
SID-PSM: A PATTERN SEARCH METHOD GUIDED BY SIMPLEX
DERIVATIVES FOR USE IN DERIVATIVE-FREE OPTIMIZATION

A. L. CUSTÓDIO∗ AND L. N. VICENTE†

Abstract. SID-PSM (version 1.3) is a suite of MATLAB [1] functions for numerically solving
constrained or unconstrained nonlinear optimization problems, using derivative-free methods. In
the general constrained case and for the current version, the derivatives of the functions defining
the constraints must be provided. The optimizer uses an implementation of a generalized pattern
search method, combining its global convergence properties with the efficiency of the use of quadratic
polynomials to enhance the search step and of the use of simplex gradients for guiding the function
evaluations of the poll step. An advantage of using SID-PSM, when compared to other pattern search
implementations, is the reduction achieved in the total number of function evaluations required.
In this document, we will mention the target problems suited for optimization with this code, de-
scribe the SID-PSM algorithm, and provide implementation details (including information about the
MATLAB functions coded as well as guidelines to obtain, install, and customize the package). The
software is freely available for research, educational or commercial use, under a GNU lesser general
public license, but we expect that all publications describing work using this software quote the
two following references. (1) A. L. Custódio and L. N. Vicente, Using sampling and simplex deriva-
tives in pattern search methods, SIAM Journal on Optimization, 18 (2007) 537–555 (ref. [10]); (2)
A. L. Custódio, H. Rocha, and L. N. Vicente, Incorporating minimum Frobenius norm models in
direct search, Computational Optimization and Applications 46 (2010), 265–278 (ref. [9]).

Key words. derivative-free optimization, optimization software, documentation, generalized
pattern search methods, simplex gradient, poll ordering, poisedness, interpolation models, search
step, minimum Frobenius norm models

AMS subject classifications. 65K05, 90C30, 90C56

1 Introduction 2

2 The SID-PSM algorithm 3

2.1 Ordering . 4

2.2 Search step . 5

2.3 Mesh size parameter update . 6

2.4 Stopping criteria . 7

2.5 Pruning . 7

2.6 Storing points for simplex derivatives 8

2.7 Cache . 8

2.8 Economic options . 8

3 Installing SID-PSM 9

4 Running SID-PSM 10

5 Parameters MATLAB file 11

∗Department of Mathematics, FCT-UNL, Quinta da Torre 2829-516 Caparica, Portugal
(alcustodio@fct.unl.pt). Support for this author was provided by Centro de Matemática e
Aplicações da Universidade Nova de Lisboa and by FCT under grants POCI/MAT/59442/2004
and PTDC/MAT/64838/2006.
†CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Por-

tugal (lnv@mat.uc.pt). Support for this author was provided by FCT under grants
POCI/MAT/59442/2004 and PTDC/MAT/64838/2006.

1

6 Overview of SID-PSM MATLAB files 12
6.1 User provided files . 12

6.1.1 func f.m . 12
6.1.2 func const.m . 12
6.1.3 grad const.m . 12

6.2 Optimizer files . 12
6.2.1 domain.m . 12
6.2.2 gen.m . 12
6.2.3 grad act.m . 13
6.2.4 lambda poised.m . 13
6.2.5 match point.m . 14
6.2.6 mesh proc.m . 14
6.2.7 order proc.m . 14
6.2.8 proj ort.m . 14
6.2.9 prune dir.m . 14
6.2.10 quad Frob.m . 14
6.2.11 sid psm.m . 14
6.2.12 simplex deriv.m . 15

1. Introduction. SID-PSM (version 1.3) is a serial MATLAB [1] implementation
of a generalized pattern search method (see [4]) based on the algorithmic framework
introduced in [10] for incorporating simplex gradient and simplex Hessian information.
Recently, quadratic minimum Frobenius norm (MFN) models were incorporated into
the code to improve the efficiency of the underlying direct search method (see [9]).
SID-PSM is well suited for solving unconstrained and constrained optimization prob-
lems, without the use of derivatives of the objective function. In the general con-
strained case, the first order derivatives of the functions defining the constraints must
be provided. Supporting theory for the methods implemented (in terms of global
convergence for stationary points) exists except in the nonlinear constrained case.

The software is freely available for research, educational or commercial use, under
a GNU lesser general public license, but we expect that all publications describing
work using this software quote the references [9, 10].

The type of problems given to SID-PSM must be in the form

min
x∈Ω

f(x),

where Ω is either Rn or the feasible region

Ω = {x ∈ Rn : ci(x) ≤ 0, i = 1, . . . ,m}.

In the latter case, the user must provide functions to evaluate the gradients ∇ci(x),
i = 1, . . . ,m. Equality constraints, when included in the original problem formulation,
could be converted first into double inequalities. However, we note that there are some
numerical difficulties associated with this approach. The user is advised not to follow
it, but rather to try to get rid of the equalities by eliminating some of the problem
variables. SID-PSM does not require any gradient information about the objective
function, so one can apply the code to any objective function (in particular to those
resulting from running black-box codes or performing physical experiments).

The distinguishing feature between SID-PSM and other derivative-free packages
freely available, like NOMAD/NOMADm [2] and APPSPACK [11], is the use of past
function evaluations to improve the efficiency of the underlying pattern search method

2

(version 4.6 of NOMADm [2] incorporates a simplified version of one of the strategies
implemented in SID-PSM). As reported in [8, 10], the use of simplex derivatives can
lead to a significant reduction in the number of function evaluations required, by
appropriately ordering the poll vectors. Moreover, the numerical results in [9] show
a clear advantage in applying search steps based on MFN models, in the context of
direct search methods of directional type.

In SID-PSM, previous evaluations of the objective function are used in the com-
putation of simplex derivatives (e.g., simplex gradients or simplex Hessians), which
in turn improve the efficiency of a pattern search iteration. The improvement can
be achieved in several ways, such as reordering the poll directions according to the
angles they make with the negative simplex gradient. The introduction of a search
step based on the minimization of a MFN model of the objective function is also
considered. Other possible uses for simplex derivatives are a mesh size update based
on a sufficient decrease condition, the definition of stopping criteria based on simplex
gradients, and the pruning of the poll vectors.

A brief description of the optimization algorithm can be found in Section 2. A
more complete description, including some analysis and numerical results, is given
in [9, 10]. The next two sections are more suitable for potential users: Section 3
explains how to obtain and install SID-PSM, while Section 4 concerns how to run it
and interpret the results. A detailed description of the parameters file and of all the
other program files is given in Sections 5 and 6, respectively.

2. The SID-PSM algorithm. In a simplified version, a pattern search method
starts with an initial guess solution and performs a sequence of iterations in a rational
lattice, trying to improve this initial guess.

At each iteration, two steps are performed: a search step and a poll step. The
search step is optional and unnecessary for establishing the convergence properties of
the method.

The poll step, which will be only performed if the search step is unsuccessful in
finding a lower objective function value, follows stricter rules since it guarantees the
global convergence properties of the method to stationary points (in the lim inf sense,
as originally established in [16]). A mesh, or a grid, is considered, defined from a set of
directions with appropriate descent properties (called a positive spanning set or a poll
set). In the unconstrained case, these directions must positively span Rn, while in the
constrained case they need to conform to the geometry of the nearby boundary at the
current point, defined by the approximated active constraints gradients (see [13, 14]).
A local exploration of a mesh neighborhood of the current iterate is done by testing
the points (or feasible points, in the constrained case) corresponding to directions of
the poll set Dk.

The search step is free of any rules as long as only a finite number of (feasible) trial
points in the current mesh is considered. If both search and poll steps are unsuccessful,
then the mesh is contracted by reducing the mesh size parameter. In case of success,
the mesh size parameter can be maintained or increased, thus possibly expanding the
mesh.

During the course of the iterations, a pattern search method generates a number
of function evaluations. The corresponding points can be stored together with the
objective function values and used to improve the efficiency of the algorithm.

Thus, at the beginning of each iteration of a pattern search method, one can try to
identify a subset of these points with some desirable geometrical properties. SID-PSM
uses the geometrical notion of Λ-poisedness, introduced in [5] and extended to the

3

regression and underdetermined cases in [6], as described in [10] (see also the book [7]).
Given this subset of points one can compute some form of simplex derivatives. The
size and the geometrical properties of the sample set will determine the quality of
the corresponding simplex derivatives as an approximation to the exact derivatives of
the objective function (see [5, 6, 8]). Simplex derivatives are basically the coefficients
of some multivariate polynomial interpolation models associated with the sample set
at the current interpolation point. SID-PSM allows the computation of determined
simplex derivatives as well as underdetermined and overdetermined (regression) forms,
depending on the number of points available. Using these simplex derivatives, a
direction of potential descent (called a descent indicator) can be computed, at no
additional cost in terms of function evaluations.

This descent indicator could be a negative simplex gradient ιk = −∇sf(xk), as
defined in Section 4 of [10], or a simplex Newton direction ιk = −H−1

k gk, where gk is
a simplex gradient and Hk approximates a simplex Hessian. The type of descent indi-
cator to be computed and used is selected by means of the shessian option specified
in the parameters.m file (negative simplex gradient or simplex Newton direction).

The computed simplex derivatives and the corresponding descent indicator will
be used for ordering or pruning the poll set, for updating the mesh size parameter
and in the definition of stopping criteria.

The evaluated points can also be used to build a model for the objective function,
at the current iterate. SID-PSM considers MFN models, whose minimization defines
a search step for the algorithm. In this case, the geometry control of the sample set
is extremely loose, in an attempt to explore all the information available.

The described procedures incorporate the main features distinguishing SID-PSM

from other pattern search packages currently available.
A formal description of the algorithm implemented in SID-PSM is given in Fig-

ure 2.1. The differences between the generalized pattern search method of [4] and this
algorithmic framework rely basically in the use of the simplex derivatives and in the
definition of the search step. We marked them in italic for a better identification.

2.1. Ordering. At each iteration, SID-PSM reorders the poll vectors according to
a previously established strategy, just before polling starts. In most implementations,
this ordering is the one in which the vectors are originally stored, and it is never
changed during the course of the iterations. NOMAD/NOMADm [2] implements
an option called dynamic polling, which consists in bringing into the first column of
the poll set Dk+1 the last poll vector dk associated with a successful polling iterate.
SID-PSM allows dynamic polling but also descent indicator polling.

In this case, SID-PSM orders the poll vectors according to the increasing ampli-
tudes of the angles between the descent indicator ιk and these poll vectors. Figure 2.2
describes the procedure order proc in the descent indicator polling case. In case of
failure in computing ιk at a given iteration, two different options can be selected for
polling: (i) test the vectors in the positive spanning set from the beginning, following
the order of the last iteration, or (ii) poll cyclicly in Dk, meaning that the first poll
vector to be tested is the one immediately after the last one tested in the last iteration.

Variants of these descent indicator polling strategies can be considered using a
MFN model when it has been built for the search step. The poll directions can
be ordered according to the MFN model values computed at the corresponding poll
points (with the possible consideration of the two above mentioned strategies in case of
failure in building such a model). Alternatively, the gradient and the Hessian matrix
of the MFN model can be used to build a descent indicator, which can then be used

4

SID-PSM — A Pattern Search Method Guided by Simplex Derivatives

Initialization
Choose a feasible point x0 and an initial mesh size parameter α0 > 0. Choose a
positive spanning set D. If a constrained problem is to be solved then choose ε = εini

as initial value for considering a constraint as approximated active. Select all constants
needed for procedures [search proc], [order proc], and [mesh proc]. Set k = 0. Set
X0 = [x0] to initialize the list of points managed by [store proc]. Choose a maximum
number pmax of points that can be stored. Choose also the minimum smin and the
maximum smax number of points involved in any simplex derivatives calculation
(2 ≤ smin ≤ smax). Choose Λ > 0 and σmax ≥ 1, to be used in the Λ-poised set
computation.

Identifying a Λ–poised sample set and computing simplex derivatives
Skip this step if there are not enough points, i.e., if |Xk| < smin. Set
∆k = σk αk−1 maxd∈Dk−1 ‖d‖, where σk ∈ [1, σmax]. Try to identify a set of
points Yk in Xk, within a distance of ∆k from xk, with as many points as possible
(up to smax) and such that Yk is Λ–poised, and includes the current iterate xk. If
|Yk| ≥ smin then compute some form of simplex derivatives based on Yk (and from that
compute a descent indicator ιk).

Search step
Call [search proc] to try to compute a feasible mesh point x with f(x) < f(xk) by
evaluating the function only at a finite number of feasible points in the mesh and
calling [store proc] each time a point is evaluated. If such a point is found, then set
xk+1 = x, declare the iteration as successful, and skip the poll step.

Poll step
Choose a positive spanning set Dk ⊂ D that conforms to the geometry of the
approximated active constraints at xk. Call [order proc] to order the poll set
Pk = {xk + αkd : d ∈ Dk}. Start evaluating f at the feasible poll points following the
order determined and calling [store proc] each time a point is evaluated. If a feasible
poll point xk + αkdk is found such that f(xk + αkdk) < f(xk), then stop polling,
set xk+1 = xk + αkdk, and declare the iteration as successful. Otherwise declare the
iteration as unsuccessful and set xk+1 = xk.

Updating the mesh size parameter and computing new poll directions
Call [mesh proc] to compute αk+1. If a constrained problem is being solved update
the tolerance for considering a constraint as approximated active, using the formula
ε = min(εini, 10αk+1). Increment k by one and return to the simplex derivatives step.

Fig. 2.1. Class of pattern search methods implemented in SID-PSM.

for reordering the poll directions.
SID-PSM also allows a random order of the positive spanning set. The selection

of the order to be used in the poll step is done through the value of order option, in
the parameters.m file (see Section 5).

2.2. Search step. In the current version, SID-PSM computes a MFN model once
there are more than n+ 1 points for which the objective function has been evaluated.

When there are more than (n+ 1)(n+ 2)/2 points available for interpolation, two
variants are implemented: to consider all the points and compute a regression model
or to discard some of them and build a complete determined model (the option is made

5

Compute cos(ιk, d) for all d ∈ Dk. Order the columns in Dk according to decreasing
values of the corresponding cosines.

Fig. 2.2. Ordering the poll vectors according to the angle distance to the descent indicator.

through variable regopt in parameters.m file). In the last case, since the quadratic
model has a local purpose, p% of the necessary points are selected as the ones nearest
to the current iterate. The last (1−p)% are chosen as the ones further away from the
current iterate, in an attempt of preserving geometry and diversifying the information
used in model computation. By default, p% = 80% (in the quad Frob.m file).

The point to be evaluated in the search step of the algorithm results from the
minimization of the MFN model in the trust region considered. In this minimization,
the value of the trust-region radius is never allowed to be smaller than 10−5. SID-PSM
allows the choice between the codes MINPACK2 [15] and the MATLAB function
trust.m, this last one part of the Optimization toolbox. The option is selected
through the value of trs solver in the parameters.m file. If no new MFN model is
formed at the current iteration, a search step can always be attempted after a first
model has been built, using the last model computed (always variable set to 1 in
parameters.m file).

In the constrained case, the MFN models are built using previously evaluated
feasible points. If the minimizer of the MFN model within the trust region is infeasible,
then it is orthogonally projected onto the feasible region if this is defined by simple
bounds, or simply discarded in the presence of more general constraints in which case
no search step occurs.

Note that for global convergence purposes the minimizer should be projected onto
the mesh. However, this projection is not implemented in SID-PSM.

2.3. Mesh size parameter update. When mesh option is set to 0 in SID-PSM

parameters.m file, the update of the mesh size parameter is made by expanding the
mesh in every successful iteration and contracting it for unsuccessful ones. This strat-
egy can result into an excessive number of later contractions, each one requiring a
complete polling, thus leading to an increase in the total number of function evalua-
tions required. A possible strategy to avoid this behavior has been suggested in [12]
and consists of expanding the mesh only if two consecutive successful iterates have
been computed using the same direction. The user can select this option by setting
mesh option to 3 in the SID-PSM parameters.m file. If mesh size is to be maintained
at each successful iteration, then the coefficient phi for mesh expansion should be set
to 1 in the parameters.m file.

In the linear case, when only a simplex gradient ∇sf(xk) is computed, the model
mk(y) = f(xk) +∇sf(xk)>(y − xk) can also be used as another alternative to avoid
the described behavior, by imposing a sufficient decrease condition on the update
of the mesh size parameter αk. In the quadratic case, when a simplex gradient gk
and a diagonal simplex Hessian are computed, the model is replaced by mk(y) =
f(xk) + g>k (y − xk) + (1/2)(y − xk)>Hk(y − xk). We describe such procedures in
Figure 2.3, where the sufficient decrease is only applied to successful iterations. This
update corresponds to set mesh option to 2.

SID-PSM has also available another variant for updating the mesh size parameter
based on a sufficient decrease condition (mesh option set to 1). This time, when the
value of the ratio ρk is small (0 < ρk ≤ γ1 < 1), mesh contractions are allowed even
in successful iterations. Nevertheless, this option should be used wisely since it can

6

If the iteration was successful then compute

ρk =
f(xk)− f(xk+1)

mk(xk)−mk(xk+1)
.

If ρk > γ2 then αk+1 = τ j
+
k αk.

If ρk ≤ γ2 then αk+1 = αk.

(If mesh option is equal to 1 and ρk ≤ γ1 then αk+1 = τ j
−
k αk.)

If the iteration was unsuccessful, then contract mesh by decreasing the mesh size pa-

rameter αk+1 = τ j
−
k αk.

Fig. 2.3. Updating the mesh size parameter (using sufficient decrease but meeting rational
lattice requirements). The constants τ , γ1, and γ2 must satisfy τ ∈ Q, τ > 1, and 0 <
γ1 < γ2 < 1, and should be initialized at iteration k = 0 together with jmax ∈ Z, jmax ≥
0, and jmin ∈ Z, jmin ≤ −1. The exponents satisfy j+k ∈ {0, 1, 2, . . . , jmax} and j−k ∈
{jmin, . . . ,−1}.

If stop grad is equal to 1 and ‖∆k∇sf(xk)‖∞ ≤ tolgrad then stop the algorithm.
If stop grad is equal to 2 and ∆kd

>∇sf(xk) ≥ −tolgrad, for all d ∈ Dk then stop the
algorithm.

Fig. 2.4. Stopping criteria based in simplex gradients. The tolerance tolgrad > 0 is set
at iteration k = 0.

lead to premature convergence of the algorithm.

2.4. Stopping criteria. The quality of simplex gradients, computed from Λ-
poised sets, as approximations to the exact gradient is analyzed in [5, 6]. Based on
such error estimates, one can use an intuitive criterion for stopping a pattern search
method based on the size of the simplex gradient (as suggested in [17]). In SID-PSM,
when the stop grad variable is set to 1 in parameters.m, the method is stopped if
the norm of a scaled simplex gradient is small (see Figure 2.4).

The analysis in [8] has suggested an alternative criterion to stop the method, by
using simplex gradients to compute approximations to the (possible generalized) direc-
tional derivatives along the poll directions. If stop grad is set to 2 then the method
stops when these directional derivatives are nonnegative (up to a small tolerance).
Again see Figure 2.4.

Similarly to other implementations of pattern search, SID-PSM has also available
a stopping criterion based on the mesh size (option stop alfa in parameters.m).
The algorithm can either stop if a maximum number of iterations or a maximum
number of function evaluations is reached (options stop iter and stop fevals in
parameters.m, respectively). In these last cases, a maximum number of iterations or
of function evaluations should be provided.

Each of these stopping criteria can be applied alone or combined with others.

2.5. Pruning. SID-PSM incorporates an implementation of a variant of the prun-
ing strategy suggested in [3] for the poll set. This implementation is motivated by
the theoretical results derived in [10, Section 6], where it is shown that, for a suffi-
ciently small mesh size parameter, the negative simplex gradient can be considered
as an ε-approximation (again, see [3]) to the large components of the exact negative
gradient.

7

After reordering the vectors of the poll set according to the descent indicator
considered, the resulting matrix can be pruned to the most promising direction or
to all the potential descent directions. Since the conditions that guarantee that the
descent indicator is an ε-approximation are never tested, we recommend a prudent
use of the pruning strategies.

2.6. Storing points for simplex derivatives. SID-PSM maintains a list Xk of
points of maximum size pmax used for computing the simplex derivatives and the MFN
models. It is possible to implement different criteria for deciding whether to store or
not a point at which the function has been evaluated. A binary variable (store all)
in the parameters.m file distinguishes between two simple ways of storing points:

• store-successful: the list keeps only the successful iterates xk+1 (for which
f(xk+1) < f(xk)).

• store-all: the list keeps every evaluated point.

In both cases, the points are added sequentially to Xk at the top of the list. Therefore,
in store succ the points in Xk are ordered by increasing objective function values.
When (and if) Xk has reached its predetermined size pmax, a point is removed from
the bottom of the list before adding a new one. The process prevents the current
iterate from being removed from the list (when store all is set to 1 and there occur
several consecutive unsuccessful iterations). See Table 2.1 for more information.

size shessian store-successful store-all

p max 0 2(n+ 1) (n+ 1)(n+ 2)
s min 0 (n+ 1)/2 n+ 1
s max 0 n+ 1 n+ 1
p max 1 4(n+ 1) 8(n+ 1)
s min 1 n 2n+ 1
s max 1 2n+ 1 2n+ 1

Table 2.1
Sizes of the list Xk and of the set Yk.

2.7. Cache. As a pattern search method, SID-PSM minimizes the objective func-
tion by sampling a pattern of points lying in a rational lattice. As a consequence, the
same point can be evaluated more than once. To avoid the occurrence of these kind
of situations, a cache option is available for use in SID-PSM (and can be set in the
parameters.m file).

Before computing the objective function value at a new point, SID-PSM scans a
list of points to see whether the current point has been already evaluated. In one of
the implemented options, the cache list is equal to Xk, the list of points stored for
simplex derivatives computation. In another option, a totally independent list is used
to store all the previous evaluated points (within a maximum predetermined size).
The point comparisons are made using the `∞–norm.

2.8. Economic options. Checking Λ-poisedness can be a computationally ex-
pensive task if implemented in a way where points are checked sequentially one by
one. The economic variable in the parameters.m file allows a block Λ-poisedness
checking, before starting the pointwise sequential process. Another possibility is to
combine the block checking with the use of the QR decomposition for testing the

8

Λ-poisedness condition (instead of applying the more expensive SVD decomposition).
See Section 6 for more details.

3. Installing SID-PSM. SID-PSM (version 1.3) is freely available for research,
educational or commercial use under the terms of the GNU lesser general public
license. Currently, SID-PSM only runs in MATLAB. The code requires approximately
650Kb of hard disk space.

To get SID-PSM (version 1.3), the user just needs to go to

http://www.mat.uc.pt/sid-psm

and send an email requesting the code. After saving the file sid psm 1.3.tar.gz to
the disk drive, if the user is running the code on an Unix/Linux platform then the
following commands should be executed:

gunzip -c sid psm 1.3.tar.gz | tar xvf -

In a Windows platform the user should use Unzip to unpack the compressed file.
A directory named sid psm 1.3 will be created, either in Windows or Unix/Linux

operating systems. This directory must be moved to a working directory in the
MATLAB tree. Alternatively, the MATLAB path could be updated accordingly.

If you plan to use the current search option in SID-PSM, based on MFN models,
then you need a solver for the solution of the trust-region subproblems. One alterna-
tive is to to use the MATLAB function trust.m, part of the Optimization toolbox.
Another alternative, which requires a Fortran compiler, is the Fortran subroutine
dgqt from MINPACK2 [15] which is provided in the directory sid psm 1.3.

In the directory sid psm 1.3 there are the following files:

Documentation files and MATLAB examples

driver const.m A driver for constrained problems.
driver unconst.m A driver for unconstrained problems.
README.txt A file of basic instructions concerning

installation and running issues.
sid psm manual.pdf A version of this manuscript.

User provided MATLAB files

func f.m To compute the value of the objective function.
func const.m To compute the values of the constraint functions.
grad const.m To compute the gradients of the constraint functions.

9

http://www.mat.uc.pt/sid-psm

Optimizer MATLAB files

domain.m To check the feasibility of a given point.
gen.m To compute the positive spanning set to be used

by the pattern search method.
grad act.m To determine the approximated active constraints.
lambda poised.m To compute a Λ-poised set from a given set

of points.
match point.m To check if a point has been previously evaluated.
mesh proc.m To update the mesh size parameter.
order proc.m To reorder the columns of a given matrix according

to the angles between them and a given vector.
parameters.m A file with default values for the parameters to be

used by SID-PSM.

proj ort.m To compute the orthogonal projection of a given point
on a feasible region defined by bounds on the problem
variables.

prune dir.m To prune the columns of a given matrix according
to the angles between them and a given vector.

quad Frob.m To compute a quadratic interpolation model
for the objective function, in the underdetermined
case by minimizing the Frobenius norm of the
Hessian matrix.

sid psm.m The main program. Applies a pattern search method
to the user’s problem.

simplex deriv.m To compute simplex derivatives from a given set of
points.

4. Running SID-PSM. Before running SID-PSM, the user should provide the nec-
essary information about the objective function in the file func f.m. Additionally,
if there are any constraints, the user must supply the corresponding information in
the files func const.m and grad const.m (the latter file can be omitted when only
variable bounds are present). Next, at the directory sid psm 1.3, the user should
type the following calling sequence:

[x final,f final,histout] =sid psm(x initial,const,output)

where x final provides the final iterate computed by the algorithm and f final the
corresponding objective function value. The matrix histout stores the counter for
function evaluations (first column) and the corresponding function values (second col-
umn), and is particularly useful to plot the history of the minimization process:

plot(histout(:,1),histout(:,2))

MATLAB allows sid psm to be called with fewer output arguments, or with none as in:

sid psm(x initial,const,output)

The following data has to be provided:

• x initial (the initial point to start the optimizer);

10

• const (0 if the problem is unconstrained, 1 if the problem has general con-
straints; 2 if the constraints are only bounds);

• output (0 for no output on screen and on a file, 1 for a short screen and file
output, 2 for a more detailed screen and file output).

For a quick start, or to confirm that the SID-PSM installation was completed
successfully, the user can run the drivers driver unconst.m or driver const.m.

The first of these m-files applies SID-PSM to solve the unconstrained problem

min
(x1,x2)∈R2

(x2 − x2
1)2.

The user can type the following calling sequence, appropriated for unconstrained min-
imization (const = 0):

sid psm([-1.2;1],0,1)

The initial point considered is [-1.2;1]. The optimizer uses the default options
specified in the file parameters.m (see Section 5). By setting output = 1 in the
calling sequence, a short output report, like the one reproduced in Appendix A, is
presented both at the screen and in a text file, sid psm report.txt (stored under
the directory sid psm 1.0).

The driver const.m file addresses a constrained version of the above minimiza-
tion problem

min
(x1,x2)∈R2

(x2 − x2
1)2 s.t. − 2 ≤ x1 ≤ 0 and x2 ≤ 1.

The user could type now the calling sequence for the general constrained case (const
= 1):

sid psm([-1.2;1],1,2)

The main difference in the output, by having set output = 2 in the calling sequence,
is that now are reported the number of function evaluations computed at each itera-
tion, the number of approximated active constraints, and the values of three binary
variables identifying Λ-poisedness success, iteration success, and search step success
(see Appendix B). Additionally, the sid psm report.txt file records the iterates
computed during the optimization process. Again, default values for the optimizer
parameters are given in parameters.m (see Section 5).

If all the problem constraints are bounds, as in the example above, then the user
can type the following calling sequence

sid psm([-1.2;1],2,2)

where const = 2. With this option, at the search step of the algorithm, when the
minimizer of the MFN model is not feasible, it is considered its orthogonal projection
onto the feasible region. Also, the positive spanning set to be considered for polling
is fixed accross the iterations and, based on global convergence considerations, should
always include the coordinate directions. Appendix C reports the output obtained
for the constrained version of the problem considered.

5. Parameters MATLAB file. The algorithmic strategies (including order

option, search option, mesh option, stop grad) to be used by the optimizer as well
as the values of some constants, parameters, and tolerances which can be user modified

11

are recorded in the file parameters.m. Appendix D gives a detailed description of
each one of these variables, of their ranges, and of the default values considered.

6. Overview of SID-PSM MATLAB files. In this section, we give a detailed
description of each one of the program files, in particular of the data that the user
should provide in order to solve a problem.

6.1. User provided files.

6.1.1. func f.m. This function computes the value of the objective function at
a point specified by the optimizer. The calling sequence is

[f] = func f(x)

6.1.2. func const.m. It computes the values of the functions defining the con-
straints ci(x) ≤ 0, i = 1, . . . ,m, at a point provided by the optimizer. The function
returns a vector storing the constraints values. The calling sequence is

[c const] = func const(x)

6.1.3. grad const.m. This function computes the gradients of the functions
defining the constraints ci(x) ≤ 0, i = 1, . . . ,m, in a columnwise fashion. The calling
sequence is

[grad c] = grad const(x)

6.2. Optimizer files.

6.2.1. domain.m. This function checks the feasibility of a given point. The
result is a binary variable representing feasibility and a vector storing the values of
the functions defining the constraints at the given point. It calls func const.

6.2.2. gen.m. Function gen.m computes a positive spanning set for Rn, when
the problem to be solved is unconstrained, when only bound constraints are present,
or when there are no approximated active constraints. Otherwise, it computes a
set of positive generators for the tangent cone defined by the approximated active
constraints gradients. This function also detects any degenerated situation (numerical
linear dependence of the constraints gradients). It is also possible to compute a dense
set of directions in the unit sphere, which can be used both for unconstrained and
constrained optimization.

The input parameters of gen.m are the number of variables of the problem, the
tolerance for detecting degenerated situations, the number of approximated active
constraints, and a matrix storing columnwise the gradients of the functions defining
these constraints. Variable const allows the distinction between unconstrained and
constrained cases.

In the unconstrained case, or when there are no approximated active constraints,
and a dense set of directions was not required, SID-PSM provides a number of possible
positive spanning sets: the minimal positive basis [−e I], where e is a vector of ones
and I stands for the identity matrix; the maximal positive basis [I −I]; the positive
spanning set [e −e I −I], and a positive basis with angles of uniform amplitude among
vectors. The selection of the positive spanning set to be used is made by setting the
value of pss in parameters.m.

12

For bound-constrained optimization, the positive spanning set must conform to
the geometry of the feasible region, and thus only the possibilities [I −I] and [e −e I
−I], which include the 2n coordinate directions, are allowed.

In the general constrained case, again when no density is required, if the number
of the approximated active constraints does not exceed the problem dimension, a
set of positive generators for the tangent cone defined by the approximated active
constraints gradients is computed. The implementation is made using the SVD of
the matrix storing columnwise the appropriated gradients, following the algorithm
described in [14].

Any degenerated situation resulting from numerical linear dependence of the
gradients of the approximated active constraints halts execution of the optimizer
SID-PSM.

6.2.3. grad act.m. Computes the approximated active constraints at a point
provided by the optimizer. A constraint ci(x) ≤ 0 is said to be approximated active
at a point x, for a tolerance value ε, if |ci(x)| ≤ ε.

The input parameters are the tolerance ε, the current point x, and a vector storing
the values of the constraints. The function returns a matrix whose columns are the
gradients of the functions defining the approximated active constraints as well as an
integer variable representing the number of approximated active constraints. It calls
grad const. The tolerance ε is updated as reported in Figure 2.1.

6.2.4. lambda poised.m. Given a matrix X storing the points columnwise and a
vector Fvalues storing the corresponding function values, the function lambda poised

tries to compute a Λ-poised set, with a number of points between smin and smax.
The variable shessian specifies testing linear Λ-poisedness (when shessian = 0),
testing quadratic Λ-poisedness (when shessian = 1) or testing linear Λ-poisedness
when quadratic Λ-poisedness has failed (when shessian = 2).

After verifying that the set has the minimum number of points required, the set
X is reduced to the subset Y of points within a distance of ∆ of the current iterate
(see Figure 2.1). If this subset does not have the minimum number of points required
then lambda poised returns unsuccessful. Otherwise, the Λ-poised set computation
begins.

If economic is equal to 1 or to 2, then block Λ-poisedness is tested, first for
the whole subset Y (or for its first smax columns, when the maximum number of
points allowed in the Λ-poised set is smaller than the total number of columns in
the matrix Y). If the Λ-poisedness condition is not satisfied then a new block test is
performed, this time considering only the first smin columns of the matrix Y .

When block checking is not specified (economic = 0) or when the blocks of points
considered did not satisfy the Λ-poisedness condition, a sequential process for Λ-poised
set computation is initialized. One by one, until all the columns of the matrix Y have
been tried or the smax number has been achieved, the columns of Y are tested for
Λ-poisedness. At each iteration of this sequential process, a new set is formed by
including the next column in the candidate Λ-poised set. If this new set is not Λ-
poised, then the column is discarded and the set is not updated. When the sequential
process ends, it is checked if the final Λ-poised set Y has the minimum number of
points required (smin).

The Λ-poisedness condition is checked using a condition like ‖Y −1‖ ≤ Λ, where Λ
is a fixed constant defined in the file sid psm.m through the variable lambda. When
economic = 2, this condition is tested in an approximated manner. A QR decompo-
sition of Y is computed and the diagonal matrix formed by the diagonal elements of

13

the resulting triangular matrix R is used instead of Y when checking the Λ-poisedness
condition.

The function lambda poised.m returns a variable (poised) that assumes values 0,
1, or 2, meaning that Λ-poisedness could not be achieved, or that a linear or quadratic
Λ-poised set was identified, respectively. In these two last cases it also returns the
Λ-poised set Y and the corresponding objective function values.

6.2.5. match point.m. This function scans a list of previously evaluated points
in order to find a point in the list that matches a given point (for which no function
evaluation has yet been computed). The comparison is made within a given tolerance
value (tol match). The `1–norms of the points in the list are also stored. Points that
dist more than tol match (in the `1–norm) from the point to be checked are removed
from the list. It is only after this first filtering that a rigorous comparison is made,
again using the same tolerance value, but this time considering the `∞–norm. The
first point in the list satisfying the above mentioned criterion is returned as well as
its corresponding function value. A binary variable (match) indicates if a match was
found.

6.2.6. mesh proc.m. Function mesh proc.m updates the mesh size parameter
according to the option specified by the variable mesh option, as described in Sub-
section 2.3. The mesh expansion and contraction coefficients (phi and theta, re-
spectively, both defined in the file parameters.m) should be provided as input to the
function, as well as the simplex derivatives when the update is based on a sufficient
decrease condition.

6.2.7. order proc.m. This function reorders the columns of a matrix, when
regarded as vectors, according to the angles that they make with a given vector (by
decreasing order of the corresponding cosines). It returns the reordered matrix and a
vector storing the cosines of the angles between the columns of the reordered matrix
and the vector considered for ordering.

6.2.8. proj ort.m. When the feasible region of the problem is defined using
only bound type constraints, function proj ort computes the orthogonal projection
of a given point onto this feasible region. It call func const and grad const.

6.2.9. prune dir.m. This function prunes the columns of a given matrix, again
regarded as vectors, to the most promising direction or to all the potential de-
scent directions according to the descent indicator used for ordering (pruning = 1 or
pruning = 2, respectively). In the way it is implemented, it requires a previous call
to order proc.m. It returns the pruned matrix.

6.2.10. quad Frob.m. Given a set of points, and the corresponding objective
function values, function quad Frob computes a quadratic interpolation model for
the objective function, as described in Section 2.2. It returns the gradient vector, the
Hessian matrix of the model, and a variable quad which specifies if the model could
be computed or if a previous model should be used.

6.2.11. sid psm.m. It is the main program file and it applies a pattern search
method to a problem, as described in Section 2. The user modifiable parameters
are given in the file parameters.m, described in Appendix D. Information about the
command line and the output can be found in Section 4. The values of the constants
used in the computation of the Λ-poised set are given by:
The values for the parameters s min, s max, and p max are given in Table 2.1.

14

Λ-poised set computation
Variable Default value

lambda 100
sigma 1 if unsuccess

2 if success and mesh size is unchanged
4 if success and mesh size is doubled

The main program calls domain, func f, gen, grad act, lambda poised,
match point, mesh proc, order proc, proj ort, prune dir, quad Frob, and
simplex deriv.

6.2.12. simplex deriv.m. Given a set of points, this function computes the
simplex gradient and, when appropriately specified, it also computes a diagonal form
of the simplex Hessian. In the overdetermined case, the system defining the simplex
derivatives is solved in the least-squares sense. When the number of points in the
Λ–poised set is not sufficient for defining a determined system it is computed either
a minimum norm solution or the closest solution to the previously computed simplex
derivatives (variable min norm set to 1 or 0, respectively, in the file parameters.m). A
vector is returned where the first n positions store the simplex gradient components,
and, if required, the remaining n store the elements of the diagonal approximation to
the simplex Hessian matrix.

REFERENCES

[1] MATLAB R©, The MathWorksTM.
[2] M. A. Abramson, NOMADm version 4.6 User’s Guide, 2008.
[3] M. A. Abramson, C. Audet, and J. E. Dennis Jr., Generalized pattern searches with deriva-

tive information, Math. Program., 100 (2004), pp. 3–25.
[4] C. Audet and J. E. Dennis Jr., Analysis of generalized pattern searches, SIAM J. Optim., 13

(2002), pp. 889–903.
[5] A. R. Conn, K. Scheinberg, and L. N. Vicente, Geometry of interpolation sets in derivative

free optimization, Math. Program., 111 (2008), pp. 141–172.
[6] , Geometry of sample sets in derivative free optimization: Polynomial regression and

underdetermined interpolation, IMA J. Numer. Anal., 28 (2008), pp. 721–748.
[7] , Introduction to Derivative-Free Optimization, MOS-SIAM Series on Optimization,

SIAM, Philadelphia, 2009.
[8] A. L. Custódio, J. E. Dennis Jr., and L. N. Vicente, Using simplex gradients of nonsmooth

functions in direct search methods, IMA J. Numer. Anal., 28 (2008), pp. 770–784.
[9] A. L. Custódio, H. Rocha, and L. N. Vicente, Incorporating minimum Frobenius norm

models in direct search, Comput. Optim. and Appl., 46 (2010), pp. 265–278.
[10] A. L. Custódio and L. N. Vicente, Using sampling and simplex derivatives in pattern search

methods, SIAM J. Optim., 18 (2007), pp. 537–555.
[11] G. A. Gray and T. G. Kolda, Algorithm 856: APPSPACK 4.0: Asynchronous parallel

pattern search for derivative-free optimization, ACM Trans. Math. Software, 32 (2006),
pp. 485–507.

[12] P. D. Hough, T. G. Kolda, and V. J. Torczon, Asynchronous parallel pattern search for
nonlinear optimization, SIAM J. Sci. Comput., 23 (2001), pp. 134–156.

[13] T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization by direct search: New perspectives
on some classical and modern methods, SIAM Rev., 45 (2003), pp. 385–482.

[14] R. M. Lewis and V. Torczon, Pattern search methods for linearly constrained minimization,
SIAM J. Optim., 10 (2000), pp. 917–941.

[15] J. J. Moré, D. C. Sorensen, K. E. Hillstrom, and B. S. Garbow, The MINPACK Project,
in Sources and Development of Mathematical Software, W. J. Cowell, ed., Prentice-Hall,
NJ, 1984, pp. 88–111. http://www.netlib.org/minpack.

15

http://www.netlib.org/minpack

[16] V. Torczon, On the convergence of pattern search algorithms, SIAM J. Optim., 7 (1997),
pp. 1–25.

[17] P. Tseng, Fortified-descent simplicial search method: a general approach, SIAM J. Optim., 10
(1999), pp. 269–288.

16

Appendix A. Output when output = 1.

Iteration Report:

iter f value alpha
0 +1.93600000e-001 +1.20000000e+000
1 +1.93600000e-001 +6.00000000e-001
2 +1.59873890e-001 +6.00000000e-001
3 +4.63975073e-003 +6.00000000e-001
4 +4.63975073e-003 +3.00000000e-001
5 +1.03007230e-003 +3.00000000e-001
6 +1.03007230e-003 +1.50000000e-001
7 +1.03007230e-003 +7.50000000e-002
8 +2.53563073e-005 +7.50000000e-002
9 +2.53563073e-005 +3.75000000e-002
10 +1.75977419e-005 +3.75000000e-002
11 +3.87774104e-006 +3.75000000e-002
12 +1.18954131e-007 +3.75000000e-002
13 +1.18954131e-007 +1.87500000e-002
14 +1.18954131e-007 +9.37500000e-003
15 +1.18954131e-007 +4.68750000e-003
16 +9.65872839e-009 +4.68750000e-003
17 +1.25865660e-009 +4.68750000e-003
18 +8.12074274e-010 +4.68750000e-003
19 +8.12074274e-010 +2.34375000e-003
20 +3.09040366e-011 +2.34375000e-003
21 +3.09040366e-011 +1.17187500e-003
22 +1.68208691e-011 +1.17187500e-003
23 +5.23374888e-013 +1.17187500e-003
24 +5.23374888e-013 +5.85937500e-004
25 +1.09312572e-014 +5.85937500e-004
26 +1.09312572e-014 +2.92968750e-004
27 +1.09312572e-014 +1.46484375e-004
28 +2.13446579e-015 +1.46484375e-004
29 +2.13446579e-015 +7.32421875e-005
30 +1.02393000e-015 +7.32421875e-005
31 +1.02393000e-015 +3.66210937e-005
32 +4.62715421e-016 +3.66210937e-005
33 +5.91032839e-018 +3.66210937e-005
34 +1.77906824e-018 +3.66210937e-005
35 +1.77906824e-018 +1.83105469e-005
36 +2.07903412e-019 +1.83105469e-005
37 +2.07903412e-019 +9.15527344e-006

Final Report:

Elapsed Time = 1.000e-001
#iter #isuc #fevals final f value final alpha

37 20 145 +2.07903412e-019 +9.15527344e-006

Minimum Point:
6.97216390e-001
4.86110695e-001

17

Appendix B. Output when output = 2.

Iteration Report:

iter succ #fevals f value alpha active search poised
0 – – +1.93600000e-001 +1.20000000e+000 – – –
1 0 6 +1.93600000e-001 +6.00000000e-001 – 0 1
2 1 1 +1.59873890e-001 +6.00000000e-001 – 1 1
3 1 2 +4.63975073e-003 +6.00000000e-001 – 0 1
4 0 7 +4.63975073e-003 +3.00000000e-001 – 0 1
5 1 3 +1.03007230e-003 +3.00000000e-001 – 0 1
6 0 7 +1.03007230e-003 +1.50000000e-001 – 0 1
7 0 7 +1.03007230e-003 +7.50000000e-002 – 0 1
8 1 4 +2.53563073e-005 +7.50000000e-002 – 0 1
9 0 7 +2.53563073e-005 +3.75000000e-002 – 0 1
10 1 1 +1.75977419e-005 +3.75000000e-002 – 1 1
11 1 1 +3.87774104e-006 +3.75000000e-002 – 1 1
12 1 1 +1.18954131e-007 +3.75000000e-002 – 1 1
13 0 7 +1.18954131e-007 +1.87500000e-002 – 0 1
14 0 7 +1.18954131e-007 +9.37500000e-003 – 0 1
15 0 7 +1.18954131e-007 +4.68750000e-003 – 0 1
16 1 1 +9.65872839e-009 +4.68750000e-003 – 1 1
17 1 1 +1.25865660e-009 +4.68750000e-003 – 1 0
18 1 1 +8.12074274e-010 +4.68750000e-003 – 1 0
19 0 7 +8.12074274e-010 +2.34375000e-003 – 0 1
20 1 1 +3.09040366e-011 +2.34375000e-003 – 1 1
21 0 7 +3.09040366e-011 +1.17187500e-003 – 0 1
22 1 1 +1.68208691e-011 +1.17187500e-003 – 1 1
23 1 1 +5.23374888e-013 +1.17187500e-003 – 1 1
24 0 7 +5.23374888e-013 +5.85937500e-004 – 0 1
25 1 1 +1.09312572e-014 +5.85937500e-004 – 1 1
26 0 7 +1.09312572e-014 +2.92968750e-004 – 0 1
27 0 7 +1.09312572e-014 +1.46484375e-004 – 0 1
28 1 1 +2.13446579e-015 +1.46484375e-004 – 1 1
29 0 7 +2.13446579e-015 +7.32421875e-005 – 0 1
30 1 1 +1.02393000e-015 +7.32421875e-005 – 1 1
31 0 7 +1.02393000e-015 +3.66210937e-005 – 0 1
32 1 1 +4.62715421e-016 +3.66210937e-005 – 1 1
33 1 1 +5.91032839e-018 +3.66210937e-005 – 1 1
34 1 1 +1.77906824e-018 +3.66210937e-005 – 1 1
35 0 7 +1.77906824e-018 +1.83105469e-005 – 0 1
36 1 1 +2.07903412e-019 +1.83105469e-005 – 1 1
37 0 7 +2.07903412e-019 +9.15527344e-006 – 0 1

Final Report:

Elapsed Time = 9.300e-002
#iter #isuc #fevals final f value final alpha

37 20 145 +2.07903412e-019 +9.15527344e-006

Minimum Point:
6.97216390e-001
4.86110695e-001

18

Appendix C. Output when const = 2.

Iteration Report:

iter succ #fevals f value alpha active search poised
0 – – +1.93600000e-001 +1.20000000e+000 1 – –
1 0 2 +1.93600000e-001 +6.00000000e-001 1 0 1
2 0 3 +1.93600000e-001 +3.00000000e-001 1 0 1
3 1 2 +3.61000000e-002 +3.00000000e-001 1 0 0
4 1 4 +1.21000000e-002 +3.00000000e-001 0 0 1
5 0 7 +1.21000000e-002 +1.50000000e-001 0 0 1
6 1 1 +4.80406097e-004 +1.50000000e-001 0 1 1
7 0 7 +4.80406097e-004 +7.50000000e-002 0 0 1
8 1 1 +1.17588213e-004 +7.50000000e-002 0 1 1
9 0 7 +1.17588213e-004 +3.75000000e-002 0 0 1
10 1 1 +2.54082673e-006 +3.75000000e-002 0 1 1
11 0 7 +2.54082673e-006 +1.87500000e-002 0 0 1
12 0 7 +2.54082673e-006 +9.37500000e-003 0 0 1
13 1 1 +1.25177531e-007 +9.37500000e-003 0 1 1
14 1 1 +3.38089322e-009 +9.37500000e-003 0 1 1
15 0 7 +3.38089322e-009 +4.68750000e-003 0 0 1
16 0 7 +3.38089322e-009 +2.34375000e-003 0 0 1
17 1 1 +4.17488179e-010 +2.34375000e-003 0 1 1
18 1 1 +7.38763265e-011 +2.34375000e-003 0 1 1
19 0 7 +7.38763265e-011 +1.17187500e-003 0 0 1
20 1 1 +2.78287341e-011 +1.17187500e-003 0 1 1
21 0 7 +2.78287341e-011 +5.85937500e-004 0 0 1
22 1 1 +6.84310567e-012 +5.85937500e-004 0 1 1
23 0 7 +6.84310567e-012 +2.92968750e-004 0 0 1
24 1 1 +2.42624632e-017 +2.92968750e-004 0 1 1
25 0 7 +2.42624632e-017 +1.46484375e-004 0 0 1
26 0 7 +2.42624632e-017 +7.32421875e-005 0 0 1
27 0 7 +2.42624632e-017 +3.66210937e-005 0 0 1
28 0 7 +2.42624632e-017 +1.83105469e-005 0 0 1
29 1 1 +4.61285763e-020 +1.83105469e-005 0 1 1
30 1 1 +1.65096792e-022 +1.83105469e-005 0 1 1
31 0 7 +1.65096792e-022 +9.15527344e-006 0 0 1

Final Report:

Elapsed Time = 7.800e-002
#iter #isuc #fevals final f value final alpha

31 14 129 +1.65096792e-022 +9.15527344e-006

Minimum Point:
-5.01609735e-001
2.51612326e-001

19

Appendix D. Variables set in file parameters.m.
Variable Default value Range Description

Algorithmic strategies
always 1 0,1 1 if a quadratic model should always

be considered at the search step of
the algorithm, once it has been
computed; 0 otherwise.

cache 0 0,1,2 0 if no point comparisons are
performed prior to function
evaluation; 1 if all the points
where the objective function
has been evaluated are used
in point comparisons; 2 if the
only points used for comparisons
are the ones stored for simplex
derivatives computation.

economic 0 0,1,2 0 if a sequential process is used
when computing a Λ-poised
set; 1 if block Λ-poisedness
is checked before starting the
sequential process; 2 if block
checking is allowed and
additionally the test for the
Λ-poisedness condition is
based on the QR decomposition.

mesh option 0 0,1,2,3 0 if mesh size is increased
in every successful iteration;
1 if the mesh update for
successful iterations is based
on a sufficient decrease condition,
allowing mesh contractions; 2 if
the mesh update for successful
iterations is based on a sufficient
decrease condition, but
contractions are not allowed; 3 if
the mesh size is maintained in
successful iterations, except when
two consecutive successful iterations
are found using the same direction,
where the mesh size is increased.

min norm 1 0,1 1 if a minimum norm solution is
computed when solving
underdetermined systems
corresponding to simplex
derivatives calculations;
0 if the closest solution
to the previously calculated
simplex derivatives is
computed in this situation.

20

order option 5 0 to 9 0 if the vectors in the poll set are tested at each
iteration in a consecutive order of storage; 1 if
the reordering of the poll directions is based on a
simplex descent indicator; 2 if dynamic polling is
considered, testing first the last successful poll
direction; 3 if a random order is considered for
the poll set; 4 if a consecutive, cycling order of
storage is considered through all the iterations
(only available for unconstrained optimization);
5 ordering strategy identical to 4, except when
Λ-poisedness is achieved. In this case the
poll directions are ordered according to the
simplex descent indicator; 6 if the reordering of
the poll directions is based on a model descent
indicator; 7 if the reordering of the poll
directions is based on the model values; 8
ordering strategy identical to 4, except when
a model is available for use. In this case
the poll directions are ordered according to
the model descent indicator; 9 ordering
strategy identical to 4, except when a model
is available for use. In this case the poll
directions are ordered according to the model
values.

pruning 0 0,1,2 0 if no pruning is required; 1 if only the most
promising direction is considered for polling;
2 if all the potential descent directions,
according to the descent indicator, are used
for polling.

pss 2 0,1,2,3,4 0 for the minimal positive basis [−e I];
1 for the maximal positive basis [I −I];
2 for the positive spanning set [e −e I −I];
3 for a positive basis with angles of uniform
amplitude among vectors; 4 for an asymptotic
dense set of directions in the unit sphere.

regopt 1 0,1 1 if, at the search step, a regression model is
considered when the number of points in the
interpolation set exceeds the number of points
required for complete quadratic interpolation; 0
if some of the interpolation points are discarded,
in order to only compute determined quadratic
interpolation models.

search option 1 0,1 0 for no search step; 1 for a search step based
on a minimum Frobenius norm model.

shessian 0 0,1,2 0 if the simplex derivatives to be computed
correspond to a simplex gradient; 1 if the simplex
derivatives to be computed correspond to a
simplex gradient and a diagonal simplex Hessian;
2 if one first attempts shessian = 1 and, in
case of failure, then tries shessian = 0.

21

store all 1 0,1 1 if all function evaluations are
stored for simplex derivatives and
model computations; 0 if the only
points stored with this purpose
are the ones corresponding to
successful iterations.

trs solver 0 0,1 1 if trs routine, based on dgqt

solver of MINPACK2 is used for
solving the trust-region
subproblems; 0 if the solution of
the trust-region subproblems is
computed using trust.m Matlab
function.

Stopping criteria
stop alfa 1 0,1 1 if the stopping criterion is based

on the mesh size parameter;
0 otherwise.

tol alfa 10−5]0,+∞[Lowest value allowed for the mesh
size parameter.

stop fevals 0 0,1 1 if the stopping criterion is
based on a maximum number of
function evaluations; 0 otherwise.

fevals max 1500 N Maximum number of function
evaluations allowed.

stop grad 0 0,1,2 0 if the stopping criterion does
not involve any simplex gradients;
1 if the stopping criterion is
related to the norm of a scaled
simplex gradient; 2 if the
stopping criterion is based on
the signs of the approximated
directional derivatives (computed
using simplex gradients).

tol grad 10−5]0,+∞[Convergence tolerance when the
stopping criterion is based on
simplex gradients.

stop iter 0 0,1 1 if the stopping criterion is based
on a maximum number of
iterations; 0 otherwise.

iter max 1500 N Maximum number of iterations
allowed.

Mesh size parameters
alfa max(1, ‖xinitial‖∞)]0,+∞[Initial mesh parameter value.

(defined as in Moré and Wild).
phi 1 see [4] Coefficient for mesh expansion.
theta 0.5 see [4] Coefficient for mesh contraction.
Constrained problems
epsilon ini 10−1]0,+∞[Initial value for considering a

constraint as approximated
active.

22

	Introduction
	The SID-PSM algorithm
	Ordering
	Search step
	Mesh size parameter update
	Stopping criteria
	Pruning
	Storing points for simplex derivatives
	Cache
	Economic options

	Installing SID-PSM
	Running SID-PSM
	Parameters MATLAB file
	Overview of SID-PSM MATLAB files
	User provided files
	func_f.m
	func_const.m
	grad_const.m

	Optimizer files
	domain.m
	gen.m
	grad_act.m
	lambda_poised.m
	match_point.m
	mesh_proc.m
	order_proc.m
	proj_ort.m
	prune_dir.m
	quad_Frob.m
	sid_psm.m
	simplex_deriv.m

