19] for
details). Finally, let K be a simplicial cone. The es-
sential contribution of Barvinok [5] was to show that
we can decompose K into a signed collection of uni-
modular cones. To be precise, given a set A ⊂ Rd,
define the indicator function, [A] : Rd → R, of A by

[A](x) =
{

1, if x ∈ A
0, if x /∈ A

.

Then we have the following theorem from [5].

Theorem 2..4 Fix d. There is a polynomial time
algorithm which, given a rational simplicial cone
K ⊂ Rd, computes rational unimodular cones Ki

and signs εi ∈ {−1, 1} such that

[K] =
∑

i

εi[Ki].

Therefore, we have that

f(K,x) =
∑

i

εif(Ki,x).

Example 2..5 Let K = co
(
(1, 0), (1, N)

)
(that is,

the cone generated by (1, 0) and (1, N)). Then K1 =
co

(
(1, 0), (0, 1)

)
, K2 = co

(
(1, N), (0, 1)

)
, and K3 =

co
(
(1, N)

)
are unimodular, with [K] = [K1]− [K2]+

[K3]. Therefore

f(K;x, y)

= 1
(1−x)(1−y) −

1
(1−xyN)(1−y)

+ 1
1−xyN .

Volume 16 Numbers 1-2 October 2005 17

Using Theorem 2..2, triangulation, Theorem 2..4,
and (1), we may now compute the generating func-
tion for any rational polyhedron, as the following
theorem states.

Theorem 2..6 (Theorem 4.4 in [6]) Assume d,
the dimension, is fixed. Given a rational polyhedron
P ⊂ Rd, the generating function f(P ;x) can be com-
puted in polynomial time in the form

f(P ;x) =
∑
i∈I

εi
xui

d∏
j=1

(1− xvij)
, (2)

where I is a polynomial-size indexing set, and where
εi ∈ {1,−1} and ui, vij ∈ Zd for all i and j.

Furthermore, we can use this generating function
to count the number of integer points in a rational
polytope, by computing f(P ; 1, 1, . . . , 1). Note that,
while f(P ;x) itself is analytic at (1, 1, . . . , 1), each
of the fractions in the sum has a pole there. Thus,
we can not directly substitute 1 for each variable,
but we can compute the value (in polynomial time
for fixed dimension) via residue calculus, as in [5].

3. Applications to integer pro-
gramming

Throughout this section, we will assume that the
number of variables d is fixed. Suppose we have the
following integer programming problem: given A ∈
Zm×d, b ∈ Zm, c ∈ Zd,

maximize c · x subject to Ax ≤ b, x ∈ Zd. (3)

There are several algorithms to solve the integer pro-
gramming problem (3) using short rational functions
[12, 13, 14]. In this section, we will provide outlines
of two of these algorithms: the BBS algorithm and
the digging algorithm. These are currently imple-
mented in the second release of the computer soft-
ware LattE (see [11, 12, 15]).

3.1 Barvinok’s binary search algorithm

We start with the most straightforward integer pro-
gramming algorithm. It is an immediate conse-
quence of the counting algorithm via short rational
functions, with no extra tools needed: using binary

search, one can turn any feasibility or counting ora-
cle into an algorithm that solves Problem (3). This
idea was proposed in [6]:

Algorithm 3..1 (BBS algorithm)
Input: A ∈ Zm×d, b ∈ Zm, c ∈ Zd.
Output: The optimal value, O, of max{c ·x : Ax ≤
b, x ∈ Zd}.

1. Let P = {x ∈ Rd : Ax ≤ b} be the feasible
region for the linear program. Initialize M to
be max{c · x : x ∈ P}, the maximum of the
linear program, and m to be min{c ·x : x ∈ P}.
Then m ≤ O ≤ M (assuming a feasible integer
solution exists).

2. Use Barvinok’s algorithm to count q =∣∣P ∩ Zd
∣∣. If q = 0, then there is no feasible

integer solution. If q is nonzero, then perform
the following loop.

3. While M > m do (at each iteration, we will
know that m ≤ O ≤ M)

Set N = dM+m
2 e.

Using Barvinok’s algorithm compute q =∣∣P ∩ {x ∈ Rd : N ≤ c · x ≤ M} ∩ Zd
∣∣ .

If q > 0, then N ≤ O ≤ M and we repeat the
loop with m := N and M := M .

If q = 0, then m ≤ O < N and we repeat the
loop with m := m and M := N − 1.

4. Return M as the optimal value.

3.2 Digging algorithm

An alternative integer programming algorithm,
which also uses rational generating functions, is the
digging algorithm. This algorithm is an extension of
a heuristic proposed by Lasserre [18], and it begins
at the highest possible value for the optimum of the
integer program, checks to see if there is a feasible
solution giving that value, and if not continually digs
to check the next highest possible value.

For the integer programming problem (3), let P =
{x ∈ Rd : Ax ≤ b} be the feasible region for the lin-
ear program. Given the generating function f(P ;x)

18 SIAG/OPT Views-and-News

as in (2), perform the substitution xk = tck , so that

f(P ; tc1 , · · · ; tcd) =
∑

α∈P∩Zd

tc·α =
∑
i∈I

εi
tc·ui

d∏
j=1

(1− tc·vij)
.

(4)
For simplicity, we assume that c · vij 6= 0, for any

i, j. Furthermore, we may assume that c · vij < 0 by
performing the operation 1/(1−tv) = −t−v/(1−t−v),
as necessary.

The optimum value of the integer program is the
degree of f(P ; tc1 , · · · , tcd), which we will compute
by examining the Laurent series expressions of each
of the terms in the sum, which are of the form

εit
c·ui

d∏
j=1

(1 + tc·vij + t2c·vij + t3c·vij + · · ·). (5)

Algorithm 3..2 (Digging algorithm)
Input: A ∈ Zm×d, b ∈ Zm, c ∈ Zd.
Output: The optimal value of max{c · x : Ax ≤
b, x ∈ Zd}.

1. Let P = {x ∈ Rd : Ax ≤ b}. Using Theorem
2..6 and substitution, compute the rational func-
tion expression in the equation (4). Apply the
appropriate algebraic identities so that c·vij < 0
for all i, j.

2. If M = maxi c · ui, then the degree of
f(P ; tc1 , · · · , tcd) is at most M (since all of the
c ·vij are negative). Use the formula (5) to com-
pute the coefficient of tM in f(P ; tc1 , · · · , tcd).

3. If the coefficient of tM is nonzero, then M is
the optimal value of the integer program and we
are done. Otherwise, compute the coefficient of
the next highest possible degree. Continue until
a nonzero coefficient is found.

Example 3..3 Suppose we have the integer pro-
gramming problem

maximize 100x + 90y
subject to x + y ≤ 100, x ≤ 50, x, y ≥ 0, x, y ∈ Zd.

Then the associated rational generating function for
the feasible region of the integer program is

1
(1−x1)(1−x2) + x50

1

(1−x−1
1)(1−x2)

+ x100
2

(1−x−1
2)(1−x1x−1

2)
+ x50

1 x50
2

(1−x−1
2)(1−x−1

1 x2)
.

We apply the monomial substitution in (4) and apply
the appropriate algebraic identities, and we get:

t−190

(1−t−100)(1−t−90)
− t4910

(1−t−100)(1−t−90)
t8990

(1−t−90)(1−t−10)
+ t9500

(1−t−90)(1−t−10)
.

Then, using Equation (5) and the fact that the co-
efficient of t9500 is nonzero, we find that the integer
programming optimum is 9500.

3.3 Comparison of BBS and digging al-
gorithms

How do these two algorithms compare? The Barvi-
nok binary search algorithm is guaranteed to run in
polynomial time if we fix d. However, it is usually
slow in practice, because the Barvinok counting al-
gorithm must be run a number of times. The digging
algorithm, on the other hand, is not guaranteed to
run in polynomial time with fixed d. Nevertheless, it
is often quite efficient in practice, because the num-
ber of iterations in Step 3 of Algorithm 3..2 is usually
small and Barvinok’s algorithm is called only once
(even if we vary cost functions, we do not have to
re-run Barvinok’s algorithm). This algorithm works
well for small dimensions and polytopes with a small
number of vertices. For example, the digging algo-
rithm solved some hard knapsack problems which
the mixed-integer programming solver CPLEX version
6.6. could not [13]. However, for d on the order of
30, this algorithm becomes quite slow. If the input
polytope has a large number of vertices, the integer
programming problem (3) can be solved by the fol-
lowing: First we find a vertex of the polytope which
is an optimal solution for the linear relaxation of the
problem (3) via linear programming. Then, we ap-
ply the digging calculation to the single tangent cone
of the polytope at the vertex (see details in [13]).

REFERENCES

[1] K. Aardal and A. K. Lenstra, Hard equality con-
strained integer knapsacks, in Integer Programming
and Combinatorial Optimization: 9th International
IPCO Conference, W. J. Cook and A. S. Schulz, ed-
itors, Lecture Notes in Computer Science, Springer-
Verlag, Berlin, 2337 (2002), pp. 350–366.

[2] K. Aardal, R. Weismantel, and L. A. Wolsey, Non-
standard approaches to integer programming, Dis-
crete Appl. Math., 123 (2002), pp. 5–74.

Volume 16 Numbers 1-2 October 2005 19

[3] K. Aardal, C. A. J. Hurkens, and A. K. Lenstra, Solv-
ing a linear diophantine equations with lower and
upper bounds on the variables, in Integer Program-
ming and Combinatorial Optimization, 6th Interna-
tional IPCO conference, R. E. Bixby, E. A Boyd, and
R. Z. Rios-Mercado, editors, Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin, 1412 (1998),
pp. 229–242.

[4] F. Aurenhammer and R. Klein, Voronoi diagrams, in
Handbook of Computational Geometry, J.-R. Sack
and J. Urrutia, editors, North-Holland, Amsterdam,
(2000) pp. 201–290.

[5] A. Barvinok, Polynomial time algorithm for counting
integral points in polyhedra when the dimension is
fixed, Math. Oper. Res., 19 (1994) pp. 769–779.

[6] A. Barvinok and J. Pommersheim, An algorithmic theory
of lattice points in polyhedra, in New Perspectives in
Algebraic Combinatorics, Berkeley, CA, 1996-1997,
Math. Sci. Res. Inst. Publ. 38, Cambridge Univ.
Press, Cambridge, (1999) pp. 91–147.

[7] A. Barvinok and K. Woods, Short rational generating
functions for lattice point problems, J. Amer. Math.
Soc., 16 (2003), pp. 957–979.

[8] M. Brion, Points entiers dans les polyèdres convexes,
Ann. Sci. École Norm. Sup., 21 (1988), pp. 653–663.

[9] W. Cook, T. Rutherford, H. E. Scarf, and D. Shallcross,
An implementation of the generalized basis reduction
algorithm for integer programming, ORSA Journal of
Computing, 5 (1993), pp. 206–212.

[10] G. Cornuéjols, R. Urbaniak, R. Weismantel, and L.
A. Wolsey, Decomposition of integer programs and
of generating sets, in Algorithms – ESA 97, R. E.
Burkard and G. J. Woeginger, editors, Lecture Notes
in Computer Science, Springer-Verlag, Berlin, 1284
(1997), pp. 92–103.

[11] J. A. De Loera, R. Hemmecke, J. Tauzer, and R.
Yoshida, Effective lattice point counting in rational
convex polytopes, J. Symbolic Comput., 38 (2004),
pp. 1273–1302.

[12] J. A. De Loera, D. Haws, R. Hemmecke, P. Huggins,
B. Sturmfels, and R. Yoshida, Short rational func-
tions for toric algebra and applications, J. Symbolic
Comput., 38 (2004), pp. 959–973.

[13] J. A. De Loera, D. Haws, R. Hemmecke, P. Huggins,
and R. Yoshida, A computational study of integer
programming algorithms based on Barvinok’s ratio-
nal functions, Discrete Optimization, to appear.

[14] J. A. De Loera, D. Haws, R. Hemmecke, P. Huggins, and
R. Yoshida, Three kinds of integer programming al-
gorithms based on Barvinok’s rational functions, in

Integer Programming and Combinatorial Optimiza-
tion: 10th International IPCO Conference, D. Bien-
stock and G. Nemhauser, editors, Springer-Verlag,
Berlin, (2004) pp. 244–255.

[15] J. A. De Loera, D. Haws, R. Hemmecke, P. Huggins,
J. Tauzer, and Yoshida, A user’s guide for LattE

v1.1. 2003, software package. LattE is available at
http://www.math.ucdavis.edu/~latte.

[16] M. Dyer and R. Kannan, On Barvinok’s algorithm for
counting lattice points in fixed dimension, Math.
Oper. Res., 22 (1997), pp. 545–549.

[17] M. Grötschel, L. Lovász, and A. Schrijver, Geometric
Algorithms and Combinatorial Optimization, second
edition, Algorithms and Combinatorics, Springer-
Verlag, Berlin, 2, 1993.

[18] J. B. Lasserre, Integer programming, Barvinok’s count-
ing algorithm and Gomory relaxations, Oper. Res.
Lett., 32 (2003), pp. 133–137.

[19] C. W. Lee, Subdivisions and triangulations of polytopes,
in Handbook of Discrete and Computational Geome-
try, J. E. Goodman and J. O’Rourke, editors, CRC
Press, New York, (1997) pp. 271–290.

[20] H. W. Lenstra, Integer programming with a fixed number
of variables, Math. Oper. Res., 8 (1983), pp. 538–
548.

[21] L. Lovász and H. E. Scarf, The generalized basis re-
duction algorithm, Math. Oper. Res., 17 (1992), pp.
751–764.

[22] A. Schrijver, Theory of Linear and Integer Programming,
Wiley-Interscience, 1986.

[23] R. Thomas, Algebraic methods in integer programming,
in Encyclopedia of Optimization, C. Floudas and P.
Pardalos, editors, Kluwer Academic Publishers, Dor-
drecht, 2001.

http://www.math.ucdavis.edu/~latte

20 SIAG/OPT Views-and-News

Lattice Basis Reduction
in Integer Linear Optimization:

Some Basic Topics

Karen Aardal1
Centrum voor Wiskunde en Informatica,

Amsterdam and Technische Universiteit Eindhoven,

The Netherlands (Karen.Aardal@cwi.nl).

1. Introduction and motivation

In this note I consider the following problems. First,
the integer linear feasibility problem. Let P = {x ∈
Rn | Ax ≤ d}, where the m× n matrix A and the
m-vector d are given by integer input. Assume P is
bounded and full-dimensional.

Does there exist a vector x ∈ P ∩ Zn? (1)

Second, the integer linear optimization problem:

Determine a vector x ∈ P ∩ Zn that maximizes cx,
(2)

where c is an n-dimensional row vector. Branch-and-
bound has proven to be a very successful method to
solve integer linear optimization problems, especially
when combined with cutting planes, and it is imple-
mented in several commercial optimization packages.
The key component of branch-and-bound is to solve
the linear relaxation, i.e., we maximize (or minimize)
cx over P . If the optimal solution x̄∗ to the linear
relaxation is integer, then we are done, otherwise
we choose a non-integral component of x̄∗, say xj

with value fj and create two subproblems by adding
the constraints xj ≤ bfjc, and xj ≥ dfje respec-
tively to P . This is the part of the algorithm that
is called “branching”. Each of the subproblems are
again treated in the same fashion. We do not con-
tinue branching at a subproblem if the linear relax-
ation corresponding to that subproblem is infeasible,
or if the optimal solution to the relaxation is integer,
or if the value cx̄∗ is “worse” than the value of the
best known integer solution (this is the “bounding”
part of the algorithm).

Sometimes, though, branch-and-bound does not
work well. In some of these cases it seems as if the

1The author was supported in part by NSF Grants DMI-
0100020 and DMII-0121495, and the Dutch BSIK/BRICKS
project.

linear relaxation does not provide useful information,
and in other cases we simply do not understand why
it does not work. From the theoretical point of view
we know that branch-and-bound can perform arbi-
trarily bad even in dimension n = 2. A natural
question to ask is whether there exists an algorithm
for solving Problem 1 that has a polynomial run-
ning time. Since Problem 1 is NP-complete [6, 20]
we do not expect to find a polynomial algorithm to
solve it, but we could still hope for an algorithm that
is polynomial for fixed dimension n. Such an algo-
rithm was developed by H. W. Lenstra, Jr. [23, 24].
His algorithm is based on lattice basis reduction and
linear transformations, and is “branching on hyper-
planes” rather than on information from the linear
relaxation. Before describing Lenstra’s algorithm in
Section 4., we present some notation, definitions and
basic results in Section 2.. In Section 3. we present
Lovász’ basis reduction algorithm, which is a corner
stone in Lenstra’s algorithm. Finally, in Sections 5.
and 6. we present some related results and list some
open problems.

2. Notation, definitions, and basic
results

Let b1, . . . , bl be linearly independent vectors in Rn.
The set

L = {x ∈ Rn | x =
l∑

j=1

λjbj , λj ∈ Z, 1 ≤ j ≤ l}

(3)
is called a lattice. The set of vectors {b1, . . . , bl} is
called a lattice basis.

We review the Gram-Schmidt process below.

Definition 2..1 The Gram-Schmidt process derives
orthogonal vectors b∗j , 1 ≤ j ≤ l, from linearly inde-
pendent vectors bj , 1 ≤ j ≤ l. The vectors b∗j , 1 ≤
j ≤ l, and the real numbers µjk, 1 ≤ k < j ≤ l, are
determined from bj , 1 ≤ j ≤ l, by the recursion

b∗1 = b1, b∗j = bj −
j−1∑
k=1

µjkb
∗
k, 2 ≤ j ≤ l,

where

µjk =
bT

j b∗k
‖b∗k‖2

, 1 ≤ k < j ≤ l.

Volume 16 Numbers 1-2 October 2005 21

The vector b∗j is the projection of bj on the or-
thogonal complement of

∑j−1
k=1 Rbk = {

∑j−1
k=1 mkbk :

mk ∈ R, 1 ≤ k ≤ j − 1}, i.e., b∗j is the compo-
nent of bj orthogonal to the real subspace spanned
by b1, . . . , bj−1. Thus, any pair b∗i , b∗k of the Gram-
Schmidt vectors are mutually orthogonal. The mul-
tiplier µjk is equal to zero if and only if bj is orthog-
onal to b∗k. Notice that the Gram-Schmidt vectors
corresponding to b1, . . . , bl do not necessarily belong
to L, but they do span the same real vector space as
b1, . . . , bl.

The rank of L, rk L, is equal to the dimension of
the Euclidean vector space generated by the basis
of L. The rank of the lattice L in Expression (3) is
l, and we have l ≤ n. If l = n we call the lattice
full-dimensional.

There are several ways of defining the determinant
of a given lattice L, d(L). Two straightforward ex-
pressions are:

d(L) = ‖b∗1‖ · ‖b∗2‖ · · · · · ‖b∗l ‖,

and
d(L) =

√
det(BT B) ,

where b∗1, . . . , b
∗
l are the Gram-Schmidt vectors cor-

responding to the lattice basis vectors b1, . . . , bl, and
where B is the basis matrix B = (b1, . . . , bl). If L
is full-dimensional, then d(L) can be interpreted as
the volume of the parallelepiped

∑n
j=1[0, 1)bj . In

this case the determinant of the lattice can be com-
puted straightforwardly as d(L) = |det(b1, . . . , bn)|.
The determinant of Zn is equal to one. The rank
and the determinant of L depend only on the lattice
and not on the chosen basis (cf. Observation 3..3).

For more details about lattices, see e.g. Cassels [7],
Grötschel, Lovász, and Schrijver [16], Lenstra [25],
and Schrijver [31].

3. Lovász’ basis reduction algo-
rithm

In the lattice approaches to integer programming
that will be discussed in Sections 4. and 5., we need
lattice representations using bases with short, almost
orthogonal basis vectors. Such bases are called re-
duced. Here we describe Lovász’ basis reduction al-
gorithm [22]. We also discuss some recent implemen-
tations.

Before discussing specific basis reduction algo-
rithms we describe the basic operations that are used
to go from one lattice basis to another.

Definition 3..1 An integer nonsingular matrix U
is unimodular if det(U) = ±1.

The following operations on a matrix are called ele-
mentary column operations:

• exchanging two columns,

• multiplying a column by −1,

• adding an integer multiple of one column to an-
other column.

Theorem 3..2 An integer matrix U is unimodular
if and only if U can be derived from the identity
matrix by elementary column operations.

Observation 3..3 If B and B′ are bases for the
same lattice L ⊂ Rn of rank l, then B′ = BU for
some l × l unimodular matrix U .

A consequence of Theorem 3..2 and Observation 3..3
is that a lattice of rank greater than 1 has infinitely
many bases. From Observation 3..3 we also see that
the determinant of a lattice L only depends on L
and not on the chosen basis.

To go from one basis to another is conceptually
easy; given a basis B we just multiply B by a uni-
modular matrix, or equivalently, we perform a series
of elementary column operations on B, to obtain a
new basis. The key question is of course how to do
this efficiently so that the new basis is reduced ac-
cording to the definition of reducedness we are using.

In Lovász’ [22] basis reduction algorithm the
length of the vectors are measured using the Eu-
clidean length, and the Gram-Schmidt vectors cor-
responding to the current basis are used as a ref-
erence for checking whether the basis vectors are
nearly orthogonal. Let L ⊂ Rn be a lattice, and
let b1, . . . , bl, l ≤ n, be the current basis vectors for
L.

Definition 3..4 ([22]) A basis b1, b2, . . . , bl is
called reduced if

|µjk| ≤
1
2

for 1 ≤ k < j ≤ l, (4)

‖b∗j +µj,j−1b
∗
j−1‖2 ≥ 3

4
‖b∗j−1‖2 for 1 < j ≤ l. (5)

22 SIAG/OPT Views-and-News

The constant 3
4 in inequality (5) is arbitrarily chosen

and can be replaced by any fixed real number 1
4 <

y < 1. In a practical implementation one chooses a
constant close to one.

Condition (4) is satisfied in two cases. The first,
desired, case is if bj is almost orthogonal to b∗k. The
second possibility for (4) to be satisfied is if bj is
short relative to b∗k. If we would accept this case we
would also accept a basis in which ‖b1‖ >> ‖b2‖ >>
· · · >> ‖bl‖, and where the vectors are far from be-
ing orthogonal. To prevent this, Condition (5) is
enforced. Here we relate to the interpretation of
the Gram-Schmidt vectors above, and notice that
the vectors b∗j + µj,j−1b

∗
j−1 and b∗j−1 are the projec-

tions of bj and bj−1 on the orthogonal complement
of

∑j−2
k=1 Rbk. Consider a violation of Condition (4)

where k = j − 1, i.e., suppose that bj is short com-
pared to b∗j−1, which implies that b∗j is short com-
pared to b∗j−1 as ‖b∗j‖ ≤ ‖bj‖. Suppose we inter-
change bj and bj−1. Then the new b∗j−1 will be the
old b∗j +µj,j−1b

∗
j−1, which will be short compared to

the old b∗j−1, i.e., Condition (5) will be violated.
If Condition (4) is violated, then Lovász’ basis re-

duction algorithm will replace bj by bj − dµjkcbk,
where dµjkc := dµjk − 1

2e. Such a step is called
size reduction and will ensure nearly orthogonal basis
vectors. If Condition (5) is violated for a certain in-
dex j, then the vectors bj and bj−1 are interchanged,
which ensures that the vectors are ordered, up to a
multiplicative constant, in increasing order of their
Euclidean length. It is clear that both the size re-
duction and the interchange are elementary column
operations. For details on the precise sequence of the
size reductions and interchanges, we refer to [22].

Theorem 3..5 ([22]) Let L ⊆ Zn be a lattice with
basis b1, . . . , bn, and let β ∈ R, β ≥ 2, be such that
‖bj‖2 ≤ β for 1 ≤ j ≤ n. Then the number of arith-
metic operations needed by the basis reduction algo-
rithm as described in [22] is O(n4 log β), and the in-
tegers on which these operations are performed each
have binary length O(n log β).

In terms of bit operations, Theorem 3..5 implies that
Lovász’ basis reduction algorithm has a running time
of O(n6(log β)3) using classical algorithms for addi-
tion and multiplication.

Next we will present a few useful bounds on re-
duced basis vectors. In Proposition 3..6 and Corol-

lary 3..7 we assume for simplicity that the lattice L
is full-dimensional.

Proposition 3..6 ([22]) Let b1, . . . , bn be a re-
duced basis for the lattice L ⊂ Rn. Then,

‖b1‖2 ≤ 2n−1‖x‖2 for all x ∈ L, x 6= 0, (6)

and
d(L) ≤ Πn

j=1‖bj‖ ≤ c1 · d(L), (7)

where c1 = 2n(n−1)/4.

Expression (6) implies that the first basis vector in
a reduced basis is an approximation of the short-
est non-zero lattice vector. The first inequality in
(7) is also referred to as the inequality of Hadamard
that holds for any basis of L. Hadamard’s inequality
holds with equality if and only if the basis is orthog-
onal. Hermite [17] proved that each lattice L ⊂ Rn

has a basis b1, . . . , bn such that Πn
j=1‖bj‖ ≤ c · d(L),

where c is a constant depending only on n. The ba-
sis produced by Lovász’ basis reduction algorithm
yields the constant c = c1 in Proposition 3..6. Bet-
ter constants than c1 are possible, but the question
is then whether the basis can be obtained in polyno-
mial time.

A consequence of Proposition 3..6 is that if we
consider a basis that satisfies (7), then the distance
of the basis vector bn to the hyperplane generated
by the reduced basis vectors b1, . . . , bn−1 is not too
small as stated in the following corollary.

Corollary 3..7 ([24]) Assume that b1, . . . , bn is a
basis such that (7) holds, and that, after possible
reordering, ‖bn‖ = max1≤j≤n{‖bj‖}. Let H =∑n−1

j=1 Rbj and let h be the distance of the basis vec-
tor bn to H. Then

c−1
1 · ‖bn‖ ≤ h ≤ ‖bn‖, (8)

where c1 = 2n(n−1)/4.

The lower bound on h given in Corollary 3..7 plays a
crucial role in Lenstra’s algorithm that is described
in the next section.

In recent years several new variants of Lovász’ ba-
sis reduction algorithm have been developed, and
a number of variants for implementation have been
suggested. We recommend the paper by Schnorr and
Euchner [30] and the book chapter by Aardal and

Volume 16 Numbers 1-2 October 2005 23

Eisenbrand [2] for a more detailed overview. For the
reader interested in using a version of Lovász’ basis
reduction algorithm there are some useful libraries
available on the Internet. In particular we want to
mention NTL — a Library for doing Number The-
ory, developed by V. Shoup [33].

4. Lenstra’s algorithm

As mentioned in the introduction, if one uses branch-
and-bound for solving problem (1) it is possible,
even in dimension 2, to create an arbitrarily deep
search tree for certain thin polytopes. Lenstra [24]
suggested transforming the polytope P using a lin-
ear transformation τ such that the polytope τP
becomes “round” according to a certain measure.
Assume, without loss of generality, that the poly-
tope P is full-dimensional and bounded, and let
B(p, z) = {x ∈ Rn : ‖x − p‖ ≤ z} be the closed
ball with center p and radius z. The transformation
τ that we apply to the polytope is constructed so
that B(p, r) ⊂ τP ⊂ B(p, R) for some p ∈ τP , with
r and R satisfying

R

r
≤ c2, (9)

where c2 is a constant that depends only on the di-
mension n. Relation (9) is the measure of “round-
ness” that Lenstra uses. Once we have transformed
the polytope, we need to apply the same transfor-
mation to the lattice, which gives us the following
feasibility problem that is equivalent to problem (1):

Is τZn ∩ τP 6= ∅?

The vectors τej , 1 ≤ j ≤ n, where ej is the j-th
unit vector in Rn, form a basis for the lattice τZn.
If the polytope P is thin, then this will translate to
the lattice basis vectors τej , 1 ≤ j ≤ n, in the sense
that these vectors are long and non-orthogonal. This
is where lattice basis reduction becomes useful. Once
we have the transformed polytope τP , Lenstra uses
the following lemma to find a lattice point quickly.

Lemma 4..1 ([24]) Let b1, . . . , bn be any basis for
L. Then for all x ∈ Rn there exists a vector y ∈ L
such that

‖x− y‖2 ≤ 1
4
(‖b1‖2 + · · ·+ ‖bn‖2).

b1

b2

IRb1 + 0b2 IRb1 + b2 IRb1 + 2b2

h

Figure 1: The lattice L is contained in countably
many parallel hyperplanes.

The proof of this lemma suggests a polynomial time
construction of the vector y ∈ L given the vector x.

Next, let L = τZn, and let b1, . . . , bn be a basis
for L such that (7) holds. Notice that (7) holds if
the basis is reduced. Also, reorder the vectors so that
‖bn‖ = max1≤j≤n{‖bj‖}. After reordering, the basis
might not be reduced any longer, but Condition (7)
still holds. Let x = p where p is the center of the
closed balls B(p, r) and B(p, R). Apply Lemma 4..1
to the given x. This gives a lattice vector y ∈ τZn

such that

‖p−y‖2 ≤ 1
4
(‖b1‖2+· · ·+‖bn‖2) ≤ 1

4
·n·‖bn‖2 (10)

in polynomial time. We now distinguish two cases.
Either y ∈ τP or y 6∈ τP . In the first case we are
done, so assume we are in the second case. Since
y 6∈ τP we know that y is not inside the ball B(p, r)
as B(p, r) is completely contained in τP . Hence we
know that ‖p− y‖ > r, or using (10), that

r <
1
2
·
√

n · ‖bn‖. (11)

Let H and h be defined as in Corollary 3..7 of
Section 3., and let L′ =

∑n−1
j=1 Zbj . We can write L

as

L = L′ + Zbn ⊂ H + Zbn = ∪k∈Z(H + kbn). (12)

So the lattice L is contained in countably many par-
allel hyperplanes. For an example we refer to Fig-
ure 1. The distance between two consecutive hyper-
planes is h, and Corollary 3..7 says that h is bounded
from below by c−1

1 ‖bn‖, which implies that not too

24 SIAG/OPT Views-and-News

many hyperplanes intersect τP . To determine pre-
cisely how many hyperplanes intersect τP , we ap-
proximate τP by the ball B(p, R). If t is the number
of hyperplanes intersecting B(p, R) we have

t− 1 ≤ 2R

h
.

Using the relationship (9) between the radii R and
r we have 2R ≤ 2rc2 < c2

√
n‖bn‖, where the last

inequality follows from (11). Since h ≥ c−1
1 ‖bn‖,

we get the following bound on the number of hyper-
planes that we need to consider:

t− 1 ≤ 2R

h
< c1c2

√
n,

which depends on the dimension only. The values of
the constants c1 and c2 that are used by Lenstra are:
c1 = 2n(n−1)/4 and c2 = 2n3/2. Lenstra discusses
ways of improving these values. To determine the
values of k in Expression (12), we express p as a
linear combination of the basis vectors b1, . . . , bn.
Recall that p is the center of the ball B(p, R) that
was used to approximate τP .

Below we will describe the tree search algorithm
and argue why it is polynomial for fixed n. Let us
first consider the root node of the search tree. We
create t < c1c2

√
n + 1 subproblems by considering

intersection between τP with t parallel lattice hy-
perplanes. Each of the subproblems has dimension
at least one lower than the parent problem. The
procedure of splitting the problem into subproblems
of lower dimension is called “branching”, and each
subproblem is represented by a node in the enumer-
ation tree. In each node we repeat the whole process
of transformation, basis reduction and, if necessary,
branching. The enumeration tree created by this re-
cursive process is of depth at most n, and the number
of nodes at each level is bounded by a constant that
depends only on the dimension.

For the details on how to determine the transfor-
mation τ and hence the balls B(p, r) and B(p, R) we
refer to Lenstra [24] or the survey chapter by Aardal
and Eisenbrand [2]. Lenstra’s algorithm has been
implemented by Gao and Zhang [14], and a heuris-
tic version of the algorithm has been developed and
implemented by Aardal et al. [1], and Aardal and
Lenstra [4].

5. A few related results

In the working paper by Lenstra [23], he used a ba-
sis reduction algorithm that is polynomial for fixed
n only. Soon after, Lovász developed the basis re-
duction algorithm described in Section 3.. This is
the basis reduction algorithm used in the published
paper by Lenstra [24], so even though the result
in Theorem 5..1 below is present in Lenstra’s pa-
per, the result is credited to Lovász (see for instance
Schrijver [31], pp 256–259). Notice that “polynomial
time” in Theorem 5..1 is polynomial time for varying
n.

Theorem 5..1 Let Ax ≤ b be a system of m ratio-
nal inequalities in n variables, and let P = {x ∈ Rn |
Ax ≤ b}. There exists a polynomial time algorithm
that finds either an integer vector y ∈ P , or a vector
d ∈ Zn \ {0} such that

max{dx | x ∈ P} −min{dx | x ∈ P}

≤ 2n(n + 1)2n(n−1)/4

Lenstra’s result that Problem 1 can be solved in
polynomial time for fixed number of variables can
be obtained as a corollary to Theorem 5..1.

Kannan [19] developed a variant of Lenstra’s al-
gorithm. The algorithm follows Lenstra’s algorithm
up to the point where he has applied a linear trans-
formation to the polytope P and obtained a poly-
tope τP such that B(p, r) ⊂ τP ⊂ B(p, R) for some
p ∈ τP . Here Kannan proceeds as follows. He ap-
plies a reduction algorithm to a basis of the lattice
τZn that produces a “reduced” basis defined differ-
ently from a Lovász’ reduced basis. In particular,
in Kannan’s reduced basis the first basis vector is
the shortest nonzero lattice vector. As in Lenstra’s
algorithm two cases are considered. Either τP is
relatively large, which implies that τP contains a
lattice vector, or τP is small, which means that not
too many lattice hyperplanes can intersect τP . Each
such intersection gives rise to a subproblem of at
least one dimension lower. Kannan’s reduced ba-
sis makes it possible to improve the bound on the
number of hyperplanes that has to be considered to
O(n5/2).

Lovász and Scarf [27] developed a basis reduc-
tion algorithm called “generalized basis reduction”.
Here, the norm used is related to the polytope P .

Volume 16 Numbers 1-2 October 2005 25

Based on their basis reduction algorithm, and several
other results, they suggested an integer program-
ming algorithm that also uses the “branching on hy-
perplanes” idea, where we branch in “thin” direc-
tions. A heuristic version of Lovász and Scarf’s in-
teger programming algorithm has been implemented
by Cook et al. [9].

Barvinok [5] generalized Lenstra’s result by giving
an algorithm that counts integer points in a poly-
tope in polynomial time if the dimension is fixed.
Later, Dyer and Kannan [12] developed a simplifica-
tion of Barvinok’s algorithm. Barvinok’s algorithm
has been implemented by De Loera et al. [11] who
also introduced further practical improvements. In
a different chapter of this newsletter Yoshida and
Woods present Barvinok’s algorithm and related re-
sults.

Cook, Hartmann, Kannan, and McDiarmid [8]
proved that if PI is the integer hull of the rational
polyhedron P ⊂ Rn given by m inequalities whose
size is at most ϕ, then for fixed n an upper bound
on the number of vertices of PI is O(mnϕn−1). This
implies that integer hull computations can be done
in polynomial time for fixed n as well.

The integer optimization problem (2) can be re-
duced to the integer feasibility problem by applying
binary search. The running time of such an algo-
rithm is O(mϕ + ϕ2), where ϕ is the maximum size
of any of the constraints and the objective vector
c. Eisenbrand [13] developed an algorithm for the
integer optimization problem with a fixed number,
m, of constraints that uses O(ϕ) arithmetic opera-
tions on rational numbers of binary encoding length
O(ϕ). By combining his results with a randomized
algorithm by Clarkson [10], Eisenbrand obtains an
O(m + log m ϕ) algorithm for the integer optimiza-
tion problem.

One of the first computational successes of basis
reduction was its use to break knapsack cryptosys-
tems, see Lagarias and Odlyzko [21]. Inspired by this
work Aardal, Hurkens, and Lenstra [3] suggested a
reformulation based on lattice bases. This reformu-
lation has been successful when solving some difficult
instances of integer feasibility problems such as the
market split problem [1] and the integer knapsack
problem [4]. Louveaux and Wolsey [26] have used
a similar lattice reformulation to solve a portfolio
planning problem.

6. Some open problems and fur-
ther reading

Computationally there is a lot to be done with re-
spect to branching on hyperplane algorithms. The
few implementations that exist (see e.g. [1, 4, 9, 14])
all seem to agree that fewer, in many cases signifi-
cantly fewer, search nodes are needed compared to
branch-and-bound. Each node, however, requires
more work as a good search direction has to be com-
puted instead of just solving a linear programming
relaxation. More work is needed on determining
“practically good” search directions, rather than just
more or less following the theoretical proofs of the
various algorithms, in order to profit from the gain
in the reduced size of the search trees. Another bot-
tleneck is the basis reduction algorithm. While poly-
nomial, it still becomes slow when the problem size
exceeds a couple of hundred variables. Would it be
possible to develop a faster basis reduction algorithm
with no worse worst case bounds than the ones given
in Expression 6? Goldreich and Goldwasser [15] have
shown that approximating the shortest nonzero vec-
tor in a given lattice with an approximation bound
of O(

√
n) is not NP-hard unless the polynomial hi-

erarchy collapses. It should be pointed out though
that, in practice, Lovász’ basis reduction algorithm
produces basis vectors that are much better than
the theoretical bounds suggest. This is one of the
reasons why the algorithm has become such a use-
ful tool in many applications such as cryptography,
see eg. Nguyen and Stern [29]. Why the algorithm
performs so well is not well understood.

For further reading on this topic we refer to the
overview article by Kannan [18], and the books by
Grötschel, Lovász, and Schrijver, [16], and by Schri-
jver [31]. Branch-and-bound and cutting plane re-
lated integer programming algorithms are treated in
depth in the book by Nemhauser and Wolsey [28].
Aardal and Eisenbrand [2] give an overview on lat-
tice based integer programming as well as results on
integer hulls and cutting plane closures in fixed di-
mension.

REFERENCES

[1] K. Aardal, R. E. Bixby, C. A. J. Hurkens, A. K.
Lenstra, and J. W. Smeltink, Market split and basis

26 SIAG/OPT Views-and-News

reduction: Towards a solution of the Cornuéjols-
Dawande instances, INFORMS J. Comput., 12
(2000), pp. 192–202.

[2] K. Aardal and F. Eisenbrand, Integer programming,
lattices, and results in fixed dimension, to appear
as Chapter 4 in Handbook on Discrete Optimization
in the series Handbooks in Operations Research and
Management Science, Elsevier, Amsterdam.

[3] K. Aardal, C. A. J. Hurkens, and A. K. Lenstra, Solving
a system of diophantine equations with lower and
upper bounds on the variables, Math. Oper. Res.,
25 (2000), pp. 427–442.

[4] K. Aardal and A. K. Lenstra, Hard equality constrained
integer knapsacks, Math. Oper. Res., 29 (2004), pp.
724–738.

[5] A. I. Barvinok, A polynomial time algorithm for count-
ing integral points in polyhedra when the dimension
is fixed, Math. Oper. Res., 19 (1994), pp. 769–779.

[6] I. Borosh and L. B. Treybig, Bounds on positive inte-
gral solutions of linear diophantine equations, Proc.
Amer. Math. Soc., 55 (1976), pp. 299–304.

[7] J. W. S. Cassels, An Introduction to the Geometry of
Numbers, second printing (reprint of the 1971 edi-
tion), Springer-Verlag, Berlin, 1997.

[8] W. Cook, M. E. Hartmann, R. Kannan, and C. Mc-
Diarmid, On integer points in polyhedra, Combina-
torica, 12 (1992), pp. 27–37.

[9] W. Cook, T. Rutherford, H. E. Scarf, and D. Shall-
cross, An implementation of the generalized ba-
sis reduction algorithm for integer programming,
ORSA Journal on Computing, 5 (1993), pp. 206–
212.

[10] K. L. Clarkson, Las Vegas algorithms for linear and
integer programming when the dimension is small,
J. ACM, 42 (1995), pp. 448–499.

[11] J. A. De Loera, R. Hemmecke, J. Tauzer, and R.
Yoshida, Effective lattice point counting in ratio-
nal polytopes, J. Symbolic Comput., 38 (2004), pp.
1273–1302.

[12] M. E. Dyer and R. Kannan, On Barvinok’s algorithm
for counting lattice points in fixed dimension, Math.
Oper. Res., 22 (1997), pp. 545–549.

[13] F. Eisenbrand, Fast integer programming in fixed di-
mension, in Algorithms – ESA 2003, G. Di Battista
and U. Zwick, editors, Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 2832 (2003) pp.
196–207.

[14] L. Gao and Y. Zhang, Computational experience with
Lenstra’s algorithm, Technical report TR02-12, De-
partment of Computational and Applied Mathe-
matics, Rice University, Houston, TX, 2002.

[15] O. Goldreich and S. Goldwasser, On the limits of non-
approximability of lattice problems, in Proceedings
of the 30th Annual ACM Symposium on Theory of
Computing, ACM Press, New York, (1998), pp. 1–
9.

[16] M. Grötschel, L. Lovász, and A. Schrijver, Geomet-
ric Algorithms and Combinatorial Optimization,
Springer-Verlag, Berlin, 1988.

[17] C. Hermite, Extraits de lettres de M. Ch. Hermite à M.
Jacobi sur différents objets de la théorie des nom-
bres, J. Reine Angew. Math., 40 (1850).

[18] R. Kannan, Algorithmic geometry of numbers, Annual
Review of Computer Science, 2 (1987), pp. 231–
267.

[19] R. Kannan, Minkowski’s convex body theorem and inte-
ger programming, Math. Oper. Res., 12 (1987), pp.
415–440.

[20] R. M. Karp, Reducibility among combinatorial prob-
lems, in Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, editors, Plenum
Press, New York, NY, (1972), pp. 85–103.

[21] J. C. Lagarias and A. M. Odlyzko, Solving low-density
subset sum problems, J. ACM, 32 (1985), pp. 229–
246.

[22] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, Fac-
toring polynomials with rational coefficients, Math.
Ann., 261 (1982), pp. 515–534.

[23] H. W. Lenstra, Jr., Integer programming with a fixed
number of variables, Report 81-03, Department of
Mathematics, University of Amsterdam, 1981.

[24] H. W. Lenstra, Jr., Integer programming with a fixed
number of variables, Math. Oper. Res., 8 (1983),
pp. 538–548.

[25] H. W. Lenstra, Jr., Flags and lattice basis reduction,
in Proceedings of the third European Congress of
Mathematics Volume I, C. Casacuberta, R. M.
Miró-Roig, J. Verdera, and S. Xambó-Descamps,
editors, Birkhäuser Verlag, Basel, (2000) pp. 37–
51.

[26] Q. Louveaux and L. A. Wolsey, Combining problem
structure with basis reduction to solve a class of
hard integer programs, Math. Oper. Res., 27 (2002),
pp. 470–484.

[27] L. Lovász and H. E. Scarf, The generalized basis reduc-
tion algorithm, Math. Oper. Res., 17 (1992), pp.
751–764.

Volume 16 Numbers 1-2 October 2005 27

[28] G. L. Nemhauser and L. A. Wolsey, Integer and Com-
binatorial Optimization, John Wiley & Sons, New
York, 1988.

[29] P. Q. Nguyen and J. Stern, The two faces of lattices
in cryptology, in Cryptography and Lattices, In-
ternational Conference, CaLC 2001, Lecture Notes
in Computer Science, Springer-Verlag, Berlin, 2146
(2001), pp. 146–180.

[30] C.-P. Schnorr and M. Euchner, Lattice basis reduction:
improved practical algorithms and solving subset
sum problems, Math. Program., 66 (1994), pp. 181–
199.

[31] A. Schrijver, Theory of Linear and Integer Program-
ming, John Wiley & Sons, New York, 1986.

[32] M. Seysen, Simultaneous reduction of a lattice basis and
its reciprocal basis, Combinatorica, 13 (1993), pp.
363–376.

[33] V. Shoup, NTL: A Library for doing Num-
ber Theory, Courant Institute, New York.
http://www.shoup.net.

Article

Optimizing the Quality of
Mesh Elements

Todd S. Munson
Mathematics and Computer Science Division,

Argonne National Laboratory,

Argonne, IL 60439, USA (tmunson@mcs.anl.gov).

1. Introduction

Discretization methods are common techniques for
computing approximate solutions to partial differ-
ential equations [7, 10, 30]. These methods decom-
pose the given domain into a finite set of elements,
triangles or tetrahedrons, for example, to produce a
mesh used within the approximation scheme. Sev-
eral factors affect the accuracy of the solution ob-
tained: the degree of the approximation scheme and
the number of elements in the mesh [2], and the qual-
ity of the mesh [4, 5]. Optimizing the quality of the
mesh prior to computing the approximate solution
can improve the condition number of the linear sys-
tems solved [29], reduce the time taken to compute
the solution [15], and increase the numerical accu-
racy.

The savings in computational time from using the
optimized mesh can be substantial. One applica-
tion we investigated was to solve the Navier-Stokes
equations for a fluid with a moderate Reynolds num-
ber containing a dilute suspension of particles [34].
The approximate solution was obtained by applying
a spectral element method to a hexahedral mesh.
The top portion of Figure 1 shows the original mesh
constructed by applying the meshing technique de-
veloped by Lin Zhang, while the bottom depicts the
optimized mesh. The original mesh has many reg-
ular elements, while the optimized mesh loses much
of this structure. However, the spectral element
method applied required 29 hours to compute a so-
lution when using the original mesh, but only 20
hours when using the optimized mesh, a 30% reduc-
tion in time. The optimization problem was mod-
eled in AMPL [11] and solved by applying KNITRO

http://www.shoup.net

28 SIAG/OPT Views-and-News

Figure 1: Original mesh (top left) and side view (top
right) and optimized mesh (bottom left) and side
view (bottom right) for fluid dynamics example.

[8, 33]. This instance had 18,135 variables, 1,170
linear constraints, and 3,004 nonlinear constraints.
Computing an optimal mesh took approximately 33
minutes on a 2.4 GHz Intel Xeon workstation with 2
GB RAM; AMPL consumed 265 MB RAM to gener-
ate the problem, while KNITRO allocated 597 MB
RAM to solve it.

The optimization problem we solve computes po-
sitions for the vertices in a given mesh to im-
prove the average element quality according to a
metric [13]; we do not change the mesh topology.
Many metrics have been applied to such problems
[3, 12, 14, 19, 20, 27]. We use the inverse mean-
ratio metric [21, 20], a shape-quality metric measur-
ing the distance between a trial element and an ideal
element, a regular tetrahedron, for example. The ob-
jective function for the resulting optimization prob-
lem is nonconvex and consists of the sum of many
fractional terms. The optimization problem and its
properties are developed in Section 2. Proofs for the
claims made in this section are found in [22, 23].

Applications with moving meshes or deforming ge-
ometries may require a mesh optimization step every
time the domain is modified. For example, the par-

ticles in the fluid dynamics application could move
as a function of time. In general, the time required
to optimize the mesh must not dominate the com-
putational savings achieved when solving the partial
differential equation. Therefore, we want to com-
pute an optimal mesh in a minimal amount of time
and with minimal memory requirements. We dis-
cuss in Section 3 several techniques for improving
the performance of the KNITRO libraries on an un-
constrained version of the mesh optimization prob-
lem.

In Section 4 we discuss some of the lessons learned
while working on this application. We also mention
some of the complications associated with efficiently
solving the fluid dynamics example where the ver-
tices on the planar boundaries of the mesh are al-
lowed to move within the plane.

2. Mesh optimization problem

The mesh optimization problem we solve minimizes
the average inverse mean-ratio metric referenced to
an ideal element. The description of this met-
ric follows that of Knupp [19, 20] and Freitag and
Knupp [12]. We discuss the metric only for tetrahe-
dral elements. Each tetrahedron is defined by four
vertices [x1, x2, x3, x4], where each vertex belongs to
R3. Other element types can be modeled by de-
composing them into tetrahedrons. Hexahedral ele-
ments, for example, are decomposed into eight over-
lapping tetrahedral elements.

The development of the inverse-mean ratio metric
begins by constructing the incidence function A :
R3×4 → R3×3:

A(x) := [x2 − x1, x3 − x1, x4 − x1] .

This function computes a matrix containing the
edges emanating from the first vertex of the element.
The volume of the tetrahedron is related to the de-
terminant of A(x), which can be positive or negative
depending on the labeling of the vertices. We assume
throughout that the vertices are labeled according to
the right-hand rule so that the determinant is non-
negative.

Two elements x and y have the same shape if their
edges are proportional. That is,

A(x) = σA(y)

Volume 16 Numbers 1-2 October 2005 29

for some σ > 0. In particular, if two elements with
nonzero volume have the same shape, then

‖A(x)A(y)−1‖2
F = ‖σI‖2

F = 3σ2

and
det(A(x)A(y)−1) = det(σI) = σ3.

The inverse mean-ratio referenced to the given ele-
ment y is then defined by a function Qy : R3×4 → R
that takes the ratio of these two quantities. In par-
ticular,

Qy(x) :=
‖A(x)A(y)−1‖2

F

3 det(A(x)A(y)−1)2/3
.

This metric has a value of one if x and y have the
same shape and a value greater than one if their
shapes differ. Moreover, it is translation, rotation,
and scale invariant. The metric values are preserved
when the same even permutation is applied to the
columns of x and y. Since y is fixed, this metric is
computed by using the QR factorization of A(y) so
that we multiply A(x) only by the upper triangular
matrix R−1. This modification reduces the number
of floating-point operations required to compute the
function, gradient, and Hessian of Qy.

A mesh consists of a set of vertices V and the
elements E connecting these vertices, where each el-
ement is an ordered set of four indices. The opti-
mization problem to minimize the average inverse
mean-ratio metric is then

min
x∈R3×|V |

θ(x) :=
1
|E|

∑
e∈E

‖A(xe)A(y)−1‖2
F

3 det(A(xe)A(y)−1)2/3

subject to det(A(xe)A(y)−1) > 0 ∀e ∈ E
xi ∈ Xi ∀i ∈ V,

where xe denotes the matrix of coordinates for el-
ement e and Xi is a set restricting the feasible lo-
cations for vertex i. In particular, the vertices on
the boundary of the mesh are usually either fixed
in space or constrained to lie on a particular piece
of the boundary of the domain, while the other ver-
tices are unrestricted. The volume constraints, the
strict inequalities in the optimization problem, en-
sure a consistent orientation in the resulting mesh.
A consistent orientation for all the elements is re-
quired for standard discretization methods to work
correctly [7]. The objective function is twice contin-
uously differentiable at all feasible points but is not

necessarily convex on this region. Furthermore, the
feasible region may be neither convex nor connected.
While the Hessian of the objective function may not
be positive definite, one can prove that ∇2

xi,xi
θ(x) is

positive definite for all i [22, 23].
The volume constraints are problematic because

they involve a strict inequality. If at least two ver-
tices are fixed in position and the mesh is edge con-
nected (between any two elements there is a sequence
of elements whose neighbors share a common edge),
then the objective function approaches infinity for
any sequence of feasible points in which the vol-
ume of at least one element approaches zero [22].
Therefore, the volume orientation constraints can be
dropped to produce the optimization problem

min
x∈R3×|V |

1
|E|

∑
e∈E

‖A(xe)A(y)−1‖2
F

3 max {det(A(xe)A(y)−1), 0}2/3

subject to xi ∈ Xi ∀i ∈ V.

In this case, the objective function is defined to have
a value of plus infinity whenever the volume of at
least one element is nonpositive. With this refor-
mulation, we must provide a starting point where
the orientation constraints are satisfied. However,
most meshing packages used to construct the orig-
inal mesh for the given domain, such as [26, 28],
provide a set of vertices satisfying the orientation
constraints.

3. Unconstrained results

In this section, we assume that all vertices on the
boundary of the domain are fixed in position and
the remaining vertices are unrestricted. Once the
boundary vertices are removed from the problem, we
are left with an unconstrained optimization problem
with an objective function that is twice continuously
differentiable on an open set containing the level set
for the given feasible mesh.

The resulting unconstrained optimization problem
was modeled in AMPL [11] and solved by applying
KNITRO 4.0 [8, 33] and LOQO 6.06 [31, 32]. We al-
ways used the Interior/CG version of KNITRO and
the default version of LOQO for these tests. The re-
sults on a representative set of test meshes are given
in Table 1, where the number of variables and nonze-
ros in the Hessian matrix are provided for each ex-
ample. The times are reported in seconds on a 2.0

30 SIAG/OPT Views-and-News

Table 1: Unconstrained results using AMPL.
Mesh Variables Nonzeros KNITRO LOQO
gear 780 8,256 1.87 2.05
foam5 867 10,518 2.34 3.20
hook 1,200 16,872 3.15 5.84
duct20 1,146 17,601 3.12 14.06
duct15 2,895 50,106 7.96 30.80
duct12 6,906 129,102 21.59 108.44
duct10 13,440 262,329 49.27 160.96
duct8 26,214 529,212 124.81 929.33
duct4 425,952 9,209,799 - -
duct2 3,323,229 45,882,111 - -

GHz Intel Xeon workstation with 4 GB RAM. No
other users were on the workstation when the re-
sults were generated, and all data and executables
were on local disk drives. Each problem was run
three times; the lowest time is reported. The largest
models could not be solved because of memory re-
quirements. In particular, AMPL consumed 567 MB
to generate the duct8 instance, while KNITRO al-
located 1,055 MB to solve it and LOQO used 1,008
MB.

Using AMPL provides many advantages: models
can be quickly constructed, derivatives are automat-
ically generated for the functions, and many numer-
ical methods are readily available to solve the result-
ing instances. In particular, one can obtain results
for the mesh optimization problems in a few days.
However, a price is paid for this convenience: it can
take considerable time to compute the optimal mesh,
and the amount of memory consumed can be large.

Since our ultimate goal is to embed mesh opti-
mization within a larger code for solving partial dif-
ferential equations, we must compute a solution in a
short amount of time with a small memory require-
ment. Therefore, we implemented a simple frame-
work that reads the description of a mesh from a file,
constructs the unconstrained optimization problem,
calls an optimization routine, and writes the solution
back to a file. When reading the mesh, we check it
for duplicated vertices, topological errors, and in-
verted elements, and we compute the vertices on the
boundary of the mesh.

The average inverse mean-ratio objective function
requires that a value of plus infinity be returned
whenever the volume constraints are not satisfied.

Therefore, if the volume of at least one element is
smaller than 1.0 × 10−14, we consider the volume
constraints to be violated, and the objective func-
tion is set to plus infinity. This strategy is reasonable
when the mesh is well scaled because the objective
function becomes very large.

The gradient and Hessian of the objective function
are calculated analytically by assembling the gradi-
ents and Hessians for each element function into a
vector and symmetric sparse matrix. In order to fa-
cilitate the assembly of the Hessian matrix, once the
sparsity pattern is obtained, an additional vector is
calculated that tells the offset into the Hessian ma-
trix data vector where the element Hessians are to be
accumulated. The gradient and Hessian of the ele-
ments with respect to vertices fixed on the boundary
of the mesh are ignored.

The code for calculating the gradient of the ele-
ment function uses the reverse mode of automatic
differentiation [6, 16]. The code was written and re-
fined by hand to eliminate unnecessary operations,
resulting in a more efficient gradient evaluation. The
Hessian calculation uses the forward mode of differ-
entiation on the gradient evaluation. The resulting
code was written by using matrix-matrix products
for efficiency. AMPL was used to verify the cor-
rectness of the analytic gradient and Hessian evalu-
ations.

Table 2 presents the results obtained when using
the KNITRO libraries for the optimization solver.
Two versions of the code were run: one where the
Hessian matrix was directly provided to the code
in the (i, j, k) format, the “Hessian” column, and
the other where a routine for computing Hessian-
vector products was supplied, the “Product” col-
umn. The routine stores the upper triangular part of
the Hessian matrix in a block compressed sparse row
format, where each block corresponds to a vertex-
vertex interaction in the original mesh, and performs
a Hessian-vector product using this structure. The
version of KNITRO using Hessian-vector products is
faster than when the Hessian matrix is supplied and
significantly faster on the larger examples. More-
over, the block upper triangular structure stores only
one index per block, instead of two indices per vari-
able, resulting in some memory savings.

In order to reduce the computational time further,
the vertices and elements in the initial mesh were re-

Volume 16 Numbers 1-2 October 2005 31

Table 2: Results using KNITRO libraries with orig-
inal vertex order.

Mesh Variables AMPL Hessian Product
gear 780 1.87 0.07 0.07
foam5 867 2.34 0.11 0.11
hook 1,200 3.15 0.12 0.11
duct20 1,146 3.12 0.10 0.10
duct15 2,895 7.96 0.26 0.25
duct12 6,906 21.59 0.64 0.63
duct10 13,440 49.27 1.39 1.33
duct8 26,214 124.81 3.65 3.07
duct4 425,952 - 205.11 148.46
duct2 3,323,229 - - -

Figure 2: Sparsity pattern of the Hessian matrix for
the duct8 mesh with original ordering (left) and the
breadth-first search ordering (right).

ordered by using a breadth-first search ordering [25]
to improve the locality of reference prior to apply-
ing KNITRO. Figure 2 shows the sparsity pattern
for the Hessian matrix of the original and reordered
mesh for the duct8 problem. In particular, the order-
ing starts by selecting the (boundary) vertex farthest
from the origin as a starting point. A breadth-first
search of the vertices in the mesh is then performed.
The order in which the vertices were visited is re-
versed, as in the reverse Cuthill-McKee ordering [9],
to obtain a symmetric permutation of the vertices
for the optimization problem. The elements in the
mesh are then reordered according to when they are
referenced by the vertices. Other orderings can be
applied that may give rise to further improvements
in performance [17].

Table 3 presents the results on the original and
reordered meshes. The time for the reordered
test problems includes the cost of computing the
breadth-first search and reordering the problem
data. The savings attributed to reducing the band-
width of the matrices is considerable, especially on

Table 3: Results using KNITRO libraries with
breadth-first search vertex order.

Original Reordered
Mesh Hessian Product Hessian Product
gear 0.07 0.07 0.07 0.07
foam5 0.11 0.11 0.11 0.11
hook 0.12 0.11 0.12 0.11
duct20 0.10 0.10 0.10 0.10
duct15 0.26 0.25 0.25 0.25
duct12 0.64 0.63 0.59 0.58
duct10 1.39 1.33 1.18 1.16
duct8 3.65 3.07 2.95 2.49
duct4 205.11 145.98 134.06 81.74
duct2 - - - -

the larger optimization problems.
To further improve performance, we would like to

apply an appropriate preconditioner in the conju-
gate gradient method used within the optimization
solver. For the mesh optimization problems we know
that the diagonal blocks of the Hessian matrix are
positive definite [22, 23], so a block Jacobi precondi-
tioner can be applied. Unfortunately, the available
version of the KNITRO libraries does not currently
allow the user to provide a preconditioner. There-
fore, a simple inexact Newton method [18, 24] with
an Armijo linesearch [1] was built on the same frame-
work to solve the mesh optimization problems.

In particular, given xk, the algorithm computes
a direction dk by solving the symmetric system of
linear equations

∇2θ(xk)dk = −∇θ(xk)

by applying a conjugate gradient method with a
block Jacobi preconditioner [25]. Since the Hessian
can be indefinite, the conjugate gradient method
may terminate with a direction of negative curva-
ture. In such a case, the base of the direction is used
as the starting point for the linesearch. The Armijo
linesearch finds the smallest nonnegative integer m
such that

θ(xk + βmdk) ≤ θ(xk) + σβm∇θ(xk)T dk,

where 0 < σ < 1
2 and 0 < β < 1 are constants.

The iterate is then updated with the rule xk+1 =
xk + βmdk, and a new direction is computed. The
algorithm terminates when ‖∇θ(xk)‖2 is less than
1.0× 10−6.

32 SIAG/OPT Views-and-News

Table 4: Results using block Jacobi preconditioner.
Mesh Variables AMPL KNITRO Newton
gear 780 1.87 0.07 0.06
foam5 867 2.34 0.11 0.09
hook 1,200 3.15 0.11 0.09
duct20 1,146 3.12 0.10 0.07
duct15 2,895 7.96 0.25 0.19
duct12 6,906 21.59 0.58 0.45
duct10 13,440 49.27 1.16 0.88
duct8 26,214 124.81 2.49 1.78
duct4 425,952 - 81.74 46.41
duct2 3,323,229 - - 324.92

The conjugate gradient method terminates if the
system of equations is solved to within a specified
tolerance, if a direction of negative curvature is en-
countered, or if 100 conjugate gradient iterations
have been performed. In particular, the conjugate
gradient implementation terminates when

‖∇2θ(xk)dk +∇θ(xk)‖2 ≤ 10−2 × ‖∇θ(xk)‖2.

That is, the relative tolerance is used for the termi-
nation test.

Table 4 presents the final results obtained by us-
ing the reordered meshes with AMPL, the Hessian-
vector product version of KNITRO, and the inex-
act Newton method with a block Jacobi precondi-
tioner. As expected, the preconditioner helps to fur-
ther reduce the computational time. The results are
less dramatic on the smaller problems because of
the fixed time required to set up the problem; the
improvement from preconditioning is more dramatic
on the larger examples. In particular, the precondi-
tioned code was able to compute a solution to the
duct2 problem; the KNITRO libraries were termi-
nated after an hour of computational time without
finding a solution.

4. Conclusions

This article discussed an optimization problem for
finding the optimal vertex positions in a mesh ac-
cording to the average inverse mean-ratio metric.
Also presented was a computational study of three
techniques to improve solver performance on the
unconstrained version of the problem. Modifying
the data structures, reordering the problem data,

and preconditioning the iterative method can sig-
nificantly reduce the computational time, especially
for large instances.

However, developing a framework for a spe-
cific problem and validating the result is a time-
consuming task recommended only if performance is
crucial. Tweaking the implementation to make the
code more efficient is another critical step requiring a
significant time investment. After going through this
process for the mesh optimization application, we
observed that solving the problem through AMPL
was 25–70 times slower than using the precondi-
tioned inexact Newton code and could consume over
120 times the memory.

We prefer using solver libraries rather than imple-
menting our own numerical optimization algorithms.
However, the design of the library is important to
achieve high performance. Matrix-free methods are
desirable because they allow the application devel-
oper to determine the data structures used to store
the matrices and to identify ways to efficiently per-
form the required matrix-vector products, which can
reduce both computational time and memory re-
quirements. Moreover, allowing the user to specify
a preconditioner for the iterative methods employed
can be beneficial; however, an appropriate strategy
to precondition constrained optimization problems is
an open question. Reordering the matrices to reduce
the bandwidth can also result in significant improve-
ments in time for unconstrained optimization prob-
lems. The correct reordering to use for constrained
problems is likely algorithm dependent and also an
open question.

We remark that the fluid dynamics application in
the introduction solved a constrained version of the
mesh optimization problem, where the constraints
restrict the vertices on the boundary to planes or
spheres, rather than fixing them in position. We
were able to construct a model for this application
because we knew the geometry of the problem. A
general-purpose tool for constrained mesh optimiza-
tion problems would require either knowledge of the
geometry or adding a strategy to the framework to
uncover simple geometric objects such as planes and
ellipses. The latter strategy has not yet been im-
plemented in our framework but is a planned ex-
tension. Once constraints are added to the frame-
work, we can investigate the effect of the reorder-

Volume 16 Numbers 1-2 October 2005 33

ing and matrix-free strategies on the solution time
when using the KNITRO libraries. Preconditioning
the constrained case and making effective use of a
good starting point in an interior-point method are
open issues. However, this work is essential for using
mesh optimization with the original fluid dynamics
application where the particles move as a function
of time.

Acknowledgments

This work was supported by the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Depart-
ment of Energy, under Contract W-31-109-Eng-38.

Lori Freitag-Diachin, Patrick Knupp, and Suzanne
Shontz introduced me to the mesh shape-quality op-
timization problem and the inverse mean-ratio met-
ric; David Gay provided the elegant version of the
volume calculation used in the AMPL models; Paul
Hovland wrote the initial version of the analytic gra-
dient of the element function; Richard Waltz kindly
provided the version of the KNITRO libraries used;
and Lin Zhang, S. Balachandar, and Paul Fischer
provided the meshes and performance data for the
computational fluid dynamics example.

REFERENCES

[1] L. Armijo, Minimization of functions having Lipschitz-
continuous first partial derivatives, Pacific J. Math.,
16 (1996), pp. 1–3.

[2] I. Babuška and M. Suri, The p and h-p versions of the fi-
nite element method, basic principles and properties,
SIAM Rev., 36 (1994), pp. 578–632.

[3] R. E. Bank and R. K Smith, Mesh smoothing using a pos-
teriori estimates, SIAM J. Numer. Anal., 34 (1997),
pp. 979–997.

[4] M. Berzins, Solution-based mesh quality for triangular
and tetrahedral meshes, in Proceedings of the Sixth
International Meshing Roundtable, Sandia National
Laboratories, 1997, pp. 427–436.

[5] M. Berzins, Mesh quality – geometry, error estimates
or both?, in Proceedings of the Seventh International
Meshing Roundtable, Sandia National Laboratories,
1998, pp. 229–237.

[6] C. H. Bischof, P. D. Hovland, and B. Norris, Implemen-
tation of automatic differentiation tools, in Higher-
Order and Symbolic Computation, 2004, to appear.

[7] S. C. Brenner and L. R. Scott, The Mathematical Theory
of Finite Element Methods, Springer-Verlag, New
York, 2002.

[8] R. Byrd, M. E. Hribar, and J. Nocedal, An interior point
method for large scale nonlinear programming, SIAM
J. Optim., 9 (1999), pp. 877–900.

[9] E. Cuthill and J. McKee, Reducing the bandwidth of
sparse symmetric matrices, in Proceedings of the
24th National Conference ACM, ACM Press, 1969,
pp. 157–172.

[10] M. O. Deville, P. F. Fischer, and E. H. Mund, High-
Order Methods for Incompressible Fluid Flows, Cam-
bridge University Press, Cambridge, 2002.

[11] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A
Modeling Language for Mathematical Programming,
Brooks/Cole–Thomson Learning, Pacific Grove,
California, second edition, 2003.

[12] L. Freitag and P. Knupp, Tetrahedral mesh improvement
via optimization of the element condition number,
Internat. J. Numer. Methods Engrg., 53 (2002), pp.
1377–1391.

[13] L. Freitag, P. Knupp, T. Munson, and S. Shontz, A
comparison of optimization software for mesh shape-
quality improvement problems, in Proceedings of the
Eleventh International Meshing Roundtable, pp. 29–
40, 2002, Sandia National Laboratories.

[14] L. Freitag and C. Ollivier-Gooch, A comparison of tetra-
hedral mesh improvement techniques in Proceedings
of the Fifth International Meshing Roundtable, pp.
87–100, 1996, Sandia National Laboratories.

[15] L. Freitag and C. Ollivier-Gooch, A cost/benefit anal-
ysis for simplicial mesh improvement techniques as
measured by solution efficiency, Internat. J. Comput.
Geom. Appl., 10 (2000), pp. 361–382.

[16] A. Griewank, Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation, SIAM,
Philadelphia, 2000.

[17] H. Han and C. Tseng, A comparison of locality trans-
formations for irregular codes, in Proceedings of the
Fifth International Workshop on Languages, Com-
pilers, and Run-time Systems for Scalable Comput-
ers, Springer-Verlag, New York, 2000, pp. 70–84.

[18] C. T. Kelley, Solving Nonlinear Equations with Newton’s
Method, SIAM, Philadelphia, 2003.

34 SIAG/OPT Views-and-News

[19] P. Knupp, Achieving finite element mesh quality via opti-
mization of the Jacobian matrix norm and associated
quantities, Part I – A framework for surface mesh
optimization, Internat. J. Numer. Methods Engrg.,
48 (2000), pp. 401–420.

[20] P. Knupp, Achieving finite element mesh quality via opti-
mization of the Jacobian matrix norm and associated
quantities, Part II – A framework for volume mesh
optimization and the condition number of the Jaco-
bian matrix, Internat. J. Numer. Methods Engrg., 48
(2000), pp. 1165–1185.

[21] A. Liu and B. Joe, Relationship between tetrahedron
quality measures, BIT, 34 (1994), pp. 268–287

[22] T. S. Munson, Mesh shape-quality optimization using
the inverse mean-ratio metric, Preprint ANL/MCS-
P1136-0304, Argonne National Laboratory, Ar-
gonne, 2004.

[23] T. S. Munson, Mesh shape-quality optimization using the
inverse mean-ratio metric: Tetrahedral proofs, Tech-
nical Memorandum ANL/MCS-TM-275, Argonne
National Laboratory, Argonne, 2004.

[24] J. Nocedal and S. J. Wright, Numerical Optimization,
Springer, New York, 1999.

[25] Y. Saad, Iterative Methods for Sparse Linear Systems,
SIAM, Philadelphia, second edition, 2003.

[26] CUBIT 8.1 Mesh Generation Toolkit, Sandia National
Laboratories, Albuquerque, 2003.

[27] M. Shephard and M. Georges, Automatic three-
dimensional mesh generation by the finite octree
technique, Internat. J. Numer. Methods Engrg., 32
(1991), pp. 709–749.

[28] J. Shewchuk. Triangle: Engineering a 2D quality mesh
generator and Delaunay triangulator, in Proceedings
of the First Workshop on Applied Computational
Geometry, ACM, Philadelphia, May 1996, pp. 124–
133.

[29] J. Shewchuk, What is a good linear element? In-
terpolation, conditioning, and quality measures, in
Proceedings of the Eleventh International Meshing
Roundtable, Sandia National Laboratories, 2002, pp.
115–126.

[30] L. N. Trefethan, Spectral Element Methods in MATLAB,
SIAM, Philadelphia, 2000.

[31] R. J. Vanderbei, LOQO user’s manual – Version 4.05,
Technical report, Princeton University, Princeton,
2000.

[32] R. J. Vanderbei and D. F. Shanno, An interior-point
algorithm for nonconvex nonlinear programming,
Comput. Optim. Appl., 13 (1999), pp. 231–252.

[33] R. Waltz and J. Nocedal, KNITRO user’s manual – Ver-
sion 3.1, Technical Report 5, Northwestern Univer-
sity, Evanston, 2003.

[34] L. Zhang, S. Balachandar, P. Fischer, and T. Munson,
Private communication, December 2004.

Volume 16 Numbers 1-2 October 2005 35

Bulletin

1. Event Announcements

19th International Symposium on
Mathematical Programming

July 30 – August 4, 2006
Federal University of Rio de Janeiro, Brazil

http://www.lncc.br/~ismp2006

The International Symposium on Mathematical
Programming is a scientific meeting held every 3
years on behalf of the Mathematical Programming
Society.

The 19th Symposium will be hosted by the Sys-
tems Engineering and Computer Science Program
of the Graduate School and Research in Engineer-
ing, COPPE/UFRJ, and will be held on the campus
of the Federal University of Rio de Janeiro in Praia
Vermelha, Rio de Janeiro, RJ, Brazil, from July 30
to August 4, 2006.

2. Other Announcements

SeDuMi

The Advanced Optimization Labora-
tory at McMaster University, Canada
(http://www.cas.mcmaster.ca/˜oplab), is glad
to announce that it takes over the maintenance
and development of the SeDuMi package originally
created by Jos F. Sturm, who passed away in
October, 2003.

The new SeDuMi website is at
http://sedumi.mcmaster.ca. It currently con-
tains a Downloads section with the latest SeDuMi
releases, documentation, test sets and related
papers, FAQ and a user forum. Users can provide
feedback and share their opinion and success stories
about the software, request new features, report
bugs, etc. at the forum.

Currently, SeDuMi works in Matlab environment
on Windows and Unix/Linux systems. Experimen-
tal Mac builds and instructions on how to compile
SeDuMi under Mac OS X are under development.
Updates for Matlab 7 are going to be released in
the near future. The maintainers also plan to pro-
vide Windows builds optimized for Pentium IV and
Athlon processors.

New features are planned to be added based on
user requests and recent publications.

Tams Terlaky (terlaky@mcmaster.ca),
Imre Plik (poliki@mcmaster.ca),
Oleksandr Romanko (Romanko@mcmaster.ca).

Chairman’s Column

This is the first issue of Views and News to appear
since the Eighth SIAM Conference on Optimization
that took place in Stockholm, Sweden from May 15-
18, 2005. On behalf of all the participants I would
like to thank Henry Wolkowicz, Anders Forsgren and
the rest of the organizing committee for the wonder-
ful job they did in putting on the meeting. Those
of you who were there don’t need me to report on
how successful it was, but for others who could not
go I will give a few highlights. The meeting was
extremely well attended and came within a few reg-
istrants of tying as the largest SIAM Optimization
Conference to date. The meeting was held in the
charming “Norra Latin” building of the Stockholm
City Conference Center. In addition to being well
located and ideally suited to the size of the meet-
ing, this renovated school offered ample gathering
space so that participants could easily meet when
not attending sessions. The conference dinner at the
beautiful Stockholm City Hall offered everyone the
chance to pretend for a moment that they were at-
tending a Nobel Prize banquet. As co-chair (with
Sven Leyffer) of the organizing committee for the
next Optimization Conference, to be held in 2008,
I feel that we have a very tough act to follow. We
are currently working with SIAM to finalize the loca-
tion of the meeting, which will be held in the United
States. Please feel free to contact either Sven or me

http://www.lncc.br/~ismp2006
http://www.cas.mcmaster.ca/~oplab
http://sedumi.mcmaster.ca

36 SIAG/OPT Views-and-News

if you have any comments about the meeting held in
Stockholm and/or suggestions for the 2008 meeting.

On a much sadder note this is also the first is-
sue of Views and News since the deaths of George
Dantzig and Leonid Khachiyan shortly before the
SIAM Optimization Conference was held. I would
like to thank Walter Murray and Mike Todd for writ-
ing the appreciations of George and Leo that appear
in this issue. Much has already been and will con-
tinue to be written about the contributions of these
two scientists, but I would like to add a few words
of my own. It is impossible to overstate the influ-
ence that Dantzig and Khachiyan had on the field
of mathematical optimization. As Walter writes,
George was the “Father of Linear Programming”,
and by logical extension the father of mathemati-
cal programming as we know it. Of course Dantzig
is best known for linear programming and the sim-
plex method, but it is important to remember that
from very early on his interests included more gen-
eral optimization problems. The 1963 edition of Lin-
ear Programming and Extensions includes complete
treatments of constrained convex programming (via
cutting planes and “Wolfe’s Generalized Program”)
and linear discrete optimization (via Gomory cuts),
among many other topics. These algorithmic ap-
proaches may no longer be considered the best avail-
able (although there has been a resurgence of interest
in Gomory cuts in recent years), but they certainly
demonstrate the breadth of Dantzig’s interests and
his understanding of the importance of nonlinearities
and discrete variables in practical applications.

Dantzig’s work was always motivated by the de-
sire to solve problems, and in particular the desire
to solve large problems. He was concerned with the
theoretical correctness of algorithms, as character-
ized by finiteness or convergence, but was primarily
interested in what actually worked in practice on
large-scale instances. Khachiyan’s interest was also
in solving large-scale problems, but he brought to the
field of continuous optimization the viewpoint of a
theoretical computer scientist. A “provably” good
algorithm for large-scale problems was one whose
complexity to solve, or approximately solve, prob-
lems did not grow too fast as problems got larger;
in particular one whose complexity was polynomial-
time in the problem size. Khachiyan’s analysis of
the ellipsoid algorithm for linear programming was

a revolutionary breakthrough. As described in Mike
Todd’s appreciation, Khachiyan was forced to think
about linear programming in a completely new way
in order to frame his results using the vocabulary of
computational complexity in the rational model. Al-
though the ellipsoid algorithm was not successful in
practice it became a very important tool in complex-
ity analysis for combinatorial problems, as described
in the classic text Geometrical Algorithms and Com-
binatorial Optimization by Grötschel, Lovász and
Schrijver. The conflict between the theoretical and
practical views (the simplex method being excel-
lent in practice but exponential in the worst case,
while the ellipsoid algorithm was polynomial in the
worst case but impractical on real-world problems)
also led to a great deal of research, culminating
with the discovery of interior-point algorithms that
were both theoretically and practically efficient. The
viewpoint of Narendra Karmarkar, like Khachiyan’s,
was clearly that of a theoretical computer scientist.
Without the motivation of complexity analysis it
seems very unlikely that anyone would have thought
of applying out-of-favor techniques from nonlinear
optimization to try to solve large-scale linear pro-
gramming problems.

In addition to their enormous scientific accom-
plishments both Dantzig and Khachiyan were well
known for their warmth and generosity, as described
by Walter and Mike in their articles. Having been
George’s student and shared research interests with
Leo I can confirm these widely-held views with my
own experiences. Standards of professional conduct
have a tendency to propagate from the “top down” in
scientific communities, and we have been very fortu-
nate to have researchers like Dantzig and Khachiyan
as models for both mathematical innovation and per-
sonal interaction. Their influence will continue to be
felt as long as optimization exists as a research dis-
cipline.

Kurt M. Anstreicher, SIAG/OPT Chair
Department of Management Sciences
University of Iowa
S210 PBB Iowa City, IA 52242,
USA
kurt-anstreicher@uiowa.edu
http://www.biz.uiowa.edu/faculty/anstreicher

http://www.biz.uiowa.edu/faculty/anstreicher

Volume 16 Numbers 1-2 October 2005 37

Comments from the Editor

The current issue of the SIAM/Optimization
Views-and-News (Volume 16, Numbers 1-2) features
the topic Algebraic Methods for Integer Program-
ming, which was especially edited for us by Karen
Aardal. The three expository articles describe, in an
accessible way, some of the most recent and exciting
developments in the area of Integer Programming. I
would like to thank Karen Aardal, our guest editor,
and the contributing authors (Karen Aardal, Daniel
Bienstock, Kevin Woods, and Ruriko Yoshida) for
their efforts. As editor, I am also grateful to João
Soares who kindly reviewed the three articles.

This issue, however, is not just on integer pro-
gramming. We also have a very interesting article
on mesh optimization by Todd Munson.

And, last but not the least, I am very pleased to

publish in this issue of our newsletter tributes to
two great optimizers recently passed away: George
Dantzig and Leonid Khachiyan. I would like to
express my deep gratitude to Walter Murray and
Michael Todd for having written such great and in-
spired personal appreciations.

Contributions to the newsletter such as announce-
ments of forthcoming events or releases of new books
and software packages are always extremely wel-
come.

Lúıs N. Vicente, Editor
Department of Mathematics
University of Coimbra
3001-454 Coimbra
Portugal
lnv@mat.uc.pt
http://www.mat.uc.pt/~lnv

http://www.mat.uc.pt/~lnv

	Table of Contents
	George Dantzig: A Personal Perspective
	Leonid Khachiyan, 1952--2005: An Appreciation
	Introduction by the Guest Editor
	Second Generation Lift-And-Project Algorithms
	1. Lift-and-project algorithms
	2. The Sherali-Adams and Lovász-Schrijver operators
	2.1 An extended operator

	3. Subset algebra operators
	3.1 Lift-and-project and Chvátal-Gomory rank.
	3.2 Packing problems, tree-width, and the Sherali-Adams operator
	3.3 Computation
	Short Rational Generating Functions and Their Applications to Integer Programming
	1. Introduction
	2. Computing short rational generating functions
	3. Applications to integer programming
	3.1 Barvinok's binary search algorithm
	3.2 Digging algorithm
	3.3 Comparison of BBS and digging algorithms
	Second Generation Lift-And-Project Algorithms
	1. Introduction and motivation
	2. Notation, definitions, and basic results
	3. Lovász' basis reduction algorithm
	4. Lenstra's algorithm
	5. A few related results
	6. Some open problems and further reading
	Optimizing the Quality of Mesh Elements
	1. Introduction
	2. Mesh optimization problem
	3. Unconstrained results
	4. Conclusions

	Bulletin
	1. Event Announcements
	2. Other Announcements

	Chairman's Column

	Comments from the Editor

