Departamento de Matemática da Universidade de Coimbra Análise Complexa II ${\rm Teste} - 5/6/98$

Duração: 3h30m

Observações: Os dois modelos de teste são:

• I, II, III, IV, VI;

• I, III, IV, V.

(5.0) I. Funções Analíticas

- 1. Seja F uma função complexa, definida em $D \times D$ onde D é um domínio de \mathbb{C} . Se F é analítica em D como função de cada uma das variáveis e $F(z,w) \equiv 0$ para $(z,w) \in E \times E$, onde o derivado de E é não vazio, então $F(z,w) \equiv 0$ sobre $D \times D$.
- 2. Seja $D = \mathbb{C} \setminus]-\infty,1]$ e considere o ramo de $\sqrt{z^2-1}$ definido em D e que é positivo sobre $]1,\infty[$.
 - (a) Mostre que $z + \sqrt{z^2 1}$ não intersecta a parte negativa do eixo real.
 - (b) Mostre que $\log(z + \sqrt{z^2 1})$ é uma primitiva para $1/\sqrt{z^2 1}$. **Indicação:** Use a primeira questão.
 - (c) Calcule $\int_{\gamma} \frac{dz}{\sqrt{z^2-1}}$ onde γ é um caminho contido em D que une -i a i.
- 3. Mostre que $F(w)=\iint_{|z|\leq 1}\frac{dx\,dy}{z-w}$ com z=x+iy é analítica na região $\{w\in\mathbb{C}:1<|w|<\infty\}$, e obtenha o seu desenvolvimento em série de potências numa vizinhança do infinito.

Indicação: Verifique que F é diferenciável.

Além disso,
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \text{ para } |x| < 1.$$

(2.0) II. Representações Conformes

Seja f a seguinte função $w(z) = \frac{1}{2} \left(z + \frac{1}{z} \right)$.

- 1. Mostre que w é uma aplicação conforme do interior do disco unidade, i.e. $\{z\in\mathbb{C}:|z|<1\}$, num domínio da esfera de Riemann.
- 2. Identifique D e represente a imagem por w do conjunto $\{z \in \mathbb{C} : |z| = r\}$.
- 3. Determine a aplicação inversa de w.

(5.0) III. Aplicações do Teorema de Rouché

- 1. Mostre que $2z^5 + 6z 1$ tem quatro raízes em $\{z \in \mathbb{C} : 1 < |z| < 2\}$. Onde se encontra a quinta?
- 2. Deduza a fórmula de Lagrange:

$$\frac{\pi(\xi)}{F'(\xi)} = \pi(a) + \sum_{n=1}^{\infty} \frac{u^n}{n!} D_a^n(\pi(a) f^n(a))$$

onde as funções F(z)=z-a-uf(z) e π são analíticas numa vizinhança de $a\in\mathbb{C}.$

3. Aplique a fórmula de Lagrange para calcular a função geradora dos polinómios de Legendre, $P_n(z) = \frac{D^n(z^2 - 1)}{2^n n!}, n = 0, 1, \dots$

(4.0) IV. Convergência Uniforme

- 1. Mostre que o espaço das funções meromorfas definidas num domínio de $\mathbb C$ é completo.
- 2. Sejam fuma função analítica em $D=\{z\in\mathbb{C}:\,0<|z|<1\}$ e

$$f_n(z) = f(z/n), \quad n = 1, 2, \dots$$

Mostre que $\{f_n\}$ é normal em D se e somente se, f tiver em $0 \in \mathbb{C}$ um pólo ou uma singularidade removível.

Indicação: Enuncie o Teorema de Hurwitz e defina singularidades removível e pólo.

(6.0) V. Representação de Funções

1. Mostre que

$$\prod_{n=1}^{\infty} e^{1/n} \left(1 + \frac{1}{n} \right)^{-1} = e^{C}, \text{ onde } C = \lim_{n \to \infty} \left\{ \sum_{k=1}^{n} \frac{1}{k} - \log(n) \right\}.$$

Indicação: Verifique que $0 < \frac{1}{n} - \log(1 + \frac{1}{n}) < \frac{1}{n^2}$.

2. Mostre que o produto infinto

$$\Gamma(z+1) = \prod_{n=1}^{\infty} \frac{n}{n+z} \left(\frac{n+1}{n}\right)^{z}$$

converge absolutamente em $\mathbb{C}\setminus\{-1,-2,\dots\}$ e representa uma função meromorfa.

3. Mostre que Γ se pode representar na forma devida a Euler

$$\Gamma(z) = \lim_{n \to \infty} \frac{n! \, n^z}{z(z+1) \dots (z+n)}, \quad z \in \mathbb{C} \setminus \{0, -1, -2, \dots\}.$$

4. Prove que (representação de Weierstrass)

$$\frac{1}{\Gamma(z+1)} = e^{Cz} \prod_{n=1}^{\infty} \left(1 + \frac{z}{n} \right) e^{-\frac{z}{n}}, \quad z \in \mathbb{C} \setminus \{-1, -2, \dots\}.$$

onde C é a constante que aparece na primeira questão.

(4.0) VI. Funções Elípticas

- 1. Defina função elíptica.
- 2. No paralelogramo fundamental de uma função elíptica, o número de zeros e de pólos coincide.
- 3. Mostre que a função de Weierstrass é par.
- 4. Mostre que toda a função elíptica é uma função racional da função de Weierstrass e da derivada da função de Weierstrass.