
Robust Optimization in Finance

Reha H. Tütüncü
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Reha H. Tütüncü (CMU) Robust Optimization in Finance Coimbra, July 5, 2005 2 / 39



Optimization Problems and Uncertainty

Consider the following “generic” optimization problem:

(OP) minx f (x , p)
G (x , p) ∈ K .

(1)

where

x is the variable vector

p is a parameter vector

f is the objective function that may depend on parameters p

G represents m constraint functions that may depend on p

K is a fixed subset of <m.

When p is given this is a standard optimization problem.
Robust optimization is concerned with the case when p is uncertain or
unknown.
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Uncertainty in Optimization

Traditional approaches include

Sensitivity analysis: Solve the problem with a fixed choice of the
parameters p and then compute the sensitivity of the solution to the
variations in this parameter.

Advantages: Relatively easy to do. Duality an important tool.
Disadvantages: A reactive rather than pro-active approach to
uncertainty.

Stochastic Programming: Develop a distributional model for
uncertainty, generate numerous sample realizations using these
distributions, replace uncertain quantities with expected values and
solve the resulting problem.

Advantages: Pro-active, intuitive, can benefit from probabilistic
information, easy to model recourse actions
Disadvantages: Resulting problems can be very large and hard to solve,
low-probability extreme events are mostly ignored, difficult to
incorporate “hard” constraints.
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A Robust Optimization Formulation

Consider the following optimization problem:

(OPuc) minx f (x , p)
G (x) ∈ K .

where we now assume that p is uncertain/unknown.
Although we do not know p with certainty, we may know a set U (an
uncertainty set) that p must lie in.
A typical RO question: What choice of the variables of the problem will
optimize the worst case objective value?

(OROP) minx maxp∈U f (x , p)
G (x) ∈ K .

This is the robust counterpart of (OPuc).
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What is Robust Optimization?

A modeling approach for optimization problems with uncertain inputs.

A complementary alternative to stochastic programming and
sensitivity analysis.

Seeks a solution that will have a “good” performance under
many/most/all possible realizations of the uncertain input parameters.

Unlike stochastic programming, no distribution assumptions on
uncertain parameters–each possible value equally important (this can
be good or bad).

Represents a conservative viewpoint when it is worst-case oriented.
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Robust Optimization is especially useful when ...

... some of the problem parameters are estimates and carry estimation
risk.

... there are constraints with uncertain parameters that must be
satisfied regardless of the values of these parameters.

... the objective functions/optimal solutions are particularly sensitive
to perturbations.

... decision-maker can not afford low-probability high-magnitude risks.
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Challenges and Opportunities

Uncertainty sets are used describe the uncertainty on the parameters.
How should we choose the shape and size of an uncertainty set?

Some guidelines: The shape should be related to the sources of
uncertainty and levels of sensitivity. The size should be determined by
the desired level of robustness.

Robust counterparts are typically more complicated than the original
problem because of the two (and even three) levels of optimization.

As a result, the robust problem may be “nasty” (e.g., nonconvex opt)
even when the original problem is “nice” (convex opt). Robust
problems are harder to solve.

With the variations on both the original problems and also the models
of robustness, there is no unified approach/strategy to
solve/reformulate/simplify robust optimization problems. Conic
optimization methods, however, are emerging as very useful tools.
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Uncertainty Sets

Uncertainty is described through sets that contain many/most/all
possible values of uncertain parameters.

Some examples:

U = {p1, p2, . . . , pk} (scenarios)
U = conv(p1, p2, . . . , pk) (polytopic sets)
U = {p : l ≤ p ≤ u} (intervals)
U = {p : p = p0 + Mu, ‖u‖ ≤ 1} (ellipsoids)

Uncertainty sets can represent/be formed by difference of opinions,
alternative estimates, historical data, Bayesian techniques, etc.
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Robust Optimization Formulations

Consider an optimization problem with input parameters p and decision
variables x represented as follows:

min f (x , p) s.t. G (x , p) ∈ K .

A standard constrained optimization problem when p is known and given.

Consider the case when p is uncertain but is known to be an element of the
uncertainty set U . A pessimistic perspective: What is the worst-case
objective value for a particular choice x̂ of the decision variables?

f̄ (x̂) := max
p∈U

f (x̂ , p).

Now choose among all decision vectors x that are feasible for all p (that is,
x ∈ {y : G (y , p) ∈ K ,∀p ∈ U}) the vector that minimizes f̄ (x):

min
x∈{y :G(y ,p)∈K ,∀p∈U}

f̄ (x) = min
x∈{y :G(y ,p)∈K ,∀p∈U}

max
p∈U

f (x , p).

This is a robust optimization formulation for the problem above.
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Objective vs. Constraint Robustness

Objective robustness (Solution robustness):

Objective function of the optimization problem depends on uncertain
parameters
We seek solutions that will remain close to optimal for all possible
realizations of these uncertain parameters
Or, we seek solutions that optimize the worst-case behavior of the
objective function with different parameters (min-max problems)

Constraint robustness (Model robustness):

Constraints in the optimization problem depend on uncertain
parameters
We seek solutions that will satisfy these constraints for all possible
values of these parameters (semi-infinite problems)
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Objective Robustness

Hard to obtain solutions that will remain “close” to optimal for all
possible uncertain inputs (more later on this)

An alternative (and conservative) approach: Find a solution that has
the best worst-case behavior.

Here, worst-case behavior corresponds to the value of the objective
function under the worst-possible realization of the uncertain inputs.
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Objective Robustness: Formulation

This is what we saw before: Consider the following optimization problem:

(OPuc) minx f (x , p)
G (x) ∈ K .

where p is uncertain and belongs to the uncertainty set U .

(OROP) minx maxp∈U f (x , p)
G (x) ∈ K .

This is the robust counterpart of (OPuc).
A min-max optimization problem that can be solved efficiently for many
classes of objective functions and uncertainty sets.
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Objective Robustness: Asset Allocation Example

Usual framework: n asset classes, expected returns given by µ and
covariance matrix Σ. A portfolio of the available asset classes is denoted by
the vector x = (x1, x2, . . . , xn).

Using a “risk-adjusted return” objective and representing portfolio
constraints in the generic form x ∈ X , we get a simple quadratic
optimization problem:

max
x∈X

µT x − λxTΣx

This is one of the three alternative formulations of Markowitz’
mean-variance optimization (MVO) problem. It is easily solved with
quadratic programming software.

Solutions are sensitive to µ and Σ, which must be estimated. Many different
approaches address this sensitivity. We explore the usefulness of robust
optimization as an alternative.
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The Objective Robust Formulation

We can use “box” type uncertainty sets that may be obtained from
“confidence intervals” on the elements of the vector µ and the matrix
Σ:

U = {(µ,Σ) : µL ≤ µ ≤ µU ,ΣL ≤ Σ ≤ ΣU ,Σ sym, pos. semidef.}.

Then, the objective robust formulation is obtained as follows:

max
x∈X

{ min
(µ,Σ)∈U

µT x − λxTΣx}.

Using a saddle-point characterization of optimal solutions to this
problem, one can obtain a solution using, for example, interior-point
methods.
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Constraint Robustness: An example

Consider a process optimization problem for a multi-phase engineering
process (e.g., chemical distillation)

Balance constraints: materials entering a particular phase can not
exceed materials produced/left over from the previous phase

Uncertainty: external, uncontrollable factors that affect the yield of
the processes in each phase

Balance constraints must be satisfied, regardless of the values of
these external factors → constraint robustness is desired
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Constraint Robustness: Formulation

Consider an optimization problem of the form:

(OPuc) minx f (x)
G (x , p) ∈ K .

where p is uncertain and must belong to the uncertainty set U .
Then, a constraint-robust optimal solution can be found by solving the
following problem:

(CROP) minx f (x)
G (x , p) ∈ K , ∀p ∈ U .

(2)

A semi-infinite optimization problem, but can be solved efficiently for some
classes of constraints and uncertainty sets.
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Absolute vs. Relative Robustness

We call a solution that optimizes the worst-case behavior of the
objective function under uncertainty an absolute robust solution.

Such conservatism may not be desirable in many modeling and
decision-making environments.

An alternative is to seek robustness in a relative sense.

People whose performance is judged relative to their peers will want
to make decisions that avoid falling severely behind their competitors
under all scenarios rather than protecting themselves against the
worst-case scenarios.
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Relative Robustness: Formulation

Consider the following optimization problem:

(OPuc) minx f (x , p)
G (x) ∈ K .

where p is uncertain with uncertainty set U .
Given p ∈ U (fixed) let z∗(p) denote the optimal value function, i.e.

z∗(p) = min
x

f (x , p)s.t.G (x) ∈ K

and let
x∗(p) = argmin

x
f (x , p)s.t.G (x) ∈ K .

If we choose x as our vector and p is the realized value, the regret
associated with not choosing x∗(p) is

r(x , p) = f (x , p)− z∗(p) = f (x , p)− f (x∗(p), p).
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Relative Robustness: Formulation

r(x , p) = f (x , p)− z∗(p) = f (x , p)− f (x∗(p), p).

Now, for a given x consider the maximum regret function:

R(x) := max
p∈U

r(x , p) = max
p∈U

f (x , p)− f (x∗(p), p).

A relative robust solution is a vector x that minimizes the maximum regret:

(RR) min
x :G(x)∈K

max
p∈U

f (x , p)− z∗(p).

Since z∗(p) is the optimal value function, this is a 3-level
optimization problem.

If f is linear in p, then z∗(p) is a concave function. Therefore, the
inner maximization problem in (RR) is convex maximization and is
difficult for most U .
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Relative Robustness: A variant

Instead of regret, we measure the distance to the optimal solution (set)
from our chosen vector x :

d(x , p) = ‖x − x∗(p)‖.
For a given x we consider the maximum distance function:

D(x) := max
p∈U

d(x , p) = max
p∈U

‖x − x∗(p)‖.

Now we seek x that

(RR)2 min
x :G(x)∈K

max
p∈U

‖x − x∗(p)‖.

An attractive model if we have time to revise (slightly?) our x once p
is revealed and want to choose an x that will not need much
perturbation.

x∗(p) is a function even more difficult to work with than z∗(x). There
are not many results using this notion of robustness.
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Adjustable Robustness

We consider a multi-period uncertain optimization problem where
uncertainty is revealed progressively through periods.

A subset of the decision variables can be chosen after these
parameters are observed in a way to correct the sub-optimality of the
decisions made with less information in earlier stages.

Adjustable robust optimization (ARO) formulations model these
decision environments, allowing recourse action.

Introduced in a recent paper by Ben Tal et al. and Guslitzer’s MSc.
thesis.
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Adjustable Robustness

Consider the two-stage linear optimization problem given below:

min
x1,x2

{c>x1 : A1x1 + A2x2 ≤ b}.

x1, x2 are the first and second stage decision variables, A1,A2, b are the
uncertain parameters.
Let U denote the uncertainty set for parameters A1, A2, and b. The
standard robust counterpart:

min
x1
{c>x1 : ∃x2 ∀(A1,A2, b) ∈ U : A1x1 + A2x2 ≤ b}.

In contrast, the ARO allows x2 to depend on the realized values of the
uncertain parameters. As a result, the adjustable robust counterpart
problem is given as follows:

min
x1
{c>x1 : ∀(A1,A2, b) ∈ U , ∃x2 = x2(A1,A2, b) : A1x1 + A2x2 ≤ b}.
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Adjustable Robustness

The feasible set of the second problem is larger than that of the first
problem in general and therefore the model is more flexible.

ARO models can be especially useful when robust counterparts are
unnecessarily conservative.

The price to pay for this additional modeling flexibility appears to be
the increased difficulty of the resulting ARO formulations.

The feasible set of the recourse actions (second-period decisions)
depends on both the first-period decisions and the realization of the
uncertain parameters leading to difficult problems.

Positive results are limited to simple uncertainty sets or can be
obtained using simplifying assumptions on the structure of recourse
actions to uncertain parameters.
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Tools: Conic Optimization Models and Software

Consider a generic linear optimization problem:

(LP) minx cT x
Ax = b

x ≥ 0.

Here A ∈ IRm×n, b ∈ IRm, c ∈ IRn are given, and x ∈ IRn is the variable vector to
be determined as the solution of the problem. The feasible set is the intersection
of the affine set {x : Ax = b} with the non-negative orthant IRn

+ = {x : x ≥ 0}.
The set IRn

+ is a convex cone. In theory, the interior-point machinery will work
when IRn

+ is replaced by an arbitrary convex cone, say K . We then get the
following conic optimization problem:

(LP) minx cT x
Ax = b

x ∈ K
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Conic Optimization: Special Cases

Linear Optimization (K = IRn
+)
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Conic Optimization: Special Cases

Quadratically constrained optimization using

Kq = {x = (x0, x1) ∈ IR × IRn : x0 ≥ ‖x1‖}
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Conic Optimization: Special Cases

Semidefinite Optimization

Ks = {X ∈ <n×n : X � 0}

Notation: X � 0 means X is sym. and positive semidefinite.
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Conic Optimization Software

Products that solve special cases of conic optimization problems: too
many to cite. There is now even a conic feature in Excel Solver.

SeDuMi (Sturm): can solve LPs, SOCPs, SDPs

SDPT3 (Todd, Toh, T.): can solve LPs, SOCPs, SDPs
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An Example

Consider the following single-constraint linear program where the objective
function is certain but the constraint coefficients are uncertain:

min cT x s.t. aT x + b ≥ 0,∀[a; b] ∈ U

where the uncertainty set is ellipsoidal:

U = {[a; b] = [a0; b0] +
k∑

j=1

uj [a
j ; bj ], ‖u‖ ≤ 1}.

For a fixed x the robust constraint is satisfied if and only if

0 ≤ min
[a;b]∈U

aT x + b ≡ min
u:‖u‖≤1

α + uTβ,

where α = (a0)T x + b0 and β = (β1, . . . , βk) with βj = (aj)T x + bj .
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An Example, continued

min
[a;b]∈U

aT x + b ≡ min
u:‖u‖≤1

α + uTβ,

where α = (a0)T x + b0 and β = (β1, . . . , βk) with βj = (aj)T x + bj .

It is easy to see that the minimum is achieved at u∗ = − β
‖β‖ .

Thus, the robust constraint is equivalent to

(a0)T x + b0 ≥

√√√√ k∑
j=1

((aj)T x + bj)
2
.

This can be rewritten as a second-order cone constraint. Easily generalizes
to multiple-constraint LPs.
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S-procedure

Lemma: Let Fi (x) = xTAix + 2 + bT
i x + ci , i = 0, 1, . . . , p be quadratic

functions of x ∈ <n. Then,

Fi (x) ≥ 0, i = 1, . . . , p ⇒ F0(x) ≥ 0

if there exist λi ≥ 0 such that[
A0 b0

bT
0 c0

]
−

p∑
i=1

λi

[
Ai bi

bT
i ci

]
� 0.

If p = 1, converse also holds as long as ∃x0 s.t. F1(x0) > 0.
This lemma is useful for robust optimization problems where the
uncertainty set is an ellipsoidal set.
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Use of the S-procedure

Consider the following convex-quadratically constrained problem where the
objective function is certain but the constraint coefficients are uncertain:

min cT x s.t. − xT (aaT )x + 2bT x + γ ≥ 0,∀[a; b; γ] ∈ U
where the uncertainty set is ellipsoidal:

U = {[a; b; γ] = [a0; b0; γ0] +
k∑

j=1

uj [a
j ; bj ; γj ], ‖u‖ ≤ 1}.

Since membership in U is determined via a quadratic inequality
(uT Iu ≤ 1), and we want this inequality to imply another quadratic
inequality, this is a tailor-made problem for the S-procedure.
The robust constraint can now be written as a positive semidefiniteness
constraint.
While positive semidefiniteness constraint is more “complicated” than a
quadratic constraint, effectively this procedure reduces a semi-infinite
optimization problem to a finite optimization problem.
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Use of Duality and Saddle-Point Conditions

Recall the robust mean-variance optimization problem:

max
x∈X

{ min
(µ,Σ)∈U

µT x − λxTΣx}.

There is a dual of the robust MVO problem:

min
(µ,Σ)∈U

{max
x∈X

µT x − λxTΣx}.

Given that f (x , µ,Σ) = µT x − λxTΣx is concave in x and convex (linear,
in fact) in (µ,Σ), if X and U are nonempty optimal values of these
problems coincide and there exists a saddle point (x∗, (µ∗,Σ∗)) such that

f (x , µ∗,Σ∗) ≤ f (x∗, µ∗,Σ∗) ≤ f (x∗, µ,Σ), ∀x ∈ X , (µ,Σ) ∈ U .
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The Algorithm

Saddle-Point Algorithm (SP Algorithm)

1 Initialization:
Choose α > 0 and β > 0. Find a t0 > 0 and (x0, µ0, Σ0) ∈ X 0

R × U
0 that satisfies

η(φt0 , x0, µ0, Σ0) ≤ β. Set k = 0.

2 Iteration: while tk < M, set
tk+1 = (1 + α)tk .

Take a full Newton step:

(xk+1, µk+1, Σk+1) = (xk , µk , Σk )−
ˆ
∇2φtk+1 (xk , µk , Σk )

˜−1∇φtk+1 (xk , µk , Σk ).

Set k = k + 1.
end

Above, η is the “Newton decrement” and measures the proximity of our iterates to the central

path, φt is the saddle-barrier function. α and β need to satisfy certain conditions to ensure

polynomial convergence.
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