Optimization in pricing and hedging options

Stefano Herzel

University of Perugia

CIM Workshop on Optimization in Finance Coimbra 5-8 July 2005

Outline

Basics of option pricing Hedging in incomplete markets Extracting information from option prices Pricing and hedging more complex derivatives

Basics of option pricing

Single-period Discrete time models Continuous time models

Hedging in incomplete markets

Single-period Discrete time

Extracting information from option prices

Implied probabilities Robust arbitrages Bounds on option prices

Pricing and hedging more complex derivatives

American options Barrier options

Outline Basics of option pricing

Hedging in incomplete markets Extracting information from option prices Pricing and hedging more complex derivatives Single-period Discrete time models Continuous time models

The market

- Two dates: t = 0, t = 1
- Finite sample space

$$\Omega = \{\omega_1, \omega_2, \ldots, \omega_m\}$$

- *n* securities S^1, S^2, \ldots, S^n
- ▶ $\mathbf{S_0} = \left(S_0^1, S_0^2, \dots, S_0^n\right)$ is the *n*-vector of prices at time t = 0
- $S_1 = (S_1^1 | S_1^2 | \dots | S_1^n)$ is a *mxn* matrix.

Single-period Discrete time models Continuous time models

Portfolios of securities

- At time t = 0 it is possible to take any position ("long" or "short") on the n securities.
- Let x be a portfolio of securities

$$\mathbf{x} = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right)$$

The cost (at t = 0) of **x** is **S**₀**x** (a scalar) The payoff (at t = 1) of **x** is **S**₁**x** (*m*-vector)

(日) (同) (三) (三)

Single-period Discrete time models Continuous time models

B-Arbitrages

- Let us find the minimum cost portfolio with a positive payoff
- The Primal Problem (P)

$$\label{eq:starsess} \begin{split} \min_{\textbf{x}} \textbf{S}_{0}\textbf{x} \\ \textbf{S}_{1}\textbf{x} \geq \textbf{0} \end{split}$$

- (P) is feasible, hence it is either bounded or unbounded
- If (P) is unbounded it is possible to realize an initial earning $(S_0x < 0)$, with no future liabilities $(S_1x \ge 0)$. This is called "arbitrage" (of type B).
- (P) bounded \Leftrightarrow No B-arbitrages
- B-arbitrages are not consistent with economic equilibrium

Single-period Discrete time models Continuous time models

The Dual problem

The Dual of (P) is the following LP (D)

$$\begin{array}{l} \max_{\mathbf{y}} \mathbf{y} \cdot \mathbf{0} \\ \mathbf{S_1}' \mathbf{y} = \mathbf{S_0} \\ \mathbf{y} \geq \mathbf{0} \end{array}$$

• (D) feasible \Leftrightarrow (P) bounded \Leftrightarrow No B-arbitrages

Outline

Single-period Discrete time models Continuous time models

A-Arbitrages

- There is a second type of arbitrage: a free lottery ticket.
- Portfolio x is an A-arbitrage if

$$\begin{split} \mathbf{S_0 x} &= \mathbf{0} \\ \mathbf{S_1 x} &\geq \mathbf{0} \\ \mathbf{S_1 x}(\omega_\mathbf{i}) &> \mathbf{0} \quad \text{ for some } \omega_i \in \Omega \end{split}$$

- A-arbitrages are not consistent with economic equilibrium
- A model is "arbitrage-free" is there are neither A nor B arbitrages.

Single-period Discrete time models Continuous time models

Arbitrage-free models

► A market model is arbitrage-free ⇔ There is a strictly positive solution to

$$\begin{aligned} \mathbf{S_1}'\mathbf{y} &= \mathbf{S_0} \\ \mathbf{y} &\geq \mathbf{0} \end{aligned}$$

- Define $B_0 = \sum_{i=1}^m y_i$
- $\mathbf{q} = \mathbf{y} / \mathbf{B_0}$ is a probability on Ω
- q is called "risk-neutral" because

$$\mathbf{S_0} = B_0 E^q \mathbf{S_1}$$

• No arbitrage $\Leftrightarrow \exists \mathbf{q}$ "risk-neutral"

Single-period Discrete time models Continuous time models

Pricing contingent claims

- Assume there are no arbitrages
- A contingent claim **b** is a random variable on Ω.
- A portfolio x "replicates" b if

$$S_1 x = b$$

- A claim is "attainable" if it admits a replicating portfolio
- ► The no-arbitrage price of an attainable claim **b** is

$$S_0x=x\cdot B_0E^qS_1=B_0E^qS_1x=B_0E^qb$$

Single-period Discrete time models Continuous time models

Complete markets

A market is "complete" if all claims are attainable

Outline

- Market is complete \Leftrightarrow lin $< S_1^1, \dots, S_1^n >= \Re^m$
- ► That is n ≥ m and

 $\mathsf{rank}(\mathbf{S_1}) = m$

- The Dual (D) has a unique solution
- ► Completeness (and No-arbitrages) ⇔ ∃!q

Single-period Discrete time models Continuous time models

Incomplete markets

- Suppose a claim b is not attainable
- We can determine the minimum price V⁺ for a "super-replicating" strategy
- This is called the "buyer's" problem: if one buys the claim at any price greater than V⁺ there is an arbitrage opportunity for the writer of the option
- Analogously, the "writer's" problem finds the maximum price V⁻ for a sub-replicating strategy

Single-period Discrete time models Continuous time models

The buyer's problem

Consider the LP

 $V^+ = \min_{\mathbf{x}} \mathbf{S_0 \mathbf{x}}$ $\mathbf{S_1 \mathbf{x}} \ge \mathbf{b}$

Its dual is

$$\begin{array}{l} \max_{\mathbf{y}} \mathbf{b}' \mathbf{y} \\ \mathbf{S_1}' \mathbf{y} = \mathbf{S_0} \\ \mathbf{y} \geq \mathbf{0} \end{array}$$

Therefore

$$V^+ = \max_{\mathbf{q}} B_0 E^{\mathbf{q}} \mathbf{b}$$

Single-period Discrete time models Continuous time models

Arbitrage-free prices of non-attainable claims

▶ The analogous "seller's problem" yields to

$$V^{-} = \min_{\mathbf{q}} B_0 E^{\mathbf{q}} \mathbf{b}$$

- Any price V, such that V[−] ≤ V ≤ V⁺ is an arbitrage free price (all inequalities are strict if V[−] < V⁺)
- A claim is attainable iff it has a unique arbitrage-free price

(D) (A) (A) (A)

Single-period Discrete time models Continuous time models

Market frictions I

- Suppose there are different bid-ask prices
- The primal problem (P) becomes

$$\begin{split} \min_{\mathbf{x}^{a}, \mathbf{x}^{b}} \mathbf{S_{0}}^{a} \mathbf{x}^{a} - \mathbf{S_{0}}^{b} \mathbf{x}^{a} \\ \mathbf{S_{1}}^{a} \mathbf{x}^{a} - \mathbf{S_{1}}^{b} \mathbf{x}^{b} \geq \mathbf{0} \\ \mathbf{x}^{a} \geq \mathbf{0} \\ \mathbf{x}^{b} \geq \mathbf{0} \end{split}$$

(日) (圖) (불) (불)

Single-period Discrete time models Continuous time models

Market frictions I

The dual problem is

$$\begin{split} & \underset{\textbf{y}}{\underset{\textbf{y}}{\text{max}}} \textbf{y} \cdot \textbf{0} \\ \textbf{S}_{\textbf{0}}{}^{a} \leq \textbf{S}_{\textbf{1}}{}^{\prime}\textbf{y} \leq \textbf{S}_{\textbf{0}}{}^{a} \\ & \textbf{y} \geq \textbf{0} \end{split}$$

 No arbitrage ⇔ a risk-neutral measure separates bid and ask prices

(日) (四) (三) (三)

Single-period Discrete time models Continuous time models

Single-period: main results

- ► No arbitrages ⇔ There is a risk-neutral measure
- No Arb. + Completeness ⇔ There is a <u>unique</u> risk-neutral measure
- If there are no arbitrages
 - **b** attainable \Leftrightarrow $V_0(\mathbf{b}) = \mathbf{B_0}\mathbf{E}^{\mathbf{q}}\mathbf{b}, \forall \mathbf{q}$
 - ▶ **b** not attainable \Rightarrow $V^-(\mathbf{b}) \le \mathbf{V}(\mathbf{b}) \le \mathbf{V}^+(\mathbf{b})$
 - ► ∃q separating bid and ask prices

Outline Basics of option pricing

Hedging in incomplete markets Extracting information from option prices Pricing and hedging more complex derivatives Single-period Discrete time models Continuous time models

The market

- *T* dates: t = 0, 1, ..., T
- Probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t=0}^T, P)$
- *n* securities S^1, S^2, \ldots, S^n
- Sⁱ is a (discrete-time) stochastic process
- S_t^i is \mathcal{F}_t -measurable
- ► Assume $S_t^1 > 0, \forall t. S^1$ is called "numeraire". Define the "discounted process" $\mathbf{Z} = \mathbf{S}/S^1$.

Single-period Discrete time models Continuous time models

Dynamic portfolios

- A "dynamic portfolio" (or "market strategy") is a stochastic process θ. θⁱ_t is the number of shares of security Sⁱ held between t − 1 and t. θⁱ_t is F_{t−1}-measurable
- The discounted value of the portfolio at time t is $\theta_t \cdot \mathbf{Z_t}$
- A portfolio strategy is "self-financing" if

$$\theta_t \cdot \mathbf{Z_t} = \theta_{t+1} \cdot \mathbf{Z_t}$$

Single-period Discrete time models Continuous time models

Arbitrages

- Because there is a numeraire, any B-arbitrage can be transformed into an A-arbitrage.
- A dynamic portfolio θ is an arbitrage if

$$\begin{aligned} & \mathcal{E}\theta_{\mathcal{T}} \cdot \mathbf{Z}_{\mathcal{T}} > 0 \\ & \theta_1 \cdot \mathbf{Z}_0 = 0 \\ & \theta_t \cdot \mathbf{Z}_t = \theta_{t+1} \cdot \mathbf{Z}_t, \quad t = 0, \dots, T-1 \\ & \theta_{\mathcal{T}} \cdot \mathbf{Z}_{\mathcal{T}} \ge 0 \end{aligned}$$

(日) (圖) (불) (불)

The arbitrage problem

- The arbitrage problem can be set in many equivalent ways. Here we follow the non-recombining tree representation (King (2002)).
- Denote N_t the set of states at time t. For any state s ∈ N_t, let a(s) ⊂ N_{t-1} be the parent of s and let c(s) ⊂ N_{t+1} be the set of childs of s.
- To find arbitrages one can solve

$$\begin{split} \max_{\theta} \sum_{s \in \mathcal{N}_{T}} p_{s} \mathbf{Z}_{s} \cdot \theta_{s} \\ \mathbf{Z}_{0} \cdot \theta_{0} &= 0 \qquad \qquad : y_{0} \\ \mathbf{Z}_{s} \cdot [\theta_{s} - \theta_{a(s)}] &= 0 \quad (s \in \mathcal{N}_{t}, t \geq 1) \quad : y_{s} \\ \mathbf{Z}_{s} \cdot \theta_{s} \geq 0 \quad (s \in \mathcal{N}_{T}) \quad : w_{s} \end{split}$$

(D) (A) (A)

Single-period Discrete time models Continuous time models

Lagrangian

The Lagrangian is

$$L(\theta; y, w) = \sum_{s \in \mathcal{N}_{T}} p_{s} \mathbf{Z}_{s} \cdot \theta_{s} - \sum_{t=0}^{I} \sum_{s \in \mathcal{N}_{t}} y_{s} \mathbf{Z}_{s} \cdot [\theta_{s} - \theta_{a(s)}]$$

$$- \sum_{s \in \mathcal{N}_{T}} w_{s} \mathbf{Z}_{s} \cdot \theta_{s}, \quad (w_{s} \leq 0)$$

$$= \sum_{s \in \mathcal{N}_{T}} [p_{s} - w_{s} - y_{s}] \mathbf{Z}_{s} \cdot \theta_{s} - \sum_{t=0}^{T-1} \sum_{s \in \mathcal{N}_{t}} [y_{s} \mathbf{Z}_{s} - \sum_{m \in c(s)} y_{m} \mathbf{Z}_{m}] \cdot \theta_{s}$$

$$(w_{s} \leq 0)$$

Single-period Discrete time models Continuous time models

Dual problem

From the Lagrangian follows the Dual problem

$$egin{aligned} & w_s \leq 0 & (s \in \mathcal{N}_{\mathcal{T}}) \ & (p_s - w_s - y_s) \, \mathbf{Z}_s = 0 & (s \in \mathcal{N}_{\mathcal{T}}) \ & y_s \mathbf{Z}_s - \sum_{m \in c(s)} y_m \mathbf{Z}_m & (s \in \mathcal{N}_t, t \leq \mathcal{T} - 1) \end{aligned}$$

- There are no arbitrages if and only if the Dual is feasible.
- ▶ No arbitrages $\Leftrightarrow \exists q \sim p \text{ s.t. } Z_{t-1} = E^q[Z_t | \mathcal{N}_{t-1}]$
- ▶ The risk neutral measure **q** does not depend on **p**.

(D) (A) (A) (A)

Single-period Discrete time models Continuous time models

Discrete-time: main results

- Same results as in the single-period case
- ► Fundamental Theorem of Arbitrage: No arbitrage ⇔ There is an equivalent martingale measure

Continuous time models

- For infinite times, infinite states models, there are some complications...
- Most famous example: Black-Scholes model

$$\frac{dS_t}{S_t} = \mu dt + \sigma dZ,$$

$$\frac{dB_t}{B_t} = rdt$$

- This is a complete model, i.e. there is a unique martingale measure and all contingent claims are attainable
- Set constraints on trading strategies and determine minimal super-replication cost

<ロ> (四) (四) (三) (三) (三)

In the workshop

- Touzi, "Hedging with controlled sensitivities"
- Bouchard, "Explicit characterization of the super-replication strategy in financial markets with partial transaction costs"
- Judice, "Foundations and applications of Good-Deal pricing in single-period market models"
- Balbas, "Outperforming revealed prices in imperfect markets"
- Favero, "Long and short term arbitrages: A comment on an example by Pham and Touzi"

Single-period Discrete time

The problem

- Minimize the risk of hedging a contingent claim H when the market is incomplete
- Stochastic optimization problem with a quadratic objective function

A single-period model I

- ► The model: an asset X_t, t = 0, 1 and a bank account. We indicate with ξ the shares of X bought at time 0 and by η_t, t = 0, 1 the money in the bank account. (Assume zero interest rate).
- Value of portfolio at time t

$$V_t = \xi X_t + \eta_t$$

- Determine an "optimal" hedge for a claim with payoff H at time t = 1.
- Can always get $V_1 = H$ by setting

$$\eta_1 = H - \xi X_1$$

Non-self-financing strategies

A single-period model II

Let C_t be the cumulative cost of the strategy. The initial cost is

 $C_0 = V_0$

the additional cost at time t = 1 is

$$C_1 - C_0 = \eta_1 - \eta_0$$
$$= H - V_0 - \xi \Delta X$$

• Determine V_0 and ξ to minimize the expected quadratic cost

$$\min_{V_0,\xi} R := E \left(H - V_0 - \xi \Delta X \right)^2$$

Single-period Discrete time

The solution I

- It is a linear regression problem
- Optimal investment strategy

$$\xi = \frac{\operatorname{Cov} [H, \Delta X]}{\operatorname{Var} [\Delta X]} = \frac{\operatorname{Cov} [H, X_1]}{\operatorname{Var} [X_1]}$$

▶ "Fair price" of H

$$V_0 = E(H) - \xi E(\Delta X)$$

"Residual" or "Unhedgeable" risk

$$R_{\min} = \operatorname{Var} \left[H \right] \left(1 - \rho(H, X_1) \right)^2$$

<ロ> (四) (四) (三) (三) (三)

크

Single-period Discrete time

The solution II

Note that

$$C_0=E(C_1)$$

the strategy is "mean self-financing".

- All depends on P
- ▶ When R_{min} = 0 the claim H is attainable, the strategy is self-financing, the solution does not depend on P.

A discrete-time model I

- The model: a probability space $(\Omega, \{\mathcal{F}_k\}_0^T, P)$,
- One asset X_k , k = 0, 1, ..., T and one bank account.
- ► ξ_k are the shares of X bought at time k-1(\mathcal{F}_{k-1} -measurable, "predictable")
- η_k the money in the bank account (F_k-measurable, "adapted")

Single-period Discrete time

A discrete-time model II

Value of portfolio at time t

$$V_t = \xi_t X_t + \eta_t$$

- ► The problem: Determine an "optimal" hedge for a claim with payoff H at time t = T
- Can always get $V_T = H$
- Non self-financing strategy

Single-period Discrete time

A discrete-time model III

• Let C_t be the cumulative cost of the strategy,

$$C_t = V_t - \sum_{j=1}^t \xi_j \Delta X_j$$

The "local risk" at time t is

$$E[(C_{t+1} - C_t)^2 | \mathcal{F}_t] = E[(V_{t+1} - V_t - \xi_{t+1} \Delta X_{t+1})^2 | \mathcal{F}_t]$$

The solution is determined by backward recursion

(日) (四) (三) (三)

Single-period Discrete time

The solution

The cost process

$$C_t = E_t[C_{t+1}]$$

is mean self-financing (i.e., a Martingale)

The optimal strategy

$$\begin{aligned} \xi_t &= \frac{\operatorname{Cov}_{t-1}\left[H - \sum_{j=t+1}^T \xi_j \Delta X_j, \Delta X_t\right]}{\operatorname{Var}_{t-1}[\Delta X_t]} \\ \eta_t &= E_t [H - \sum_{j=t+1}^T \xi_j \Delta X_j] - \xi_t X_t \end{aligned}$$

(日) (四) (三) (三)

크

Single-period Discrete time

When X is a martingale

- Follmer and Sondermann (1986)
- Let us assume

$$X_t = E_t[X_{t+1}]$$

Remember that

$$C_t = V_t - \sum_{j=1}^t \xi_j \Delta X_j$$

Since C is also a martingale, V is a martingale and

$$V_t = E_t V_T = E_t H$$

(日) (圖) (불) (불)

Single-period Discrete time

When X is a martingale

(Kunita-Watanabe decomposition)

$$H = V_0 + \sum_{j=1}^T \xi_j^H \Delta X_j + L_T^H$$

where L^H is a martingale orthogonal to X, that is

$$E_{t-1}[\Delta L_t^H \Delta X_t] = 0$$

$$V_t = E_t H = V_0 + \sum_{j=1}^t \xi_j^H \Delta X_j + L_t^H$$

<ロ> (四) (四) (三) (三) (三)

크

Single-period Discrete time

Local risk

$$\begin{aligned} R_{t-1} &= E_{t-1} \left(C_t - C_{t-1} \right)^2 \\ &= E_{t-1} \left(V_t - V_{t-1} - \xi_t \Delta X_t \right)^2 \\ &= E_{t-1} \left(\xi_t^H \Delta X_t + \Delta L_t^H - \xi_t \Delta X_t \right)^2 \\ &= E_{t-1} (\Delta L_t^H)^2 + (\xi_t - \xi_t^H)^2 E_{t-1} (\Delta X_t)^2 \end{aligned}$$

Hedging strategy

F

$$\xi_t = \xi_t^H$$

Bank account

$$\eta_t = V_t - \xi_t^H X_t$$

$$= V_0 + \sum_{j=1}^t \xi_j^H \Delta X_j + L_t^H - \xi_t^H X_t$$

$$= V_0 + \sum_{j=1}^t \xi_j^H \Delta X_j + L_t^H - \xi_t^H X_t$$
Stefano Herzel Optimization in pricing and hedging options

Single-period Discrete time

When X is a martingale and $L^H = 0$

In this case

$$H = V_0 + \sum_{j=1}^{I} \xi_j^H \Delta X_j$$

$$\blacktriangleright R_t = 0 \Rightarrow C_{t+1} = C_t = C_0$$

Bank account

$$\eta_t = V_{t-1} - \xi_t X_{t-1}$$

the strategy can be fixed at the beginning of each period.

• The quantities do not depend on *P*.

$$V_0 = E_0^P(H)$$

for any martingale measure P.

When X is a semi-martingale

- This case is more complicate. It was studied by Schweizer (1988).
- There exists a decomposition (Follmer-Schweizer)
- Non linear stochastic optimality equation
- In continuous time one possibility is to compute the "minimal martingale measure" P̂ and then find

$$V_0 = E_0^{\hat{P}}(H)$$

In general it is not solvable by recursion. Some explicit results for specific cases.

Other objective functions

- ► So far we have considered non-self-financing strategies with final value equal to *H*.
- Another possibility is to adopt self-financing strategies and minimize the final shortfall.
- This results in a problem of projections in linear space.
- The two problems are "equivalent" when the mean-variance tradeoff

$$\frac{(E_{k-1}\Delta S_k)^2}{\operatorname{Var}_{k-1}\Delta S_k}$$

is deterministic. (Schall 1994)

 Bertsimas, et al. (2002) propose a DP explicitly solved for some specific cases

(日) (圖) (불) (불)

Single-period Discrete time

In this workshop

- Uryasaev: Pricing options in incomplete market.
- Biagini: A unifying framework for utility maximization problems.
- Consiglio: Evaluation of insurance products with guarantee: A stochastic programming approach

Implied probabilities Robust arbitrages Bounds on option prices

Some questions

- Knowing the prices of some options, can we recover the "risk-neutral probabilities"?
- When are observed prices consistent with no-arbitrage assumptions?
- Given the prices of some derivatives, what can we say about the prices of other derivatives on the same asset?
- Knowing the prices of some derivatives, can we get any bound on the moments of the underlying?
- Assuming the knowledge of the first k moments of the underlying, can we get any bound on the prices of the derivatives?

Implied probabilities Robust arbitrages Bounds on option prices

From prices to probabilities

- Given the prices of some derivatives, what can we infer about the distribution of the underlying?
- ▶ First approach: If there are Call prices for any strike K,

$$c(K) = B(0, T) \int_{K}^{+\infty} (x - K)q(x)dx$$

and then

$$c''(K) = B(0, T) * q(K)$$

Implied probabilities Robust arbitrages Bounds on option prices

Implied binomial trees, Rubinstein (1994)

- Determine the risk-neutral probability P of a binomial model which is closer to a "prior" probability P' and consistent with observed prices.
- Solve the following QP

$$egin{aligned} \min_{P_j} \sum_j (P_j - P_j')^2 \ \sum_j P_j = 1, P_j \geq 0 \ \mathcal{C}_i^b \leq v^n \sum_j P_j (S_j - \mathcal{K}_i)^+ \leq C_i^a \end{aligned}$$

(D) (A) (A) (A)

Implied probabilities Robust arbitrages Bounds on option prices

- Rubinstein solved the problem for 200-step tree, with SP500 options observed three times a day from 1986 to 1992
- Construct the inner probabilities of the tree. This is an-over parameterized problem. Some further assumptions are needed.

Implied probabilities Robust arbitrages Bounds on option prices

Arbitrages for call options

- ▶ Let C_i, i = 1,..., n be the prices of n call options written on the same underlying S, with same maturity T and strike prices K_i.
- Let $\Pi_i(s) = (s K_i)^+$ be the payoff of call *i* when $S_T = s$
- Without making any assumption on the dynamics of S between 0 and T and on its distribution on T, what can we say on the prices of the options? Are they "Arbitrage-free"?
- Is there a portfolio x of options with a positive payoff and a negative price?

Implied probabilities Robust arbitrages Bounds on option prices

Arbitrages for call options

• Let
$$\Pi(s) := [\Pi_1(s), \Pi_2(s), \dots, \Pi_n(s)],$$

 $\min C \cdot \mathbf{x}$ $\Pi(s)\mathbf{x} \ge 0$

- Need to check feasibility only on the nodes
- Obtain a finite LP
- ► No arbitrage ⇔ C(K) is positive, decreasing and convex (for details see H. (2003))

Implied probabilities Robust arbitrages Bounds on option prices

Bounds on prices (Bertsimas and Popescu, 2000)

 Determine the maximum price of a call compatible with some observed moments of the underlying

$$\max_{q} E^{q}(X - K)^{+} = \int_{0}^{+\infty} (x - K)^{+} q(x) dx$$
$$\int_{0}^{\infty} x^{i} q(x) dx = m_{i} \quad i = 1, \dots, n$$
$$q(x) \geq 0$$

Implied probabilities Robust arbitrages Bounds on option prices

Bounds on prices

► The dual is

$$\min \sum_{i=0}^{n} y_{i} m_{i}$$
$$\sum_{i=0}^{n} y_{i} x^{i} \ge (x - K)^{+}, \qquad \forall x \in \Re^{+}$$

Strong duality holds (Isii 1963).

<ロ> (四) (四) (三) (三) (三)

Bounds on prices

Using results like The polinomial g(x) = ∑_{r=0}^{2k} y_rx^r satisfies g(x) ≥ 0 if and only if there exists a positive semidefinite matrix X = [x_{ij}]_{i,j=0,...,k} such that

$$y_r = \sum_{i,j:i+j=r} x_{ij}, \quad r = 0, \dots, 2k, \quad X \succeq 0$$

can show that the dual problem is equivalent to a semi-definite programming

- In the workshop
 - Zuluaga, "Optimal semi-parametric bounds for European rainbow options"
 - Prieto-Rumeau, "Pricing exotic options with semidefinite programming"

American options

- An option is called "American" when one can exercise it at any time before expiration.
- To hedge an American option must consider that the buyer acts optimally
- It is an optimal stopping time problem

$$\max_{\tau} E^q f(S_{\tau})$$

- ► For discrete time models can use dynamic programming
- Pennanen and King (2004) show that it can be formulated as a stochastic LP problem
- In continuous time there are not explicit solutions

American options Barrier options

In this workshop

- Byun: Properties of integral equations arising in the valuation of American options
- Ferulano: Enhanced Monte-Carlo methods for American options

Robust hedging of barrier options

- Brown, Hobson, Rogers (2001)
- Barrier option: an option that starts to exist (or vanishes) when the underlying crosses a given level
- Determine a model-independent hedging strategy
- Assumptions: interest rate is zero, calls of any strike expiring at T are available at time 0
- \blacktriangleright This is equivalent to setting the pricing measure μ at maturity

An example

- Up-and-In Put with barrier at the strike
- Consider the strategy: Buy a call with strike K, sell forward the underlying at the instant (if ever) it reaches the level K
- The cost of the strategy is the cost of the call
- The payoff is equal to the barrier put
- The strategy is robust and the price of the barrier put must be equal to the price of the call

American options Barrier options

Digital barrier options I

Digital Barrier Option: an option that pays 1 iff the underlying S crosses B before time T = 1.

$$\bullet H_B = \inf\{t : S_t \ge B\}$$

► Payoff of the digital: I_{H_B≤1}

American options Barrier options

Digital barrier options II

• for any y < B,

$$\mathbb{I}_{\mathcal{H}_B \leq 1} \leq \frac{(S_1 - y)^+}{B - y} + \frac{B - S_1}{B - y} \mathbb{I}_{\mathcal{H}_B \leq 1}$$

▶ Taking expectations and observing that $E\frac{B-S_1}{B-y}\mathbb{I}_{H_B \leq 1} \leq 0$:

$$\mathbb{P}(H_B \le 1) \le \inf_{y \le B} \frac{C(y)}{B - y}$$

► The minimum is attained at a point a = a(µ, B). The "robust" upper bound is

$$\frac{C(a)}{B-a}$$

In the workshop Maruhn: Adding robustness to static hedge portfolios for Barrier options

References I

- 1. D Bertsimas, I Popescu, ON THE RELATION BETWEEN OPTION AND STOCK PRICES: A CONVEX OPTIMIZATION APPROACH, *Operations Research*, 2002
- 2. D. Bertsimas, L. Kogan, A.W. Lo, Pricing and Hedging Derivative Securities in Incomplete Markets: an ϵ -Arbitrage Approach , (1997)
- H: Borwn, D. Hobson, L. C. G. Rogers, Robust hedging of barrier options, *Mathematical Finance*, **11**, (2001) 285-314.
- 4. H. Follmer, D. Sondermann, Hedging of Non-Redunadant Contingent Claims , (1986)
- 5. S. Herzel, Arbitrage opportunities on derivatives: a linear programming approach, (2002)

イロト イヨト イヨト イヨト

References II

- R. Merton, The Theory of Rational Option Pricing, Bell Journal of Economics and Management Sciences, 4, (1973) 141-183.
- 7. M. Rubinstein, Implied Binomial Trees, *Journal of Finance* **69**, (1994) 771-818.
- 8. M. Sch al, On quadratic cost criteria for option hedging, Mathematics of Operations Research, **19**, 121-131, (1994)
- 9. M. Schweizer, A Guided Tour through Quadratic Hedging Approaches, (1999)
- 10. M. Soner, N. Touzi, Superreplication under gamma constraints, *SIAM J. Opt. Contr.*, **39**, 73-96 (2000)

イロト イポト イヨト イヨト