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Asset Allocation and Portfolio Selection

Consider an investor who wants to allocate his/her funds among a set of
asset classes S1,S2, . . . ,Sn. The returns from these asset classes at the
end of an investment period are random. For asset class j, let µj represent
its expected return, and let σj represent the standard deviation on the
return. Also, for asset classes i and j, let σij represent the covariance of
their returns.
Let xj denote the proportion of the investor’s money to be allocated to
asset class j . These are the variables to be determined to form an optimal
portfolio of the available asset classes. x = (x1, x2, . . . , xn) denotes a
portfolio whose expected return and variance of return are given by

E (x) =
∑

j

µjxj = µT x ,

and
Var(x) =

∑
j

σ2
j x

2
j + 2

∑
i<j

σijxixj = xTΣx ,

where Σij = σij and Σjj = σ2
j .
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Asset Allocation

Competing objectives: maximize expected return, minimize its
variance

Representing portfolio constraints in the generic form x ∈ X , we have
three “equivalent” formulations:

max µT x
x ∈ X

xTΣx ≤ σ2

min xTΣx
x ∈ X

µT x ≥ R

max µT x − λxTΣx
x ∈ X

The problem is, µ and Σ are not observable–we must use estimates.
Furthermore, solutions are quite sensitive to changes in µ and Σ.
Therefore, we explore different robust optimization models.
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Scenario-based Models

Consider a finite set of possible scenarios for µ and Σ given as µ1, . . . , µI

and Σ1, . . . ,ΣJ .
In the return-maximization model, we formulate the robust problem as
follows:

max mini (µ
i )T x

x ∈ X
(maxj xTΣjx) ≤ σ2

which is equivalent to the following “deterministic” problem:

max t
t ≤ (µi )T x , i = 1, . . . , I
x ∈ X
xTΣjx ≤ σ2, j = 1, . . . , J

Simple, intuitive notion of robustness. Leads to a convex optimization
problem. Studied by the Imperial College team (Rustem, Settergren,
Gülpınar, etc.)
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Interval Uncertainty Sets

T. and Koenig (AOR, 2004) use “box” type uncertainty sets that may
be obtained from “confidence intervals” on the elements of the vector
µ and the matrix Σ:

U = {(µ,Σ) : µL ≤ µ ≤ µU ,ΣL ≤ Σ ≤ ΣU ,Σ sym, pos. semidef.}.
Their method can also handle ellipsoidal uncertainty sets as in
Goldfarb/Iyengar, Ceria/Stubbs models.
We considered several methods for generating this set. For example
we used moving averages and bootstrapped averages from historical
data. An alternative method would use a statistical procedure
(perhaps confidence intervals) built on top of the particular alpha and
risk model one might be using.
Given a choice x for the decision variables, we are concerned about
the worst-case realization of the data from the uncertainty set:

min
(µ,Σ)∈U

µT x − λxTΣx .
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The Robust Formulation

Worst-case oriented robust optimization formulations seek to find the
solution with the best worst-case guarantees:

max
x∈X

{ min
(µ,Σ)∈U

µT x − λxTΣx}.

Using a saddle-point characterization of optimal solutions to this problem,
an interior-point algorithm can be utilized to solve it.
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Numerical experiments

Asset classes:
Large-cap growth Large-cap value
Mid-cap growth Mid-cap value
Small-cap growth Small-cap value
International stocks Real estate securities
Fixed income (govt) Fixed income (hi yield)

Wilshire indices for equity and RE classes, LB for fixed income, MSCI
EAFE for intl.

Data: Monthly returns between July 1983 and July 2002

Uncertainty set: 5 & 95 percentiles of 48-month moving averages
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Nominal and robust efficient frontiers
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Compositions of nominal and robust efficient portfolios
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Performance comparison
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Stability of robust optimal portfolios over time
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Observations

Robust efficient portfolios have significantly better worst-case
behavior and are only slightly inefficient with “average” inputs.

Robust efficient portfolios remain relevant for long periods: Good for
buy-and-hold investors. Also low turnover → low transaction costs

Worst-case oriented, conservative models → not for everyone

Semidefiniteness constraints together with O(n2) component-wise
constraints limit the use of this model to smaller problems (asset
allocation rather than portfolio selection).
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Alternative Uncertainty Sets

Goldfarb and Iyengar (MOR, 2003) consider a factor model of returns:

r = µ + V T f + ε

where µ is the mean return, f is the (random) return vector for market
factors, V is factor loading matrix, ε is the residual returns.
If these parameters are obtained from time series data via linear regression,
confidence regions around the least squares estimates have the following
structures:

Sv = {V : V = V0 + W , ‖Wi‖g ≤ ρi , i = 1, . . . , n},

etc. where ‖u‖g =
√

uTGu. These are ellipsoidal sets.
Such sets are attractive for uncertainty modeling because of their compact
representation, nice fit with S-procedure, and intuitive construction.
Goldfarb and Iyengar obtain second-order cone problems from robust
portfolio selection formulations with these uncertainty sets.
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A Multi-Period Model

Initial portfolio: x0 = (x0
1 , . . . , x0

n ), x0
i number of shares of asset i , x0

0

cash holdings. Time horizon: l = 1, . . . , L.

Decision variables: bl
i (s l

i ): additional shares of asset i purchased
(sold) at the beginning of period l .

Parameters: P l
i : the price of a share of asset i in period l . (wolog

assume that P0
i = 1,∀i .) Transaction costs: αl

i and βl
i for sales and

purchases.

Balance equations:

x l
i = x l−1

i − s l
i + bl

i , i = 1, . . . , n, l = 1, . . . , L,

x l
0 ≤ x l−1

0 +
∑n

i=1(1− αi )P
l
i s

l
i −

∑n
i=1(1 + βi )P

l
i b

l
i , l = 1, . . . , L.
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A Multi-Period Model

If we assume that all the future prices P l
i are known at the time this

investment problem is to be solved, we obtain the following deterministic
optimization problem:

maxx ,s,b,t t
t ≤

∑n
i=0 PL

i xL
i

x l
0 ≤ x l−1

0 +
∑n

i=1(1− αi )P
l
i s

l
i −

∑n
i=1(1 + βi )P

l
i b

l
i , l = 1, . . . , L

x l
i = x l−1

i − s l
i + bl

i , i = 1, . . . , n, l = 1, . . . , L
s l
i ≥ 0, i = 1, . . . , n, l = 1, . . . , L

bl
i ≥ 0, i = 1, . . . , n, l = 1, . . . , L

x l
i ≥ 0, i = 0, . . . , n, l = 1, . . . , L.

A simple linear programming problem.
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Parameter Uncertainty

In a realistic setting, we do not know P l
i ’s in advance and therefore can

not solve the optimal portfolio allocation problem as the linear program we
developed above.

Let us denote the expected value of the vector P l =

 P l
1
...

P l
n

 with

µl =

 µl
1
...

µl
n

 and its variance with V l .

Consider the constraint:

t ≤
n∑

i=0

PL
i xL

i .

Letting xL = (xL
1 , . . . , xL

n ), the expected value and the standard deviation
of the right-hand-side expression are given by (µL)T xL =

∑n
i=1 µL

i x
L
i and√

(xL)TV LxL.
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A Constraint Robust Model

If PL
i quantities are normally distributed, by requiring

t ≤ E (RHS)− 3STD(RHS) = (µL)T xL − 3
√

(xL)TV LxL

we would guarantee that the (random) inequality t ≤
∑n

i=0 PL
i xL

i would
be satisfied more than 99% of the time.
We regard this last inequality as the “robust” version of t ≤

∑n
i=0 PL

i xL
i .

The idea works also for the cash balance constraints.
This constraint robustness model corresponds to choosing the uncertainty
sets for P l as:

U l := {P l :
√

(P l − µl)T (V l)−1(P l − µl) ≤ 3}, l = 1, . . . , L

The resulting problem can be written as a second-order cone problem.
This model is based on the work of Ben-Tal, Margalit, and Nemirovski.
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Relative Robustness in Portfolio Optimization

The worst-case orientation in robust optimization and the conservative
decisions that come with it are undesirable for most modelers. A more
attractive model might measure robustness in a relative sense. This is
especially useful when performance is measured relative to ones peers.

For each scenario p for the uncertain parameters, one can consider a regret
function that measures the difference between the performance of the
solution with and without the benefit of hindsight.

Then, we choose portfolios that minimize the maximum regret among all
scenarios. These formulations are more difficult than usual robust
formulations.

Relative robust formulations for mean-variance optimization and
Sharpe-ratio maximization problems with scenario based uncertainty
structures lead to convex problems.
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Relative Robustness: An illustration

Reha H. Tütüncü (CMU) Robust Optimization in Finance Coimbra, July 5, 2005 20 / 33



Outline

1 Robust Portfolio Optimization

2 Robust Risk Management

3 Robust Pricing/Hedging Problems
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Value at Risk

Financial activities involve risk. Financial institutions can and very
often must manage risk using sophisticated mathematical techniques.

Managing risk requires a good understanding of risk which comes
from quantitative risk measures that adequately reflect the
vulnerabilities of a company.

Perhaps the best-known risk measure is Value-at-Risk (VaR)
developed by financial engineers at J.P. Morgan.

VaR is a measure related to percentiles of loss distributions and
represents the predicted maximum loss with a specified probability
level (e.g., 95%) over a certain period of time (e.g., one day).

VaR suffers from the lack of subadditivity but is still widely used for
risk management.

Reha H. Tütüncü (CMU) Robust Optimization in Finance Coimbra, July 5, 2005 22 / 33



Value at Risk

Consider, for example, a random variable X that represents the loss
from an investment portfolio over a fixed period of time. A negative
value for X indicates gains.
Given a probability level α, α-VaR of the random variable X is given
by the following relation:

VaRα(X ) := min{γ : P(X ≤ γ) ≥ α}.
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Robust VaR

Given a portfolio selection problem, if x represents the weight vector
and r represents the random return vector, the total return of the
portfolio r(x) = rT x is a random variable.

To compute the VaR for the random variable r(x), we need the joint
density of the returns of all assets. This is often hard to obtain.
Often, all we have are moment estimates, i.e., means and covariances.

To determine the robust VaR, we ask the following question: Among
all distributions for r with a fixed mean and covariance, which one
gives the worst VaR for r(x)?

The worst-case Value at Risk at level α:

min{γ : inf
q

Pq(X ≤ γ) ≥ α}

where the inf is taken over all distributions q with the fixed mean and
covariance.
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Robust VaR

El Ghaoui et al. (OR, 2003) formulate this problem and then provide
a solution.

First, using Lagrangian duality on the space of probability
distributions, they show that the condition “the worst-case VaR
exceeds γ” can be written as two quadratic implications.

Then, using the S-procedure, they rewrite these implications using
semidefiniteness constraints. As a result the worst-case VaR can be
computed via semidefinite optimization.

Their approach is based on the moment bound study by Bertsimas
and Popescu which we will see shortly.
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Robust VaR

El Ghaoui et al. also extend their results to the cases where the
means and covariances are not fixed.

They consider polytopic uncertainty, component-wise bounds,
ellipsoidal uncertainty, factor models, etc. and obtain min-max
formulations involving second-order cone or semidefiniteness
constraints and/or plain semidefinite optimization problems.
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Pricing/Hedging Problems

When pricing securities with complicated payoff structures, one of the
strategies analysts use is to develop a portfolio of “related” securities
in order to form a super (or sub) hedge and then use no-arbitrage
arguments to bound the price of the complicated security.

Finding the super or sub hedge that gives the sharpest no-arbitrage
bounds is formulated as an optimization problem.

Or, as in the VaR problem above, we have some incomplete
information about the underlying distribution and want to determine
price bounds based on this information.

Some of these problems can be addressed using semidefinite
optimization thanks to a recent result characterizing polynomial
inequalities using semidefiniteness restrictions.
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A Useful Characterization

Theorem (Bertsimas and Popescu, OR 2002)

The polynomial h(x) =
∑k

r=0 yrx
r satisfies h(x) ≥ 0 for all x ∈ [a, b] if and only

if there exists a positive semidefinite matrix X = [xij ]i,j=0,...,k such that∑
i,j :i+j=2`−1

xij = 0, ` = 1, . . . , k,

∑
i,j :i+j=2`

xij =
∑̀
m=0

k+m−`∑
r=m

yr

(
r
m

) (
k − r
`−m

)
ar−mbm,

` = 0, . . . , k.

In other words: A univariate polynomial function remains nonnegative on an
interval if and only if a specific square matrix constructed from its coefficients is
positive semidefinite. → Perfect setting for semidefinite optimization.
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Semi-parametric Bounds

Consider a payoff function for a European option of an underlying
security: f (s). Let σ ∈ <m be the given moments of function
f i (s), i = 1, . . . ,m.

Then the semi-parametric upper bound on the fair price of this
security is determined by solving

supP EP(f (s)) =
∫
< f (s)dP(s)

s.t. EP(1) = 1,
EP(f i (s)) = σi , i = 1, . . . ,m,
P a probability distribution in <+.

And similarly for a lower bound.

In essence, we are optimizing over all pricing (risk-neutral) measures
that are consistent with the observed prices.
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Bertsimas-Popescu Results

Bertsimas and Popescu observed that when the derivative security is a
European call option, the dual of the semi-parametric bound problem
above has a linear objective and has polynomial constraints that must
hold for all nonnegative arguments of the polynomial function.

Using their structural result about non-negativity of polynomials, they
formulate this dual as a semidefinite optimization problem.

This approach remains valid for options with piecewise polynomial
payoff functions.

In some of the simpler cases, analytical solutions to these
optimization problems can be derived.
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Zuluaga-Peña Results

Bertsimas and Popescu also tackle the case of multiple underlying
assets but produce mostly negative results.

In a related study Zuluaga and Peña cast the semi-parametric bound
problem as a conic optimization problem where the relevant cones are
the cone of moments and its dual, the cone of positive semidefinite
polynomials.

They also discuss the relaxations/approximations of these cones using
the cone of semidefinite matrices which lead to computable bounds
for the options under consideration.

Their results include options with multiple underlying assets such as
exchange options, max-cap options, rainbow options.
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Recap

Robust optimization models offer intuitive and useful approaches to
interpret and manage uncertainty in parameters of optimization
problems.

Different interpretations of uncertainty lead to different optimization
problems of varying difficulty. Many open problems waiting to be
solved.

With the inherent uncertainty in their model parameters, financial
optimization problems are ideal settings for the use of robust
optimization approaches.

These models are useful and there is real interest in them. They are
fun, interesting, and mathematically challenging.
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