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The market

I Two dates: t = 0, t = 1

I Finite sample space

Ω = {ω1, ω2, . . . , ωm}

I n securities S1,S2, . . . ,Sn

I S0 =
(
S1

0 ,S2
0 , . . . ,Sn

0

)
is the n-vector of prices at time t = 0

I S1 =
(
S1

1|S2
1| . . . |Sn

1

)
is a mxn matrix.
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Portfolios of securities

I At time t = 0 it is possible to take any position (”long” or
”short”) on the n securities.

I Let x be a portfolio of securities

x =

 x1
...
xn


The cost (at t = 0) of x is S0x (a scalar)
The payoff (at t = 1) of x is S1x (m-vector)
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B-Arbitrages

I Let us find the minimum cost portfolio with a positive payoff

I The Primal Problem (P)

min
x

S0x

S1x ≥ 0

I (P) is feasible, hence it is either bounded or unbounded

I If (P) is unbounded it is possible to realize an initial earning
(S0x < 0), with no future liabilities (S1x ≥ 0). This is called
”arbitrage” (of type B).

I (P) bounded ⇔ No B-arbitrages

I B-arbitrages are not consistent with economic equilibrium
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The Dual problem

I The Dual of (P) is the following LP (D)

max
y

y · 0

S1
′y = S0

y ≥ 0

I (D) feasible ⇔ (P) bounded ⇔ No B-arbitrages
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A-Arbitrages

I There is a second type of arbitrage: a free lottery ticket.

I Portfolio x is an A-arbitrage if

S0x = 0

S1x ≥ 0

S1x(ωi) > 0 for some ωi ∈ Ω

I A-arbitrages are not consistent with economic equilibrium

I A model is ”arbitrage-free” is there are neither A nor B
arbitrages.
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Arbitrage-free models

I A market model is arbitrage-free ⇔ There is a strictly positive
solution to

S1
′y = S0

y ≥ 0

I Define B0 =
∑m

i=1 yi

I q = y/B0 is a probability on Ω

I q is called ”risk-neutral” because

S0 = B0E
qS1

I No arbitrage ⇔ ∃q ”risk-neutral”
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Pricing contingent claims

I Assume there are no arbitrages

I A contingent claim b is a random variable on Ω.

I A portfolio x ”replicates” b if

S1x = b

I A claim is ”attainable” if it admits a replicating portfolio

I The no-arbitrage price of an attainable claim b is

S0x = x · B0E
qS1 = B0E

qS1x = B0E
qb
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Complete markets

I A market is ”complete” if all claims are attainable

I Market is complete ⇔ lin < S1
1, . . . ,S

n
1 >= <m

I That is n ≥ m and
rank(S1) = m

I The Dual (D) has a unique solution

I Completeness (and No-arbitrages) ⇔ ∃!q
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Incomplete markets

I Suppose a claim b is not attainable

I We can determine the minimum price V + for a
”super-replicating” strategy

I This is called the ”buyer’s” problem: if one buys the claim at
any price greater than V + there is an arbitrage opportunity
for the writer of the option

I Analogously, the ”writer’s” problem finds the maximum price
V− for a sub-replicating strategy
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The buyer’s problem

I Consider the LP

V + = min
x

S0x

S1x ≥ b

I Its dual is

max
y

b′y

S1
′y = S0

y ≥ 0

I Therefore
V + = max

q
B0E

qb
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Arbitrage-free prices of non-attainable claims

I The analogous ”seller’s problem” yields to

V− = min
q

B0E
qb

I Any price V , such that V− ≤ V ≤ V + is an arbitrage free
price (all inequalities are strict if V− < V +)

I A claim is attainable iff it has a unique arbitrage-free price
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Market frictions I

I Suppose there are different bid-ask prices

I The primal problem (P) becomes

min
xa,xb

S0
axa − S0

bxa

S1
axa − S1

bxb ≥ 0

xa ≥ 0

xb ≥ 0
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Market frictions I

I The dual problem is

max
y

y · 0

S0
a ≤ S1

′y ≤ S0
a

y ≥ 0

I No arbitrage ⇔ a risk-neutral measure separates bid and ask
prices
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Single-period: main results

I No arbitrages ⇔ There is a risk-neutral measure

I No Arb. + Completeness ⇔ There is a unique risk-neutral
measure

I If there are no arbitrages

I b attainable ⇔ V0(b) = B0Eqb,∀q
I b not attainable ⇒ V−(b) ≤ V(b) ≤ V+(b)
I ∃q separating bid and ask prices
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The market

I T dates: t = 0, 1, . . . ,T

I Probability space (Ω,F , {Ft}T
t=0 ,P)

I n securities S1,S2, . . . ,Sn

I S i is a (discrete-time) stochastic process

I S i
t is Ft-measurable

I Assume S1
t > 0,∀t. S1 is called ”numeraire”. Define the

”discounted process” Z = S/S1.
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Dynamic portfolios

I A ”dynamic portfolio” (or ”market strategy”) is a stochastic
process θ. θi

t is the number of shares of security S i held
between t − 1 and t. θi

t is Ft−1-measurable

I The discounted value of the portfolio at time t is θt · Zt

I A portfolio strategy is ”self-financing” if

θt · Zt = θt+1 · Zt
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Arbitrages

I Because there is a numeraire, any B-arbitrage can be
transformed into an A-arbitrage.

I A dynamic portfolio θ is an arbitrage if

EθT · ZT > 0

θ1 · Z0 = 0

θt · Zt = θt+1 · Zt, t = 0, . . . ,T − 1

θT · ZT ≥ 0
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The arbitrage problem

I The arbitrage problem can be set in many equivalent ways.
Here we follow the non-recombining tree representation (King
(2002)).

I Denote Nt the set of states at time t. For any state s ∈ Nt ,
let a(s) ⊂ Nt−1 be the parent of s and let c(s) ⊂ Nt+1 be
the set of childs of s.

I To find arbitrages one can solve

max
θ

∑
s∈NT

psZs · θs

Z0 · θ0 = 0 : y0

Zs · [θs − θa(s)] = 0 (s ∈ Nt , t ≥ 1) : ys

Zs · θs ≥ 0 (s ∈ NT ) : ws
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Lagrangian

I The Lagrangian is

L(θ; y ,w) =
∑

s∈NT

psZs · θs −
T∑

t=0

∑
s∈Nt

ysZs · [θs − θa(s)]

−
∑

s∈NT

wsZs · θs , (ws ≤ 0)

=
∑

s∈NT

[ps − ws − ys ]Zs · θs −

T−1∑
t=0

∑
s∈Nt

[ysZs −
∑

m∈c(s)

ymZm] · θs

(ws ≤ 0)
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Dual problem

I From the Lagrangian follows the Dual problem

ws ≤ 0 (s ∈ NT )

(ps − ws − ys)Zs = 0 (s ∈ NT )

ysZs −
∑

m∈c(s)

ymZm (s ∈ Nt , t ≤ T − 1)

I There are no arbitrages if and only if the Dual is feasible.

I No arbitrages ⇔ ∃q ∼ p s.t. Zt−1 = Eq[Zt|Nt−1]

I The risk neutral measure q does not depend on p.
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Discrete-time: main results

I Same results as in the single-period case

I Fundamental Theorem of Arbitrage:
No arbitrage ⇔ There is an equivalent martingale measure
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Continuous time models

I For infinite times, infinite states models, there are some
complications...

I Most famous example: Black-Scholes model

dSt

St
= µdt + σdZ ,

dBt

Bt
= rdt

I This is a complete model, i.e. there is a unique martingale
measure and all contingent claims are attainable

I Set constraints on trading strategies and determine minimal
super-replication cost
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In the workshop

I Touzi, ”Hedging with controlled sensitivities”

I Bouchard, ”Explicit characterization of the super-replication
strategy in financial markets with partial transaction costs”

I Judice, ”Foundations and applications of Good-Deal pricing in
single-period market models”

I Balbas, ”Outperforming revealed prices in imperfect markets”

I Favero, ”Long and short term arbitrages: A comment on an
example by Pham and Touzi”
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The problem

I Minimize the risk of hedging a contingent claim H when the
market is incomplete

I Stochastic optimization problem with a quadratic objective
function
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A single-period model I

I The model: an asset Xt , t = 0, 1 and a bank account. We
indicate with ξ the shares of X bought at time 0 and by
ηt , t = 0, 1 the money in the bank account. (Assume zero
interest rate).

I Value of portfolio at time t

Vt = ξXt + ηt

I Determine an ”optimal” hedge for a claim with payoff H at
time t = 1.

I Can always get V1 = H by setting

η1 = H − ξX1

I Non-self-financing strategies

Stefano Herzel Optimization in pricing and hedging options
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A single-period model II

I Let Ct be the cumulative cost of the strategy. The initial cost
is

C0 = V0

the additional cost at time t = 1 is

C1 − C0 = η1 − η0

= H − V0 − ξ∆X

I Determine V0 and ξ to minimize the expected quadratic cost

min
V0,ξ

R := E (H − V0 − ξ∆X )2

Stefano Herzel Optimization in pricing and hedging options
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The solution I

I It is a linear regression problem

I Optimal investment strategy

ξ =
Cov [H,∆X ]

Var [∆X ]
=

Cov [H,X1]

Var [X1]

I ”Fair price” of H

V0 = E (H)− ξE (∆X )

I ”Residual” or ”Unhedgeable” risk

Rmin = Var [H] (1− ρ(H,X1))
2
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The solution II

I Note that
C0 = E (C1)

the strategy is ”mean self-financing”.

I All depends on P

I When Rmin = 0 the claim H is attainable, the strategy is
self-financing, the solution does not depend on P.
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A discrete-time model I

I The model: a probability space
(
Ω, {Fk}T

0 ,P
)
,

I One asset Xk , k = 0, 1, . . . ,T and one bank account.

I ξk are the shares of X bought at time k − 1
(Fk−1-measurable, ”predictable”)

I ηk the money in the bank account (Fk -measurable,
”adapted”)

Stefano Herzel Optimization in pricing and hedging options
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A discrete-time model II

I Value of portfolio at time t

Vt = ξtXt + ηt

I The problem: Determine an ”optimal” hedge for a claim with
payoff H at time t = T

I Can always get VT = H

I Non self-financing strategy

Stefano Herzel Optimization in pricing and hedging options
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A discrete-time model III

I Let Ct be the cumulative cost of the strategy,

Ct = Vt −
t∑

j=1

ξj∆Xj

I The ”local risk” at time t is

E [(Ct+1 − Ct)
2|Ft ] = E [(Vt+1 − Vt − ξt+1∆Xt+1)

2|Ft ]

I The solution is determined by backward recursion
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The solution

I The cost process
Ct = Et [Ct+1]

is mean self-financing (i.e., a Martingale)

I The optimal strategy

ξt =
Covt−1

[
H −

∑T
j=t+1 ξj∆Xj ,∆Xt

]
Vart−1[∆Xt ]

ηt = Et [H −
T∑

j=t+1

ξj∆Xj ]− ξtXt
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When X is a martingale

I Follmer and Sondermann (1986)

I Let us assume
Xt = Et [Xt+1]

I Remember that

Ct = Vt −
t∑

j=1

ξj∆Xj

I Since C is also a martingale, V is a martingale and

Vt = EtVT = EtH

Stefano Herzel Optimization in pricing and hedging options
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When X is a martingale

I (Kunita-Watanabe decomposition)

H = V0 +
T∑

j=1

ξH
j ∆Xj + LH

T

where LH is a martingale orthogonal to X, that is

Et−1[∆LH
t ∆Xt ] = 0

I Vt = EtH = V0 +
∑t

j=1 ξH
j ∆Xj + LH

t
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I Local risk

Rt−1 = Et−1 (Ct − Ct−1)
2

= Et−1 (Vt − Vt−1 − ξt∆Xt)
2

= Et−1

(
ξH
t ∆Xt + ∆LH

t − ξt∆Xt

)2

= Et−1(∆LH
t )2 + (ξt − ξH

t )2Et−1(∆Xt)
2

I Hedging strategy
ξt = ξH

t

I Bank account

ηt = Vt − ξH
t Xt

= V0 +
t∑

j=1

ξH
j ∆Xj + LH

t − ξH
t Xt

= Vt−1 − ξH
t Xt−1 + ∆LH

tStefano Herzel Optimization in pricing and hedging options
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When X is a martingale and LH = 0

I In this case

H = V0 +
T∑

j=1

ξH
j ∆Xj

I Rt = 0 ⇒ Ct+1 = Ct = C0

I Bank account
ηt = Vt−1 − ξtXt−1

the strategy can be fixed at the beginning of each period.

I The quantities do not depend on P.

V0 = EP
0 (H)

for any martingale measure P.
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When X is a semi-martingale

I This case is more complicate. It was studied by Schweizer
(1988).

I There exists a decomposition (Follmer-Schweizer)

I Non linear stochastic optimality equation

I In continuous time one possibility is to compute the ”minimal
martingale measure” P̂ and then find

V0 = E P̂
0 (H)

I In general it is not solvable by recursion. Some explicit results
for specific cases.
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Other objective functions

I So far we have considered non-self-financing strategies with
final value equal to H.

I Another possibility is to adopt self-financing strategies and
minimize the final shortfall.

I This results in a problem of projections in linear space.

I The two problems are ”equivalent” when the mean-variance
tradeoff

(Ek−1∆Sk)2

Vark−1∆Sk

is deterministic. (Schall 1994)

I Bertsimas, et al. (2002) propose a DP explicitly solved for
some specific cases
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In this workshop

I Uryasaev: Pricing options in incomplete market.

I Biagini: A unifying framework for utility maximization
problems.

I Consiglio: Evaluation of insurance products with guarantee: A
stochastic programming approach
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Some questions

I Knowing the prices of some options, can we recover the
”risk-neutral probabilities”?

I When are observed prices consistent with no-arbitrage
assumptions?

I Given the prices of some derivatives, what can we say about
the prices of other derivatives on the same asset?

I Knowing the prices of some derivatives, can we get any bound
on the moments of the underlying?

I Assuming the knowledge of the first k moments of the
underlying, can we get any bound on the prices of the
derivatives?

Stefano Herzel Optimization in pricing and hedging options
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From prices to probabilities

I Given the prices of some derivatives, what can we infer about
the distribution of the underlying?

I First approach: If there are Call prices for any strike K ,

c(K ) = B(0,T )

∫ +∞

K
(x − K )q(x)dx

and then
c ′′(K ) = B(0,T ) ∗ q(K )

Stefano Herzel Optimization in pricing and hedging options
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Implied binomial trees, Rubinstein (1994)

I Determine the risk-neutral probability P of a binomial model
which is closer to a ”prior” probability P ′ and consistent with
observed prices.

I Solve the following QP

min
Pj

∑
j

(Pj − P ′j )
2

∑
j

Pj = 1,Pj ≥ 0

Cb
i ≤ vn

∑
j

Pj(Sj − Ki )
+ ≤ C a

i
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I Rubinstein solved the problem for 200-step tree, with SP500
options observed three times a day from 1986 to 1992

I Construct the inner probabilities of the tree. This is an-over
parameterized problem. Some further assumptions are needed.
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Arbitrages for call options

I Let Ci , i = 1, . . . , n be the prices of n call options written on
the same underlying S , with same maturity T and strike
prices Ki .

I Let Πi (s) = (s − Ki )
+ be the payoff of call i when ST = s

I Without making any assumption on the dynamics of S
between 0 and T and on its distribution on T , what can we
say on the prices of the options? Are they ”Arbitrage-free”?

I Is there a portfolio x of options with a positive payoff and a
negative price?

Stefano Herzel Optimization in pricing and hedging options
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Arbitrages for call options

I Let Π(s) := [Π1(s),Π2(s), . . . ,Πn(s)],

min C · x
Π(s)x ≥ 0

I Need to check feasibility only on the nodes

I Obtain a finite LP

I No arbitrage ⇔ C (K ) is positive, decreasing and convex (for
details see H. (2003))
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Bounds on prices (Bertsimas and Popescu, 2000)

I Determine the maximum price of a call compatible with some
observed moments of the underlying

max
q

Eq(X − K )+ =

∫ +∞

0
(x − K )+q(x)dx∫ ∞

0
x iq(x)dx = mi i = 1, . . . , n

q(x) ≥ 0
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Bounds on prices

I The dual is

min
n∑

i=0

yimi

n∑
i=0

yix
i ≥ (x − K )+, ∀x ∈ <+

I Strong duality holds (Isii 1963).
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Bounds on prices

I Using results like The polinomial g(x) =
∑2k

r=0 yrx
r satisfies

g(x) ≥ 0 if and only if there exists a positive semidefinite
matrix X = [xij ]i ,j=0,...,k such that

yr =
∑

i ,j :i+j=r

xij , r = 0, . . . , 2k, X � 0

can show that the dual problem is equivalent to a
semi-definite programming

I In the workshop
I Zuluaga, ”Optimal semi-parametric bounds for European

rainbow options”
I Prieto-Rumeau, ”Pricing exotic options with semidefinite

programming”
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American options

I An option is called ”American” when one can exercise it at
any time before expiration.

I To hedge an American option must consider that the buyer
acts optimally

I It is an optimal stopping time problem

max
τ

Eqf (Sτ )

I For discrete time models can use dynamic programming

I Pennanen and King (2004) show that it can be formulated as
a stochastic LP problem

I In continuous time there are not explicit solutions
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In this workshop

I Byun: Properties of integral equations arising in the valuation
of American options

I Ferulano: Enhanced Monte-Carlo methods for American
options
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Robust hedging of barrier options

I Brown, Hobson, Rogers (2001)

I Barrier option: an option that starts to exist (or vanishes)
when the underlying crosses a given level

I Determine a model-independent hedging strategy

I Assumptions: interest rate is zero, calls of any strike expiring
at T are available at time 0

I This is equivalent to setting the pricing measure µ at maturity
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An example

I Up-and-In Put with barrier at the strike

I Consider the strategy: Buy a call with strike K, sell forward
the underlying at the instant (if ever) it reaches the level K

I The cost of the strategy is the cost of the call

I The payoff is equal to the barrier put

I The strategy is robust and the price of the barrier put must be
equal to the price of the call
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Digital barrier options I

I Digital Barrier Option: an option that pays 1 iff the
underlying S crosses B before time T = 1.

I HB = inf{t : St ≥ B}
I Payoff of the digital: IHB≤1
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Digital barrier options II

I for any y < B,

IHB≤1 ≤
(S1 − y)+

B − y
+

B − S1

B − y
IHB≤1

I Taking expectations and observing that E B−S1
B−y IHB≤1 ≤ 0:

P(HB ≤ 1) ≤ inf
y≤B

C (y)

B − y

I The minimum is attained at a point a = a(µ,B). The
”robust” upper bound is

C (a)

B − a
I In the workshop Maruhn: Adding robustness to static hedge

portfolios for Barrier options
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