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1. Examples of elliptic control problems
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1.3.1 Spaces
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1.3.3 Robin boundary condition
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Examples – convex 4

1.1 Convex problems

Optimal stationary boundary temperature: Heating of a body Ω by a controlled

boundary temperature u to reach a target temperature yΩ.

min J(y, u) :=
1

2

Z

Ω

`
y(x) − yΩ(x)

´2
dx+

α

2

Z

Γ

u(x)2 ds(x)

subject to the state equation (state y)

−∆y = 0 in Ω

∂y

∂n
= σ (u− y) on Γ

and to the control-constraints (control u)

ua(x) ≤ u(x) ≤ ub(x) on Γ.

This is a linear-quadratic elliptic boundary control problem.
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y = y(x)

u = u(x)

n

Γ

·x

Ω

Boundary control
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Optimal stationary heat source: Heating of a body Ω by a controlled heat source u

(say electromagnetic induction or microwaves) to reach the target yΩ.

min J(y, u) :=
1

2

Z

Ω

`
y(x) − yΩ(x)

´2
dx+

α

2

Z

Ω

u(x)2 dx

subject to

−∆y = u in Ω

y = 0 on Γ

ua(x) ≤ u(x) ≤ ub(x) in Ω.
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Optimal stationary heat source: Heating of a body Ω by a controlled heat source u

(say electromagnetic induction or microwaves) to reach the target yΩ.

min J(y, u) :=
1

2

Z

Ω

`
y(x) − yΩ(x)

´2
dx+

α

2

Z

Ω

u(x)2 dx

subject to

−∆y = u in Ω

y = 0 on Γ

ua(x) ≤ u(x) ≤ ub(x) in Ω.

This is a linear-quadratic elliptic distributed control problem.
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Examples – convex 6

Optimal stationary heat source: Heating of a body Ω by a controlled heat source u

(say electromagnetic induction or microwaves) to reach the target yΩ.

min J(y, u) :=
1

2

Z

Ω

`
y(x) − yΩ(x)

´2
dx+

α

2

Z

Ω

u(x)2 dx

subject to

−∆y = u in Ω

y = 0 on Γ

ua(x) ≤ u(x) ≤ ub(x) in Ω.

This is a linear-quadratic elliptic distributed control problem.

It might be important to include also pointwise state constraints

ya ≤ y(x) ≤ yb.
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Distributed control 7

u(x)

Γ
Ω

Controlled heat source
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1.2 Examples – nonconvex 8

Consider the same objective functional as before, but with semilinear state equation:

Stefan-Boltzmann radiation condition: Sachs, 1978 (parabolic case)

−∆y = 0 in Ω

∂y

∂n
= σ (u4 − y4) on Γ.
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1.2 Examples – nonconvex 8

Consider the same objective functional as before, but with semilinear state equation:

Stefan-Boltzmann radiation condition: Sachs, 1978 (parabolic case)

−∆y = 0 in Ω

∂y

∂n
= σ (u4 − y4) on Γ.

Simplified equation in super conductivity:

The following Ginzburg-Landau model has been discussed by Ito and Kunisch, 1996:

−∆y − y + y3 = u in Ω

y = 0 on Γ.
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1.2 Examples – nonconvex 8

Consider the same objective functional as before, but with semilinear state equation:

Stefan-Boltzmann radiation condition: Sachs, 1978 (parabolic case)

−∆y = 0 in Ω

∂y

∂n
= σ (u4 − y4) on Γ.

Simplified equation in super conductivity:

The following Ginzburg-Landau model has been discussed by Ito and Kunisch, 1996:

−∆y − y + y3 = u in Ω

y = 0 on Γ.

Then nonconvex optimal control problems are obtained. Nonconvex problems require

different spaces and a different analysis. Associated numerical algorithms are more

complex.
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Stationary Navier-Stokes-equations: The stationary fluid flow in a domain Ω can be

modelled by

−
1

Re
∆y + (y · ∇) y + ∇p = u in Ω

y = 0 on Γ

div y = 0 in Ω,

where y = y(x) ∈ IR3 is the velocity vector of a particle located at x ∈ Ω, p = p(x) is

the pressure and u = u(x) the controlled density of volume forces. Re is the Reynolds

number.

Notation:

(y · ∇) y = y1D1y + y2D2y + y3D3y =
3X

i=1

yi

2
664

Diy1

Diy2

Diy3

3
775

Target: For instance, a desired velocity field yd.

PDE Constrained Optimization, Tomar 2005



Linear elliptic equations 10

1.3 Linear elliptic PDEs

Sobolev spaces: We shall use the Sobolev space

H1(Ω) =
˘
y ∈ L2(Ω) : Di y ∈ L2(Ω), i = 1, . . . , N

¯
,

endowed with the norm

‖y‖H1(Ω) =
“ Z

Ω

`
y2 + |∇y|2

´
dx

”1/2

(where |∇y|2 = (D1 y)
2 + . . . (DN y)2). With the inner product

`
u , v

´
H1(Ω)

=

Z

Ω

u v dx+

Z

Ω

∇u · ∇v dx,

H1(Ω) is a Hilbert space. Moreover, we need H1
0 (Ω), the closure of C∞

0 (Ω) in H1(Ω)

(functions of H1(Ω) with boundary value (=trace) zero).
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1.3.1 Poisson equation

Consider for given f ∈ L2(Ω)

−∆y = f in Ω

y = 0 on Γ.

Weak formulation: Multiply the PDE by an arbitray but fixed test function

v ∈ H1
0 (Ω) and integrate on Ω. Then

−

Z

Ω

v∆y dx =

Z

Ω

f v dx

and integrating by parts,

−

Z

Γ

v ∂ny ds+

Z

Ω

∇y · ∇v dx =

Z

Ω

f v dx.

∂n := ∂/∂n; By v|Γ = 0:

PDE Constrained Optimization, Tomar 2005



Weak formulation 12

Z

Ω

∇y · ∇v dx =

Z

Ω

f v dx.

Definition: A function y ∈ H1
0 (Ω) is a weak solution of the Poisson equation, if the

weak formulation
Z

Ω

∇y · ∇v dx =

Z

Ω

f v dx ∀ v ∈ H1
0 (Ω)

is satisfied.

PDE Constrained Optimization, Tomar 2005



Weak formulation 12

Z

Ω

∇y · ∇v dx =

Z

Ω

f v dx.

Definition: A function y ∈ H1
0 (Ω) is a weak solution of the Poisson equation, if the

weak formulation
Z

Ω

∇y · ∇v dx =

Z

Ω

f v dx ∀ v ∈ H1
0 (Ω)

is satisfied.

Theorem: In any bounded Lipschitz domain Ω, for each f ∈ L2(Ω), the Poisson

equation admits a unique weak solution y ∈ H1
0 (Ω). There exists a constant cP ,

independent of f , such that

‖y‖H1(Ω) ≤ cP ‖f‖L2(Ω).
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Weak formulation 12

Z

Ω

∇y · ∇v dx =

Z

Ω

f v dx.

Definition: A function y ∈ H1
0 (Ω) is a weak solution of the Poisson equation, if the

weak formulation
Z

Ω

∇y · ∇v dx =

Z

Ω

f v dx ∀ v ∈ H1
0 (Ω)

is satisfied.

Theorem: In any bounded Lipschitz domain Ω, for each f ∈ L2(Ω), the Poisson

equation admits a unique weak solution y ∈ H1
0 (Ω). There exists a constant cP ,

independent of f , such that

‖y‖H1(Ω) ≤ cP ‖f‖L2(Ω).

Conclusion: The mapping G : f 7→ y is continuous from L2(Ω) to H1
0 (Ω).
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Weak formulation 13

1.3.2 Robin boundary condition . We proceed similarly for

−∆y + c0 y = f in Ω

∂ny + σ y = g on Γ

where are given: f ∈ L2(Ω), g ∈ L2(Γ), c0 ∈ L∞(Ω), σ ∈ L∞(Γ).

Multiplying by a test function v ∈ H1(Ω),

−

Z

Γ

v ∂ny ds+

Z

Ω

∇y · ∇v dx+

Z

Ω

c0 y v dx =

Z

Ω

f v dx.

Inserting the boundary condition ∂ny = g − σ y
Z

Ω

∇y · ∇v dx+

Z

Ω

c0 y v dx+

Z

Γ

σ y v ds =

Z

Ω

f v dx+

Z

Γ

g v ds

for all v ∈ H1(Ω).
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Definition: An y ∈ H1(Ω) is a weak solution of the Robin problem, if the weak

formulation
Z

Ω

∇y · ∇v dx+

Z

Ω

c0 y v dx+

Z

Γ

σ y v ds =

Z

Ω

f v dx+

Z

Γ

g v ds

is satisfied for all v ∈ H1(Ω).
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Weak formulation 14

Definition: An y ∈ H1(Ω) is a weak solution of the Robin problem, if the weak

formulation
Z

Ω

∇y · ∇v dx+

Z

Ω

c0 y v dx+

Z

Γ

σ y v ds =

Z

Ω

f v dx+

Z

Γ

g v ds

is satisfied for all v ∈ H1(Ω).

Theorem: Let a bounded Lipschitz domain Ω and non-negative c0 ∈ L∞(Ω) und

σ ∈ L∞(Γ) be given such that
Z

Ω

c0(x)
2 dx+

Z

Γ

σ(x)2 ds(x) > 0.

Then the Robin problem admits for each pair f ∈ L2(Ω), g ∈ L2(Γ) a unique weak

solution y ∈ H1(Ω). There is a constant cR, independent of f und g such that

‖y‖H1(Ω) ≤ cR
`
‖f‖L2(Ω) + ‖g‖L2(Γ)

´
.
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Examples – Summary 15

We have introduced several examples of linear and semilinear elliptic equations

that form the state equation of optimal control problems.

For linear equations, the spaces H1
0 (Ω) and H1(Ω) are adequate. Associated

optimal control problems fall into the class of convex optimization problems.

If semilinear state equations are given, then the problems are in general

nonconvex optimization problems, even if the objective functional to be

minimized is convex.
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2. Existence of optimal controls 16

2. Existence of optimal controls
2.1 Distributed control – optimal heat source

2.2 The semilinear case

2.2.1 Existence for semilinear equations

2.2.2 Control problem and existence of optimal controls

2.2.3 Derivatives
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Main assumptions 17

2.1 Distributed control – optimal heat source

Main assumptions I:

• Ω bounded Lipschitz domain

• Bounds ua ≤ ub bounded and measurable (or just missing)

• c0 and σ nonnegative with ‖c0‖∞ + ‖σ‖∞ 6= 0

• target yΩ ∈ L∞(Ω)

• α ≥ 0

PDE Constrained Optimization, Tomar 2005



Optimal heat source 18

2.1 Distributed control – optimal heat source

min J(y, u) :=
1

2
‖y − yΩ‖

2
L2(Ω) +

α

2
‖u‖2

L2(Ω)

−∆y = u in Ω

y = 0 on Γ

ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω.

Definition: Uad =
˘
u ∈ L2(Ω) : ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω

¯
.

Uad is non-empty, closed and bounded in L2(Ω). The functions of Uad are the feasible

controls.

Control-to-state mapping: G : u 7→ y, G : L2(Ω) → H1
0 (Ω).

Solution operator: S : u 7→ y, S : L2(Ω) → L2(Ω).

PDE Constrained Optimization, Tomar 2005



Transformation to an optimization problem 19

Definition: A control ū ∈ Uad is said to be optimal with associated optimal state

ȳ = y(ū), if

J(ȳ, ū) ≤ J(y(u), u) ∀u ∈ Uad.

PDE Constrained Optimization, Tomar 2005



Transformation to an optimization problem 19

Definition: A control ū ∈ Uad is said to be optimal with associated optimal state

ȳ = y(ū), if

J(ȳ, ū) ≤ J(y(u), u) ∀u ∈ Uad.

Transformation: We formally eliminate the PDE by

1

2
‖y − yΩ‖

2
L2(Ω) +

α

2
‖u‖2

L2(Ω) =
1

2
‖S u− yΩ‖

2
L2(Ω) +

α

2
‖u‖2

L2(Ω) =: bJ(u)

PDE Constrained Optimization, Tomar 2005



Transformation to an optimization problem 19

Definition: A control ū ∈ Uad is said to be optimal with associated optimal state

ȳ = y(ū), if

J(ȳ, ū) ≤ J(y(u), u) ∀u ∈ Uad.

Transformation: We formally eliminate the PDE by

1

2
‖y − yΩ‖

2
L2(Ω) +

α

2
‖u‖2

L2(Ω) =
1

2
‖S u− yΩ‖

2
L2(Ω) +

α

2
‖u‖2

L2(Ω) =: bJ(u)

Thus the optimal control problem admits the form of a quadratic optimal control

problem in the Hilbert space U = L2(Ω):

min
u∈Uad

bJ(u) :=
1

2
‖S u− yΩ‖

2
L2(Ω) +

α

2
‖u‖2

L2(Ω).

PDE Constrained Optimization, Tomar 2005



Existence theorem 20

Theorem: Let real Hilbert spaces U and H, a nonempty, closed, bounded and convex

set Uad ⊂ U , yd ∈ U and α ≥ 0 be given. Let S : U → H be a linear and continuous

operator. Then the quadratic optimization problem

min
u∈Uad

bJ(u) :=
1

2
‖S u− yd‖

2
H +

α

2
‖u‖2

U

admits an optimal solution ū. It is unique for α > 0 .

The proof uses the fact that, under the assumptions above, the set Uad is weakly

sequentially compact. Moreover, by continuity and convexity, f is weakly lower

semicontinuous. By standard arguments, this permits to prove this known result.

PDE Constrained Optimization, Tomar 2005
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Theorem: Let real Hilbert spaces U and H, a nonempty, closed, bounded and convex

set Uad ⊂ U , yd ∈ U and α ≥ 0 be given. Let S : U → H be a linear and continuous

operator. Then the quadratic optimization problem

min
u∈Uad

bJ(u) :=
1

2
‖S u− yd‖

2
H +

α

2
‖u‖2

U

admits an optimal solution ū. It is unique for α > 0 .

The proof uses the fact that, under the assumptions above, the set Uad is weakly

sequentially compact. Moreover, by continuity and convexity, f is weakly lower

semicontinuous. By standard arguments, this permits to prove this known result.

Corollary: For α > 0, the problem of optimal heat source admits a unique optimal

control ū.
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Existence theorem 20

Theorem: Let real Hilbert spaces U and H, a nonempty, closed, bounded and convex

set Uad ⊂ U , yd ∈ U and α ≥ 0 be given. Let S : U → H be a linear and continuous

operator. Then the quadratic optimization problem

min
u∈Uad

bJ(u) :=
1

2
‖S u− yd‖

2
H +

α

2
‖u‖2

U

admits an optimal solution ū. It is unique for α > 0 .

The proof uses the fact that, under the assumptions above, the set Uad is weakly

sequentially compact. Moreover, by continuity and convexity, f is weakly lower

semicontinuous. By standard arguments, this permits to prove this known result.

Corollary: For α > 0, the problem of optimal heat source admits a unique optimal

control ū.

Case of optimal boundary control: Since G : L2(Γ) → H1(Ω) is continuous, the

same result can be derived for the problem of optimal stationary boundary temperature.
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2.2 The semilinear case 21

2.2.1 Existence for semilinear equations

In the semilinear elliptic case, we consider the optimal control of the following

Model problem:

−∆y + c0(x) y + d(y) = f in Ω

∂ny + σ(x) y + b(y) = g on Γ.

The functions c0 and σ fulfill the same assumptions as before and d, b : IR → IR are

monotone non-decreasing, differentiable with locally Lipschitz first derivative.

PDE Constrained Optimization, Tomar 2005



2.2 The semilinear case 21

2.2.1 Existence for semilinear equations

In the semilinear elliptic case, we consider the optimal control of the following

Model problem:

−∆y + c0(x) y + d(y) = f in Ω

∂ny + σ(x) y + b(y) = g on Γ.

The functions c0 and σ fulfill the same assumptions as before and d, b : IR → IR are

monotone non-decreasing, differentiable with locally Lipschitz first derivative.

Choice of the state space: Now, H1(Ω) is not in general the suitable space of

solutions y, since y ∈ H1(Ω) does not guarantee that d(y) ∈ L2(Ω) and even not

d(y) ∈ L1(Ω).

We define the solution in Y = H1(Ω) ∩ C(Ω̄). The space C(Ω̄) is also important to

deal with state-constrained problems later.
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Use of monotone operator theory 22

If b and d are in addition uniformly bounded on IR and vanish at 0, then the theorem on

monotone operators by Browder and Minty can be applied to show that

−∆y + c0(x) y + d(y) = f in Ω

∂ny + σ(x) y + b(y) = g on Γ

has for all pairs (f, g) ∈ L2(Ω) × L2(Γ) a unique weak solution y ∈ H1(Ω) that

satisfies the estimate

‖y‖H1(Ω) ≤ cM
`
‖f‖L2(Ω) + ‖g‖L2(Γ)

´
.

Here, the constant does not depend on f and g and even not on b, d.

PDE Constrained Optimization, Tomar 2005



Use of monotone operator theory 22

If b and d are in addition uniformly bounded on IR and vanish at 0, then the theorem on

monotone operators by Browder and Minty can be applied to show that

−∆y + c0(x) y + d(y) = f in Ω

∂ny + σ(x) y + b(y) = g on Γ

has for all pairs (f, g) ∈ L2(Ω) × L2(Γ) a unique weak solution y ∈ H1(Ω) that

satisfies the estimate

‖y‖H1(Ω) ≤ cM
`
‖f‖L2(Ω) + ‖g‖L2(Γ)

´
.

Here, the constant does not depend on f and g and even not on b, d.

Weak solution:
Z

Ω

∇y · ∇v dx+

Z

Ω

`
c0 y + d(y)

´
v dx+

Z

Γ

`
σ y + b(y)

´
v ds =

Z

Ω

f v dx+

Z

Γ

g v ds

for all v ∈ H1(Ω).
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Continuous solutions 23

If the degree of integrability of f and g is sufficiently high, then the solution y of

the semilinear equation is bounded and even continuous. Therefore, it is quite

natural that the assumption on uniform boundedness of b and d is not needed:

Assumption: Let c0 and σ be as before, d, b monotone non-decreasing and

continuous.

PDE Constrained Optimization, Tomar 2005



Continuous solutions 23

If the degree of integrability of f and g is sufficiently high, then the solution y of

the semilinear equation is bounded and even continuous. Therefore, it is quite

natural that the assumption on uniform boundedness of b and d is not needed:

Assumption: Let c0 and σ be as before, d, b monotone non-decreasing and

continuous.

Theorem: Let the assumption above be satisfied, r > N/2, s > N − 1. Then,

for each pair f ∈ Lr(Ω), g ∈ Ls(Γ), the semilinear model equation has a unique

weak solution y ∈ H1(Ω) ∩ C(Ω̄). If, in addition, b(0) = d(0) = 0 holds, then

‖y‖H1(Ω) + ‖y‖C(Ω̄) ≤ c∞
(
‖f‖Lr(Ω) + ‖g‖Ls(Γ)

)

holds with a constant c∞ that does not depend on d, b, f and g.

Casas 1993, Alibert and Raymond 1997; Stampacchia method

PDE Constrained Optimization, Tomar 2005



Continuous solutions 24

Without the assumption b(0) = d(0) = 0, the estimate

‖y‖H1(Ω) + ‖y‖C(Ω̄) ≤ c∞
(
‖f‖Lr(Ω) + ‖g‖Ls(Γ) + 1

)

holds true.

Dimensions: In the following cases, data from L2 are sufficient to have

continuous solutions:

Distributed control: r = 2 > N/2 ⇔ N < 4

Boundary control: s = 2 > N − 1 ⇔ N < 3

PDE Constrained Optimization, Tomar 2005



Control problem and existence 25

2.2.2 Control problem and existence of optimal controls

We already have discussed the solvability of the equations in H1(Ω) ∩ C(Ω̄).

Now we consider the associated control problem

min J(y, u) :=:=
1

2
‖y − yΩ‖

2
L2(Ω) +

α

2
‖u‖2

L2(Ω)

subject to

−∆y + y + d(y) = u in Ω

∂ny = 0 auf Γ

and

ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω.

PDE Constrained Optimization, Tomar 2005



Existence of optimal controls 26

Theorem: Under the assumptions posed above, the distributed optimal problem

for the semilinear elliptic model equation admits at least one optimal control.

Remarks:

– There can be more than one optimal control, even infinitely many different

ones might exist.

– Locally optimal controls are of interest as well.

– We need necessary / sufficient conditons to find them.

PDE Constrained Optimization, Tomar 2005



Existence of optimal controls 26

Theorem: Under the assumptions posed above, the distributed optimal problem

for the semilinear elliptic model equation admits at least one optimal control.

Remarks:

– There can be more than one optimal control, even infinitely many different

ones might exist.

– Locally optimal controls are of interest as well.

– We need necessary / sufficient conditons to find them.

Let us start with the necessary ones...
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Fréchet derivative 27

2.2.3 Derivatives

Let U , V be real Banach spaces and F : U → V mapping.

Definition: F : U → V is said to be Fréchet-differentiable at u, if there exist a

linear and continuous operator A : U → V and a mapping r : U × U → V with

the following properties: For all h ∈ U ,

F (u+ h) = F (u) + Ah+ r(u, h)

and the remainder term r satisfies

‖r(u, h)‖V

‖h‖U
→ 0 as ‖h‖U → 0.

A is the Fréchet derivative of F at u, A = F ′(u).
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Fréchet derivative 28

Example 1:

Let U and H real Hilbert spaces, z ∈ H, S : U → H linear and continuous. Then

F (u) := ‖S u− z‖2
H

is Fréchet-differentiable on U and

F ′(u)h = 2
(
S∗(S u− z) , h

)
U
.

This is the expression for the derivative. The element 2S∗(S u− z) is said to be

the gradient of F ,

F ′(u) = 2S∗(S u− z).

[Riesz representation]

PDE Constrained Optimization, Tomar 2005



Fréchet derivative 29

Example 2: The mapping Φ : y(·) 7→ sin(y(·)),

(Φ(y))(x) := sin(y(x))

is called a superposition operator or Nemytskij operator.

It is

• Lipschitz continuous from Lp(Ω) to Lp(Ω) for all 1 ≤ p ≤ ∞.

PDE Constrained Optimization, Tomar 2005
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Example 2: The mapping Φ : y(·) 7→ sin(y(·)),

(Φ(y))(x) := sin(y(x))

is called a superposition operator or Nemytskij operator.

It is

• Lipschitz continuous from Lp(Ω) to Lp(Ω) for all 1 ≤ p ≤ ∞.

• not F-differentiable in any Lp-space with p <∞.
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Fréchet derivative 29

Example 2: The mapping Φ : y(·) 7→ sin(y(·)),

(Φ(y))(x) := sin(y(x))

is called a superposition operator or Nemytskij operator.

It is

• Lipschitz continuous from Lp(Ω) to Lp(Ω) for all 1 ≤ p ≤ ∞.

• not F-differentiable in any Lp-space with p <∞.

• F-differentiable in L∞(Ω) and in C(Ω̄). Here, the derivative is

(Φ′(y)h)(x) := cos(y(x))h(x).
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Fréchet derivative 29

Example 2: The mapping Φ : y(·) 7→ sin(y(·)),

(Φ(y))(x) := sin(y(x))

is called a superposition operator or Nemytskij operator.

It is

• Lipschitz continuous from Lp(Ω) to Lp(Ω) for all 1 ≤ p ≤ ∞.

• not F-differentiable in any Lp-space with p <∞.

• F-differentiable in L∞(Ω) and in C(Ω̄). Here, the derivative is

(Φ′(y)h)(x) := cos(y(x))h(x).

• It is F-differentiable from Lp(Ω) to Lq(Ω) with q < p...
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Summary of section 2 30

In the linear-quadratic case, the convexity of the problem and boundedness of

the feasible set Uad guarantee the existence of at least one optimal control that

is unique for α > 0. We are justified to work in the Hilbert spaces H1(Ω) and

L2(Ω).

In the case of semilinear equations, the theory is more difficult. To have existence

for the equation, we need in general the space H1(Ω) ∩ C(Ω̄). Then existence

can be shown by the theory of monotone operators and the Stampacchia method.

Existence of optimal controls can be shown as well.
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3. Optimality conditions 31

3. First order necessary optimality conditions

3.1 Quadratic optimization in Hilbert space

3.2 Distributed control

3.2.1 Adjoint equation

3.2.2 Projection formula

3.2.3 Test examples

3.2.4 Lagrange multipliers

3.2.5 Karush-Kuhn-Tucker system

3.2.6 The reduced gradient
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Outline of section 3 32

3.3 Boundary control

3.4 The formal Lagrange principle

3.5 Control of semilinear equations

3.6 Second order sufficient conditions

3.7 Pointwise state constraints
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The variational inequality 33

3. First order necessary optimality conditions

3.1 Quadratic optimization in Hilbert space

We have transformed our elliptic optimal control problems to the following optimization

problem in Hilbert space:

min
u∈Uad

(P ) bJ(u) :=
1

2
‖Su− yd‖

2
H +

α

2
‖u‖2

U .

Lemma: Let U be a real Banach space, C ⊂ U a convex set and f : C → IR

F-differentiable on C. Let ū ∈ C be a solution of (P). Then the following variational

inequality is satisfied:

bJ ′(ū)(u− ū) ≥ 0 ∀u ∈ C.

Application to bJ above...
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Application of the variational inequality 34

Application to (P): If ū is a solution to (P), then

bJ ′(ū)(u− ū) = (S∗(S ū− yd) + αū , u− ū)H ≥ 0 ∀u ∈ C.
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Application of the variational inequality 34

Application to (P): If ū is a solution to (P), then

bJ ′(ū)(u− ū) = (S∗(S ū− yd) + αū , u− ū)H ≥ 0 ∀u ∈ C.

3.2. Distributed control

3.2.1 Adjoint equation

Recall: In the distributed elliptic problem, we have S : u 7→ y, S : L2(Ω) → L2(Ω).

The problem was

min J(y, u) :=
1

2
‖ y|{z}

Su

−yΩ‖
2
L2(Ω) +

α

2
‖u‖2

L2(Ω)

−∆y = u in Ω

y = 0 on Γ

ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω.
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Adjoint operator 35

To apply the variational inequality above, we need S∗.

Lemma: In the case of the Poisson equation, the adjoint operator

S∗ : L2(Ω) → L2(Ω) is given by

S∗z := p,

where p ∈ H1
0 (Ω) is the weak solution of the following Poisson equation:

−∆p = z in Ω

p = 0 auf Γ.

Application: S∗(S ū− yΩ) = S∗ (ȳ − yΩ) = p, where

−∆p = ȳ − yΩ in Ω

p = 0 on Γ
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Adjoint equation 36

Definition: The weak solution p ∈ H1
0 (Ω) of the adjoint equation

−∆p = ȳ − yΩ in Ω

p = 0 auf Γ

is called adjoint state associated with ȳ.

We get S∗(S ū− yΩ) + αū = p+ αū hence

`
p+ αū , u− ū

´
L2(Ω)

≥ 0 ∀u ∈ Uad.

Theorem: If ū is optimal for the distributed problem above and ȳ the associated

state, then there exists a unique adjoint state p defined by the adjoint equation and the

following variational inequality is satisfied:
Z

Ω

`
p(x) + α ū(x)

´`
u(x) − ū(x)

´
dx ≥ 0 ∀u ∈ Uad
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Optimality system 37

Summarizing up, we have the

Optimality system:

−∆y = u

y|Γ = 0

−∆p = y − yΩ

p|Γ = 0

u ∈ Uad

(
p+ αu , v − u

)
L2(Ω)

≥ 0 ∀v ∈ Uad.
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Minimum principles 38

Each u ∈ Uad that satisfies together with y and the adjoint state p the

optimality system, is optimal. This follows from the convexity of the problem.
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Minimum principles 38

Each u ∈ Uad that satisfies together with y and the adjoint state p the

optimality system, is optimal. This follows from the convexity of the problem.

3.2.2 Projection formula

Discussion of the variational inequality
∫

Ω

(
p(x) + α ū(x)

)(
u(x) − ū(x)

)
dx ≥ 0 ∀u ∈ Uad

∫

Ω

(p+ α ū) ū dx ≤

∫

Ω

(p+ α ū)u dx ∀u ∈ Uad

∫

Ω

(p+ α ū) ū dx = min
u∈Uad

∫

Ω

( p+ α ū)u dx.
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Minimum principles 38

Each u ∈ Uad that satisfies together with y and the adjoint state p the

optimality system, is optimal. This follows from the convexity of the problem.

3.2.2 Projection formula

Discussion of the variational inequality
∫

Ω

(
p(x) + α ū(x)

)(
u(x) − ū(x)

)
dx ≥ 0 ∀u ∈ Uad

∫

Ω

(p+ α ū) ū dx ≤

∫

Ω

(p+ α ū)u dx ∀u ∈ Uad

∫

Ω

(p+ α ū) ū dx = min
u∈Uad

∫

Ω

( p+ α ū)u dx.

⇒
(
p(x) + α ū(x)

)
ū(x) = min

v∈[ua(x),ub(x)]

(
p(x) + α ū(x)

)
v a.e. on Ω.
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Detailed discussion 39

We obtain immediately

ū(x) =

8
>><
>>:

ua(x), where p(x) + α ū(x) > 0

∈ [ua(x), ub(x)], where p(x) + α ū(x) = 0

ub(x), where p(x) + α ū(x) < 0.

α = 0 :

ū(x) =

8
<
:

ua(x) where p(x) > 0

ub(x) where p(x) < 0.
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Detailed discussion 39

We obtain immediately

ū(x) =

8
>><
>>:

ua(x), where p(x) + α ū(x) > 0

∈ [ua(x), ub(x)], where p(x) + α ū(x) = 0

ub(x), where p(x) + α ū(x) < 0.

α = 0 :

ū(x) =

8
<
:

ua(x) where p(x) > 0

ub(x) where p(x) < 0.

Theorem: For α > 0, ū is optimal iff the projection formula

ū(x) = P[ua(x),ub(x)]


−

1

α
p(x)

ff

is satisfied for a.a. x ∈ Ω with the associated p. Here, P[a,b] denotes the projection from

IR to [a, b].
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No box constraints 40

α > 0 and Uad = L2(Ω): We get

ū = −
1

α
p.

Inserting this in the state equation gives the optimality system

−∆y = −α−1 p −∆p = y − yΩ

y|Γ = 0 p|Γ = 0,

a coupled system of two elliptic boundary value problems to find y = ȳ and p. After

having computed p, we find ū by ū = −p/α.
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Bang-Bang control 41

3.2.3 Test examples

Bang-Bang control: We consider the following problem

min

Z

Ω

(y − yΩ)2 dx

−∆y = u+ eΩ

y|Γ = 0

−1 ≤ u(x) ≤ 1.

The term eΩ does not change the optimality conditions. We take the unit square

Ω = (0, 1)2. To obtain a ”checkerboard function” as optimal control, we proceed as

follows: Ω is partitioned into 8 × 8 = 64 subdomains, where the control admits the

values 1 and −1.

Free to adapt the problem: yΩ, eΩ

PDE Constrained Optimization, Tomar 2005



Bang-Bang control 42

Optimality system:

−∆y = u+ eΩ

y|Γ = 0

−∆p = y − yΩ

p|Γ = 0

u(x) = − sign p(x)
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Bang-Bang control 42

Optimality system:

−∆y = u+ eΩ

y|Γ = 0

−∆p = y − yΩ

p|Γ = 0

u(x) = − sign p(x)

We just define the optimal state and adjoint state by

ȳ(x) = y(x1, x2) = sin(π x1) sin(π x2),

p(x) = p(x1, x2) = − 1
128 π2 sin(8 π x1) sin(8π x2)
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Bang-Bang control 42

Optimality system:

−∆y = u+ eΩ

y|Γ = 0

−∆p = y − yΩ

p|Γ = 0

u(x) = − sign p(x)

We just define the optimal state and adjoint state by

ȳ(x) = y(x1, x2) = sin(π x1) sin(π x2),

p(x) = p(x1, x2) = − 1
128 π2 sin(8 π x1) sin(8π x2)

To satisfy both equations, we adapt yΩ and eΩ by

eΩ = −∆ȳ − ū = 2π2 sin(π x1) sin(π x2) + sign
`
− sin(8 π x1) sin(8π x2)

´

yΩ = ȳ + ∆p = yΩ(x) = sin(π x1) sin(π x2) + sin(8π x1) sin(8 π x2).

The checkerboard function ū satisfies these conditions, hence (convexity!) it is optimal.
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Another test example 43

Problem with Neumann boundary condition:

min J(y, u) :=
1

2

Z

Ω

(y − yΩ)2 dx+

Z

Γ

eΓ y ds+
1

2

Z

Ω

u2 dx

−∆y + y = u+ eΩ, 0 ≤ u(x) ≤ 1

∂ny = 0.

Again, Ω = (0, 1)2 with midpoint x̂ = (0.5, 0.5)>.
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Another test example 43

Problem with Neumann boundary condition:

min J(y, u) :=
1

2

Z

Ω

(y − yΩ)2 dx+

Z

Γ

eΓ y ds+
1

2

Z

Ω

u2 dx

−∆y + y = u+ eΩ, 0 ≤ u(x) ≤ 1

∂ny = 0.

Again, Ω = (0, 1)2 with midpoint x̂ = (0.5, 0.5)>. We play with yΩ, eΩ, eΓ.

r := |x− x̂| =
p

(x1 − 0.5)2 + (x2 − 0.5)2

Desired optimal control:

ū(x) =

8
>>>><
>>>>:

1 for r > 1
3

12 r2 − 1
3

for r ∈ [ 1
6
, 1

3
]

0 for r < 1
6
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Test example 2 44

0
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1
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0.2

0.4

0.6

0.8

1
0

0.5

1

Optimal control

Adjoint equation:

−∆p+ p = ȳ − yΩ

∂np = eΓ

Projection formula:

ū(x) = P[0,1]

˘
− p(x)

¯
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Test example 2 44

0

0.5

1

0

0.2

0.4

0.6

0.8

1
0

0.5

1

Optimal control

Adjoint equation:

−∆p+ p = ȳ − yΩ

∂np = eΓ

Projection formula:

ū(x) = P[0,1]

˘
− p(x)

¯

p(x) := −12 |x− x̂|2 + 1
3

= −12 r2 + 1
3

y(x) := 1

eΩ = 1 − min
˘
1,max{0, 12 r2 − 1

3
}

¯

yΩ(x) = 1 − 48 − 1
3

+ 12 |x− x̂|2 = − 142
3

+ 12 r2

eΓ = ∂np = −12.
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Lagrange multipliers and KKT system 45

3.2.4 Lagrange multipliers

Theorem: The variational inequality (αū+ p , u− ū) ≥ 0 ∀u ∈ Uad is equivalent to

the existence of a.e. nonnegative functions µa, µa ∈ L2(Ω) such that the equation

p+ αū− µa + µb = 0

and the complementarity conditions

µa(x)
`
ua(x) − ū(x)

´
= µb(x)

`
ū(x) − ub(x)

´
= 0

are satisfied a.e. in Ω.
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Lagrange multipliers and KKT system 45

3.2.4 Lagrange multipliers

Theorem: The variational inequality (αū+ p , u− ū) ≥ 0 ∀u ∈ Uad is equivalent to

the existence of a.e. nonnegative functions µa, µa ∈ L2(Ω) such that the equation

p+ αū− µa + µb = 0

and the complementarity conditions

µa(x)
`
ua(x) − ū(x)

´
= µb(x)

`
ū(x) − ub(x)

´
= 0

are satisfied a.e. in Ω.

Proof: We define

µa(x) :=
`
p(x) + αu(x)

´+

µb(x) :=
`
p(x) + αu(x)

´−
,

By definition, we have µa ≥ 0, µb ≥ 0 und p+ αu = µa − µb.
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Continuation of proof 46

Moreover, we know the following implications:

( p+ α ū)(x) > 0 ⇒ ū(x) = ua(x)

( p+ α ū)(x) < 0 ⇒ ū(x) = ub(x)

ua(x) < ū(x) < ub(x) ⇒ ( p+ α ū)(x) = 0.
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Continuation of proof 46

Moreover, we know the following implications:

( p+ α ū)(x) > 0 ⇒ ū(x) = ua(x)

( p+ α ū)(x) < 0 ⇒ ū(x) = ub(x)

ua(x) < ū(x) < ub(x) ⇒ ( p+ α ū)(x) = 0.

This gives the complementarity conditions, since always one of the two factors is zero.

For instance,

µa(x) > 0 ⇒ µb(x) = 0, and ( p+ α ū)(x) = µa > 0

and thus ū(x) − ua(x) = 0. Therefore,

(u(x) − ua(x))µa(x) = 0.

2
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Karush-Kuhn-Tucker system 47

3.2.5 Optimality system (KKT system)

−∆y = u

y|Γ = 0

−∆p = y − yΩ

p|Γ = 0

p+ αu− µa + µb = 0

ua ≤ u ≤ ub, µa ≥ 0, µb ≥ 0,

µa(x)
(
ua(x) − ū(x)

)
= µb(x)

(
ū(x) − ub(x)

)
= 0.

The nondifferential equations are satisfied a.e. in Ω.
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Gradient of Ĵ 48

3.2.6 The gradient of the objective functional

The adjoint state permits a simple expression for the gradient of bJ(u) = J
`
y(u), u

´
.

Lemma: The gradient of the functional

bJ(u) = J
`
y(u), u

´
=

1

2
‖y − yΩ‖

2
L2(Ω) +

α

2
‖u‖2

L2(Ω)

is given by

∇ bJ(u) = p+ αu,

where p ∈ H1
0 (Ω) is the weak solution of the adjoint equation

−∆p = y − yΩ in Ω

p = 0 on Γ

and y = y(u) is the state associated with u.
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Gradient of Ĵ 48

3.2.6 The gradient of the objective functional

The adjoint state permits a simple expression for the gradient of bJ(u) = J
`
y(u), u

´
.

Lemma: The gradient of the functional

bJ(u) = J
`
y(u), u

´
=

1

2
‖y − yΩ‖

2
L2(Ω) +

α

2
‖u‖2

L2(Ω)

is given by

∇ bJ(u) = p+ αu,

where p ∈ H1
0 (Ω) is the weak solution of the adjoint equation

−∆p = y − yΩ in Ω

p = 0 on Γ

and y = y(u) is the state associated with u.

This follows from

bJ ′(u)h =
`
S∗(S u− yΩ) + αu , h

´
L2(Ω)

=
`
p+ αu , h

´
L2(Ω)
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Application: Gradient method 49

We consider for simplicity the case without control constraints and assume α > 0 for

existence.

Gradient method: Let u1, · · ·uk already have been computed.
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Application: Gradient method 49

We consider for simplicity the case without control constraints and assume α > 0 for

existence.

Gradient method: Let u1, · · ·uk already have been computed.

S1 Compute yk associated with uk (state equation)
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Application: Gradient method 49

We consider for simplicity the case without control constraints and assume α > 0 for

existence.

Gradient method: Let u1, · · ·uk already have been computed.

S1 Compute yk associated with uk (state equation)

S2 Compute the associated adjoint state pk from

−∆p = yk − yΩ in Ω

p = 0 on Γ.
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Application: Gradient method 49

We consider for simplicity the case without control constraints and assume α > 0 for

existence.

Gradient method: Let u1, · · ·uk already have been computed.

S1 Compute yk associated with uk (state equation)

S2 Compute the associated adjoint state pk from

−∆p = yk − yΩ in Ω

p = 0 on Γ.

Direction of descent: −∇ bJ(uk) = −(αuk + pk) (antigradient)
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Application: Gradient method 49

We consider for simplicity the case without control constraints and assume α > 0 for

existence.

Gradient method: Let u1, · · ·uk already have been computed.

S1 Compute yk associated with uk (state equation)

S2 Compute the associated adjoint state pk from

−∆p = yk − yΩ in Ω

p = 0 on Γ.

Direction of descent: −∇ bJ(uk) = −(αuk + pk) (antigradient)

S3 uk+1 = uk − τk ∇ bJ(uk)

where the optimal stepsize τk solves the quadratic problem min
τ≥0

bJ(uk − τ ∇ bJ(uk)).

Can be done analytically...
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Application: Gradient method 49

We consider for simplicity the case without control constraints and assume α > 0 for

existence.

Gradient method: Let u1, · · ·uk already have been computed.

S1 Compute yk associated with uk (state equation)

S2 Compute the associated adjoint state pk from

−∆p = yk − yΩ in Ω

p = 0 on Γ.

Direction of descent: −∇ bJ(uk) = −(αuk + pk) (antigradient)

S3 uk+1 = uk − τk ∇ bJ(uk)

where the optimal stepsize τk solves the quadratic problem min
τ≥0

bJ(uk − τ ∇ bJ(uk)).

Can be done analytically...

Continue by S1, if the descent is sufficiently large, otherwise stop.
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Active set strategy 50

3.2.7 Primal-dual active set strategy

(Bergounioux, Ito and Kunisch)

Optimality system:

−∆y = u

y|Γ = 0

−∆p = y − yΩ

p|Γ = 0

u ∈ Uad

`
p+ αu , v − u

´
L2(Ω)

≥ 0 ∀v ∈ Uad.

The variational inequality is equivalent to

ū(x) = P[ua(x),ub(x)]

˘
− α−1 p(x)

¯
.
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Active set strategy 51

ū(x) = P[ua(x),ub(x)]

˘
− α−1 p(x)

¯
.

Define

µ = −(α−1 p+ ū) = −α−1 ∇ bJ(ū).
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Active set strategy 51

ū(x) = P[ua(x),ub(x)]

˘
− α−1 p(x)

¯
.

Define

µ = −(α−1 p+ ū) = −α−1 ∇ bJ(ū).

We find

ū(x) =

8
>>><
>>>:

ua(x) if −α−1 p(x) < ua(x) (⇔ µ(x) < 0)

−α−1 p(x) if −α−1 p(x) ∈ [ua(x), ub(x)] (⇔ µ(x) = 0)

ub(x) if −α−1 p(x) > ub(x) (⇔ µ(x) > 0).
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Active set strategy 51

ū(x) = P[ua(x),ub(x)]

˘
− α−1 p(x)

¯
.

Define

µ = −(α−1 p+ ū) = −α−1 ∇ bJ(ū).

We find

ū(x) =

8
>>><
>>>:

ua(x) if −α−1 p(x) < ua(x) (⇔ µ(x) < 0)

−α−1 p(x) if −α−1 p(x) ∈ [ua(x), ub(x)] (⇔ µ(x) = 0)

ub(x) if −α−1 p(x) > ub(x) (⇔ µ(x) > 0).

Take, for instance, the upper case. Then, by definition of µ and by ū = ua, we have

µ(x) < 0 and hence ū(x) + µ(x) < ua(x)

u(x) =

8
>>><
>>>:

ua(x) if u(x) + µ(x) < ua(x)

−α−1 p(x) if u(x) + µ(x) ∈ [ua(x), ub(x)]

ub(x) if u(x) + µ(x) > ub(x).
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Active set strategy 52

Fix initial functions u0, µ0 in L2(Ω). Current iterate: uk−1 und µk−1. Next:

S1 (New active and inactive sets)

A+
k =

˘
x : uk−1(x) + µk−1(x) > ub(x)

¯

A−
k =

˘
x : uk−1(x) + µk−1(x) < ua(x)

¯

Ik = Ω \ (A+
k ∪ A−

k ).

If A+
k = A+

k−1 and A−
k = A−

k−1, then terminate because of optimality. Otherwise

continue.
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Active set strategy 53

S2 (New control) Solve

−∆y = u

−∆p = y − yΩ

u =

8
>><
>>:

ua on A−
k

−α−1 p on Ik

ub on A+
k

with y, p ∈ H1
0 (Ω).

Define uk := u, pk := p, µk := −(α−1 pk + uk), k := k + 1,

goto S1.
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Boundary control 54

3.3 Boundary control

Here, G : u 7→ y is linear and continuous from L2(Γ) to H1(Ω). We consider it as

operator S with range in L2(Ω). With S, the objective functional reads

bJ(u) =
1

2
‖Su− yΩ‖

2
L2(Ω) +

α

2
‖u‖2

L2(Γ).

Let ū ∈ Uad be optimal with state ȳ. The adjoint state is defined by

−∆p = ȳ − yΩ in Ω

∂np+ σ p = 0 on Γ.
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Theorem: If ū is optimal with adjoint state p, then for a.a. x ∈ Γ, the minimum

min
ua(x)≤v≤ub(x)

{
σ(x) p(x) v +

α

2
v2

}

is attained by v = ū(x). Therefore, for α > 0 the projection formula

ū(x) = P[ua(x),ub(x)]

{
−

1

α
σ(x) p(x)

}

is fulfilled for a.a. x ∈ Γ.
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Case α > 0, |u| ≤ 1:

1

-1

−
α

λ
p(ū)

x

ū

Optimal control for α > 0
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Lagrange principle 57

3.4 The formal Lagrange principle

The necessary optimality conditions (variational inequality, adjoint equation) can

be easily obtained by a Lagrange function. We consider again the boundary

control,

min J(y, u) :=
1

2
‖y − yΩ‖

2
L2(Ω) +

α

2
‖u‖2

L2(Γ)

−∆y = 0 in Ω

∂ny + σy = σ u on Γ

ua(x) ≤ u(x) ≤ ub(x) a.e. on Γ.

We eliminate the differential constraints (PDE, boundary condition) by Lagrange

multipliers p1, p2. Later, we shall see p2 = p1|Γ. Therefore we put p := p1 and

p2 := p|Γ.
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Definition :

L = L(y, u, p) = J(y, u) −

∫

Ω

(−∆y) p dx−

∫

Γ

(
∂ny − σ(u− y)

)
p ds.

with Lagrange multiplier p.
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Definition :

L = L(y, u, p) = J(y, u) −

∫

Ω

(−∆y) p dx−

∫

Γ

(
∂ny − σ(u− y)

)
p ds.

with Lagrange multiplier p.

This is a little bit too formal, since −∆ y is not in general a function. Integrating

by parts:

Definition: The Lagrange function L : H1(Ω) × L2(Γ) ×H1(Ω) → IR for the

boundary control problem is

L(y, u, p) := J(y, u) −

∫

Ω

∇y · ∇p dx+

∫

Γ

σ (u− y) p ds.

The multiplier p is identical with the adjoint state.
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Use of the Lagrange function 59

It is easy to verify that

• DyL(ȳ, ū, p)h = 0 ∀h ∈ H1(Ω)

is the weak formulation of the adjoint equation.

• DuL(ȳ, ū, p) (u− ū) ≥ 0 ∀u ∈ Uad

gives the variational inequality.

• The gradient of the reduced functional Ĵ(u) = J(y(u), u) is obtained by

Ĵ ′(u) = DuL(y, u, p),

with y = y(u) und p = p(u).

PDE Constrained Optimization, Tomar 2005



Elimination of inequality constraints 60

Extension

In the same way, the box constraints on the control can be eliminated by

Lagrange multipliers µa, µb.

Extended Lagrange function:

L(y, u, p, µa, µb) := J(y, u) −

∫

Ω

∇y · ∇p dx+

∫

Γ

σ (u− y) p ds

+

∫

Ω

(
µa(ua − u) + µb(u− ub)

)
dx.

Again, DyL = 0 gives the adjoint equation, while DuL = 0 yields the gradient

equation.
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3.5. Control of semilinear equations

We already have discussed the solvability of the equations in H1(Ω) ∩ C(Ω̄).

Now we consider the control problem

min J(y, u) :=:=
1

2
‖y − yΩ‖

2
L2(Ω) +

α

2
‖u‖2

L2(Ω)

subject to

−∆y + y + d(y) = u in Ω

∂ny = 0 auf Γ
(1)

and

ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω. (2)
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Semilinear case 62

Definition:

Uad =
{
u ∈ L∞(Ω) : ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω

}
.

We repeat the assumptions for convenience.

Assumptions: Ω ⊂ IRN is a bounded Lipschitz domain. The function d : IR → IR

is monotone non-decreasing, twice differentiable with locally Lipschitz second

derivative. Moreover, yΩ ∈ L∞(Ω), α ≥ 0, ua, ub ∈ L∞(Ω) with ua(x) ≤ ub(x).

Definition: A control ū ∈ Uad is locally optimal in the sense of Lr(Ω), if there

exists ε > 0 such that

J
(
y(ū), ū

)
≤ J

(
y(u), u

)

holds for all u ∈ Uad with ‖u− ū‖Lr(Ω) ≤ ε.
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Our state equation is

−∆y + y + d(y) = u in Ω

∂ny = 0 on Γ.

To each u ∈ U := Lr(Ω), r > N/2, there exists exactly one state

y ∈ Y = H1(Ω) ∩ C(Ω̄). We denote the associated control-to-state mapping by

G : U → Y , G(u) = y.

G is twice continuously differentiable:
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Derivative of the control-to-state mapping 64

Theorem: G is twice continuously Fréchet-differentiable from Lr(Ω) to

H1(Ω) ∩ C(Ω̄), r > N/2. It holds G′(ū)u = y, where y is the solution of the linearized

problem

−∆y + y + d′(ȳ) y = u in Ω

∂ny = 0 on Γ.
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Theorem: G is twice continuously Fréchet-differentiable from Lr(Ω) to

H1(Ω) ∩ C(Ω̄), r > N/2. It holds G′(ū)u = y, where y is the solution of the linearized

problem

−∆y + y + d′(ȳ) y = u in Ω

∂ny = 0 on Γ.

The second derivative is given by G′′(ū)[u1, u2] = z, where z solves

−∆z + z + d′(ȳ) z = −d′′(ȳ) y1 y2

∂n z = 0

and yi ∈ H1(Ω) are defined by yi = G′(u)ui.
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Derivative of the control-to-state mapping 64

Theorem: G is twice continuously Fréchet-differentiable from Lr(Ω) to

H1(Ω) ∩ C(Ω̄), r > N/2. It holds G′(ū)u = y, where y is the solution of the linearized

problem

−∆y + y + d′(ȳ) y = u in Ω

∂ny = 0 on Γ.

The second derivative is given by G′′(ū)[u1, u2] = z, where z solves

−∆z + z + d′(ȳ) z = −d′′(ȳ) y1 y2

∂n z = 0

and yi ∈ H1(Ω) are defined by yi = G′(u)ui.

This is the basis to derive optimality conditions. However, we just rely on the formal

Lagrange technique.
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Lagrange function: The Lagrange function L : H1(Ω)×L2(Γ)×H1(Ω) → IR for the

semilinear distributed control problem is

L(y, u, p) := J(y, u) −

Z

Ω

∇y · ∇p dx−

Z

Ω

(y + d(y) − u) p dx.
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Lagrange function: The Lagrange function L : H1(Ω)×L2(Γ)×H1(Ω) → IR for the

semilinear distributed control problem is

L(y, u, p) := J(y, u) −

Z

Ω

∇y · ∇p dx−

Z

Ω

(y + d(y) − u) p dx.

We proceed as before. The adjoint equation is obtained by DyLy = 0 for all y:

(ȳ − yΩ , y) − (∇y , ∇p) − (p+ d′(ȳ)p , y) = 0 ∀ y ∈ H1(Ω).

This is the weak formulation of the adjoint equation

−∆p+ p+ d′(ȳ) p = ȳ − yΩ in Ω

∂np = 0 on Γ.
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The variational inequality is obtained from DuL(u− ū) ≥ 0 for all u ∈ Uad. We obtain

(αū+ p , u− ū) ≥ 0.

Consequence for α > 0:

ū(x) = P[ua(x),ub(x)]

˘
−

1

α
p(x)

¯
.

Example: ”Superconductivity”

min J(y, u) :=
1

2
‖y − yΩ‖

2
L2(Ω) +

α

2
‖u‖2

L2(Ω)

subject to −2 ≤ u(x) ≤ 2 and

−∆y + y + y3 = u

∂ny = 0.
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Optimality system:

−∆y + y + y3 = u

∂ny = 0

−∆p+ p+ 3 ȳ2 p = ȳ − yΩ

∂np = 0

ū(x) = P[ua(x),ub(x)]

˘
−

1

α
p(x)

¯
,

if α > 0. Therefore ū ∈ H1(Ω) ∩ C(Ω̄), if ua, ub in H1(Ω) ∩ C(Ω̄). �

Test example: For α = 1 and yΩ ≡ 9, ū(x) ≡ 2 satisfies the first order conditions.

Test it...

Is it locally optimal? �
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3.6. Second-order sufficient optimality conditions

To check for local optimality, we need second-order sufficient optimality conditions. In

infinite dimensions, the theory of second-order conditions is more difficult than in

finite-dimensional spaces. We only formally state them without discussing the main

difficulties behind.

Critical cone:

C(ū) =
˘
u ∈ L∞(Ω) : u(x) ≥ 0, where ū(x) = ua(x), u(x) ≤ 0, where ū(x) = ub(x)

¯

SSC: There exists δ > 0 such that

bJ ′′(ū)u2 ≥ δ ‖u‖2
L2(Ω) ∀u ∈ C(ū).
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(SSC) is equivalent with

∫

Ω

{(
1 − p d′′(ȳ)

)
y2 + αu2

}
dx ≥ δ ‖u‖2

L2(Ω)

for all u ∈ C(ū) and all y ∈ H1(Ω) that satisfy

−∆y + y + d′(ȳ) y = u

∂ny = 0.

PDE Constrained Optimization, Tomar 2005



SSC and Lagrange function 70

In terms of the Lagrange function, the second-order sufficient condition can be

expressed as follows:

L′′(ū, ȳ, p)[y, u]2 ≥ δ‖u‖2
L2(Ω)

for all u ∈ C(ū) and all y that solve

−∆y + y + d′(ȳ) y = u

∂ny = 0.
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SSC and Lagrange function 70

In terms of the Lagrange function, the second-order sufficient condition can be

expressed as follows:

L′′(ū, ȳ, p)[y, u]2 ≥ δ‖u‖2
L2(Ω)

for all u ∈ C(ū) and all y that solve

−∆y + y + d′(ȳ) y = u

∂ny = 0.

Theorem: Let ū ∈ Uad, ȳ = G(ū) and p satisfy together the first-order

necessary and second-order sufficient conditions. Then there exist constants

ε > 0 and σ > 0 such that the quadratic growth condition

J(y, u) ≥ J(ȳ, ū) + σ‖u− ū‖2
L2(Ω)

holds for all u ∈ Uad with ‖u− ū‖L∞(Ω) ≤ ε and y = G(u). Therefore, ū is

locally optimal in the sense of L∞(Ω).
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Application to the test example 71

We show that the solution of our test example ”Superconductivity” is locally optimal.

Recall the problem:

min J(y, u) :=
1

2
‖y − 9‖2

L2(Ω) +
1

2
‖u‖2

L2(Ω)

subject to −2 ≤ u(x) ≤ 2 and

−∆y + y + y3 = u

∂ny = 0.

Our candidate was u = 2, y = 1, p = −2. We get

L′′(ū, ȳ, p)[y, u]2 =

Z

Ω

n`
1 − p d′′(ȳ)

´
y2 + u2

o
dx

=

Z

Ω

n`
1 + 2 · 6

´
y2 + u2

o
dx≥ 1 · ‖u‖2

L2(Ω).

Conclusion: The control ū ≡ 2 is locally optimal in L∞(Ω).
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3.7. Pointwise state constraints

Often, in addition to the control constraints, bounds on the state y are given which

have to be satisfied in the whole domain Ω. Such pointwise state constraints are

difficult in theory and numerics.

State constrained problem:

min J(y, u) :=:=
1

2
‖y − yΩ‖

2
L2(Ω) +

α

2
‖u‖2

L2(Ω)

−∆y + y + d(y) = u in Ω

∂ny = 0 on Γ

ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω (control constraints)

ya(x) ≤ y(x) ≤ yb(x) ∀x ∈ Ω̄ (state constraints)
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Control space: U = L∞(Ω)

State space: Y = C(Ω̄)

Control-to-state operator: G : u 7→ y, G : L∞(Ω) → (H1(Ω)∩) C(Ω̄)

Abstract formulation:

min Ĵ(u) := J(G(u), u), ua ≤ u ≤ ub, ya ≤ G(u) ≤ yb

Lagrange function 1:

L(u, µa, µb, νa, νb) := Ĵ(u) +
∫

Ω

(ua − u)µa dx+
∫

Ω

(u− ub)µb dx

+
∫

Ω̄

(ya −G(u))dνa +
∫

Ω̄

(G(u) − yb)dνb

Here, the Lagrange multipliers µa, µb are functions from certain spaces Lp(Ω),

while νa, νb are regular Borel measures (elements of C(Ω̄)∗.)
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Lagrange function 2:

L(y, u, p, µa, µb, νa, νb) := J(y, u) −
R
Ω

∇y · ∇p dx−
R
Ω

(y + d(y) − u) p dx

+
R
Ω

`
(ua − u)µa + (u− ub)µb

´
dx

+
R
Ω̄

`
(ya − y)dνa + (y − yb)dνb

´
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Lagrange function 2:

L(y, u, p, µa, µb, νa, νb) := J(y, u) −
R
Ω

∇y · ∇p dx−
R
Ω

(y + d(y) − u) p dx

+
R
Ω

`
(ua − u)µa + (u− ub)µb

´
dx

+
R
Ω̄

`
(ya − y)dνa + (y − yb)dνb

´

To guarantee existence of Lagrange multipliers, a constraint qualification is needed. For

a locally optimal ū, we assume the

Linearized Slater condition: There exist ε > 0 and ũ ∈ L∞(Ω) such that

ua(x)+ε ≤ ũ(x) ≤ ub(x)−ε a.e. on Ω

ya(x)<ȳ(x) +G′(ȳ)(ũ− ū)(x)<ya(x) ∀x ∈ Ω̄.
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Existence of Lagrange multipliers 75

Theorem: If ū is locally optimal and the constraint qualification is satisfied, then

there exist non-negative Lagrange multipliers µa, µb, νa, νb and an adjoint state

p ∈W 1,s(Ω) for all s ∈ [1, N/(N − 1)) such that

DyL(ȳ, ū, p, µa, µb, νa, νb) = 0

DuL(ȳ, ū, p, µa, µb, νa, νb) = 0

(ū− ua , µa)L2(Ω) = (ū− ub , µb)L2(Ω) = 0

(ȳ − ya , νa)C(Ω̄),M(Ω̄) = (ȳ − yb , νb)C(Ω̄),M(Ω̄) = 0

The first equation leads to an adjoint equations with measures in the right hand side

discussed e.g. by Casas and also by Alibert and Raymond. The second is the so-called

gradient equation. The last conditions are the complementarity conditions.
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In some cases (mixed control state constraints, pure state constraints), a Lavrentiev

type regularization may help to avoid measures νa, νb and to obtain instead functions

(Meyer, Rösch, Tröltzsch 2004, Meyer,Tröltzsch 2005).

In this case, the following constraints are considered:

Regularized constraints:

ua(x) ≤ u(x) ≤ ub(x), ya(x) ≤ ρu(x)+y(x) ≤ yb(x)

Then numerical methods can be set up in function space and next discretized.

We consider the following example that has been solved by a primal-dual active set

strategy and by a primal-dual interior point method as well, Meyer, Prüfert, Tröltzsch

2005.
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(E)






minimize J(y, u) :=
1

2
‖y − yd‖

2
L2(Ω) +

κ

2
‖u− ud‖

2
L2(Ω)

subject to −∆ y(x) + y(x) = u(x) in Ω

∂ny(x) = 0 on Γ

and y(x) ≤ yb(x) a.e. in Ω

in Ω = B(0, 1), with
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(E)






minimize J(y, u) :=
1

2
‖y − yd‖

2
L2(Ω) +

κ

2
‖u− ud‖

2
L2(Ω)

subject to −∆ y(x) + y(x) = u(x) in Ω

∂ny(x) = 0 on Γ

and y(x) ≤ yb(x) a.e. in Ω

in Ω = B(0, 1), with

yd(r, ϕ) = 4 + 1
π − 1

4π r
2 + 1

2π log(r),

ud(r, ϕ) = 4 + 1
4πκ r

2 − 1
2πκ log(r),

yb(r, ϕ) = r + 4, κ = 0.5 · 10−5

PDE Constrained Optimization, Tomar 2005



Exact solution 78

ȳ(r, ϕ) ≡ 4 ≤ yb(r, ϕ) = r + 4

⇒ feasible, constraint only active at r = 0

⇒ ū = −∆ȳ + ȳ = 4
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x
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x
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y, y
b

µb = δ0 ∈ C(Ω̄)∗
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Exact solution 78

ȳ(r, ϕ) ≡ 4 ≤ yb(r, ϕ) = r + 4

⇒ feasible, constraint only active at r = 0

⇒ ū = −∆ȳ + ȳ = 4

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
4

4.2

4.4

4.6

4.8

5

x
1

x
2

y, y
b

p(r, ϕ) = 1
4π r

2 + Φ(r, ϕ)

with: Φ = − 1
2π log(r) - fundamental solution of the Poisson eq. in IR2

⇒ −∆Φ = δ0: Dirac measure

µb = δ0 ∈ C(Ω̄)∗
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Result for ρ = 0.75 · 10−4
79
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Summary of section 3 80

We have derived first order necessary optimality conditions for linear-quadratic and

semilinear elliptic optimal control problems. They can be used to check for optimality

and to construct test examples.
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Summary of section 3 80

We have derived first order necessary optimality conditions for linear-quadratic and

semilinear elliptic optimal control problems. They can be used to check for optimality

and to construct test examples.

Based on the expression of the gradient, we have set up a gradient method for the

numerical solution. Moreover, the optimality conditions were discussed in detail to

obtain a projection formula. This formula was applied in a primal-dual active set

strategy for the numerical solution of linear-quadratic elliptic problems.
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Summary of section 3 80

We have derived first order necessary optimality conditions for linear-quadratic and

semilinear elliptic optimal control problems. They can be used to check for optimality

and to construct test examples.

Based on the expression of the gradient, we have set up a gradient method for the

numerical solution. Moreover, the optimality conditions were discussed in detail to

obtain a projection formula. This formula was applied in a primal-dual active set

strategy for the numerical solution of linear-quadratic elliptic problems.

In the semilinear case, second-order sufficient optimality conditions have been studied.

They require positive definiteness of the Lagrange function on a certain critical cone.

They are important for the justification of numerical methods.
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New book 81

Classical reference:

Lions, J.L., Optimal Control of Systems Governed by Partial Differential Equations,

Springer, Berlin 1971.

New book on optimal control of PDEs:

Tröltzsch, F., Optimale Steuerung partieller Differentialgleichungen, Vieweg Verlag,

2005.

ISBN 3-528-03224-3

A big part of sections 1–3 can be found in detail there.
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4. Discretization

• Convergence analysis for the optimal control problem is more than

convergence analysis for the governing PDE.

• Properties of the optimization problem (second order sufficient optimality

conditions) are important.

• Two approaches: Optimize–then–discretize and discretize–then–optimize.

• May not always lead to the same result.
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Model Problem I 83

Minimize
1

2

∫

Ω

(y(x) − ŷ(x))2dx+
α

2

∫

Ω

u2(x)dx

subject to

−∆y(x) = f(x) + u(x), x ∈ Ω,

y(x) = 0, x ∈ Γ,

where f, ŷ ∈ L2(Ω), α > 0,

Define state space Y = H1
0 (Ω) and control space U = L2(Ω).
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Model Problem I (Weak Form) 84

• Weak form of the state equation:
∫

Ω

∇y(x)∇v(x)dx

︸ ︷︷ ︸
a(y, v)

−

∫

Ω

u(x)v(x)dx

︸ ︷︷ ︸
b(u, v)

=

∫

Ω

f(x)v(x)dx

︸ ︷︷ ︸
l(v)

∀v ∈ Y.
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Model Problem I (Weak Form) 84

• Weak form of the state equation:
∫

Ω

∇y(x)∇v(x)dx

︸ ︷︷ ︸
a(y, v)

−

∫

Ω

u(x)v(x)dx

︸ ︷︷ ︸
b(u, v)

=

∫

Ω

f(x)v(x)dx

︸ ︷︷ ︸
l(v)

∀v ∈ Y.

• Optimal Control Problem

min
1

2
‖y − ŷ‖2

L2 +
α

2
‖u‖2

L2 ,

s.t. a(y, v) + b(u, v) = l(v) ∀v ∈ Y.
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Model Problem I (Weak Form) 84

• Weak form of the state equation:
∫

Ω

∇y(x)∇v(x)dx

︸ ︷︷ ︸
a(y, v)

−

∫

Ω

u(x)v(x)dx

︸ ︷︷ ︸
b(u, v)

=

∫

Ω

f(x)v(x)dx

︸ ︷︷ ︸
l(v)

∀v ∈ Y.

• Optimal Control Problem

min
1

2
‖y − ŷ‖2

L2 +
α

2
‖u‖2

L2 ,

s.t. a(y, v) + b(u, v) = l(v) ∀v ∈ Y.

• Lagrangian

L(y, u, p) =
1

2
‖y − ŷ‖2

L2 +
α

2
‖u‖2

L2 − a(y, p) − b(u, p) + l(p).
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Model Problem I (Opt. Conds.) 85

Lagrangian

L(y, u, p) =
1

2
‖y − ŷ‖2

L2 +
α

2
‖u‖2

L2 − a(y, p) − b(u, p) + l(p).

Necessary and sufficient optimality conditions

a(v, p) − 〈y, v〉L2 = −〈ŷ, v〉L2 ∀v ∈ Y,

−b(w, p) + α〈u,w〉L2 = 0 ∀w ∈ U,

a(y, v) + b(u, v) = l(v) ∀v ∈ Y.
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Necessary and sufficient optimality conditions are the weak forms of

−∆p(x) = (y(x) − ŷ(x)), x ∈ Ω,

p(x) = 0, x ∈ Γ,

p(x) + αu(x) = 0 x ∈ Ω,

−∆y(x) = f(x) + u(x), x ∈ Ω,

y(x) = 0, x ∈ Γ.
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• Let

Y h = span{ϕ1, . . . , ϕn} ⊂ Y,

Uh = span{ψ1, . . . , ψm} ⊂ U

be finite dimensional subspaces of the state and control space with bases

ϕ1, . . . , ϕn and ψ1, . . . , ψm, respectively.

• Replace y by yh =
∑n

i=1 yiϕi, replace u by uh =
∑m

i=1 uiψi, and require

that yh, uh satisfy the state equation for all v = ϕi, i = 1, . . . , n.

• Discretized optimal control problem:

min
1

2
‖yh − ŷ‖2

L2 +
α

2
‖uh‖2

L2 ,

s.t. a(yh, ϕi) + b(uh, ϕi) = l(ϕi) i = 1, . . . , n.
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Model Problem I (Galerkin Discretization) 88

• Discretized optimal control problem:

min
1

2
‖yh − by‖2

L2 +
α

2
‖uh‖2

L2 ,

s.t. a(yh, ϕi) + b(uh, ϕi) = l(ϕi) i = 1, . . . , n.

• Necessary and sufficient optimality conditions for the discretized optimal control

problem:

a(ϕi, p
h) − 〈yh, ϕi〉L2 = −〈by, ϕi〉L2 i = 1, . . . , n,

−b(ψi, p
h) + α〈uh, ψ〉L2 = 0 i = 1, . . . ,m,

a(yh, ϕi) + b(uh, ϕi) = l(ϕi) i = 1, . . . , n.
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• Discretized optimal control problem:

min
1

2
‖yh − by‖2

L2 +
α

2
‖uh‖2

L2 ,

s.t. a(yh, ϕi) + b(uh, ϕi) = l(ϕi) i = 1, . . . , n.

• Necessary and sufficient optimality conditions for the discretized optimal control

problem:

a(ϕi, p
h) − 〈yh, ϕi〉L2 = −〈by, ϕi〉L2 i = 1, . . . , n,

−b(ψi, p
h) + α〈uh, ψ〉L2 = 0 i = 1, . . . ,m,

a(yh, ϕi) + b(uh, ϕi) = l(ϕi) i = 1, . . . , n.

• The necessary and sufficient optimality conditions for the discretized optimal

control problem are identical to the conditions that arise if we discretize the

optimality conditions directly, i.e, replace y by yh =
Pn

i=1 yiϕi, replace u by

uh =
Pm

i=1 uiψi, replace p by ph =
Pn

i=1 piϕi, and require that yh, uh, ph satisfy

the optimality conditions for all v = ϕi, i = 1, . . . , n, w = ψi, i = 1, . . . ,m.
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If we define ~y = (y1, . . . , yn)T , ~u = (u1, . . . , um)T , ~p = (p1, . . . , pn)T , matrices

A ∈ Rn×n, B ∈ Rn×m, A ∈ Rn×n, with entires

Aij = a(ϕj , ϕi), Bij = b(ψj , ϕi), etc.,

and vectors ~c = (〈ϕ1, by〉L2 , . . . , 〈ϕn, by〉L2)T , ~f = (l(ϕ1), . . . , l(ϕn))T , then the

discretized optimal control problem can be written as

min
1

2
~yT

M~y − ~yT~c+
α

2
~uT

Q~u

s.t. A~y + B~u = ~f.
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If we define ~y = (y1, . . . , yn)T , ~u = (u1, . . . , um)T , ~p = (p1, . . . , pn)T , matrices

A ∈ Rn×n, B ∈ Rn×m, A ∈ Rn×n, with entires

Aij = a(ϕj , ϕi), Bij = b(ψj , ϕi), etc.,

and vectors ~c = (〈ϕ1, by〉L2 , . . . , 〈ϕn, by〉L2)T , ~f = (l(ϕ1), . . . , l(ϕn))T , then the

discretized optimal control problem can be written as

min
1

2
~yT

M~y − ~yT~c+
α

2
~uT

Q~u

s.t. A~y + B~u = ~f.

The necessary and sufficient optimality conditions are given by
0
BB@

M 0 AT

0 Q BT

A B 0

1
CCA

0
BB@

~y

~u

−~p

1
CCA =

0
BB@

~c

0

~f

1
CCA .

This is just the matrix version of the optimality system on the previous slide.

Systems of this type are called KKT systems (Karush-Kuhn-Tucker systems).
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Discretize-then-optimize = optimize-then-discretize 90

min J (y, u)

s.t. c(y, u) = 0

discretize-

large-scale

nonlinear

programming

problem

optimize

?
compute

optimality

conditions
optimize

?

optimality

conditions

discretize- apply Galerkin

disc.

same
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Convergence Analysis for the Optimal Control Problem 91

a(v, p) − 〈y, v〉L2 = −〈by, v〉L2 ∀v ∈ Y,

−b(w, p) + α〈u,w〉L2 = 0 ∀w ∈ U,

a(y, v) + b(u, v) = l(v) ∀v ∈ Y

can be written as

Kx = r in X ′

where X = Y × U × Y and K ∈ L(X ,X ′).
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Convergence Analysis for the Optimal Control Problem 91

a(v, p) − 〈y, v〉L2 = −〈by, v〉L2 ∀v ∈ Y,

−b(w, p) + α〈u,w〉L2 = 0 ∀w ∈ U,

a(y, v) + b(u, v) = l(v) ∀v ∈ Y

can be written as

Kx = r in X ′

where X = Y × U × Y and K ∈ L(X ,X ′).

a(ϕi, p
h) − 〈yh, ϕi〉L2 = −〈by, ϕi〉L2 i = 1, . . . , n,

−b(ψi, p
h) + α〈uh, ψ〉L2 = 0 i = 1, . . . ,m,

a(yh, ϕi) + b(uh, ϕi) = l(ϕi) i = 1, . . . , n,

can be written as

Khxh = rh in X ′
h

where Xh = Y h × Uh × Y h and Kh ∈ L(Xh,X
′
h).

PDE Constrained Optimization, Tomar 2005



Convergence Analysis for the Optimal Control Problem 92

• Consider

Kx = r

and

Khxh = rh,

• Let Rh : X → Xh be a restriction operator.

• Subtract KhRh(x) from Khxh = rh,

Kh(xh − Rh(x)) = rh − KhRh(x),

to obtain the estimate

‖xh − Rh(x)‖h ≤ ‖K−1
h ‖h‖rh − KhRh(x)‖h.
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Convergence Analysis for the Optimal Control Problem 93

Stability

‖K−1
h ‖h ≤ κ for all h

and consistency

‖rh − KhRh(x)‖h = O(hp)

imply

‖xh − Rh(x)‖h ≤ O(hp).

Hence

‖xh − x‖h ≤ ‖x − Rh(x)‖h + ‖xh − Rh(x)‖h︸ ︷︷ ︸
= O(hp)
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If there exist α1, α2, β, γ > 0 with

• a(y, y) ≥ α1‖y‖
2
Y , a(y, v) ≤ α2‖y‖Y ‖v‖Y , (true for model problem)

• b(u, v) ≤ β‖u‖U‖v‖Y , (true for model problem)

• 1
2‖Su− ŷ‖2

L2 + α
2 ‖u‖

2
L2 ≥ γ‖uh‖2

L2 , (of course true for model problem)

then there exists κ > 0 independent of h such that

‖K−1
h ‖h ≤ κ for all h.
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• Finite Elements

Yh = {yh ∈ Y : yh|T ∈ Pk(T ) for all T ∈ Th} ,

Uh = {uh ∈ U : uh|T ∈ Pk(T ) for all T ∈ Th} .

• Rh(x) ∈ Yh × Uh × Yh interpolation of x = (y, u, p).

• Consistency

‖rh − KhRh(x)‖h ≤ Chk(|y|k+1 + |p|k+1).

• Convergence

‖y − yh‖H1 + ‖u− uh‖L2 + ‖p− ph‖H1 ≤ Chk(|y|k+1 + |p|k+1).
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h ‖y − yh‖H1 ‖u− uh‖L2 ‖p− ph‖H1

1.00e-01 3.08e-02 1.89e-02 1.50e-02

5.00e-02 1.55e-02 0.99 4.73e-03 2.00 7.52e-03 1.00

2.50e-02 7.76e-03 1.00 1.18e-03 2.00 3.76e-03 1.00

1.25e-02 3.88e-03 1.00 2.96e-04 2.00 1.88e-03 1.00

6.25e-03 1.94e-03 1.00 7.40e-05 2.00 9.40e-04 1.00

PDE Constrained Optimization, Tomar 2005



Example 97

h ‖y − yh‖L2 ‖u− uh‖L2 ‖p− ph‖L2

1.00e-01 9.03e-04 1.89e-02 1.89e-04

5.00e-02 2.30e-04 1.97 4.73e-03 2.00 4.73e-05 2.00

2.50e-02 5.78e-05 1.99 1.18e-03 2.00 1.18e-05 2.00

1.25e-02 1.45e-05 2.00 2.96e-04 2.00 2.96e-06 2.00

6.25e-03 3.62e-06 2.00 7.40e-05 2.00 7.40e-07 2.00

Higher convergence order can be established similar to the PDE case.
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min
1

2

∫

Ω

(y(x) − ŷ(x))2dx+
α

2

∫

Ω

u2(x)dx

subject to

−ε∆y(x) + c(x) · ∇y(x) + r(x)y(x) = f(x) + u(x), x ∈ Ω,

y(x) = d(x), x ∈ Γd,

ε
∂

∂n
y(x) = g(x), x ∈ Γn,

where f, ŷ ∈ L2(Ω), α > 0,

ε > 0, c ∈
(
W 1,∞(Ω)

)2
, r ∈ L∞(Ω),

r(x) − 1
2∇ · c(x) ≥ r0 > 0 a.e. in Ω, n · c(x) ≥ 0 on Γn.

We are interested in the case ε� ‖c(x)‖.
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−ε∆y(x) + c(x) · ∇y(x) + r(x)y(x) = f(x) + u(x) x ∈ Ω,

y(x) = d(x) x ∈ Γd, ε ∂
∂n
y(x) = 0 x ∈ Γn.

Weak form:

Y =
˘
y ∈ H1(Ω) : y = d on Γd

¯
, V =

˘
v ∈ H1(Ω) : y = 0 on Γd

¯
.

Find y ∈ Y such that

a(y, v) + b(u, v) = 〈f, v〉 ∀v ∈ V,

where

a(y, v) =

Z

Ω

ε∇y(x) · ∇v(x) + c(x) · ∇y(x)v(x) + r(x)y(x)v(x)dx,

=

Z

Ω

ε∇y · ∇v + 1
2
c · ∇yv − 1

2
c · ∇vy + (r − 1

2
∇ · c)yvdx+

Z

Γn

1
2
(n · c)yvdx,

b(u, v) = −

Z

Ω

u(x)v(x)dx, 〈f, v〉 =

Z

Ω

f(x)v(x)dx.
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If

ε > 0, c ∈
(
W 1,∞(Ω)

)2
, r ∈ L∞(Ω),

r(x) − 1
2∇ · c(x) ≥ r0 > 0 a.e. in Ω, n · c(x) ≥ 0 on Γn,

then a is continuous on V × V and V –elliptic.

Thus, for given control u ∈ L2(Ω), the state equation has a unique solution

y ∈ Y .
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Finite Element Solution of the State Equation 101

Standard Galerkin Method:

Yh = {yh ∈ Y : yh|T ∈ Pk(T ) for all T ∈ Th} ,

Vh = {vh ∈ V : vh|T ∈ Pk(T ) for all T ∈ Th} .

Find yh ∈ Yh such that

a(yh, vh) + b(u, vh) = 〈f, vh〉 ∀vh ∈ Vh. (∗)

The discretized state equation (*) has a unique solution.

If h & ε/‖c‖∞, solution often exhibits spurious oscillations.
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Finite Element Solution of the State Equation 102

Add stabilization term

a(yh, vh) + b(u, vh) +
X

Te∈Th

τe〈−ε∆yh + c · ∇yh + ryh − u, σ(vh)〉Te

= 〈f, vh〉L2 +
X

Te∈Th

τe〈f, σ(vh)〉Te
,

where σ(vh) = c · ∇vh.

• For the solution y of the state equation,
X

Te∈Th

τe〈−ε∆y + c · ∇y + ry − u, σ(vh)〉Te
=

X

Te∈Th

τe〈f, σ(vh)〉Te
.

• If yh = vh,
X

Te∈Th

τe 〈c · ∇vh, c · ∇vh〉Te| {z }
diffusion

+〈−ε∆vh + rvh, c · ∇vh〉Te

is added to the Galerkin bilinear form a.

Streamline upwind Petrov-Galerkin (SUPG) method (Brooks/Hughes 1979).
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Finite Element Solution of the State Equation 103

Stabilized weak form

ah(yh, vh) + bh(uh, vh) = 〈f, vh〉h ∀vh ∈ Vh,

where

ah(y, vh) = a(y, vh) +
X

Te∈Th

τe〈−ε∆y + c · ∇y + ry, σ(vh)〉Te
,

bh(u, vh) = −〈u, vh〉L2 −
X

Te∈Th

τe〈u, σ(vh)〉Te
,

〈f, vh〉h = 〈f, vh〉L2 +
X

Te∈Th

τe〈f, σ(vh)〉Te

and

σ(vh) = c · ∇vh.

Choice of stabilization parameter τe depends on the mesh Péclet number

Pee =
‖c‖∞,Te

he

2ε
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1D example

−0.0025y′′(x) + y′(x) = 1 on (0, 1), y(0) = y(1) = 0.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
Computed and Exact Solution

Galerkin nx = 20

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
Computed and Exact Solution

SUPG nx = 20
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2D example

−ε∆y(x) +
(

cos(θ)
sin(θ)

)
· ∇y(x) = 0 in Ω = (0, 1)2,

y(x) = 1 on Γ1 =
(
(0, 1) × {0}

)
∪

(
{0} × (0, 0.2)

)
,

y(x) = 0 on Γ2 = {0} × (0.2, 1),

∂
∂ny(x) = 0 on Γ3 = ∂Ω \ (Γ1 ∪ Γ2),

where ε = 10−6 and θ = 67.50.

0
0.5

1

0

0.5

1

0

0.5

1

x
1

Zero Control State (Interpolated)

x
2

00.20.40.60.81

0

0.5

1

0

0.2

0.4

0.6

0.8

1

x

Computed State

y

00.20.40.60.81

0

0.5

1

0

0.2

0.4

0.6

0.8

1

x

Computed State

y
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Finite Element Solution of the State Equation 106

Theorem. If τe satisfies and

0 < τe ≤ min

{
h2

e

εµ2
inv

,
r0

‖r‖∞,Te

}
and τe =





τ1

h2

e

ε , Pee ≤ 1,

τ2he, Pee > 1,

then the solution yh of the discretized state equation obeys

‖y − yh‖SD ≤ Chk(ε
1
2 + h

1
2 )|y|k+1,

where ‖v‖2
SD

def

= ε|v|21 + r‖v‖2 +
∑

Te∈Th
τe‖c · ∇v‖

2
Te

.
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Error in PDE solution, example 1 (Pee = 1 for h = 5 ∗ 10−3).

10
−3

10
−2

10
−1

10
−4

10
−2

10
0

h

Linear elements —-, quadratic elements - - -

∗ = ‖yh − yex‖L2 , � = ‖yh − yex‖H1 , ◦ = ‖yh − yex‖SD.
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min
1

2

∫

Ω

(y(x) − ŷ(x))2dx+
α

2

∫

Ω

u2(x)dx

subject to

−ε∆y(x) + c(x) · ∇y(x) + r(x)y(x) = f(x) + u(x), x ∈ Ω,

y(x) = d(x), x ∈ Γd,

ε
∂

∂n
y(x) = 0, x ∈ Γn,

where f, ŷ ∈ L2(Ω), α > 0,

ε > 0, c ∈
(
W 1,∞(Ω)

)2
, r ∈ L∞(Ω),

r(x) − 1
2∇ · c(x) ≥ r > 0 a.e. in Ω, n · c(x) ≥ 0 on Γn.
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Optimal Control Problem

minimize
1

2
‖y − ŷ‖2 +

α

2
‖u‖2,

subject to a(y, v) + b(u, v) = 〈f, v〉L2 ∀v ∈ V.

Lagrangian

L(y, u, p) =
1

2
‖y − ŷ‖2 +

α

2
‖u‖2 − a(y, p) − b(u, p) + 〈f, p〉.

Optimality Conditions:

Adjoint equation: a(ψ, p) = 〈y − ŷ, ψ〉L2 ∀ψ ∈ V .

Gradient equation: −b(w, p) + α〈u,w〉L2 = 0 ∀w ∈ U .

State equation: a(y, v) + b(u, v) = 〈f, v〉 ∀v ∈ V .
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Adjoint equation: a(ψ, p) = 〈y − ŷ, ψ〉L2 ∀ψ ∈ V .

Gradient equation: −b(w, p) + α〈u,w〉L2 = 0 ∀w ∈ U .

State equation: a(y, v) + b(u, v) = 〈f, v〉 ∀v ∈ V .

Adjoint equation:

−ε∆p(x) − c(x) · ∇p(x) + (r(x) −∇ · c(x))p(x)

= y(x) − ŷ(x), x ∈ Ω,

p(x) = 0 x ∈ Γd, ε ∂
∂np(x) = −c(x) · n p(x) x ∈ Γn.

Gradient equation: p(x) + αu(x) = 0, x ∈ Ω.

State equation:

−ε∆y(x) + c(x) · ∇y(x) + r(x)y(x) = f(x) + u(x), x ∈ Ω,

y(x) = d(x), x ∈ Γd, ε ∂
∂ny(x) = 0, x ∈ Γn.
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• Discretize–then–optimize.

Discretize the optimal control problem, then apply finite dimensional

optimization.

• Optimize–then–discretize.

Formulate the optimality conditions on the PDE level, then discretize the

PDEs in the optimality conditions individually.
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Discretized optimal control problem

minimize
1

2
‖yh − ŷ‖2 +

α

2
‖uh‖

2,

subject to as
h(yh, vh) + bsh(uh, vh) = 〈f, vh〉

s
h ∀vh ∈ Vh,

where

as
h(y, vh) = a(y, vh) +

∑

Te∈Th

τ s
e〈−ε∆y + c · ∇y + ry, σs(vh)〉Te

,

bsh(u, vh) = −〈u, vh〉L2 −
∑

Te∈Th

τ s
e〈u, σ

s(vh)〉Te
,

〈f, vh〉
s
h = 〈f, vh〉L2 +

∑

Te∈Th

τ s
e〈f, σ

s(vh)〉Te

and

σs(vh) = c · ∇vh.
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Optimality Conditions for Discretized System

Discrete adjoint equation: as
h(vh, ph) = 〈yh − ŷ, vh〉L2 ∀vh ∈ Vh.

Discrete gradient equations: −bsh(wh, ph) + α〈uh, wh〉L2 = 0 ∀wh ∈ Uh.

Discretized state equations: as
h(yh, vh) + bsh(uh, vh) = 〈f, vh〉

s
h ∀vh ∈ Vh.
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Recall discrete adjoint equations

as
h(vh, ph) = 〈yh − ŷ, vh〉L2 ∀vh ∈ Vh.

Compare stabilization in the discrete adjoint equation

a(ψh, ph) +
∑

Te∈Th

τe〈−ε∆ψh + c · ∇ψh + rψh, c · ∇ph〉Te

= 〈yh − ŷ, ψh〉L2 +
∑

Te∈Th

0

with the adjoint equation

−ε∆p(x) − c(x) · ∇p(x) + (r(x) −∇ · c(x))p(x) = y(x) − ŷ(x), x ∈ Ω.

Stabilization adds ‘the right’ amount of diffusion, but is not strongly consistent.
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Adjoint equation:

−ε∆p(x) − c(x) · ∇p(x) + (r(x) −∇ · c(x))p(x) = y(x) − ŷ(x), x ∈ Ω,

p(x) = 0 x ∈ Γd, ε
∂

∂n
p(x) = −c(x) · n p(x) x ∈ Γn

Apply SUPG method to adjoint equation

aa
h(ψh, p) = 〈y − ŷ, ψh〉

a
h ∀ψh ∈ Vh,

where

aa
h(ψh, p) = a(ψh, p) +

∑

Te∈Th

τ a
e 〈−ε∆p− c · ∇p+ (r −∇ · c)p, σa(ψh)〉Te

,

〈y − ŷ, ψh〉
a
h = 〈y − ŷ, ψh〉L2 +

∑

Te∈Th

τ a
e 〈y − ŷ, σa(ψh)〉Te

and σa(ψh) = −c · ∇ψh.
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Gradient equation:

p(x) + αu(x) = 0, x ∈ Ω.

Discretized gradient equation

−b(wh, ph) + α〈uh, wh〉L2 = 0 ∀wh ∈ Uh,

where (as before)

b(wh, ph) = −〈wh, ph〉L2 .

State equation:

Apply SUPG as before.
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Discretized adjoint equations: aa
h(ψh, ph) = 〈yh − ŷ, ψh〉

a
h ∀ψh ∈ Vh.

Discretized gradient equation: −b(wh, ph) + α〈uh, wh〉L2 = 0 ∀wh ∈ Uh.

Discretized state equation: as
h(yh, vh) + bsh(uh, vh) = 〈f, vh〉

s
h ∀vh ∈ Vh.

Note

as
h(yh, ph) 6= aa

h(yh, ph),

bsh(uh, vh) 6= b(uh, vh),

〈yh, ψh〉
a
h 6= 〈ψh, yh〉

a
h.

The discretized optimality system leads to a nonsymmetric linear system.

Non-symmetry is the smaller the smaller the stabilization parameters τ s
e and τ a

e .
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min J (y, u)

s.t. c(y, u) = 0

discretize-

large-scale

nonlinear

programming

problem

optimize

?
compute

optimality

conditions
optimize

?

optimality

conditions

discretize- apply Galerkin

disc.

different
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We proceed exactly as before:

• Write the optimality conditions as

Kx = r,

Khxh = rh,

• Choose restriction operator Rh : X → Xh.

• Subtract KhRh(x) from Khxh = rh,

Kh(xh − Rh(x)) = rh − KhRh(x),

to obtain the estimate

‖xh − x‖h ≤ ‖x − Rh(x)‖h + ‖xh − Rh(x)‖h

≤ ‖x − Rh(x)‖h︸ ︷︷ ︸
= O(hq)?

+ ‖K−1
h ‖h︸ ︷︷ ︸

≤ κ?

‖rh − KhRh(x)‖h︸ ︷︷ ︸
= O(hq)?
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Suppose there exist α1, α2, β, γ > 0 with

• a(y, y) ≥ α1‖y‖
2
Y , a(y, v) ≤ α2‖y‖Y ‖v‖Y , (true for model problem)

• b(u, v) ≤ β‖u‖U‖v‖Y , (true for model problem)

• 1
2‖Su− ŷ‖2

L2 + α
2 ‖u‖

2
L2 ≥ γ‖u‖2

L2 (of course true for model problem).

then there exists κ > 0 independent of h such that

‖K−1
h ‖h ≤ κ for all h.

Discretize–Then–Optimize:

There exists κ such that ‖K−1
h ‖h < κ for all h.

Optimize–Then–Discretize:

There exist κ, h0 (= h0(α, c, r)) such that ‖K−1
h ‖h < κ for all h ≤ h0.
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Let

0 < τ s,a
e ≤ min


h2

e

εµ2
inv

,
r0

‖r‖∞,Te

,
r0

‖r −∇ · c‖∞,Te

ff
and τ s,a

e =

8
<
:

τ1
h2

e

ε
, Pee ≤ 1,

τ2he, Pee > 1,

Discretize–then-optimize

‖rh − KhRh(x)‖h

≤ C





(ε

1
2 + h

1
2 )hk|y|k+1 + hε−

1
2 ‖∇pI‖ + hk+1|y|k+1, Pee ≤ 1,

(ε
1
2 + h

1
2 )hk|y|k+1 + (ε

1
2 + h

1
2 )‖∇pI‖ + hk+1|y|k+1, Pee > 1,

Optimize–then–discretize

‖rh − KhRh(x)‖h ≤ Chk(ε1/2 + h1/2)(|y|k+1 + |p|k+1).
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Let

0 < τ s,a
e ≤ min


h2

e

εµ2
inv

,
r0

‖r‖∞,Te

,
r0

‖r −∇ · c‖∞,Te

ff
and τ s,a

e =

8
<
:

τ1
h2

e

ε
, Pee ≤ 1,

τ2he, Pee > 1,

Discretize–then-optimize

‖y − yh‖SD + ‖u− uh‖L2 + ‖p− ph‖SD

≤ C





(ε

1
2 + h

1
2 )hk|y|k+1 + hε−

1
2 ‖∇pI‖ + hk+1|y|k+1, Pee ≤ 1,

(ε
1
2 + h

1
2 )hk|y|k+1 + (ε

1
2 + h

1
2 )‖∇pI‖ + hk+1|y|k+1, Pee > 1,

Optimize–then–discretize

‖y − yh‖SD + ‖u− uh‖L2 + ‖p− ph‖SD ≤ Chk(ε1/2 + h1/2)(|y|k+1 + |p|k+1).
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State equation is

−0.0025y′′(x) + y′(x) = f(x) + u(x) on (0, 1), y(0) = y(1) = 0.

We use α = 1. The solution to the optimal control problem is

yex(x) = −
exp(x−1

ε
) − exp(− 1

ε
)

1 − exp(− 1
ε
)

, uex(x) = x(x− 1), pex(x) = αuex(x).

10
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h
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Adjoint

h
10
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10
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10

−1

10
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10
−4

10
−2

Control

h

Discretize–then–optimize - - -, optimize–then–discretize —–

∗ = ‖ · ‖L2 , � = ‖ · ‖H1 , ◦ = ‖ · ‖SD.
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State equation

−ε∆y(x) + c(x) · ∇y(x) = u(x) in Ω = (0, 1)2,

y(x) = yex(x) on ∂Ω

where ε = 10−2, θ = 450.

Regularization parameter α = 1.
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k = ` = m = 1

10
−2

10
−1

10
−2

10
−1

10
0

State

h
10

−2
10

−1

10
−2

10
−1

10
0

Adjoint

h
10

−2
10

−1

10
−2

10
−1

Control

h

k = ` = m = 2
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h

Discretize–optimize - - -, optimize–discretize —–, ∗ = ‖ · ‖L2 , ◦ = ‖ · ‖SD.
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Linear Finite Elements

0
0.5

1

0

0.5

1

0

0.5

1

x
1

Computed Control

x
2

discretize-then-optimize

0
0.5

1

0

0.5

1

0

0.2

0.4

0.6

x
1

Computed Control

x
2

discretize-then-optimize

PDE Constrained Optimization, Tomar 2005



Example 2 127

Quadratic Finite Elements
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min
1

2

∫

Ωobs

|∇×u|2dΩ +
α

2

∫

Γc

|g|2dΓc,

subject to

(a · ∇)u− ∇·[−pI + µ(∇u + ∇uT )] = 0 in Ω,

∇·u = 0 in Ω,

u = g on Γc, u = uin on Γin, u = 0 on ∂Ω \ (Γc ∪ Γin ∪ Γout),

n·[−pI + µ(∇u + ∇uT )] = 0 on Γout.

Note change of notation: u, p (velocities, pressure) states, g control,

λ, θ adjoint variables.
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Adjoint equation:

−(a · ∇)λu − (∇·a)λ − ∇[−θI + µ(∇λ + ∇λ
T )] = (∇ × ∇ × u)|Ωobs

in

∇·λ = 0, in

λ = 0 on Γc, λ = 0 on Γin, λ = 0 on ∂Ω \ (Γc ∪Γin ∪Γout),

n·[−θI + µ(∇λ + ∇λ
T )] = 0 on Γout.

Gradient equation:

“λ · n + αg = 0′′ on Γc.

State equation: As before.
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Numerical Solution 130

• Galerkin/Least Squares (GaLS) stabilization.

• Linear finite elements.

• Replace Dirichlet boundary condition u = g on Γc by

n·[−pI + µ(∇u + ∇uT )] + 105u = 105g on Γc.

Hou/Ravindran (1998)
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Optimal controls obtained using DO and OD, fine discretization, α = 10−5.
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Uncontrolled flow

Controlled flow

µ = 5 ∗ 10−4, α = 10−5
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The discretization of the optimal control problem implies a discretization for the

adjoint differential equation (discretize-then-optimize). This implied

discretization scheme of the adjoint equation may not have the same

convergence properties as the discretization scheme for the state equation.

The discretization of the optimal control problem (discretize-then-optimize) and

the discretization of the optimality conditions (optimize-then-discretize) may lead

to systems whose solution better approximates the solution of the optimal control

problem. However, the discretized optimality systems may be nonsymmetric.

Both approaches, discretize-then-optimize and optimize-then-discretize, may

offer advantages and disadvantages. It is important to look at both.
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5. Optimization Algorithms

The infinite dimensional optimization problem strongly influences the

convergence behavior of the optimization algorithm applied to the discretized

problem.

Therefore, it is important to study optimization algorithms in function spaces.
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Abstract Optimization Problem 136

min J(y, u)

s.t. c(y, u) = 0,

g(y, u) = 0,

h(y, u) ∈ K

where

J : Y × U → R, c : Y × U → C,

g : Y × U → G, h : Y × U → H,

Y,U , C,G,H are Banach spaces, and K ⊂ H is a cone.

Notation:

y: states, Y: state space, u: controls, U : control space,

c(y, u) = 0 state equation.

PDE Constrained Optimization, Tomar 2005



Problem Formulation 137

min J(y, u)

s.t. c(y, u) = 0,

g(y, u) = 0,

h(y, u) ∈ K

⇓

y(u) is the unique solution of c(y, u) = 0

⇓

min Ĵ(u)

s.t. ĝ(u) = 0,

ĥ(u) ∈ K,






reduced

problem

where Ĵ(u)
def

= J(y(u), u), ĝ(u)
def

= g(y(u), u), ĥ(u)
def

= h(y(u), u).
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Solution of the Unconstrained Reduced Problem 138

We want to solve

min Ĵ(u)

where Ĵ(u)
def

= J(y(u), u) using gradient based methods.
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Solution of the Unconstrained Reduced Problem 138

We want to solve

min Ĵ(u)

where Ĵ(u)
def

= J(y(u), u) using gradient based methods.

Gradient type methods:

uk+1 = uk − τk∇Ĵ(uk),

with step size τk ∈ (0, 1].

PDE Constrained Optimization, Tomar 2005



Solution of the Unconstrained Reduced Problem 138

We want to solve

min Ĵ(u)

where Ĵ(u)
def

= J(y(u), u) using gradient based methods.

Gradient type methods:

uk+1 = uk − τk∇Ĵ(uk),

with step size τk ∈ (0, 1].

Newton type methods

∇2Ĵ(uk)s = −∇Ĵ(uk),

uk+1 = uk + τks,

with step size τk ∈ (0, 1].
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Solution of the Unconstrained Reduced Problem 138

We want to solve

min Ĵ(u)

where Ĵ(u)
def

= J(y(u), u) using gradient based methods.

Gradient type methods:

uk+1 = uk − τk∇Ĵ(uk),

with step size τk ∈ (0, 1].

Newton type methods

∇2Ĵ(uk)s = −∇Ĵ(uk),

uk+1 = uk + τks,

with step size τk ∈ (0, 1].

Computation of ∇Ĵ(uk)? Computation of ∇2Ĵ(uk)?
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Gradient Computation 139

Consider
bJ(u) = J(y(u), u),

u ∈ U Hilbert space, where y = y(u) is the unique solution of c(y, u) = 0.
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Gradient Computation 139

Consider
bJ(u) = J(y(u), u),

u ∈ U Hilbert space, where y = y(u) is the unique solution of c(y, u) = 0.

F-derivative of bJ(u) applied to u′:

D bJ(u)u′ = DuJ(y, u)u′ + 〈DyJ(y, u), yu(u)u′〉Y∗×Y

= DuJ(y, u)u′ + 〈DyJ(y, u), [−cy(y, u)−1cu(y, u)]u′〉Y∗×Y

= DuJ(y, u)u′ + 〈− cy(y, u)−∗DyJ(y, u)| {z }
p

, cu(y, u)u′〉C∗×C

Adjoint equation: Compute p such that

〈cy(y, u)∗p, y′〉Y∗×Y=〈DyJ(y, u), y′〉Y∗×Y ∀y′ ∈ Y.
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Gradient Computation 139

Consider
bJ(u) = J(y(u), u),

u ∈ U Hilbert space, where y = y(u) is the unique solution of c(y, u) = 0.

F-derivative of bJ(u) applied to u′:

D bJ(u)u′ = DuJ(y, u)u′ + 〈DyJ(y, u), yu(u)u′〉Y∗×Y

= DuJ(y, u)u′ + 〈DyJ(y, u), [−cy(y, u)−1cu(y, u)]u′〉Y∗×Y

= DuJ(y, u)u′ + 〈− cy(y, u)−∗DyJ(y, u)| {z }
p

, cu(y, u)u′〉C∗×C

Adjoint equation: Compute p such that

〈cy(y, u)∗p, y′〉Y∗×Y=〈DyJ(y, u), y′〉Y∗×Y ∀y′ ∈ Y.

Gradient: Riesz representation of D bJ(u). Find ∇ bJ(u) ∈ U such that

〈∇ bJ(u), u′〉U = 〈∇uJ(y, u), u′〉U − 〈p, cu(y, u)u′〉C∗×C ∀u′ ∈ U .
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Gradient Computation and the Lagrangian 140

Let p solve the adjoint equation

〈cy(y, u)∗p, y′〉Y∗×Y = 〈DyJ(y, u), y′〉Y∗×Y ∀y′ ∈ Y.

Define the Lagrangian

L(y, u, p) = J(y, u) − 〈p, cu(y, u)u′〉C∗×C.

Observe

DĴ(u)u′ = DuJ(y, u)u′ − 〈p, cu(y, u)u′〉C∗×C,

= DuL(y, u, p)u′

Gradient: Riesz representation of DĴ(u). Find ∇Ĵ(u) ∈ U such that

〈∇Ĵ(u), u′〉U = DuL(y, u, p)u′ ∀u′ ∈ U .
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Gradient Computation. Example 1 141

Consider

bJ(u) :=
1

2
‖y(u) − yΩ‖

2
L2(Ω) +

α

2
‖u‖2

L2(Ω)

where y(u) solves

−∆y + y + d(y) = u in Ω

∂ny = 0 on Γ

Assumptions: Ω ⊂ IRN is a bounded Lipschitz domain. The function d : IR → IR is

monotone non-decreasing, twice differentiable with locally Lipschitz second derivative.

Moreover, yΩ ∈ L∞(Ω), α ≥ 0.
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Gradient Computation. Example 1 141

Consider

bJ(u) :=
1

2
‖y(u) − yΩ‖

2
L2(Ω) +

α

2
‖u‖2

L2(Ω)

where y(u) solves

−∆y + y + d(y) = u in Ω

∂ny = 0 on Γ

Assumptions: Ω ⊂ IRN is a bounded Lipschitz domain. The function d : IR → IR is

monotone non-decreasing, twice differentiable with locally Lipschitz second derivative.

Moreover, yΩ ∈ L∞(Ω), α ≥ 0.

The problem

min bJ(u)

is well posed if the control space satisfied Let U ⊂ Lr(Ω), r > N/2.

For N = 1, 2, or 3 choose U = L2(Ω).
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Lagrangian

L(y, u, p) =
1

2
‖y − yΩ‖

2
L2(Ω) +

α

2
‖u‖2

L2(Ω) −

Z

Ω

∇y∇p+ yp+ d(y)p− updx

Solve adjoint equation
Z

Ω

∇v∇p+ vp+ d′(y)vpdx =

Z

Ω

(y − yΩ)vdx ∀v ∈ H1(Ω).

Compute g = ∇ bJ(u) ∈ L2(Ω) such that
Z

Ω

g(x)u′(x)dx = α

Z

Ω

u(x)u′(x)dx+

Z

Ω

u′(x)p(x)dx ∀u′ ∈ L2(Ω).

Hence

∇ bJ(u) = αu+ p.
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Consider

bJ(u) :=
1

2
‖y(u) − yΩ‖

2
L2(Ω) +

α

2
‖u‖2

U

where y(u) solves

−∆y + y + d(y) = f in Ω

∂ny = u on Γc

∂ny = 0 on Γ \ Γc

Assumptions: Ω ⊂ IRN is a bounded Lipschitz domain. The function d : IR → IR is

monotone non-decreasing, twice differentiable with locally Lipschitz second derivative.

Moreover, f ∈ L2(Ω), yΩ ∈ L∞(Ω), α ≥ 0.
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Gradient Computation. Example 2 143

Consider

bJ(u) :=
1

2
‖y(u) − yΩ‖

2
L2(Ω) +

α

2
‖u‖2

U

where y(u) solves

−∆y + y + d(y) = f in Ω

∂ny = u on Γc

∂ny = 0 on Γ \ Γc

Assumptions: Ω ⊂ IRN is a bounded Lipschitz domain. The function d : IR → IR is

monotone non-decreasing, twice differentiable with locally Lipschitz second derivative.

Moreover, f ∈ L2(Ω), yΩ ∈ L∞(Ω), α ≥ 0.

The problem

min bJ(u)

is well posed if the control space satisfied Let U ⊂ Ls(Γc), s > N − 1.
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Consider

bJ(u) :=
1

2
‖y(u) − yΩ‖

2
L2(Ω) +

α

2
‖u‖2

U

where y(u) solves

−∆y + y + d(y) = f in Ω

∂ny = u on Γc

∂ny = 0 on Γ \ Γc

Assumptions: Ω ⊂ IRN is a bounded Lipschitz domain. The function d : IR → IR is

monotone non-decreasing, twice differentiable with locally Lipschitz second derivative.

Moreover, f ∈ L2(Ω), yΩ ∈ L∞(Ω), α ≥ 0.

The problem

min bJ(u)

is well posed if the control space satisfied Let U ⊂ Ls(Γc), s > N − 1.

For N = 1, 2 choose U = L2(Ω). For N = 3 choose U = H1(Ω).
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Lagrangian

L(y, u, p) =
1

2
‖y−yΩ‖

2
L2(Ω)+

α

2

Z

Γc

|∇su|
2+u2dx−

Z

Ω

∇y∇p+yp+d(y)pdx+

Z

Γc

updx

Solve adjoint equation
Z

Ω

∇v∇p+ vp+ d′(y)vpdx =

Z

Ω

(y − yΩ)vdx ∀v ∈ H1(Ω).

Compute g = ∇ bJ(u) ∈ H1(Γc) such that
Z

Γc

∇sg∇su
′ + gu′dx = α

Z

Γc

∇su∇su
′ + uu′dx+

Z

Γc

u′pdx ∀u′ ∈ H1(Γc).
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Gradient Computation. Example 2 144

Lagrangian

L(y, u, p) =
1

2
‖y−yΩ‖

2
L2(Ω)+

α

2

Z

Γc

|∇su|
2+u2dx−

Z

Ω

∇y∇p+yp+d(y)pdx+

Z

Γc

updx

Solve adjoint equation
Z

Ω

∇v∇p+ vp+ d′(y)vpdx =

Z

Ω

(y − yΩ)vdx ∀v ∈ H1(Ω).

Compute g = ∇ bJ(u) ∈ H1(Γc) such that
Z

Γc

∇sg∇su
′ + gu′dx = α

Z

Γc

∇su∇su
′ + uu′dx+

Z

Γc

u′pdx ∀u′ ∈ H1(Γc).

Note:

∇ bJ(u) 6= αu+ p|Γc
.
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Computation of ∇2Ĵ(u)δu ∈ U

• Given u ∈ U .

• Compute solution y ∈ Y of the state equation c(y, u) = 0.

• Compute solution p of the adjoint equation

〈cy(y, u)∗p, y′〉Y∗×Y = 〈DyJ(y, u), y′〉Y∗×Y ∀y′ ∈ Y.

• Compute solution δy ∈ Y of the linearized state equation

cy(y(u), u)δy = −cu(y(u), u)δu.

• Compute solution η of

〈cy(y, u)∗η, y′〉Y∗×Y = 〈D2
yyL(y, u, p)δyD2

yuL(y, u, p)δu, y′〉Y∗×Y ∀y′ ∈ Y

• Find z = ∇2 bJ(u)δu ∈ U such that

〈∇2 bJ(u)δu, u′〉U =〈D2
uyL(y, u, p)δy +D2

uuL(y, u, p)δu, u′〉U∗×U

− 〈η, cu(y, u)u′〉C∗×C ∀u′ ∈ U .
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Hessian ∇2Ĵ(u) usually not available in matrix form. Only operator-vector

multiplications can be computed.

Newton step

∇2Ĵ(uk)s = −∇Ĵ(uk), (∗)

has to be computed using iterative methods (conjugate gradient method).
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The Newton Step 146

Hessian ∇2Ĵ(u) usually not available in matrix form. Only operator-vector

multiplications can be computed.

Newton step

∇2Ĵ(uk)s = −∇Ĵ(uk), (∗)

has to be computed using iterative methods (conjugate gradient method).

Solution s of (*) is the second component of the solution vector sy, su of

min〈



 DyL

DuL



 ,



 sy

su



〉 +
1

2
〈



 D2
yyL D2

yuL

D2
uyL D2

uuL







 sy

su



 ,



 sy

su



〉,

s.t. cy(y, u)sy + cu(y, u)su = 0,

where L = L(y, u, p), y is the solution of the state equation and p is the solution

of the adjoint equation
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Want to solve

min
u∈U

bJ(u)

Newton method

• Given uk.

• Solve ∇2 bJ(uk)s = −∇ bJ(uk).

• Set uk+1 = uk + s.

Convergence: Let bJ(u) be twice continuously blue F-differentiable, let ∇ bJ(u∗) = 0 and

〈∇2 bJ(u∗)v, v〉U ≥ δ‖v‖2
U for some δ > 0 (second order sufficient optimality conditions).

There exists ε > 0 and c > 0 such that if ‖u0 − u∗‖ ≤ ε then lim uk = 0 and

‖uk+1 − u∗‖U ≤ c‖uk − u∗‖
2
U ∀k.
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Want to solve

min
u∈U

bJ(u) min
uh∈Uh

bJh(uh)

Mesh independence (basic version)

• Uh ⊂ U .

• ‖∇ bJ(u) −∇ bJh(uh)‖ ≤ ĉhq ∀uh ∈ Uh.

• ‖∇2 bJ(u) −∇2 bJh(uh)‖ ≤ ĉhq ∀uh ∈ Uh.

Let the assumptions for the convergence of Newton’s method in U hold. There exist

h0, ε and c > 0 such that for all h ≤ h0 and all uh
0 ∈ Uh with ‖uh

0 − u∗‖U ≤ ε,

• lim uh
k = uh

∗ ,

• ‖uh
k+1 − uh

∗‖U ≤ c‖uh
k − uh

∗‖
2
U ∀k.

• ‖uh
∗ − u∗‖U ≤ chq.

• If ‖uh
0 − u0‖U ≤ chq, then ‖uh

k − uk‖U ≤ chq ∀k.
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Number of Iterations

Example 1

TOL = 10−8 TOL = 10−6

α h−1 12 24 48 96 192 384 12 24 48 96 192 384

10−6 7 7 7 7 7 7 7 7 7 7 7 7

10−4 8 8 8 8 8 8 7 7 7 7 7 7

10−2 10 10 10 10 10 10 8 8 8 8 8 8

Example 2

10−6 7 7 7 7 7 7 6 6 6 6 6 6

10−4 9 9 9 9 9 9 7 7 7 7 7 7

10−2 9 9 9 9 9 9 7 7 7 7 7 7
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Want to solve

min
u∈U

bJ(u)

BFGS method

• Given uk, Hk.

• Solve Hks = −∇ bJ(uk).

• Set uk+1 = uk + s, v = ∇ bJ(uk+1) −∇ bJ(uk) and

Hk+1 = Hk +
v ⊗ v

〈v, s〉U
−

(Hks) ⊗ (Hks)

〈s,Hks〉U
.

Here (v ⊗ w)x = 〈w, x〉Uv.

Convergence: Let bJ(u) be twice continuously blue F-differentiable, let 〈∇ bJ(u∗) = 0

and 〈∇2 bJ(u∗)v, v〉U ≥ δ‖v‖2
U for some δ > 0. There exists ε > 0 such that if

‖u0 − u∗‖ ≤ ε, ‖H0 −∇2 bJ(u∗)‖ ≤ ε, and if H0 −∇2 bJ(u∗) is compact, then there

exists ck ≥ 0, lim ck = 0, lim uk = 0 and

‖uk+1 − u∗‖U ≤ ck‖uk − u∗‖U ∀k.
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Flow Separation in Driven Cavity 152

minJ(u,g) =
1

2

∫

{x2=0.4}

|u2(x)|
2 dx+

γ

2
‖g‖2

H1(Γc)

subject to

− 1
Re ∆u + (u · ∇)u + ∇p = f in Ω = (0, 1)2,

div u = 0 in Ω,

u = b on Γu,

u = g on (0, 1) × {1}.

Note change of notation: u, p (velocities, pressure) states, g control.
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Flow Separation in Driven Cavity 152

minJ(u,g) =
1

2

∫

{x2=0.4}

|u2(x)|
2 dx+

γ

2
‖g‖2

H1(Γc)

subject to

− 1
Re ∆u + (u · ∇)u + ∇p = f in Ω = (0, 1)2,

div u = 0 in Ω,

u = b on Γu,

u = g on (0, 1) × {1}.

Note change of notation: u, p (velocities, pressure) states, g control.

Control space is H1(Γc). Gradient computation analogous to the procedure

described for boundary control of semilinear elliptic equation.
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−→ Velocity g (control) −→

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

−→ Velocity b (given 0.5) −→
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Infinite dimensional approach.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

x

Computed Control (Iteration 7)

(Grid size h = 1/10).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

x

Computed Control (Iteration 7)

(Grid size h = 1/15).

Finite dimensional approaach.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

Computed Control (Iteration 6)

(Grid size h = 1/5).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

Computed Control (Iteration 7)

(Grid size h = 1/10).
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Consider

min
U
Ĵ(u),

where U Hilbert space with inner product 〈·, ·〉U .
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Consider

min
U
Ĵ(u),

where U Hilbert space with inner product 〈·, ·〉U .

After a discretization, this leads to

min
Uh

Ĵ(uh)

for some finite dimensional subspace Uh ⊂ U .
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Consider

min
U
Ĵ(u),

where U Hilbert space with inner product 〈·, ·〉U .

After a discretization, this leads to

min
Uh

Ĵ(uh)

for some finite dimensional subspace Uh ⊂ U .

We can identify Uh with Rn, but the inner product leads to a weighted

Euclidean product

〈u1, u2〉U = u>
1 Tu2

for some positive definite T ∈ Rn×n.
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The discretized problem can be viewed as problem in Rn

min
Rn

Ĵ(u),

but Rn is equipped with the weighted Euclidean product

u>
1 Tu2

not with u>
1 u2.
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The discretized problem can be viewed as problem in Rn

min
Rn

Ĵ(u),

but Rn is equipped with the weighted Euclidean product

u>
1 Tu2

not with u>
1 u2.

Let’s see when and why this matters.
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Gradient Computation

Let Ĵ : Rn → R. Denote the derivative of Ĵ by DĴ .

The gradient ∇Ĵ(u) is defined to be the vector that satisfies

〈∇Ĵ(u),u′〉 = DĴ(u)u′ ∀u′

(Riesz representation). Thus ∇Ĵ(u) depends on the inner product.

If we use

〈u1,u2〉 = u>
1 u2,

then

∇Ĵ(u) = ∇1Ĵ(u) :=

(
∂

∂uj
Ĵ(u)

)

j=1,...,n

,

i.e., ∇Ĵ(u) is the vector of partial derivatives.
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Gradient Computation

Let Ĵ : Rn → R. Denote the derivative of Ĵ by DĴ .

The gradient ∇Ĵ(u) is defined to be the vector that satisfies

〈∇Ĵ(u),u′〉 = DĴ(u)u′ ∀u′

(Riesz representation). Thus ∇Ĵ(u) depends on the inner product.

If we use

〈u1,u2〉 = u>
1 Tu2,

then

DĴ(u)u′ = ∇1Ĵ(u)>u′ =
(
T−1∇1Ĵ(u)

)>

Tu′

i.e., ∇Ĵ(u) = T−1∇1Ĵ(u).

Same result as scaling of the u-variable by T1/2.
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Hessian Computation

Let Ĵ : Rn → R. Denote the second derivative of Ĵ by D2Ĵ .

The Hessian ∇2Ĵ(u) is defined to be the matrix that satisfies

〈∇2Ĵ(u)u1,u2〉 = D2Ĵ(u)[u1,u2] ∀u1,u2.

Thus ∇2Ĵ(u) depends on the inner product.

If we use

〈u1,u2〉 = u>
1 u2,

then

∇2Ĵ(u) = ∇2
1Ĵ(u) :=

(
∂2

∂ui∂uj
Ĵ(u)

)

i,j=1,...,n

,

i.e., ∇2Ĵ(u) is the matrix of second partial derivatives.
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Hessian Computation

Let Ĵ : Rn → R. Denote the second derivative of Ĵ by D2Ĵ .

The Hessian ∇2Ĵ(u) is defined to be the matrix that satisfies

〈∇2Ĵ(u)u1,u2〉 = D2Ĵ(u)[u1,u2] ∀u1,u2.

Thus ∇2Ĵ(u) depends on the inner product.

If we use

〈u1,u2〉 = u>
1 Tu2,

then

D2Ĵ(u)[u1,u2] =
(
∇2

1Ĵ(u)u1

)>

u2 =
(
T−1∇2

1Ĵ(u)u1

)>

Tu2

i.e., ∇2Ĵ(u) = T−1∇2
1Ĵ(u).

Same result as scaling of the u-variable by T1/2.
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Quasi Newton: BFGS Update

Hk+1 = H +
v ⊗ v

〈v, s〉
−

(Hs) ⊗ (Hs)

〈s,Hs〉
.

where

(x ⊗ v)w = 〈v,w〉 x.

If 〈v,w〉 = v>w, then we obtain the standard BFGS update.

If 〈v,w〉 = v>Tw, then

Hk+1 = H +
v(Tv)>

v>Ts
−

(Hs)(THs)>

s>THs
.

This is the BFGS update resulting from a scaling of the independent variables u

by T1/2.
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• If we discretize the optimal control and solve the discretized problem as a

nonlinear problem in Rn with standard Euclidean inner product, the

convergence of

– gradient

– quasi-Newton

– conjugate gradient (CG)

– Newton CG

– ...

methods depend on the mesh size.

• Often, the finer the mesh size, the more poorly scaled the discretized

nonlinear programming problems become.
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The problem we want to solve

min Jh(yh, uh)

s.t. ch(yh, uh) = 0

⇓

min Ĵh(uh)
def

= Jh(yh(uh), uh)

• Solution of ch(yh, uh) = 0 is determined iteratively

→ only ỹh(uh) ≈ yh(uh) is known

→ only Ĵh(uh),∇Ĵh(uh) are not known

• ‖ỹh(uh) − yh(uh)‖ can be controlled, but often only asymptotic estimates

are known.
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Optimization problem

min J(y, u)

s.t. c(y, u) = 0

Optimality conditions

D2
yL(y, u, p) = 0, D2

uL(y, u, p) = 0, c(y, u) = 0.

Newton’s Method
2
664

D2
yyL(y, u, p) D2

yuL(y, u, p) cy(y, u)∗

D2
uyL(y, u, p) D2

uuL(y, u, p) cu(y, u)∗

cy(y, u) cu(y, u) 0

3
775

2
664

sy

sp

su

3
775 = −

2
664

DyL(y, u, p)

DuL(y, u, p)

c(y, u)

3
775
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Quadratic problem

min〈

2
4 DyL

DuL

3
5 ,

2
4 sy

su

3
5〉 +

1

2
〈

2
4 D2

yyL D2
yuL

D2
uyL D2

uuL

3
5

2
4 sy

su

3
5 ,

2
4 sy

su

3
5〉,

s.t. cy(y, u)sy + cu(y, u)su = −c(y, u),
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The problem we want to solve

min J(y, u)

s.t. c(y, u) = 0, g(y, u) = 0, h(y, u) ∈ K.
(P )

The problem we can solve

min Jh(yh, uh)

s.t. ch(yh, uh) = 0, gh(yh, uh) = 0, hh(yh, uh) ∈ Kh.
(Ph)

• The infinite dimensional optimization problem (P ) strongly influences the

convergence behavior of the optimization algorithm applied to the discretized

problem (Ph).

– Mesh independece principles.

– Convergence of quasi-Newton methods.

– Development of new opt. algorithms for infinite dim. problems.
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• There is not one, but a sequence of optimization problems (Ph). The better

(Ph) approximates (P ), the larger (Ph) becomes. Want to use inexpensive

problems as long as possible.

• Efficient solution of optimization subproblems at fixed level (Ph).
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• Optimization algorithms for problems with control and state constraints

Talks by Kunisch, Hintermüller, de los Reyes, Schiela,Wehrstedt.

• Preconditioning of KKT systems Talk by Sachs.

• Optimization and discretization Talks by Rannacher, Hoppe.

• Reduced order Models: Gunzburger, Patera.
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