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Filter Methods
and

Optimization
Software

Introduction by the Editors

Roger Fletcher, Sven Leyffer, and Philippe Toint
were the recipients in 2006 of the Lagrange Prize
for Continuous Optimization, awarded jointly by
the Mathematical Programming Society (MPS) and
the Society for Industrial and Applied Mathematics
(SIAM), for “outstanding works in the area of con-
tinuous optimization”. Congratulations!

The citation of the award can be read in the MPS
website. We quote here the first paragraph:

“In the development of nonlinear program-
ming over the last decade, an outstand-
ing new idea has been the introduction of
the filter. This new approach to balancing
feasibility and optimality has been quickly
picked up by other researchers, spurring
the analysis and development of a number
of optimization algorithms in such diverse
contexts as constrained and unconstrained
nonlinear optimization, solving systems of
nonlinear equations, and derivative-free op-
timization. The generality of the filter idea
allows its use, for example, in trust region
and line search methods, as well as in active
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set and interior point frameworks. Cur-
rently, some of the most effective nonlinear
optimization codes are based on filter meth-
ods. The importance of the work cited here
will continue to grow as more algorithms
and codes are developed.”

See http://www.mathprog.org/prz/citations/
lagrange 2006.htm.

We invited Roger, Sven, and Philippe to express
their own views on the relevance of filter methods.
Their contribution arrived in the format of an ex-
cellent expository paper, which we are extremely
pleased to publish in the current issue of SIAG/OPT
Views-and-News.

The purpose of this issue is, however, twofold. The
other two included articles address the important
issue of how optimization software, in a sense the
“fruit” of our research, can be made available for
easy use to a wide audience of practitioners. We
are indebted to Jason Sarich and Hans Mittelmann,
respectively, who kindly accepted our invitation to
discuss two successful free Internet resources. These
resources help non-experts as well as professionals to
get acquainted to and use state-of-the-art optimiza-
tion codes.

The first paper surveys the current status of NEOS
(Network-Enabled Optimization System). NEOS is
a successful project, providing free and easy access
to a variety of optimization codes, and has become
an indispensable tool for optimization practitioners
and researchers.

The other article is about the Decision Tree for
Optimization Software (DTOS), also a popular
Internet site for users of optimization solvers.
The paper walks us through the resources DTOS
provides, both for optimization “beginners” and
experts.

Andreas Wächter and Lúıs N. Vicente, Febru-
ary 2007.
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1. Motivation

We consider the question of global convergence for
optimization algorithms that solve general nonlinear
programming problems (NLPs):

minimize
x

f(x)

subject to c(x) ≥ 0,
(1)

where the objective function f(x) and the constraint
functions c(x) are smooth.

Most methods for solving (1) are based on New-
ton’s method and are iterative. Given an estimate
xk of the solution x∗ of (1), a linear or quadratic ap-
proximation of (1) is solved for a new and, one hopes
better, estimate xk+1. Near a solution, this process
is guaranteed to converge. Far from the solution,
however, the sequence {xk} generated in this way
may not converge. How can we ensure convergence
even if we start far from a solution? We refer to this
question as global convergence for NLP methods.

Traditionally, this question has been answered by
using penalty or merit functions that are a linear
combination of the objective function and a measure
of the constraint violation such as h(x) := ‖c(x)−‖,
where ‖a−‖ = ‖min(a, 0)‖ for some norm. An ex-
ample is the `1 exact penalty function,

p(x;π) := f(x) + πh(x),

where π > 0 is the penalty parameter. Provided π is
sufficiently large, we can use this penalty function to
ensure progress in our iterative scheme by enforcing
sufficient decrease on each step. This trick allows us
to invoke well-developed unconstrained optimization
techniques.

http://www.mathprog.org/prz/citations/lagrange_2006.htm
http://www.mathprog.org/prz/citations/lagrange_2006.htm
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In traditional penalty methods, a suitable penalty
parameter depends on the solution of (1), namely,
π > ‖y∗‖D, where y∗ are the optimal multipliers and
‖ · ‖D is the dual norm. This fact may make it diffi-
cult to find a suitable penalty parameter. Worse, if
the penalty parameter is too large, then any mono-
tonic method would be forced to follow the non-
linear constraint manifold very closely, resulting in
much shortened Newton steps and slow convergence.
Yet we have noticed that the unmodified sequen-
tial quadratic programming (SQP) method is able
to quickly solve a large proportion of test problems
without the need for modifications to induce global
convergence.

In this paper we review a recent alternative to
penalty functions, so-called filter methods. The suc-
cess of the unmodified SQP method motivates us
to find a way of inducing global convergence, which
would allow the full Newton step to be taken much
more often. Our goal therefore is the development
of global optimization safeguards that interfere as
little as possible with Newton’s method. We believe
filter methods achieve this goal. In the remainder of
this paper, we motivate filter methods, outline the
main ideas and convergence results, indicate other
areas where filter methods have been used success-
fully, and provide references for those wishing to
delve deeper into filter methods.

2. Filter methods for NLP

Filter methods avoid the pitfalls of penalty func-
tion methods. Instead of combing the objective and
constraint violation into a single function, we view
(1) as a biobjective optimization problem that mini-
mizes f(x) and h(x). However, the second objective
is clearly more important because we must ensure
that h(x∗) = 0. We borrow the concept of dom-
ination from multiobjective optimization and say
that a point xk dominates a point xl if and only
if f(xk) ≤ f(xl) and h(xk) ≤ h(xl). We define a
filter as a list of pairs

(
h(xl), f(xl)

)
such that no

pair dominates another pair. A typical filter is illus-
trated in Figure 1, where the shaded area shows the
region dominated by the filter entries. The contours
of the `1 exact penalty function would be straight
lines with slope −π in this plot, indicating that at
least for a single entry, the filter is less restrictive

Figure 1: A typical filter. All pairs (f(x), h(x)) that
are below and to the left of the envelope (dashed
line) are acceptable to the filter

than penalty methods.

2.1 SQP filter methods

Filter methods were first introduced in the context of
trust-region SQP methods, which solve a quadratic
approximation of (1) for a trial step s that lies inside
a trust region:

min
s

qk(s) := fk +∇fTk s+ 1
2s
THks

s.t. ck +∇cTk s ≥ 0
‖s‖∞ ≤ ρk,

(1)

where fk = f(xk) and so on, and Hk ' ∇2Lk ap-
proximates the Hessian of the Lagrangian.

A rough outline of a filter trust-region SQP is as
follows. At iteration k = 0, we initialize the filter
Fk =

{
(U,−∞)

}
, where U is an upper bound on

the acceptable constraint violation. We proceed by
accepting only steps that are not dominated by the
current filter. If a point is acceptable, then we set
xk+1 = xk+s, and possibly increase the trust-region
radius and update the filter (adding (hk, fk) from
the previous iterate and removing any dominated
entries). If, on the other hand, the step is dominated
by the current filter, then we reject it, set xk+1 = xk,
reduce the trust-region radius, and resolve (1).

This simple description of a filter method requires
a number of refinements to ensure convergence:

1. Filter Envelope. To avoid convergence to infea-
sible limit points where h∗ > 0, we add an en-
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velope around the current filter. A new iterate
is acceptable if, for all ∀(hl, fl) ∈ Fk,

hk+1 ≤ βhl, or fk+1 ≤ fl − γhk+1, (2)

where 0 < β, γ < 1 are constants. This sloping
envelope is due to Chin [4, 3] and makes the
management of redundant entries slightly more
convenient. In [4, Lemma 1] it is shown that if
an infinite number of points are added to the
filter and f(x) is bounded below, then the limit
point must be feasible. We note, that this result
does not require the presence of an upper bound
U .

2. Sufficient Reduction. The filter alone cannot
ensure convergence to stationary points. For
example, if the sequence satisfies hk+1 ≤ βhk,
then the iterates could converge to an arbitrary
feasible point. Therefore, if the constraint vio-
lation becomes small, we enforce a sufficient re-
duction condition similar to unconstrained op-
timization. We denote the predicted reduction
by ∆qk := −∇fTk s−

1
2s
THks and introduce the

following switching condition:

if ( ∆qk > 0 ) then
check fk − fk+1 ≥ σ∆qk,

(3)

where σ ∈ (0, 1) is a constant.

3. Feasibility Restoration. By reducing the trust-
region radius, the QP (1) may become incon-
sistent (halving the trust-region radius in the
right plot of Figure 2 illustrates this point). We
take the inconsistency of (1) as an indication
that the current point is too far from the feasi-
ble set to make meaningful progress to optimal-
ity. Hence we invoke an SQP-like algorithm that
minimizes the constraint violation h(x) (see Sec-
tion 3.1). We exit the restoration phase once a
filter-acceptable point has been found and re-
sume the regular SQP method.

With these modifications, we can define acceptance
for a filter method.

Definition 1 A trial point x+
k := xk + s is accept-

able to the filter at iteration k if

1. x+
k is acceptable to the filter Fk and xk, that is,

(2) holds for Fk ∪ {(hk, fk)}, and

2. if the switching condition ∆qk > 0 holds,
then we have sufficient reduction, that is, fk −
f(x+

k ) ≥ σ∆qk.

Otherwise, we call x+
k not acceptable.

An outline of a filter method is given next.

Algorithm 1: SQP Filter Method
x0, k ← 0, F0 ← {U,−∞}, optimal ← false

while not optimal do
reset the trust-region radius: ρk ≥ ρ
terminate ← false
repeat

solve the QP (1) for a step s
if s = 0 then

optimal ← true; STOP
if QP (1) incompatible then

add (hk, fk) to Fk

enter restoration phase
else

if x+
k := xk + s not acceptable then
reduce trust-region ρk ← ρk/2

else
terminate ← true

until terminate
update the filter Fk+1

set xk+1 ← xk + s and k ← k + 1

Discussion of filter algorithm

Algorithm 1 contains an inner and an outer itera-
tion. During the inner iteration the trust-region ra-
dius is reduced until we either find an acceptable
point or enter the restoration phase. The aim of
the restoration phase is to find an acceptable iterate
xk+1 such that the corresponding QP (1) is compat-
ible for some ρk+1 ≥ ρ. The iterates and the filter
are updated in the outer iteration, which also en-
sures that the trust-region radius is larger than a
lower bound ρ > 0.

We update the filter by adding entries (hk, fk) to
Fk that correspond to an h-type iteration after we
move to xk+1. We can also remove any entries that
are dominated by (hk, fk).

The switching condition (3) can be motivated as
follows. Close to a feasible point, we expect the
quadratic model to predict a decrease in the objec-
tive function, that is, ∆qk > 0. However, far from a
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feasible point, the predicted reduction is sometimes
negative, that is ∆qk < 0, because most of the SQP
step is toward feasibility. We will refer to success-
ful steps that satisfy (3) as f-type steps and all other
steps as h-type steps. This is illustrated in Figure 2:
the left plot shows an f-type step that reduces qk(s),
while the right plot shows an h-type step that re-
duces only infeasibility. We note that if hk = 0 at a
nonstationary point, then ∆qk > 0, thereby imply-
ing that we can accept only an f-type step. Thus, we
never add points to the filter for which hk = 0. This
fact ensures that we can always generate a filter-
acceptable point during the restoration phase unless
the problem is (locally) infeasible.

Early history of filter methods

NLP filter methods were first proposed by Fletcher
in a plenary talk at the SIAM Optimization Con-
ference in Victoria in May 1996; the methods are
described in [8]. The initial filter method contained
features, such as the NW/SE corner rule and un-
blocking, that were shown to be redundant in the
subsequent convergence analysis. The first global
convergence proof of a filter method was given in [11]
for a sequential linear programming (SLP) method.
This proof was later generalized to SQP methods in
[10].

Filter methods for NLP were developed indepen-
dently of earlier similar ideas. Surry et al. [25] de-
scribe a multiobjective approach to constrained op-
timization in the context of genetic algorithms. The
algorithm maintains a population of iterates that are
evolved over time. The authors modify a vector-
evaluated genetic algorithm to adaptively bias the
population toward feasibility.

An idea similar to a filter was used by Lemaréchal
et al. [20] to enforce convergence of a bundle
method for convex nonsmooth constrained optimiza-
tion problems. The authors define an exclusion re-
gion that corresponds to the convex hull of the filter
entries (with the two out-most entries extended to
infinity).

Convergence proof outline

Convergence of filter methods can be established un-
der the following general assumptions: the iterates
xk lie in a compact set X, the functions f(x) and

Figure 2: Illustration of f-type and h-type step.

c(x) are twice continuously differentiable, and the
Hessian remains bounded ‖Hk‖ ≤ M . Under these
assumptions, one of the following occurs (see [10,
Theorem 7], [4, Theorem 1], and [27, Theorem 3]):

1. The restoration phase fails to find a filter-
acceptable point for which the QP (1) is con-
sistent for some ρ ≥ ρ.

2. The algorithm terminates at a first-order sta-
tionary point.

3. There exists a feasible accumulation point
that either is stationary or the Mangasarian-
Fromowitz constraint qualification fails.

These results are as strong as can be expected for
general NLPs. For example, the first outcome cor-
responds to a situation where the restoration phase
has converged to a local minimum of the constraint
violation. One undesirable assumption in [10] is the
need for global solution to the QP subproblem (1).
This assumption may be difficult to ensure, unless
Hk is positive semi-definite.

The convergence proof makes use of the insights
from Figure 2. The filter ensures that all limit points
are feasible. Next, we consider two cases: (a) an in-
finite subsequence of h-type iterations, and (b) an
infinite sequence of f-type steps. We assume that
the limit point is not stationary and seek a contra-
diction. In case (a), we can show that for sufficiently
large k we must generate an f-type iteration, which
contradicts the construction of the sequence. In case
(b), we obtain the usual contradiction that f(xk) is
unbounded below.

Fast local convergence

The transition of filter methods to fast local conver-
gence had been an outstanding issue from the start.
Early on, we conjectured that filter methods may
be able to avoided the Maratos effect. This effect
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causes penalty function SQP methods to reject the
full SQP step arbitrarily close to a solution, leading
to a loss of second-order convergence. We applied
filter methods to the original example by Maratos
and observed second-order convergence. However,
the following example shattered the hope that filter
methods can avoid the Maratos effect in general:

minimize
x

2(x2
1 + x2

2 − 1)− x1

subject to x2
1 + x2

1 − 1 = 0.

The starting point x = (cos(t), sin(t)) for t > 0 small
and multipliers y = 3/2 shows that the SQP step
increases both f(x) and ‖c(x)‖, leading to a filter-
rejected step. This example motivated us to include
second-order correction (SOC) steps. Since then, Ul-
brich [27] and Wächter and Biegler [29] have consid-
ered the transition to fast local convergence.

Ulbrich [27] proves fast local convergence without
the use of SOC steps by making three modifications
to the filter SQP method: (1) he uses the augmented
Lagrangian as a technical tool, which motivates an
alternative definition of the filter, replacing h(x) and
f(x) by

θ(x, y) := ‖c(x)−‖22 +
(
yT c(x)−

)2 and L(x, y)

respectively; (2) the switching condition (3) is tight-
ened to

∆q̂k := ∆qk + yTk sk > κθ
ψ/2
k and ∆Lk(s) < σ∆q̂k,

where ψ ∈ (1
2 , 1) is a constant; and (3) the restora-

tion phase is also entered if the multiplier weigh in-
active constraints too strongly, which happens, if
θ
1/2
k ≤ κρρ

1+ξ, for κρ > 0 and ξ ∈ (0, 1). Under
a linear independence constraint qualification and
second-order sufficient condition, Ulbrich is able to
show q-quadratic convergence.

Wächter and Biegler [29] analyze a filter method
with SOC steps. SOC steps solve a second QP that
captures constraint curvature and is often cheap to
solve, requiring, for example, only a shift in the
QP constraints. Like [27], Wächter and Biegler also
modify the switching condition and strengthen it to

∇fTk sk < 0 and αk,l
(
−∇fTk sk

)sf > δ(hk)sh ,

where αk,l is the Armijo step size and δ > 0, sh > 1,
and sf ≥ 2sh are constants. Thus, sufficient reduc-
tion in the objective is checked less frequently than

in [10]. The analysis shows that ultimately, the SQP
step or the SOC step is acceptable to the filter im-
plying superlinear convergence for different types of
SOC steps.

We currently prefer to use SOC steps to obtain
fast local convergence because this approach allows
us to keep the original filter definition with f(x),
rather than the Lagrangian L(x, y). This approach
also avoids the need for a multiplier function.

Other SQP filter methods

Fletcher et al. [6] (see also [5, Chapter 15.5]) ana-
lyze a trust-region SQP filter method that decom-
poses the SQP step into a normal and tangential
step. The normal step attains feasibility for the lin-
earized constraints of (1), and the tangential step re-
duces a quadratic objective beyond the Cauchy point
while maintaining feasibility. The algorithm uses the
envelope

hk+1 ≤ βhj or fk+1 ≤ fj − γhj , ∀j ∈ Fk,

and removes only entries whose envelope is domi-
nated by a new entry. The algorithm also uses a
stronger switching condition, namely, ∆qk ≥ σh2

k,
resulting in fewer f-type steps. We note that the al-
gorithm in [6] removes the need for a global solution
of the QP.

Recently, there has been renewed interest in trust-
region methods that avoid the solution of the com-
putationally expensive QP (1). One such method
is SLP-EQP, which dates back to [12] in the con-
text of `1-penalty functions. The method solves an
LP inside a trust-region to obtain an estimate of
the active set (i.e., setting Hk = 0 in (1)). This
active set is then explored further by solving an
equality-constrained QP corresponding to the active
constraints (with the trust-region bounds removed).
Chin and Fletcher [4] (see also [3]) analyze and im-
plement a filter SLP-EQP method. Their conver-
gence proof adapts the proof in [11] to allow for a
finite set of possible steps, namely, a Cauchy step
(along the LP solution to the first minimum of the
quadratic), an EQP step, and an SOC step.

Gonzaga et al. [14] propose a general framework
for filter methods where the step computation is de-
composed into a normal and tangential step. Un-
like [6], however, where the QP solution is decom-
posed, Gonzaga et al. enforce filter conditions on
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both the normal and tangential step. The normal
step must generate an intermediate point xk+1/2

such that the constraint violation is acceptable to
the current point: h(xk+1/2) < βhk. The tangential
step must generate a new iterate that reduces the ob-
jective function by an amount that is proportional
to the filter slack:

Hk := min
(
1, min
j∈Fk:fj≤f(xk)

hj
)
.

The step s satisfies ∇cTk+1/2s + ck+1/2 ≥ 0, and the
new point, xk+1 = xk+1/2 + s, satisfies the following
decrease condition:

f(xk+1) ≤ f(xk+1/2)−M
√
Hk.

The authors show that such a step can be computed
by minimizing a quadratic model beyond the Cauchy
point within a trust-region framework. In addition,
a sufficient decrease condition is also enforced. This
framework is very general, but the step acceptance
seems slightly more restrictive.

Ribeiro et al. [22] extend the analysis in [14] by
developing a general global convergence analysis of
filter methods that does not depend on the particu-
lar way in which the step is computed. Instead, the
authors prove convergence under fairly general as-
sumptions that are shown to hold, for example, for
SQP methods.

Finally, a nonmonotone filter method based on [6]
is analyzed in [16]. The authors measure the area
that a new entry contributes to the dominated re-
gion. This area is positive for monotone filters. The
key idea is to request that this area be positive on av-
erage only over the last K reference iterations. This
strategy allows the filter to accept points that would
otherwise be rejected.

2.2 Filter interior methods

Interior-point methods (IPMs) are an attractive al-
ternative to SQP methods for solving NLPs. Instead
of computing a step by solving a QP, which can be
computationally demanding, IPMs compute a step
by solving a linear system. Thus, it is not surpris-
ing that researchers have extended filter methods to
IPMs: Ulbrich et al. [26] and Wächter and Biegler
[30] develop convergence theory for IPM filter meth-
ods. A related filter criterion has also been used by
Benson et al. [2].

Interior-point methods first reformulate the NLP
(1) so that the inequalities are simple bound con-
straints:

minimize
x

f(x)

subject to c(x) = 0, x ≥ 0.
(4)

IPMs can be viewed as applying Newton’s method
to the perturbed optimality conditions of (4):

Fµ(x, y, z) :=

 ∇xL(x, y, z)
c(x)

Xz − µe

 = 0, (5)

for a decreasing sequence of barrier parameters µ↘
0, where X is the diagonal matrix with x along its
diagonal, L(x, y, z) = f(x) − yT c(x) − zTx is the
Lagrangian of (4), and e = (1, . . . , 1)T . The IPM
filter methods differ significantly in how the filter is
employed to achieve global convergence.

The interior filter of Ulbrich et al.

Ulbrich et al. [26] employ the filter to enforce con-
vergence of the IPM as µ↘ 0. They decompose the
perturbed optimality conditions into a normal (rn)
and tangential (rt) component,

Fσµ′(x, y, z) = rn + rt

=

 0
c(x)

Xz − µ′e

 +

 ∇xL(x, y, z)
0

(1− σ)µ′e

 ,

where µ = µ′σ, and µ′ = xT z/n, and σ ∈ (0, 1)
is a centering parameter. This decomposition mo-
tivates the two filter components and a consistent
step decomposition. Denoting w = (x, y, z), the fil-
ter is defined a a collection of pairs of a measure of
quasicentrality

θ(w) := ‖c(x)‖+ ‖Xz − xT z/n · e‖

and a measure of optimality

θg(w) := ‖∇xL(w)‖+ xT z/n.

Each step s = (sx, sy, sz) is computed from a normal
and tangential step,

F ′(w)sn = −rn, F ′(w)st = −rt,

where F ′(w) is the Jacobian of Fσµ′(w). The authors
exploit the flexibility of choosing different step sizes
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for each component. Once a step has been com-
puted, the algorithm performs a backtracking line
search until a filter-acceptable point has been found.
Similar to SQP filter methods, the algorithm also en-
forces a sufficient decrease condition on a quadratic
model of the residual of θg(w). If no acceptable point
can be found, then a restoration phase is entered to
restore quasicentrality.

Under the strong assumption that the inverse of
the Jacobian is bounded, namely, ‖

[
F ′(w)

]−1‖ ≤ C,
the authors show finite termination of the restoration
phase and the existence of a subsequence converging
to a stationary point. The step decomposition has
a similar flavor to [6], but the two components have
a slightly different interpretation, with quasicentral-
ity replacing feasibility and the optimality measure
θg(w) replacing the objective. The latter condition
means that the algorithm may be more likely to con-
verge to stationary points that are not local mini-
mizers. The IPM of Wächter and Biegler avoids this
problem by taking a different approach.

The filter of Wächter and Biegler

Wächter and Biegler [30] have successfully incorpo-
rated a filter mechanism in the NLP solver IPOPT
[31]. They develop a line-search filter method that
avoids the pitfall of many IPMs that may converge to
spurious stationary points illustrated by the example
in [28]. Wächter and Biegler exploit the relationship
between (5) and the barrier problem

min
x

ϕµk
(x) := f(x)− µk

∑
ln(xi)

s.t. c(x) = 0.
(6)

IPOPT performs a number of line-search SQP iter-
ations to minimize (6) to within a tolerance εk ↘ 0,
whilst keeping xi > 0. In contrast to [26], where the
filter safeguards the convergence of IPM as µ ↘ 0,
IPOPT employs the filter only for fixed µk to ensure
convergence of the SQP algorithm. This approach is
justified because it can be shown that for a suitable
choice of the sequences µk ↘ 0, εk ↘ 0 one SQP
iteration and an extrapolation step are sufficient to
generate an acceptable point near a solution.

A consequence of employing the filter for a fixed
barrier parameter is that we can now use (h(x), ϕ(x))
again in the filter. Hence, the method is less likely
to converge to stationary points that are not mini-
mizers.

Another important difference from [26] is the ab-
sence of a full-rank assumption, which provides ro-
bustness for degenerate and infeasible NLPs. As a
consequence, however, we must modify the Armijo
line-search because a poor step may never be ac-
ceptable no matter how small a step size is chosen.
Therefore, [30] derives a lower bound that indicates
when the algorithm should switch to a restoration
phase. The restoration algorithm in [30] differs from
the SQP restoration algorithms in the sense that it
must also produce a new point xk+1 ≥ εe that is
strictly feasible with respect to the bounds.

The analysis in [30] is general and includes as spe-
cial cases SQP methods, IPMs, and augmented La-
grangian methods. The augmented Lagrangian is an-
other popular penalty function:

Lπ(x, y) := f(x)− yT c(x) +
π

2
c(x)T c(x).

We can split this function into two “objectives” sim-
ilar to the way we split the exact penalty function.
This motivates a filter method where the Lagrangian
L(x, y) replaces f(x). The analysis is readily ex-
tended by including a line search on the multipliers
y and by modifying the switching condition in an ob-
vious way. We note, that this is similar to the filter
in [27]

Benson et al. [2] have also included a filter-like
mechanism in LOQO. The filter used in LOQO con-
sists of a single entry. We are not sure that this
device alone can guarantee convergence. The prac-
tical performance of LOQO has been encouraging,
however, underlining the computational advantage
of filter methods.

3. Filters beyond NLP

Filter methods have been extended to other ar-
eas of optimization such as nonlinear equations
and inequalities [9, 15, 17], nonsmooth optimiza-
tion [7, 19, 21], unconstrained optimization [18],
derivative-free optimization [1], and augmented La-
grangian methods [13].

3.1 Nonlinear equations

We have developed a filter SQP method for solv-
ing a nonlinear system of inequalities c(x) ≥ 0 in
[9], similar to the restoration phase suggested in [8].
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Formulating c(x) ≥ 0 as a norm minimization prob-
lem,

minimize
x

h(x) := ‖c(x)−‖, (1)

allows us to define two objectives and apply the fil-
ter concept. We divide the constraints into two sets
indexed by J and its complement J⊥: the set J⊥

collects the constraints that are close to being satis-
fied, and the set J collects the constraints that are
difficult to satisfy. This partition gives rise to the
following feasibility problem,

minimize
x

∑
i∈J

ci(x)−

subject to ci(x) ≥ 0 ∀i ∈ J⊥,
(2)

which can be interpreted as a weighted `1 constraint
residual minimization. The sets J and J⊥ can be
chosen adaptively as long as we ensure that

J ⊂
{
i|ci(x) < 0

}
.

Motivated by the feasibility problem (2), we define
the two filter entries as

fJ(x) :=
∑
i∈J

ci(x)− and hJ(x) :=
∑
i∈J⊥

ci(x)−,

respectively. We apply an SQP method to the min-
imization of (2) that enables us to achieve fast local
convergence even if no feasible solution exists.

So far, the filter methods have been concerned
with two competing aims. However, filter algorithms
can also be developed for more objectives. In [15],
we develop a multi-dimensional filter for the solu-
tion of c(x) = 0. The idea is to split the constraint
residuals into p components

hj(x) := ‖cIj (x)‖, j = 1, . . . , p,

where {1, . . . ,m} = I1∪ . . .∪Ip. We adapt the filter-
acceptability by saying that a trial point x+

k is ac-
ceptable if and only if, ∀l ∈ Fk,

∃j ∈ {1, . . . , p} : hj(x+
k ) < hj(xl)− β‖h(xl)‖,

where β ∈ (0, 1/
√
p) ensures that the right-hand side

of this condition always has at least one positive en-
try, which ensures that we can always generate a
filter-acceptable point. The algorithm minimizes a

Gauss-Newton or, alternatively, a Newton-model of
the least-squares formulation of c(x) = 0:

minimize
x

f(x) :=
1
2
‖h(x)‖22.

The trust region is enforced only if a trial point
is not filter-acceptable. The resulting algorithm
is very nonmonotone and works best if we choose
p = m. We extend this work in [17] to general fea-
sibility problems such as (1) by defining hj(x) :=
‖cIj (x)−‖, j = 1, . . . , p.

This multidimensional filter is also extended to
unconstrained minimization in [18] by casting the
minimization of f(x) as the solution of the system
∇f(x) = 0. The algorithm contains provisions for
negative curvature and is shown to be convergent to
second-order critical points. We generalize this algo-
rithm to bound-constrained optimization in [24]. In
related work, Sainvitu [23] studies the effect of using
approximate derivatives within a filter method.

3.2 Nonsmooth optimization

Filter methods for nonsmooth optimization provide
a convenient extension of bundle methods to include
nonsmooth constraints. We can assume without loss
of generality, that the nonsmooth NLP has only a
single constraint c(x) ∈ IR, because we can reformu-
late multiple constraints as a single constraint using
the max-function. In [7], we present a straightfor-
ward extension of filter methods to bundle trust-
region methods. We use two bundles (one for the
objective, and one for the constraints) and solve an
LP inside a trust region for a step. The convergence
analysis is an extension of the SLP convergence proof
in [11].

In contrast, the filter method of Karas et al. [19]
combines ideas from proximal point methods and fil-
ter methods. The authors create a cutting plane
model of the improvement function

gx(y) := max
{
f(y)− f(x),−c(y)

}
.

This function allows standard unconstrained proxi-
mal point methods to be used and requires only a
single bundle to be maintained. The authors estab-
lish convergence to stationary points and present en-
couraging numerical results.

A recent variable-metric filter method is presented
in [21].
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3.3 Derivative-free optimization

Audet and Dennis [1] incorporate filter into
a pattern-search method for derivative-free con-
strained optimization. Pattern-search methods tar-
get “black-box” applications, where the problem
functions f(x) and c(x) are available only as or-
acles, and derivative information is prohibitive to
obtain. The filter in [1] differs in three important
aspects from the filters described above: (1) it re-
quires only simple decrease similar to unconstrained
pattern-search algorithms, (2) the incumbent (POLL
center) is either feasible or the least infeasible iter-
ate, and (3) the filter includes an entry (0, fF ) cor-
responding to a feasible iterate. A new point x+

k is
acceptable if either of the following two conditions
hold:

h(x+
k ) = 0 and f(x+

k ) < fF

or
h(x+

k ) < hl or f(x+
k ) < fl, ∀l ∈ Fk.

The authors extend the usual patter-search conver-
gence results to filter methods.

3.4 Augmented Lagrangian

An augmented Lagrangian filter method for QPs is
developed in [13]. The algorithm efficiently accom-
modates matrix-free implementation and is based on
two main phases. First, gradient projection iter-
ations approximately minimize the augmented La-
grangian function and provide an estimate of the
optimal active set. Second, an equality-constrained
QP is approximately minimized on this subspace in
order to generate a second-order search direction.

The iterations of augmented Lagrangian methods
typically are controlled by two fundamental forcing
sequences that ensure convergence to a solution. A
decreasing sequence ωk ↘ 0 determines the required
optimality of each subproblem solution and controls
the convergence of the dual infeasibility. The sec-
ond decreasing sequence, ηk ↘ 0, tracks the primal
infeasibility ‖Ax − b‖ and determines whether the
penalty parameter ρk is increased or left unchanged.

In the definition of our filter we use quantities that
are analogous to ωk and ηk. Define

h(x, y) = ‖min
(
x,∇xL(x, y)

)
‖,

f(x) = ‖Ax− b‖,

which are based on the optimality and feasibility of
a current pair (x, y). The axis in this filter appear to
be the reverse of the usual definition (f(x) measures
feasibility). This choice reflects the dual view of the
augmented Lagrangian: it can be shown that Axk−
b is a steepest descent direction for the augmented
Lagrangian. We use the filter, rather than the usual
forcing sequences, to terminate the inner iteration
(minimization of the augmented Lagrangian).

4. Conclusions

We have presented filter methods that promote con-
vergence for constrained optimization algorithms
without the need of artificial penalty parameters.
Filter methods are an alternative to penalty func-
tion methods and build on the concept of domina-
tion from multiobjective optimization. Filter meth-
ods were initially designed for nonlinear program-
ming problems but have quickly become popular in
other areas such as nonlinear equations, nonsmooth
optimization, and derivative-free methods. We be-
lieve that filter methods will continue to grow and
find application in more diverse areas.
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1. Introduction

The NEOS (Network-Enabled Optimization Sys-
tem) server [2, 3, 5], neos.mcs.anl.gov, has been
providing a framework for users to access optimiza-
tion solvers since 1996. The server is operated by
the Optimization Technology Center, a joint effort
between Argonne National Laboratory and North-
western University, and handles between 10,000 and
20,000 optimization requests every month. It cur-
rently has about fifty commercial, academic, and
open-source solvers available for linear, nonlinear,
mixed integer, stochastic and semidefinite programs.
Depending on the solver chosen, users can submit
their optimization problems in the form of AMPL
[4] or GAMS [1] models, C or Fortran subroutines,
MPS files, and several other solver-specific formats.
The NEOS server has been used both by teachers
as an educational tool for numerical optimization,
and by academic and industrial researchers to solve
optimization problems in mathematics, engineering,
economics, chemistry, and many other fields.

In 2005, version 5 of NEOS was released, intro-
ducing several important improvements. These im-
provements accommodate both feature request from
NEOS users and the desire of the NEOS developers
to make the server easier to use and maintain.

The most fundamental change has been the in-
troduction of an application programming interface
(API) to the NEOS server. This interface allows
users direct access to NEOS functionality — such as
submitting jobs, checking the queue, or adding new
solvers — through remote procedure calls. Other
changes discussed in this article are a new format
for email submissions, the introduction of a priority
queue to help schedule jobs, and a new system for
adding solvers to the NEOS server.

http://neos.mcs.anl.gov
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2. Submitting jobs to NEOS

2.1 Version 4

Version 4 offered four ways to submit jobs to NEOS:

• Web Browser
By far the most popular way to submit jobs to
NEOS is through a Web browser such as Mi-
crosoft’s Internet Explorer or Mozilla Firefox.
The advantages to using a browser are clear:
There is no software to install, no knowledge of
programming or XML (Extensible Markup Lan-
guage [7]) formatting is required, and job results
are conveniently displayed in the browser itself.
All one needs to do is decide which solver to
use, fill in a form to upload any files and set pa-
rameters, and click on the “submit to NEOS”
button.

• Java Submission Tool
As an alternative to using a Web browser to sub-
mit optimization jobs, NEOS provides a Java
graphical user interface (GUI). The main ad-
vantages to using this GUI instead of a Web
browser are the ability to save submission en-
tries in order to simplify resubmitting similar
jobs and the ability to easily compare results
from multiple jobs.

• Email
Email can be a good option when no window-
ing display is available or if one wishes to submit
several similar jobs to NEOS without having to
fill in all of the forms. To email a job submis-
sion to NEOS, one must first download a tem-
plate for the particular solver desired. This tem-
plate can be found either at the solver’s page on
NEOS or by sending an email to NEOS with the
text <category>:<solver>:<input>. A com-
plete list of solvers can be retrieved by sending
an email with the text “help”. This template
describes each piece of input that the solver
needs and how to format an email so that NEOS
can parse it into the necessary files.

• Kestrel
Many of the solvers on NEOS accept input in
the form of AMPL or GAMS models, and over
90 percent of NEOS job submissions are in one

of these two formats. Because of security pre-
cautions, however, much of the functionality of
the modeling languages is lost when they are
submitted to NEOS through the Web browser,
Java submission tool, email, or the NEOS API
interfaces. As an example, NEOS will not al-
low any files to be read from or written to the
local filesystem when executing a job. Also,
any data returned from NEOS is in the form
of a text file containing information about the
solver, model, and solution. This can make an-
alyzing the data difficult because the text file
must be externally parsed into separate vector
or matrix elements before any operations can
be performed on them. The Kestrel interface
to NEOS allows users to combine the flexibil-
ity and convenience of using a locally installed
AMPL or GAMS system with the ability to ac-
cess the solvers available on the NEOS server.

Users commonly ask NEOS administrators for
a convenient way to automate NEOS submissions.
Such requests point out the main disadvantage of us-
ing the Web browser or the Java submission tool in-
terface: the necessity of clicking a “Submit” button.
Having to click a button can quickly become imprac-
tical if one has a large set of problems to submit or
if an optimization problem must be solved from in-
side another application. An example is the Sudoku
applet on the NEOS Guide Web pages. This ap-
plet reads in variables from the user interface, forms
an XML document, submits it to NEOS, and then
displays the solution to the user.

Writing a program to generate and email a se-
quence of problems to NEOS is one approach that
has been used for automating solutions, but this
causes a strain on the NEOS email server and can
result in high latency. Also, one cannot check the
NEOS queue to make sure that each new job can be
processed. Another approach is to create an AMPL
or GAMS program and use the Kestrel interface, but
this will work only on solvers that accept AMPL or
GAMS input, and for large problems one must pur-
chase an AMPL or GAMS license to use Kestrel.

2.2 Version 5

Version 5 of NEOS introduced a fifth way to sub-
mit jobs to NEOS, through an application program-
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ming interface using the XML-RPC (XML Remote
Procedure Call) protocol [6]. This interface allows
programs to directly transact with the NEOS server
using any XML-RPC client. Libraries for XML-RPC
clients are available for most common programming
languages including C, C++, Java, Perl, Python,
and Ruby. Using these libraries, users can remotely
access functions that will run on the NEOS server
and return information to the user. A few of the
NEOS functions necessary to submit a job and view
the results are listed here. The full NEOS API spec-
ifications containing over twenty-five functions can
be found on the NEOS Web site.

submitJob(xmlstring)

Submit an optimization job to NEOS.

Use this method to submit your job to NEOS.

It will return a tuple containing (jobnumber,

password). You can the use this jobnumber

and password to get the results or status

of your job using the methods getStatus,

getIntermediateResults, and getFinalResults.

In case of an error (NEOS Job queue is full),

submitJob() will return (0,errorMessage)

For more information on the format of the

xmlstring, you can use the getSolverTemplate

function.

getJobStatus(jobNumber, password)

Get the current status of your job.

Returns "Done", "Running", "Waiting",

"Unknown Job", or "Bad Password".

getFinalResults(jobNumber, password)

Gets results of job from NEOS.

Retrieve results from NEOS. If the job is still

running, then this function will hang until the

job is finished.

This function will return a base-64 encoded object.

Please read your XML-RPC client documentation for

decoding.

(For Python’s xmlrpclib library, you can use the

object’s ’data’ data member).

This API gives users and application programmers
access to NEOS functionality such as checking the
queue, submitting jobs, checking the status of jobs,

Table 1: The number of submissions through each
interface to NEOS since the August, 2005, release of
NEOS version 5.

Interface Submissions
Web Browser 206,559
XML-RPC 46,016

Kestrel 26,298
Java GUI 3,197

email 1,047

retrieving results, and setting up new solvers to run
on NEOS. This API is new to NEOS, but as can
be seen in Table 1, it already comprises almost one-
sixth of all new NEOS job submissions. This number
does not mean that one-sixth of all users are using
this interface, however, because the ability to auto-
mate submissions allows a minority of NEOS users
to skew the statistics by easily submitting hundreds
or in some cases even thousands of jobs to the NEOS
server.

The main disadvantage of using the NEOS API
is the need for XML-RPC client libraries; however,
the Python language installation has an XML-RPC
module included that makes it ideal for accessing
NEOS. An example program for submitting a job
to NEOS follows; keep in mind that this is sim-
plified, and in most cases the return values should
be checked for errors. The file example.xml used
in the example is an XML file describing the op-
timization job. The format used for this file is
identical to the format now used for email submis-
sions, which is described in Section 3.. More in-
formation about using Python’s xmlrpclib module
can be found in the Python Reference Manual at
http://www.python.org.

import xmlrpclib

neos = xmlrpclib.ServerProxy(

"http://neos.mcs.anl.gov:3332")

xmlfile = file("example.xml", "r")

xmlstring = xmlfile.read()

(jobNumber,password) = neos.submitJob(xmlstring)

status = "Waiting"

while (status=="Waiting" or status=="Running"):

status = neos.getJobStatus(jobNumber, password)

results = neos.getFinalResults(jobNumber, password)

print results.data

http://www.python.org
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3. New format for email

Users can still submit jobs to NEOS through email,
although this method is rarely used now compared
to Web page submissions, Kestrel, and NEOS API
calls. Jobs are sent to neos@mcs.anl.gov, and re-
sults are emailed to the user. In order for NEOS
to understand the request, a particular format must
be used in the email. Previously this format in-
volved text tokens to delimit different parts of the
email body. For example, an email submission to the
BLMVM solver in the past looked something like the
following:

TYPE BCO

SOLVER BLMVM

LANG=C

BEGIN.FUNC

(actual C function)

END.FUNC

...

END-SERVER-INPUT

In the current version of NEOS, a new format uses
XML to delimit the text. The previous submission
now looks like the following:

<neosjob>

<category>bco</category>

<solver>BLMVM</solver>

<inputType>C</inputType>

<func><![CDATA[

(actual C function)

]]></func>

...

</neosjob>

The <![CDATA[ and ]]> sequences signify that
anything in between should be treated by NEOS as
verbatim text, avoiding the need to use an escape
sequence for each XML control character such as
<, >, and &. If the submitted text does not con-
tain any of these characters, then the <![CDATA[
and ]]> sequences are not necessary. The name
of the outermost tags (in this case <document> and
</document>) does not matter as long as an outer-
most set of tags is present.

To help in submitting NEOS jobs via email, XML
templates are available either from the particular
solver’s Web page on NEOS or by emailing NEOS
with the text help category:solver:input, for
example:

help bco:BLMVM:C
A few moments later a response will arrive which

includes the following text:
<document>

<category>bco</category>

<solver>BLMVM</solver>

<inputMethod>C</inputMethod>

...

<funceval><![CDATA[

...Insert Value Here...

]]></funceval>

...

</document>

Moreover, we believe this format is easier to un-
derstand, many users are already familiar with XML,
and NEOS can now take advantage of available XML
parsers instead of writing and maintaining its own
parser.

4. Separate queues

Another improvement to NEOS is a new two-level
queuing system. In the past, it was possible for sev-
eral large jobs to be sent to NEOS and monopolize
the NEOS workstations for several hours, effectively
denying service during this time to other users who
may only need a minute or two of NEOS computing
time. Many solvers on NEOS are now set up to allow
users to request that their job be sent to a separate
priority queue. Dedicated workstations have been
set up to accept jobs only from this queue. Any jobs
submitted to this priority queue are limited to run-
ning for a set amount of time (usually five minutes),
after which they will be terminated if still running.
Users can select this priority queue by checking the
“priority” box on the solver’s Web submission page,
by setting the priority option to short in Kestrel,
or for XML-RPC and email submissions by adding
the XML tag <priority>short</priority>.

5. New method for adding solvers
to NEOS

A key element to the scalability of NEOS is that
the solvers are not all managed by the Optimiza-
tion Technology Center. People with an optimiza-
tion solver, an Internet connection, and some com-
puting cycles to donate are encouraged to add their
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solver to the NEOS server. Currently, NEOS solvers
are hosted at Argonne National Laboratory, North-
western University, Arizona State University, Lehigh
University, and Rheinisch-Westfälische Technische
Hochschule Aachen.

The process for adding a solver involves the fol-
lowing steps:

• Download and install the NEOS server package
from the NEOS Web pages.

• Register the solver with NEOS by creating and
submitting an XML file describing the solver,
the necessary user inputs, and the workstations
it will run on. Instructions for creating the XML
file and examples are available on the NEOS
Web pages.

• Write a driver program that will run the solver
based on the user input files.

• Execute the provided XML-RPC server on each
machine the solver will run on.

The technical details for setting up a
NEOS solver is beyond the scope of this ar-
ticle. Those interested in hosting a NEOS
solver are encouraged to visit the Web page
neos.mcs.anl.gov/neos/SolverHowTo.html for
instructions, and to contact the NEOS administra-
tors for further advice.

6. Future directions

In order to continue being a useful tool for optimiza-
tion, NEOS must continue to adapt and respond to
its users. We feel that the NEOS API is an impor-
tant element to maintaining the flexibility of NEOS.
It is not a feature that was simply added on to the ex-
isting NEOS server; instead, NEOS was redesigned
so that all communication with NEOS ultimately
goes through the API.

Several specific changes are in mind for the NEOS
server, including a redesign of the NEOS Web to
make it easier to use and navigate NEOS. Also un-
der way is a Web-based system for adding and main-
taining NEOS solvers.

Other ideas for future work include further im-
proving the NEOS scheduling and queuing sys-
tem, extending the Kestrel interface to work with

more environments such as Mathematica or Matlab,
adding more solvers to the NEOS server.
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DTOS — A Service for the
Optimization Community

Hans D. Mittelmann
Department of Mathematics and Statistics,

Arizona State University, Tempe, AZ 85287-1804, USA

(mittelmann@asu.edu).

1. Introduction

For many years we have been providing a number
of free services to the community. The effort began
about ten years ago, when Peter Spellucci started
with us a web-based listing of optimization software.
We maintained this effort together for several years
and, later, started the related one of benchmarking
selected codes. Our rationale was that although a
large number of users of optimization methods ex-
ist, the knowledge about which methods are best
or even just suitable for a given problem is much
more sparsely distributed. Researchers and users of
optimization frequently have knowledge in only one
subarea, such as in either continuous or discrete op-
timization.

So, the goal was to provide a list of readily avail-
able software for a large number of problem classes
and, if there were several codes available for the same
class, to provide the additional information of com-
parative performance. This was done through well-
documented and reproducible benchmarks on typical
problems. It was natural that only over time sev-
eral other components of this service activity were
added. They are all integrated into the web-based
guide which was at the start and which had been
given the name

Decision Tree for Optimization Software
http://plato.asu.edu/guide.html

and which will be subsequently called DTOS. The
current components of DTOS are the following:

1. The DTOS Webpage.

2. The benchmark subpage.

3. A collection of test problems in various formats.

4. Some optimization software not provided else-
where.

5. A substantial portion of the interactive opti-
mization solvers accessible through the NEOS
gateway.

While no paper or report has been written about
this service effort, several talks accessible through
our personal webpage http://plato.asu.edu have
addressed some of its aspects. The fact, for exam-
ple, that the third and fourth component are fully
integrated into the first two makes them less visible.
This is intended, but here we shed a bit more light
on the structure of the components of the DTOS
project.

A word is in order about the fifth component.
Many users of optimization software, once they know
which program should be able to solve their prob-
lem, are not in a position to implement and run
this program. They may not have access to suitable
hardware, they may be unfamiliar with Unix/Linux
and cannot install/compile the program in this sys-
tem or in Windows. We were aware of the NEOS
project http://neos.mcs.anl.gov and decided to
join it by enriching the collection of solvers accessible
through one gateway, instead of starting a parallel
effort, mostly for the convenience of the users. After
a short while our share of solvers had increased to a
third of the total.

In the following we address each of the five com-
ponents of our service separately. We refrain from
giving complete listings of available resources and
services, something that can be much better seen by
inspection and that also changes over time.

2. The DTOS webpage

This webpage is continually updated and has not
undergone a major change since its inception ex-
cept for a recent format change. A major overhaul
has to wait for at least a temporary reduction of
our academic workload. Currently the DTOS lists
nearly exclusively non-commercial software in nine
categories. Few entries are listed in the categories
“Complementarity” and “Multi-objective Optimiza-
tion”. The category “Approximation” is listed sep-
arately as an area in which optimization algorithms
are employed. The remaining six categories comprise
the main body of optimization and the rationale be-
hind its structure is the following.

http://plato.asu.edu/guide.html
http://plato.asu.edu/
http://neos.mcs.anl.gov
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In most cases the solution sought is the global
optimizer, so the first category is “Global Op-
timization”. A limited number of codes is
listed in two sections for unconstrained and con-
strained global optimization. The selection is
meant to provide users with a recommendation
in many important cases but is not exhaustive
and a reference to Arnold Neumaier’s related web-
page www.mat.univie.ac.at/~neum/glopt.html is
given.

The remaining bulk of DTOS has the cate-
gories “Unconstrained and Constrained Optimiza-
tion, Least Squares, Zeros, and Discrete Optimiza-
tion”. Even more than for global optimization, an
exhaustive listing would become unwieldy for dis-
crete optimization. Due to the lack of a standard
reference webpage in this area, however, the number
of codes listed is not small.

The categories of finding zeros of (systems of)
functions and of least squares problems have their
own webpages to expedite the search for users inter-
ested in them. Also, in these sections of the DTOS
and in those described below an attempt is made
to provide a somewhat more complete listing in the
sense that, for every major problem class of interest,
several available codes, preferable in different lan-
guages, are given. The major subareas on the “Ze-
ros” page are univariate and multivariate functions,
while the least squares page has a major division
into unconstrained and constrained problems with
further subdivisions for both.

The most extensive pages are those on uncon-
strained and constrained optimization both having a
three-level structure. The order within these pages is
from the simpler to the more general problem with,
for example, LP first on the constrained optimiza-
tion page, followed by QP, SDP, NLP etc.. It is thus
clear that in many cases codes listed further down
can also solve a problem for which the more spe-
cialized codes are listed before. Still, in a few cases,
codes are listed repeatedly. The code LOQO [1] may
serve as an example. It started out as a code for LP,
was then extended to QP and then to NLP with fa-
cilities to solve SOCP and MPEC problems. It is
listed a total of five times.

Codes for generic discrete optimization problems
such as MILP, MIQP, MINLP etc. are also listed on
these pages in addition to their listing in the discrete

category while more specialized codes are not.
For a three-year period starting in 2000 the Na-

tional Science Foundation supported our software
evaluation effort. Attempts to obtain funding before
and after that time have been unsuccessful. This
lead to a limitation of the scope of our work includ-
ing that on DTOS in general. We next describe our
benchmarking effort.

3. The benchmarks

Currently, our frequently cited benchmark webpage
http://plato.asu.edu/bench.html nearly exclu-
sively considers non-commercial codes, mostly de-
veloped by researchers in academia. There are eight
categories of problems but in most only one bench-
mark is listed. An exception is the area of SDP
and SOCP with five benchmarks. Important fea-
tures of all our benchmarks are a complete listing of
the sources for the codes and of all the test prob-
lems, as well as links to the full log files of the runs.
Standard platforms were used (Unix or Linux as op-
erating system). Two of the benchmarks that had to
be dropped because of lack of support are the com-
mercial LP/MILP benchmarks. The DTOS subpage
“Benchmarks” actually lists as the first link our own
benchmarks but it subsequently also lists selected
papers on the topic as well as a limited number of
benchmarks done by others. Our software evaluation
effort is the only part of our DTOS project which has
led to journal publications [2, 3]. In addition, several
of our papers contain some form of comparison of
different solvers, e.g., the work on PDE-constrained
optimization.

A rather substantial work was our participation in
the Seventh DIMACS Implementation Challenge [4].
Over an extended period, ten codes for SDP/SOCP
problems and their numerous updates had to be eval-
uated on a growing (and changing) number of test
examples. This did not end at the DIMACS work-
shop. A rather detailed report was published in
Mathematical Programming [3]. We subsequently
kept a benchmark alive on some of the DIMACS
Challenge problems and for further updates of the
codes, and on a large number of additional test prob-
lems which we collected and generated (see the sec-
tion on test problems below). We further installed
most of the codes for use through NEOS and we

http://www.mat.univie.ac.at/~neum/glopt.html
http://plato.asu.edu/bench.html
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added several further benchmarks in this area. In
addition to standard classes such as LP, MILP, or
NLP, we also included in our benchmarks areas such
as (Q)QP, MI(Q)QP, MINLP, and MPEC includ-
ing codes in development or having more recently
been enabled to solve such problems. Because of the
ongoing development of practically all the software
considered, results will not be reported here.

4. The test problem collection

Over the years of maintaining the DTOS project,
test problems in various areas were collected or gen-
erated. In most cases, this did not happen in a very
systematic way. Still, users of DTOS have found
them useful, from PhD students, for example [5, 6],
to established researchers, for example [7], and even
to commercial vendors of software including ILOG-
CPLEX and DASH. There is no URL leading to
all the problems we have integrated into DTOS. On
the “Testcases” subpage there are more than twenty
such links. Here we just mention the extensive col-
lection of LP and MILP problems, both partly taken
from submissions to our NEOS solvers, the SDP
problems, many of them generated by us, and the
“testenvironment” for NLP by Peter Spellucci. Fur-
ther, there is a link to our problems in the AMPL
format. This is a rather extensive collection with 18
subdirectories. Several of these problems come from
our own research and were used in the research of
others.

5. The optimization software col-
lection

Even less systematically than the benchmark and
test problem collection, a small repository of pro-
grams has developed over time. Again, no single
URL shows all the software available but links are
spread throughout the DTOS. A number of useful
codes that their authors stopped providing is one
part of this collection, another is a directory hold-
ing all the different versions of Peter Spellucci’s SQP
code DONLP2(3) as well as his other optimization
codes. Further, there are several codes by Mike Pow-
ell. All the codes are provided in source form. In ad-
dition, we provide binaries for different platforms of

a few codes for which sources cannot be made avail-
able and for DONLP2 with an AMPL interface. For
small to medium-size problems, DONLP2 is quite ro-
bust and compares well even with commercial codes.
It is downloaded frequently, especially its C version
(DONLP3).

6. The NEOS Solvers

While the installation and maintenance of web-based
optimization solvers seems a project only remotely
related to DTOS, there is, in fact a close connec-
tion. We were contacted by users who wanted to
apply one of the programs they had found on DTOS
but for which they had encountered difficulties. A
typical example, is an NLP code such as DONLP2
in a language such as Fortran or C, which required
the user to compile the code and to provide in the
respective language both coded functions and data
in specific formats. For NLPs, it is a substantial
help to be able to formulate the problem in a mod-
eling language, but the same happens in LP and in
most other optimization problems. One additional
advantage is then the ability to submit the problem
to all solvers that have an interface to the modeling
language.

It was thus only natural that we started to imple-
ment solvers for access through NEOS which had
suitable interfaces and input formats. Our share
of NEOS solvers is more than a third (counting in-
put formats). and several are quite frequently used.
Here we mention the LP/QP solver BPMPD which
has four different input formats and is powerful and
quite popular in spite of the fact that two commercial
and four other non-commercial codes are available.
Another frequently used solver in the MILP category
is FEASPUMP, a pure feasibility solver. Due to its
power for MILPs, the code SCIP is a favorite, as
are several others of our solvers such as the traveling
salesman solver CONCORDE (the only NEOS solver
with a graphical output), the semi-infinite solver
NSIPS, the nondifferentiable solver CONDOR, sev-
eral of our eight SDP/SOCP solvers, and, more re-
cently, also the exact LP code QSOPT-EX.

Important considerations in the implementation of
our NEOS solvers are the number of available input
formats and the resources provided, both in CPU
time and in memory. Our solvers currently use a
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total of thirteen different input formats and avail-
able memory ranges up to 16 GB; up to four parallel
processors are used (by CSDP). We were the first
to use Matlab for NEOS solvers and the first to use
CPLEX as subsolver, and do both now extensively.

7. The future of DTOS

No specific plans exist for the DTOS project except
for trying to maintain as many of its components
as possible in our spare time. Only with additional
time can a major overhaul of the main DTOS web-
page be done, reorganizing, updating, and extend-
ing the information provided but also making it eas-
ier to navigate for users with little or no domain
knowledge. Unfortunately, we cannot count on user
feedback in the process of updating or extending the
DTOS project, there is none. Not even NEOS users
alert us to a temporary problem with one of the
solvers. Extensions of the benchmarking and web
solver efforts are highly unlikely without some addi-
tional form of support.
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Bulletin

1. Event Announcements

Joint EUROPT-OMS Meeting 2007
July 4–7, 2007

Prague, Czech Republic
http://cio.umh.es/europt-oms

The conference aims to review and discuss re-
cent advances and promising research trends in con-
tinuous and discrete optimization theory, methods,
applications and software development. Topics in-
clude: Linear and Nonlinear Optimization, Integer
and Combinatorial Optimization, Convex and Non-
smooth Optimization, Global Optimization, Semi-
definite Programming, Semi-infinite Programming,
Multi-objective Optimization, Stochastic Optimiza-
tion, Complementarity and Variational Inequality
Problems, Derivative-free Optimization, Network
Optimization, Scheduling Problems, Optimization
in Technological, Bio- and Social Systems, Financial
Optimization, Optimal Control, Automatic Differ-
entiation, and Optimization Software,

This international conference is the first joint
Meeting organized by the journal Optimization
Methods and Software (OMS) and the Working
Group on Continuous Optimization (EUROPT)
http://www.iam.metu.edu.tr/EUROPT of the As-
sociation of European Operational Research Soci-
eties (EURO). The EUROPT-OMS Conference will
be held prior to the 22nd European Conference
on Operational Research (EURO XXII) in Prague
http://euro2007.vse.cz and the 6th International
Congress on Industrial and Applied Mathematics
(ICIAM 2007) in Zurich http://www.iciam07.ch.

The invited speakers are:

• Frederic Bonnans (France)

• Yury Evtushenko (Russia)

• Komei Fukuda (Switzerland)

• Luigi Grippo (Italy)

• Dorit Hochbaum (USA)

• Tibor Illes (Hungary)

• Adrian Lewis (USA)

• Michal Kocvara (Czech Republic)

• Alexander Martin (Germany)

• Florian Potra (USA)

• Liqun Qi (China)

• Philippe Toint (Belgium)

• Stefan Ulbrich (Germany)

• Stephen Wright (USA)

• Yinyu Ye (USA)

• Ya-xiang Yuan (China)

The Conference Organizers are: Oleg Burdakov
(Sweden), Conference Co-Chair, Florian Jarre (Ger-
many), Conference Co-Chair, Karel Zimmermann
(Czech Republic), Conference Co-Chair, Gerhard
Wilhelm Weber (Turkey), Program Committee
Chair, Marco A. López (Spain), Organizing Com-
mittee Chair, Martin Gavalec (Czech Republic), Lo-
cal Organizing Committee Chair. The complete list
of the Committees Members is available on the con-
ference web site.

Information about the the conference venue, ho-
tel arrangements, abstract submition, session organi-
zation, software exhibition, conference publications,
dates and deadlines, registration fee, sponsors and
partners, and e-mail addresses can be found on the
webpage.

Ettore Majorana Centre for Scientific Culture
International School

of Mathematics “G. Stampacchia”
46th Workshop

New Problems and Innovative Methods in
Nonlinear Optimization
July 31 – August 9, 2007

Erice, Italy
http://www.dis.uniroma1.it/~erice2007

The Workshop aims to review and discuss recent
advances in the development of methods and algo-
rithms for Nonlinear Optimization and its Applica-
tions.

http://cio.umh.es/europt-oms
http://www.iam.metu.edu.tr/EUROPT
http://euro2007.vse.cz
http://www.iciam07.ch
http://www.dis.uniroma1.it/~erice2007


22 SIAG/OPT Views-and-News

Topics include constrained and unconstrained op-
timization, large scale optimization, global optimiza-
tion, derivative-free methods, interior point tech-
niques for nonlinear programming, nonlinear com-
plementarity problems, variational inequalities, non-
smooth optimization, neural networks and optimiza-
tion, and applications of nonlinear optimization.

The Workshop will include invited lectures (1
hour) and contributed lectures (30 min.) Members of
international scientific community are cordially en-
couraged to contribute a lecture describing their cur-
rent research and applications. Acceptance will be
decided by the Advisory Committee of the School.

Invited lecturers who have confirmed the partici-
pation are:

• Immanuel Bomze, University of Vienna

• Marco D’Apuzzo, II Universita’ di Napoli

• Christodoulos A. Floudas, Princeton Univ.

• William Hager, University of Florida

• Igor Konnov, Kazan University

• Stefano Lucidi, Univ. Roma “La Sapienza”

• Jose Mario Martinez, State Univ. Campinas

• Jorge Nocedal, Northwerstern University

• Jong-Shi Pang, Rensselaer Polytechnic Inst.

• Massimo Pappalardo, Universita’ di Pisa

• Panos M. Pardalos, University of Florida

• Daniel Ralph, University of Cambridge

• Fabio Schoen, Universita’ di Firenze

• Defeng Sun, National University of Singapore

• Marc Teboulle, Tel-Aviv University

• Luis Nunes Vicente, Univ. Coimbra

• Henry Wolkowicz, University of Waterloo

• Yinyu Ye, Stanford University

• Ya-xiang Yuan, Chinese Academy of Sciences

A special issue of Computational Optimization and
Applications will be dedicated to the Workshop, in-
cluding a selection of invited and contributed lec-
tures.

Franco Giannessi
Universita’ di Pisa, Italy
Director of the School
Gianni Di Pillo
Universita’ di Roma “La Sapienza”, Italy
Director of the Workshop

Czech–French–German 2007
Conference on Optimization 2007

September 17-21, 2007
Heidelberg, Germany

http://cfg07.uni-hd.de

The conference is the 13th of the series of French-
German meetings which started in Oberwolfach in
1980. This time, it is organized jointly with Czech
optimizers, and takes place in the historical center of
Germany’s oldest university town, Heidelberg. The
conference will consist of invited plenary, invited
minisymposium and regular talks on all aspects of
optimization.

Included topics: continuous optimization (smooth
and nonsmooth), numerical methods for mathemat-
ical programming, optimal control and calculus of
variations, robust optimization, mixed integer opti-
mization, optimization with PDE, differential inclu-
sions and set-valued analysis, stochastic optimiza-
tion, multicriteria optimization, and optimization
techniques for industrial applications.

The invited speakers (confirmed) are:

• Guillaume Carlier (Paris Dauphine)

• Roger Fletcher (University of Dundee)

• Roland Griesse (Austrian Acad. of Sciences)

• Pierre Maréchal (UPS Toulouse)

• Alexander Martin (TU Darmstadt)

• David Preiss (University College London)

• Carsten Scherer (TU Delft)

• Zdenek Strakos (Czech Academy of Sciences)

• Emmanuel Trlat (Universit d’Orlans)

• Michael Valasek (Czech Technical University,
Prague)

• Lúıs Nunes Vicente (Univ. Coimbra)

http://cfg07.uni-hd.de
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• Andreas Wächter (IBM, Yorktown Heights)

• Andrea Walther (TU Dresden)

The Organizing Committee is formed by Hans
Georg Bock, Moritz Diehl (chair), Gerhard Reinelt,
Sebastian Sager (co-chair), and Johannes P.
Schlöder.

The complete Program Committee and deadlines
can be found on the webpage.

Follow-up Workshop on
Optimization in Finance

October 26-27, 2007
Coimbra, Portugal

www.mat.uc.pt/tt2005/follow-up

The Workshop on Optimization in Finance was
held in Coimbra, Portugal, in July 5-8, 2005 Coim-
bra, Portugal. The quality of the meeting was con-
sidered high and the participation surpassed the best
expectations. The conference program is still avail-
able at the web site www.mat.uc.pt/tt2005/of.
The workshop was organized under the auspices of
the portuguese CIM (International Center for Math-
ematics, a member of ERCOM European Research
Centres on Mathematics), and was one of the events
of the CIM Thematic Term on Optimization 2005.

As in the 2005 workshop, the targeted audience
for the Follow-up Workshop on Optimization in Fi-
nance includes graduate students and faculty mem-
bers working in applied mathematics, operations re-
search, and economics, who have been or plan to be
interested in optimization methods in finance. The
event will also be attractive for those doing quantita-
tive modeling in the financial market. The Follow-up
Workshop topics include, among others, asset allo-
cation, risk management, and derivative pricing.

The Follow-up Workshop will consist of a limited
number of invited lectures. Those interested in con-
tributing can submit a title and an abstract for a
poster session. The list of invited speakers include:

• Alexandre d’Aspremont (Princeton University)

• Victor DeMiguel (London Business School)

• Jacek Gondzio (The University of Edinburgh)

• Peter Laurence (Università di Roma “La
Sapienza”)

• Ioana Popescu (INSEAD)

• Ekkehard Sachs (University of Trier)

• Ralf Werner (Technische Universität Mnchen &
Hypo Real Estate Holding)

The meeting is organized by A. M. Monteiro
(Univ. Coimbra), R. H. Tütüncü (Goldman Sachs),
and L. N. Vicente (Univ. Coimbra).

http://www.mat.uc.pt/tt2005/follow-up
http://www.mat.uc.pt/tt2005/of
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Chairman’s Column

Reading through the last few issues of Views-and-
News, I cannot help but remark on the wonder-
ful job that Lúıs Vicente has done as the editor of
SIAG/OPT’s newsletter. In his own comments be-
low, Lúıs mentions that perhaps some recent issues
have been a bit too technical. I certainly agree that
it is good to have a diversity of topics in the newslet-
ter, but I for one have really come to appreciate ex-
pository articles such as the one by Roger Fletcher,
Sven Leyffer and Philippe Toint on Filter Methods
in this issue. Views-and-News is one of very few
outlets where articles like this, written to be tech-
nically precise but at the same time accessible to a
relatively wide audience, can appear. I look forward
to the remaining issues of Views-and-News that Lúıs
will produce as he and the current elected officers of
SIAG/OPT enter our final year of service!

Kurt M. Anstreicher, SIAG/OPT Chair
Department of Management Sciences
University of Iowa
S210 PBB Iowa City, IA 52242,
USA
kurt-anstreicher@uiowa.edu
http://www.biz.uiowa.edu/faculty/anstreicher

Comments from the Editor

When I look back to the issues previously edited,
I have the feeling that the Newsletter might have be-
come a little too technical. I am thus slightly chang-
ing the scope of the next couple of numbers, to enrich
the pattern and diversity of this publication.

In the current issue we already see a little of this
change. The papers on NEOS and DTOS follow this
trend. I believe that papers like these can be use-
ful to members of our Activity Group and to other
researchers interested in optimization.

The next issue will express personal views of a few
first class optimizers who worked for the industry in
the last decade. We expect to learn from their views
and... to have some fun.

Lúıs N. Vicente, Editor
Department of Mathematics
University of Coimbra
3001-454 Coimbra
Portugal
lnv@mat.uc.pt
http://www.mat.uc.pt/~lnv

http://www.biz.uiowa.edu/faculty/anstreicher
http://www.mat.uc.pt/~lnv
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