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Abstract

Nikishin type system of analytic functions are considered. For such systems, sufficient conditions
for the convergence in capacity of multipoint Hermite Padé approximants is given.

1 Introduction

Let ∆ be a set, ∆ ⊂ IR; and µ, a finite positive Borel measure on ∆, whose support contains an infinite
set of points. We assume that either 1) ∆ is bounded, or 2) the moments |cn| = |

∫
∆ x

νdµ| <∞,
n = 1, 2, . . . exist. We are going to denote M(∆) the set of measures µ that have this property.
Set

µ̂(z) =
∫

∆

dµ(x)
z − x

.

The Stieljes function µ̂(z) is analytic in D = IC \∆. There exist polynomials Qn, Pn, such that Qn 6≡ 0,
deg(Qn) ≤ n, deg(Pn) ≤ n− 1, n ∈ IN, and

[Qnµ̂− Pn](z) = O(z−n−1) ∈ H(D).

Finding Qn reduces to solving a system of n homogeneus linear equations on the n+ 1 coeficients of
Qn. Thus, a nontrivial solution always exists. Obviously, Pn is the polynomial part of the expansion
of Qnµ̂. The fraction Rn = Pn

Qn
is known as the diagonal Padé approximant of order n.

An old problem is to find sufficient conditions for the uniform convergence of diagonal Padé ap-
proximants for Stieljes Function. Two such conditions are:

• ∆ compact, or

•
∑
ν≥1

1

ci
1
2i

=∞

In this work we are going to prove an extension of this result for a certain system of functions.
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2 Hermite-Padé Approximants

An extension of Padé approximation for systems of functions is given by the so called Hermite-Padé
approximants. This concept was introduced by Hermite in connection whith the proof of the trascen-
dence of number e.

Let f1, f2, · · · , fm be a set of m formal power series in a neighborhood of infinity (z =∞).

fi(z) = Aki,iz
ki +Aki−1,iz

ki−1 + . . . , i = 1, · · · ,m.

Let r1, r2, · · · , rm be an arbitrary set of nonnegative integers. As in the case of diagonal Padé approx-
imants, it is easy to verify that there exists a polynomial Qn 6≡ 0, deg(Qn) ≤ n = r1 + r2 + · · ·+ rm,
such that:

[Qnfi − Pn,i](z) = Aiz
−ri−1 + . . . , i = 1, · · · ,m.

The construction of Qn reduces to finding a nontrivial solution of a homogeneus system of n lineal
equations on the n+ 1 coeficients of Qn. Pn,i is the polynomial part of the expansion of Qnfi. Obvi-
ously, deg(Qn) ≤ n+ ki.

The set of fractions {Rn,i = Pn,i
Qn
} is called diagonal Hermite-Padé approximants of the system {fi :}

i = 1, 2, · · · ,m of order n, associated to the system of indices r1, r2, · · · , rm.

3 Nikishin Systems

Let {(∆j , µj)}, j = 1, 2, · · · ,m be m pairs formed by an interval, ∆j ⊂ IR, and µ ∈M(∆i). Further
∀j < m, ∆j ∩∆j+1 = ∅. We say that the system of functions σ̂(z) = {σ̂1(z), σ̂2(z), · · · , σ̂m(z)} is the
Nikishin System [N] generated by such pairs on D = IC \∆1, if these functions are defined as fallows:

σ̂1(z) =
∫

∆1

dµ1(x1)
z−x1

=
∫

∆1

dσ1(x1)
z−x1

σ̂2(z) =
∫

∆1

dµ1(x1)
z−x1

∫
∆2

dµ2(x2)
x1−x2

=
∫

∆1

dσ2(x1)
z−x1

...

σ̂m(z) =
∫

∆1

dµ1(x1)
z−x1

∫
∆2

dµ2(x2)
x1−x2

∫
∆3
· · ·
∫

∆m

dµm(xm)
xm−1−xm =

∫
∆1

dσm(x1)
z−x1

Now, the question is: which the sufficient conditions are for uniform convergence of Hermite-Padé
Aproximants of a Nikishin systems? Uniform convergence is a very strong criteria for Hermite-Padé
approximation. We will use a weaker form of convergence. This is going be convergence in capacity.



4 Convergence in Capacity

Let E be a compact set, E ⊂ IC, and µ ∈M(E). We call energy of µ to

Iµ(z) =
∫ ∫

log
1

|z − β|
dµ(β)dµ(z).

Robin’s Constant is defined as

I(E) = inf{Iµ : µ ∈M1(E)},

and the logarithmic capacity of E is given by

C(E) = exp(−I(E)).

If h is an arbitrary subset of IC, it’s capacity is given by

C(h) = sup{C(E) : E ⊂ h}

For each ε > 0, the convergence in capacity is defined by:

C({z ∈ K : |(σ̂i −Rn,i)(z)| ≥ ε})→ 0, i = 1, · · · ,m, s→∞

The question now is: which conditions are sufficient in order to have convergence in capacity.

5 Conditions for Hermite-Padé Approximants

An answer to the question of convergence in capacity for Hermite-Padé approximation is given [BL].
The result may be stated as follows.

Theorem Let c be a constant such that ∀s ∈ IN, we have ri ≥ n
m − c, i = 1, 2, · · · ,m,

n = n(s) = r1(s) + r2(s) + · · ·+ rm(s). Assume that either:

• ∆2 is bound, or.

•
∑
δ≥1

1
c2δ
δ

=∞

Then, for all compact K ⊂ D = IC \∆1 and each ε > 0,

C({z ∈ K : |(σ̂i −Rn,i)(z)| ≥ ε})→ 0, i = 1, · · · ,m, s→∞.

6 Conditions for Multipoint Hermite-Padé Aproximants

Let L be a table of points, L = ∪Ln,i, Ln,i = {Ln,i,k ∈ IR \∆1}, k = 1, 2, · · · , n+ ri. We define the
family of polynomials {Wn,i} :

Wn,i =
n+ri∏
k=1

(1− x

Ln,i,k
), i = 1, · · · ,m



There exist polynomialsQ∗n, P
∗
n,i, Pn,i; i = 1, · · · ,m, such thatQn∗ 6≡ 0, deg(Q∗n) ≤ n, deg(P ∗n,i) ≤ n− 1,

deg(Pn,i) ≤ n− 1, and

Q∗nσ̂i − P ∗n,i
wn,i

= Q∗nσ̂
n
i − Pn,i = O(z−ri−1) ∈ H(D),

where

σ̂ni =
∫

∆1

dσi
(z − x)Wn,i(x)

=
∫

∆1

dσ
n(s)
i

z − x
.

The family of fractions {R∗n,i =
P ∗n,i
Q∗n
}, i = 1 · · · ,m is the multipoit Hermite-Padé approximant. From

the definition, it follows that

[
Q∗nσ̂

n
i − Pn,i
ωn,i

](z) = [
Q∗nσ̂i − P ∗n,i
Wn,iωn,i

](z) = O(z−n−l) ∈ H(D)

Where ωn,i, i = 1, · · · ,m are polynomials whose zeros lie in ∆2.

In the multipoint case we can add another sufficient condition for convergence.

Theorem Let c be a constant such that ∀s ∈ IN, we have ri ≥ n
m − c, i = 1, 2, · · · ,m,

n = n(s) = r1(s) + r2(s) + · · ·+ rm(s). Assume that one the fo llowing conditions is satisfied:

• ∆2 is bound

•
∑
δ≥1

1
c2δ
δ

=∞

• the table of points L is lie on a bounded set and for each i, the number of diferent zeros tends
to infinity as s→∞

Then, for any compact K ⊂ D = IC \∆1, and each ε > 0,

C({z ∈ K : |(σ̂i −Rn,i)(z)| ≥ ε})→ 0, i = 1, · · · ,m, s→∞.
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