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Via Orabona, 4 – 70125 Bari, Italy

e-mail: adenicola@tin.it
2Valle San Benedetto, 2 – 62030 Montecavallo (MC), Italy

Associated with INFN, Sezione di Napoli, Italy
e-mail: tulczy@libero.it

Abstract

We present a variational formulation of electrodynamics using de Rham even and

odd differential forms. Relying on a variational principle more complete than the

Hamilton principle our formulation leads to field equations with external sources

and permits the derivation of the constitutive relations.
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1. Introduction

A general framework for variational formulations of physical theories was presented
in [1]. Applications to statics and dynamics of mechanical systems appear in [2, 3].
This note presents an introduction to a more complete variational formulation to be
presented in a future publication.

Our formulation of electrodynamics is special relativistic. The use of de Rham
even and odd differential forms ([5, 6]) permits a rigorous formulations of electrody-
namics and the description of the transformation properties of electromagnetic fields
relative to reflections (cf. [4]). Relying on a variational principle more complete than
the Hamilton principle our formulation leads to field equations with external sources
and permits the derivation of the constitutive relations which are usually postulated



A. De Nicola and W.M. Tulczyjew 317

separately since the variations normally considered are not general enough to derive
them from the variational principle.

We interpret a domain in space-time as an odd de Rham 4-current. This permits
a treatment of different types of boundary problems in an unified way. In particular
we obtain a smooth transition to the infinitesimal version by using a current with a
one point support.

2. Currents

Let M be the affine Minkowski space-time of special relativity with the 4-dimensional
model space V and a metric tensor g : V → V ∗ of signature (1, 3). The vector space of
even differential q-forms in M will be denoted by Φq

e(M) and space of odd differential
q-forms will be denoted by Φq

o(M). The symbol Φq
p(M) will be used to denote either

of the two spaces when the distinction is not relevant.
An even or odd de Rham current of dimension q on M is a linear function

c : Φq
p(M) → R : A 7→

∫

c

A. (1)

Domains in space-time will be treated as currents. The boundary ∂c of a current
c is defined by assuming that Stokes theorem holds for all currents as it holds for
domains.

In addition to domains in space-time odd de Rham currents most frequently used
are the Dirac currents. A Dirac current wδ(x) is an odd current of dimension 4 defined
in terms of a point x ∈M and an odd 4-vector w. If A is an odd 4-form, then

∫

wδ(x)

A = 〈A(x), w〉. (2)

3. The space of fields

Let CM be the space of odd 4-currents with compact supports in M . We consider
the set X(Φ1

e(M);CM) of pairs (A,c), where c is an odd current of dimension 4 in
M with a compact support Sup(c) and A is an even 1-form

A : U → ∧1
eV
∗ (3)

defined in an open set U ⊂ M containing the support of c. The symbols ∧q
eV
∗

and ∧q
oV
∗ denote respectively the vector spaces of even and odd q-covectors. The

1-form A will represent the electromagnetic potential. Its differential F = dA is the
electromagnetic field.

A mapping
κ : M × ∧1

eV
∗ × ∧2

eV
∗ → ∧4

oV
∗ (4)

is said to be quadratic if for each x ∈M there exists a symmetric bilinear mapping

δ2κx :
(

∧1
eV
∗ × ∧2

eV
∗)×

(

∧1
eV
∗ × ∧2

eV
∗)→ ∧4

oV
∗ (5)
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such that the mappings κx = κ(x, ·, ·) and δ2κx are in the relation

κx(a, f) =
1

2
δ2κx((a, f)(a, f)), (6)

for each (a, f) ∈ ∧1
eV
∗ × ∧2

eV
∗. We will use the set of all quadratic mappings (4) to

introduce an equivalence relation in the set X(Φ1
e(M);CM).

Pairs (A,c) and (A′,c′) are equivalent if
∫

c′
κ ◦ (x,A′,dA′) =

∫

c
κ ◦ (x,A,dA) (7)

for each quadratic mapping (4). Equivalence classes will be called fields. Our fields
are similar to those used by Freed in [8]. The space of fields will be denoted by
Q(Φ1

e(M);CM) or simply Q. The equivalence class of (A,c) will be denoted by
q(A,c). The symbol q will denote a generic element of Q. There is a natural projection
ε : Q → CM : q(A,c) 7→ c from the space of fields to the space CM of currents in M

which is similar to a vector fibration. Each fibre ε−1(c) of the projection ε is a vector
space denoted by Q(Φ1

e(M);c) or Qc.

4. Functions, vertical vectors and covectors in the

space of fields

With each quadratic mapping (4) we associate the function

k : Q(Φ1
e(M);CM) → R : q(A,c) 7→

∫

c
κ ◦ (x,A,dA). (8)

Functions constructed in this way will be considered differentiable. The space of such
functions will be denoted by K(Φ1

e(M);CM). It is easy to verify that these differen-
tiable functions separate points of Q, i.e. if k(q′) = k(q) for each k ∈ K(Φ1

e(M);CM),
then q′ = q.

The tangent space to the vector space Qc = ε−1(c) is the space Qc itself. It
follows that the vertical tangent bundle of the vector fibration ε is the space

VQ = Q ×
(ε,ε)

Q = {(q, δq) ∈ Q×Q; ε(q) = ε(δq)}. (9)

There is no obvious choice of the bundle dual to VQ. Using the fibre derivatives
of functions k ∈ K(Φ1

e(M);CM) as models of covectors we obtain the following result.
A covector p is an equivalence class of triples (G, J,c) of an odd 2-form G : U → ∧2

oV
∗,

an odd 3-form J : U → ∧3
oV
∗, and a current c with support contained in U . The

objects G and J are interpreted as the electromagnetic induction and the current

respectively. Elements (G, J,c) and (G′, J ′,c′) are equivalent if c = c′ and

∫

c

(

1

c2
J ′ ∧ δA−

1

4πc
d (G′ ∧ δA)

)

=

∫

c

(

1

c2
J ∧ δA−

1

4πc
d (G ∧ δA)

)

, (10)

for each δA : U → ∧1
eV
∗. The equivalence class of (G, J,c) is denoted by p(G, J,c) .
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The vector space Πc of covectors associated with the current c is the dual of the
space Qc with the pairing

〈〈〈〈〈p(G, J,c),q(δA,c)〉〉〉〉〉
c

=

∫

c

(

1

c2
J ∧ δA−

1

4πc
d (G ∧ δA)

)

. (11)

The space of all covectors is the union Π =
⋃

c∈CR
Πc. There is a natural projection

ε′ : Π→ CM : p(G, J,c) 7→ c. The phase space is the space

Ph = Q ×
(ε,ε′)

Π = {(q, p) ∈ Q×Π; ε(q) = ε′(p)}. (12)

The symbol Phc will denote the set Qc ×Πc ⊂ Ph.

5. A virtual action principle for electrodynamics

In this section a variational principle for electrodynamics similar to the virtual action
principle of analytical mechanics (see [3]) will be formulated.

The action is the differentiable function

W : Q(Φ1
e(M);CM) → R : q(A,c) 7→

∫

c
L ◦ (A,dA) (13)

derived from the quadratic Lagrangian density

L : ∧1
e V ∗ × ∧2

eV
∗ → ∧4

oV
∗ : (a, f) 7→ −

1

8πc
〈f,∧2

eg
−1(f)〉

√

|g|. (14)

We are using the symbol
√

|g| to denote the odd 4-covector derived from the
metric tensor g (see [4] or [7]), while the symbol ∧2

eg
−1 denotes the inverse mapping

of ∧2
eg : ∧2

eV → ∧2
eV
∗ characterized by the equality ∧2

eg(v1 ∧ v2) = g(v1)∧ g(v2) for
even simple 2-vectors.

A phase ph = (q(A,c),p(G, J,c)) satisfies the virtual action principle if the
equality

DW (q, δq)− 〈〈〈〈〈p, δq〉〉〉〉〉
c

= 0 (15)

holds for each virtual displacement δq = q(δA,c) ∈ Qc. For each current c the
dynamics associated with the current c is the set Dc ⊂ Phc of phases which satisfy
the virtual action principle. The dynamics is the subset D =

⋃

c∈CR
Dc of the phase

space Ph defined above.
A phase space trajectory is a triple of differential forms

(A,G, J) : U → ∧1
eV
∗ × ∧2

oV
∗ × ∧3

oV
∗. (16)

The dynamics of a system can also be represented as a set DDDD of phase space trajectories
(A,G, J) such that for each current c with support included in U the phase ph =
(q(A, c),p(G, J,c)) is in Dc.

The equation (15) is too abstract to be used directly. A more concrete expression
of the virtual action principle will be given in the Proposition 1.
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The left interior multiplications are the operations

: ∧q
p V × ∧q′

p′V
∗ → ∧q′

−q
pp′ V ∗, (17)

defined for q 6 q′ by 〈w′ a,w〉 = 〈a,w′ ∧ w〉. The parity pp′ which appears in this
definition is constructed by assigning the numerical values +1 and −1 to e and p re-
spectively. The parity of the multivector w must match the parity of the multicovector
w′ a.

Proposition 1 A phase ph = (q(A, c),p(G, J,c)) satisfies the virtual action princi-

ple if and only if the equality

1

4πc

∫

c

(

d
(

(

∧2
eg
−1 ◦ dA

)
√

|g|
)

∧ δA− d
((

(

∧2
eg
−1 ◦ dA

)
√

|g|
)

∧ δA
))

=

∫

c

(

1

c2
J ∧ δA−

1

4πc
d (G ∧ δA)

)

, (18)

is satisfied for each virtual displacement δq = q(δA,c).

A phase space trajectory belongs to the dynamics DDDD, if and only if it satisfies
the virtual action principle for each current c with support included in its domain of
definition. There is a characterization of the dynamics of phase space trajectories in
terms of differential equations. This is shown in the following propositions.

Theorem 2 A phase space trajectory (A,G, J) belongs to the dynamics DDDD if and only

if it satisfies the Euler-Lagrange equation

d
(

(

∧2
eg
−1 ◦ dA

)
√

|g|
)

=
4π

c
J (19)

and the constitutive relation

G =
(

∧2
eg
−1 ◦ dA

)
√

|g|. (20)

The constitutive relation (20) produced by our variational principle corresponds
to the momentum-velocity relation of analytical mechanics.

Proposition 3 A phase space trajectory (A,G, J) satisfies the Euler-Lagrange equa-

tion and the constitutive relation if and only if it satisfies the Maxwell’s equations

dG =
4π

c
J (21)

and the constitutive relation

G =
(

∧2
eg
−1 ◦ F

)
√

|g|, (22)

with F = dA.
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6. The Dynamics in a compact domain

Let the current c consist in integrating an odd 4-form on a compact domain K ⊂ M

with smooth boundary ∂K. Field configurations, tangent vectors and covectors are
equivalence classes of equivalence relations based on the equalities (7) and (10).

It follows that a field q = q(A,K) is represented by the restriction

A|K : K → ∧1
eV
∗ (23)

of the potential A to the domain K. A tangent vector δq = q(δA,K) is represented
by the restriction

(δA)|K : K → ∧1
eV
∗ (24)

of the variation δA to the domain K. A covector p = p(G, J,K) is represented by the
pair of the restrictions

G|∂K : ∂K → ∧2
oV
∗, J |

◦

K :
◦

K → ∧3
oV
∗ (25)

of the electromagnetic induction G to the boundary ∂K of the domain K and of the

current J to the interior
◦

K of the domain K.
The dynamics in the domain K is the set DK ⊂ Ph of phases satisfying the

virtual action principle. It is characterized by the following proposition.

Proposition 4 A phase ph = (q(A,K),p(G, J,K)), defined in a compact domain

K, belongs to the dynamics DK if and only if the Euler-Lagrange equation

d
(

(

∧2
eg
−1 ◦ dA

)
√

|g|
)

|
◦

K =
4π

c
J |
◦

K (26)

and the constitutive relation

G|∂K =
(

(

∧2
eg
−1 ◦ dA

)
√

|g|
)

|∂K (27)

are satisfied.

7. The Lagrangian formulation

The Lagrangian formulation of dynamics is the infinitesimal limit of the formulation
in a compact domain with the domain shrinking to a point. A formal method which
greatly simplifies the passage to the infinitesimal limit is to replace the compact
domain — which is used exclusively as domain of integration — with the current
c = δ(x)w, where δ(x) is the Dirac delta function in x ∈ M and w ∈ ∧4

oV is an odd
4-vector, with w 6= 0. The construction of infinitesimal fields, tangent vectors and
covectors is based on the equalities (7) and (10) which in this case reduce to pairings
of odd 4-covectors with the odd 4-vector w 6= 0.

It follows that an infinitesimal field q = q(A,c) is represented by the pair

(A(x), F (x)) ∈ ∧1
eV
∗ × ∧2

eV
∗, (28)
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a tangent vector δq = q(δA,c) is represented by the pair

(δA(x), δF (x)) ∈ ∧1
eV
∗ × ∧2

eV
∗, (29)

and a covector p = p(G, J,c) is represented by the pair

(

G(x),dG(x)−
4π

c
J(x)

)

∈ ∧2
oV
∗ × ∧3

oV
∗. (30)

The pairing 〈〈〈〈〈p, δq〉〉〉〉〉
c

defined by the equality (11) assumes the form

〈〈〈〈〈p, δq〉〉〉〉〉
L

= −
1

4πc

〈(

dG(x)−
4π

c
J(x)

)

∧ δA(x) + G(x) ∧ δF (x), w

〉

. (31)

We have constructed the space of infinitesimal fields Qδ = ∧1
eV
∗×∧2

eV
∗ and the

space of infinitesimal covectors Πδ = ∧2
oV
∗ × ∧3

oV
∗. Hence, the infinitesimal phase

space is Phδ = Qδ ×Πδ = ∧1
eV
∗ × ∧2

eV
∗ × ∧2

oV
∗ × ∧3

oV
∗.

The infinitesimal action is W (q(A, δ(x)w)) = 〈L(A(x), F (x)), w〉 and the infini-
tesimal dynamics is the set

Dδ =

{

(a, f, g, h) ∈ Phδ; ∀
(δa,δf)∈∧1

e
V ∗×∧2

e
V ∗

DL(a, f, δa, δf) = −
1

4πc
(h ∧ δa + g ∧ δf)

}

. (32)

Applied to a phase ph = (q(A, δ(x)w),p(G, J, δ(x)w)), with w 6= 0, the action
principle results in the equations

G(x) =
(

∧2
eg
−1(F (x))

)
√

|g|, dG(x) =
4π

c
J(x). (33)
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