Elementos de Topologia – Exame

2h30m

- Licenciatura em Matemática
- (6.0) 1. Seja X um conjunto não vazio.
 - (a) Defina topologia induzida por uma métrica \mathbf{d} em X.
 - (b) Enuncie o teorema do ponto fixo de Banach no espaço métrico (X, \mathbf{d}) .
 - (c) Considere a topologia \mathcal{T} em X. Defina base dessa topologia.
 - (d) Estabeleça o teorema de Weierstrass para funções contínuas entre um espaço topológico e um espaço métrico.
- (7.5) 2. Indique, justificando, o valor lógico das seguintes afirmações:
 - (a) \mathbb{R} com a topologia usual é conexo por caminhos.
 - (b) As vogais A e E são homeomorfas.
 - (c) Se dois conjuntos têm o mesmo interior, então coincidem.
 - (d) Existe um espaço topológico conexo com duas componentes conexas.
 - (e) Todo e espaço métrico é de Hausdorff.
 - (f) A sucessão (n) é convergente em \mathbb{R} com a topologia co-finita.
- (6.5) 3. Considere a função $\mathbf{d}: \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{R}$ de expressão analítica

sidere a runção
$$\mathbf{d} : \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{R}$$
 de expressão
$$\mathbf{d} (n, m) = \begin{cases} |1/n - 1/m| &, & n \, m \neq 0 \\ 1/n &, & m = 0 \,, & n \neq 0 \\ 1/m &, & n = 0 \,, & m \neq 0 \\ 0 &, & n = m = 0 \end{cases}.$$

- (a) Mostre que $(\mathbb{N}_0, \mathbf{d})$ é um espaço métrico.
- (b) Calcule $B_r(0)$, $r \in \mathbb{R}^+$.
- (c) Determine a aderência e o interior do conjunto $\{1, 2, 3\}$ em $(\mathbb{N}_0, \mathbf{d})$.
- (d) Verifique se a função $f: (\mathbb{N}_0, \mathbf{d}) \to (\mathbb{N}_0, \mathbf{d})$ com f(n) = 2n é contínua.
- (e) Prove que o espaço topológico induzido por d $\mbox{em}\ \mathbb{N}_0$ é compacto, mas não é conexo.

Elementos de Topologia – Exame

2h30m

Licenciatura em Matemática

- (6.0) 1. Sejam X, Y dois conjuntos não vazios.
 - (a) Defina topologia \mathcal{T} em X.
 - (b) Defina homeomorfismo.
 - (c) Mostre que, se (X, \mathcal{T}_1) é um espaço topológico compacto, (Y, \mathcal{T}_2) um espaço topológico e $f: (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ é uma função contínua, então f(X) é compacto.
 - (d) Seja $\mathcal{S} \subset \mathcal{P}(X)$. Diga o que entende por topologia gerada por \mathcal{S} em X.
- (7.5) 2. Indique, justificando, o valor lógico das seguintes afirmações:
 - (a) \mathbb{R} com a topologia usual é de Hausdorff.
 - (b) Existe em \mathbb{R} uma topologia mais fina que a usual.
 - (c) Dois conjuntos disjuntos podem ter a mesma aderência.
 - (d) Se $f: (X, \mathbf{d}) \to (X, \mathbf{d})$ é uma função contínua tal que $\mathbf{d}(f(x), f(y)) < \mathbf{d}(x, y), x, y \in X$ com $x \neq y$, então f tem um ponto fixo.
 - (e) A imagem contínua de um espaço compacto num espaço métrico é limitada.
 - (f) Toda a sucessão de Cauchy num espaço métrico é convergente.
- (6.5) 3. Considere o conjunto dos números racionais, \mathbb{Q} , munido da métrica usual.
 - (a) Calcule o interior, a aderência e o derivado do conjunto $A = \{1 + 1/n, n \in \mathbb{Z} \setminus \{0\}\}$.
 - (b) Mostre que $[0, 1] \cap \mathbb{Q}$ não é compacto, exibindo uma cobertura aberta sem subcobertura finita.
 - (c) Averigúe se a sucessão, (u_n) , de termo geral $u_n = (1 + 1/n)^n$, $n \in \mathbb{N}$, é convergente em \mathbb{Q} . Será \mathbb{Q} um espaço métrico completo?
 - (d) Indique, justificando, uma função $f: \mathbb{Q} \to \mathbb{Q}$ que é descontínua.