Computational Mathematics

Adérito Araújo

DMUC, University of Coimbra, Portugal

Coimbra, 2024

Module Overview Numerical Linear Algebra

Computational Matehematics

Adérito Araújo (alma@mat.uc.pt) February 7, 2024

Syllabus

- What is numerical linear algebra?
 - Solving linear algebra problems using efficient algorithms on computers
- Module topics: direct and iterative methods for solving simultaneous linear equations (Ax = b)
 - Matrix factorization and decomposition.
 - Stationary iterative methods: Jacobi, Gauss-Seidel and relaxation methods
 - Non stationary iterative methods: Arnoldi and GMRES methods
 - ► The two-grid/multigrid and domain decomposition methods

Syllabus

- Direct and iterative methods
 - Direct methods: solve the problem by a finite sequence of operations and in the absence of rounding errors, would deliver an exact solution; operate directly on elements of a matrix
 - Iterative methods: solve a problem by finding successive approximations to the solution starting from an initial guess, that hopefully converge to the true solution; often are easier to implement on parallel computers
- Prerequisite/co-requisite
 - Good knowledge in linear algebra
 - ▶ Programming experience in MATLAB (Fortran, C, C++)
 - Good numerical skils
- Required Textbook: Alfio Quarteroni, Riccardo Sacco, Fausto Saleri, Numerical Mathematics, Texts in Applied Mathematics Volume 37, 2007, ISBN: 978-1-4757-7394-1 (Chapters 3 4)
- ► Grading: Assignments (5 × 20%)

Lecture 1

Foundations of Matrix Analysis

Computational Mathematics

Adérito Araújo (alma@mat.uc.pt) February 7, 2024

Orthogonal Vectors and Matrices, Norms

Transpose and Adjoint

► For real *A*, the transpose of *A* is obtained by interchanging rows/columns

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \Rightarrow A^T = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{32} \end{bmatrix}$$

 The adjoint or hermitian conjugate also takes complex conjugates

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \Rightarrow A^* = \begin{bmatrix} \bar{a}_{11} & \bar{a}_{21} & \bar{a}_{31} \\ \bar{a}_{21} & \bar{a}_{22} & \bar{a}_{32} \end{bmatrix}$$

• A is symmetric (hermitian) if $A = A^T$ ($A = A^*$)

Inner Product

▶ Inner product of two column vectors $x, y \in \mathbb{C}^n$

$$x^*y = \sum_{i=1}^n \bar{x}_i y_i$$

Euclidean length of x

$$||x|| = \sqrt{x^*x} = \left(\sum_{i=1}^n |x_i|^2\right)$$

• Angle α between x, y

$$\cos \alpha = \frac{x^*y}{\|x\| \|y\|}$$

Positive Definite Matrices

- ▶ A hermitian matrix A is symmetric (hermitian) positive definite if $x^T Ax > 0$ ($x^* Ax > 0$) for $x \neq 0$
- Exercise 1: x^*Ax is always real
- ▶ Exercise 2: If $A \in \mathbb{C}^{m \times m}$ is PD and X has full column rank, then X^*AX is PD
- Any principal submatrix of a PD matrix A is PD, and every diagonal entry $a_{ii} > 0$
- ► Exercise 3: PD matrices have positive real eigenvalues and orthogonal eigenvectors

In MATLAB

Quantity	MATLAB Syntax	Comment
Transpose of A	A.,	Transpose only
Adjoint of A	Α'	Transpose $+$ complex conjugate
Inner product x^*y	x'*y	'* assumes column vector
	dot(x,y)	
Lenght $ x $	sqrt(x'*x)	'* assumes column vector
	norm(x)	

Orthogonal Vectors

▶ The vectors $x, y \in \mathbb{C}^n$ are orthogonal if

$$x^*y = 0$$

ightharpoonup The sets os vectors X, Y are orthogonal of

every $x \in X$ is orthogonal to every $y \in Y$

A set of (nonzero) vectors S is orthogonal if vectors pairwise orthogonal, i.e., for $x, y \in S$, $x \neq y \Rightarrow x^*y = 0$ and orthonormal if, in addition

every
$$x \in S$$
 has $||x|| = 1$

Orthogonal and Unitary Matrices

• A square matrix $Q \in \mathbb{C}^{n \times n}$ is unitary (orthogonal in real case) if

$$Q^* = Q^{-1}$$

▶ For unitary *Q*

$$Q^*Q = I \Leftrightarrow q_i^*q_j = \delta_{ij}$$

Interpretation of unitary-times-vector product

 $x = Q^*b$ = solution to Qx = b

= the vector of coefficients of the expansion of b in the basis of columns of Q

Preservation of Geometry Structure

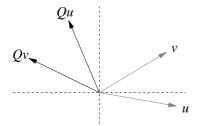
ightharpoonup Inner product is preserved under multiplication by unitary Q

$$(Qx)^*(Qy) = x^*Q^*Qy = x^*y$$

- Therefore lengths of vectors and angles between vectors are preserved
- ightharpoonup A real orthogonal Q is either a rigid rotation or reflection

Rotation

Reflection





Norms in MATLAB

Quantity	MATLAB Syntax
$\ x\ _{1}$	<pre>sum(abs(x)) or norm(x,1)</pre>
$\ x\ _2$	sqrt(x'*x) or norm(x)
$\ x\ _p$	sum(abs(x).^p).^(1/p) or norm(x,p)
$\ x\ _{\infty}$	<pre>max(abs(x)) or norm(x,inf)</pre>
$A _1$	<pre>max(sum(abs(A),1)) or norm(A,1)</pre>
$\ A\ _2$	norm(A)
$\ A\ _{\infty}$	<pre>max(sum(abs(A),2)) or norm(A,inf)</pre>
$\ A\ _F$	<pre>sqrt(A(:)'*A(:)) or norm(x,'fro')</pre>

The Singular Value Decomposition

Diagonalizable Matrices

▶ A square matrix A is called diagonalizable or non-defective if it is similar to a diagonal matrix, i.e., there exists an invertible matrix P and a diagonal matrix D such that

$$P^{-1}AP = D$$

▶ Exercise 4: If $A \in \mathbb{C}^{n \times n}$ has n linear independent columns, there exists an eigenvectors the eigenvalue decomposition (EVD)

$$X\Lambda X^{-1} = A$$

▶ If A is real and symmetric, the EVD is always possible

$$A = U \Lambda U^T$$
,

with U an unitary matrix

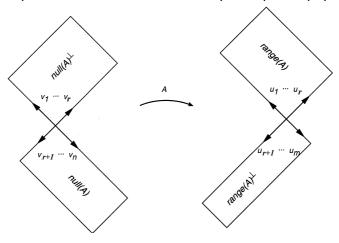
The SVD - Brief Description

- ▶ Suppose that $A \in \mathbb{C}^{m \times n}$ with $m \ge n$ and full rank (r = n)
- Choose orthonormal basis

 v_1, \ldots, v_n for the row space

 u_1, \ldots, u_n for the column space

such that Av_i is in the direction of u_i : $Av_i = \sigma_i u_i$



▶ The singular values $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_n \geqslant 0$

The SVD - Brief Description

▶ In matrix form, $Av_i = \sigma_i u_i$ becomes

$$AV = \hat{U}\hat{\Sigma} \Leftrightarrow A = \hat{U}\hat{\Sigma}V^*$$

where $\hat{\Sigma} = \mathsf{diag}(\sigma_1, \sigma_2, \dots, \sigma_n)$

- ► This is the reduced singular value decomposition
- Add orthonormal extension to \hat{U} and add rows to $\hat{\Sigma}$ to obtain the full sigular value decomposition

$$A = U\Sigma V^*$$

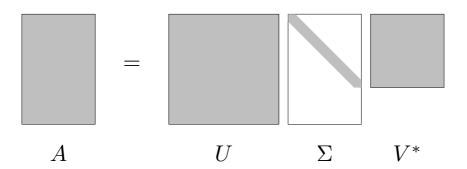
The Full Singular Value Decomposition

▶ Let A be an $m \times n$ matrix. The singular value decomposition of A is the factorization $A = U\Sigma V^*$ where

U is $m \times m$ unitary (the left singular vectors of *A*)

V is $n \times n$ unitary (the right singular vectors of A)

U is $m \times m$ unitary (the left singular vectors of A)



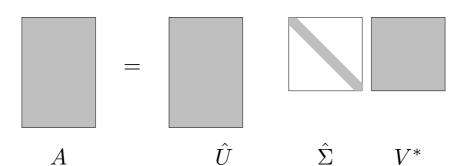
The Reduced Singular Value Decomposition

A more compact representation is the reduced SVD, for m ≥ n:

$$A = \hat{U}\hat{\Sigma}V^*$$

where

U is $m \times n$, V is $n \times n$, Σ is $n \times n$



The SVD and The Eigenvalue Decomposition

- ► The eigenvalue decomposition $A = X\Lambda X^{-1}$
 - uses the same basis X for row and column space, but the SVD uses two different basis V and U
 - generally does not use an orthonormal basis, but the SVD does
 - is only defined for square matrices, but the SVD exists for all matrices
- For symmetric positive definite matrices A, the EVD and SVD are equal

Matrix Properties (Exercise 5)

- 1. The rank of A is r, the number of nonzero singular values
- 2. range $(A) = \langle u_1, \dots, u_r \rangle$ and null $(A) = \langle v_{r+1}, \dots, v_n \rangle$
- 3. $||A||_2 = \sigma_1$ and $||A||_F = \sqrt{\sigma_1^2 + \sigma_2^2 \cdots + \sigma_r^2}$
- 4. Nonzero eigenvalues of A^*A are nonzero σ_j^2 , eigenvectors are v_j ; Nonzero eigenvalues of AA^* are nonzero σ_j^2 , eigenvectors are u_j
- 5. In $A = A^*$, $\sigma_i = |\lambda_i|$, where λ_i are eigenvalues of A
- 6. For square A, $|\det(A)| = \prod_{i=1}^m \sigma_i$

Existence and Uniqueness

Theorem 1.1: Existence

Every matrix $A \in \mathbb{C}^{m \times n}$ has a SVD

Theorem 1.2: Uniqueness

The singular values $\{\sigma_j\}$ are uniquely determined. If A is square and the σ_j are distinct, the left and right singular vectors are uniquely determined **up to complex signs**

Example:
$$A = \begin{bmatrix} 2 & 2 \\ 1 & -1 \end{bmatrix}$$

Prove that the eigenvalues of

$$A^T A = \left[\begin{array}{cc} 5 & 3 \\ 3 & 5 \end{array} \right],$$

are $\lambda_1=8$ and $\lambda_2=2$ and the (orthonormal) eigenvectors are

$$v_1 = \left[egin{array}{c} 1/\sqrt{2} \\ 1/\sqrt{2} \end{array}
ight] \quad ext{and} \quad v_2 = \left[egin{array}{c} -1/\sqrt{2} \\ 1/\sqrt{2} \end{array}
ight]$$

► Then

$$\Sigma = \begin{bmatrix} \sigma_1 & \\ & \sigma_2 \end{bmatrix} = \begin{bmatrix} 2\sqrt{2} & \\ & \sqrt{2} \end{bmatrix} \text{ and } V = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

Example:
$$A = \begin{bmatrix} 2 & 2 \\ 1 & -1 \end{bmatrix}$$
 (cont.)

▶ The columns of *U* are obtained by

$$\sigma_1 u_1 = A v_1 = \begin{bmatrix} 2 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 2\sqrt{2} \\ 0 \end{bmatrix} \Rightarrow u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

and

$$\sigma_2 u_2 = A v_2 = \begin{bmatrix} 2 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 0 \\ \sqrt{2} \end{bmatrix} \Rightarrow u_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

▶ The SVD of $A = U\Sigma V^T$ is

$$\left[\begin{array}{cc} 2 & 2 \\ 1 & -1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \left[\begin{array}{cc} 2\sqrt{2} \\ & \sqrt{2} \end{array}\right] \left[\begin{array}{cc} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{array}\right] \quad \Box$$

Exercise 6: Obtain the SVD of $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.

Low-Rank Approximations

▶ The SVD can be written as a sum of rank-one matrices

$$A = \sum_{j=1}^{r} \sigma_j u_j v_j^*$$

• (Eckart-Young, 1936) The best rank η approximation in the 2-norm is

$$A_{\eta} = \sum_{j=1}^{\eta} \sigma_j u_j v_j^*$$

with

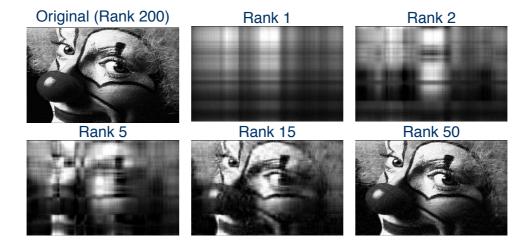
$$||A - A_n||_2 = \sigma_{n+1}$$

Also true in the Frobenius norm, with

$$||A - A_{\eta}||_F = \sqrt{\sigma_{\eta+1}^2 + \dots + \sigma_r^2}$$

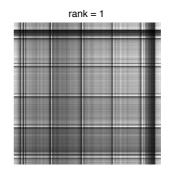
Application: Image Compression

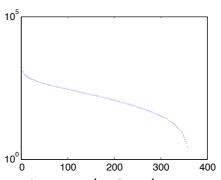
- View $m \times n$ image as a (real) matrix A, find best rank η approximation by SVD
- ▶ Storage $\eta \times (m+n)$ instead of $m \times n$



◆ロ > ◆ 個 > ◆ 重 > ◆ 重 > ・ 重 ・ の Q ()・

Application: Image Compression





Cleave Moler Textbooks: www.mathworks.com/moler/

4 D > 4 A > 4 B > 4 B > B < 900

Solving Systems of Linear Equations (Ax = b)

- Let $A = U\Sigma V^* = \hat{U}\hat{\Sigma}V^*$ (rank(A) = r)
- Ax = b is solvable iif $b \perp \text{null}(A^*)$
- A solution of Ax = b, if exists, is given by

$$\hat{x} = \hat{V}\hat{\Sigma}^{-1}\hat{U}^*b = V\Sigma^+U^*b = A^+b,$$

where $A^+ = V\Sigma^+U^*$ is the pseudo inverse of A

- ▶ The vector $\hat{x} = A^+b$ represents the uniquely determined solution of Ax = b with minimal euclidean norm
- ▶ If Ax = b has no solution, $\hat{x} = A^+b$ represents its least squares solution with minimal euclidean norm

The QR Factorization

The QR Factorization - Main Idea

Find orthonormal vectors q_j that span the successive spaces spanned by the columns of A:

$$\langle a_1 \rangle \subseteq \langle a_1, a_2 \rangle \subseteq \langle a_1, a_2, a_2 \rangle \subseteq \cdots$$

▶ This means that (for full rank A)

$$\langle q_1, q_2, \dots q_j \rangle = \langle a_1, a_2, \dots a_j \rangle,$$
 for $j = 1, \dots, n$

The QR Factorization - Matrix Form

• In matrix form $\langle q_1, q_2, \dots q_j \rangle = \langle a_1, a_2, \dots a_j \rangle$ becomes

$$\left[\begin{array}{c|c|c} a_1 & a_2 & \cdots & a_n \end{array}\right] = \left[\begin{array}{c|c|c} q_1 & q_2 & \cdots & q_n \end{array}\right] \left[\begin{array}{c|c|c} r_{11} & r_{12} & \cdots & r_{1n} \\ & r_{22} & \cdots & r_{2n} \\ & & \ddots & \vdots \\ & & & r_{nn} \end{array}\right]$$

or

$$A = \hat{Q}\hat{R}$$

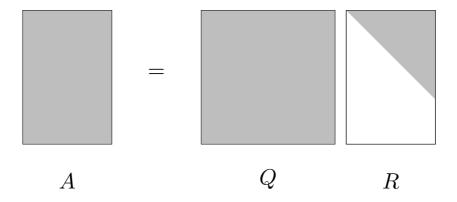
- ► This is the reduced QR factorization
- Add orthogonal extension to \hat{Q} and add rows to \hat{R} of obtain the full QR factorization

The Full QR Factorization

Let A be an $m \times n$ matrix. The full QR factorization of A is the factorization A = QR, where

Q is $m \times m$ unitary

R is $m \times n$ upper-triangular

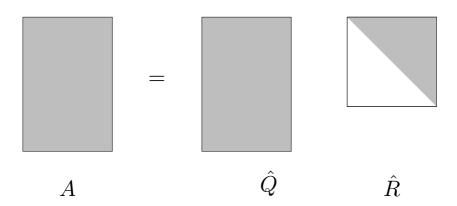


The Reduced QR Factorization

A more compact representation is the reduced QR factorization $A = \hat{Q}\hat{R}$, where (for $m \ge n$)

 \hat{Q} is $m \times n$ with orthonormal columns

R is $n \times n$ upper-triangular



Gram-Schmidt Orthogonalization (*)

▶ Find new q_j orthogonal to q_1, \ldots, q_{j-1} by subtracting components along previous vectors

$$v_j = a_j - (q_1^* a_j) q_1 - (q_2^* a_j) q_2 - \dots - (q_{j-1}^* a_j) q_{j-1}$$

- ▶ Normalize to get $q_j = v_j / ||v_j||$
- We then obtain a reduced QR factorization $A = \hat{Q}\hat{R}$, with

$$r_{ij} = q_i^* a_j, \qquad (i \neq j)$$

and

$$|r_{jj}| = \left\| a_j - \sum_{i=1}^{j-1} r_{ij} q_i \right\|_2$$

"Triangular Orthogonalization"

Classical Gram-Schmidt (*)

- Straight-forward application of Gram-Schmidt orthogonalization
- Numerically unstable
- ► Algorithm: Classical Gram-Schmidt

```
\begin{array}{l} \text{for } j=1 \text{ to } n \text{ do} \\ v_j=a_j \\ \text{for } i=1 \text{ to } j-1 \text{ do} \\ r_{ij}=q_i^*a_j \\ v_j=v_j-r_{ij}q_i \\ \text{end for} \\ r_{jj}=\|v_j\|_2 \\ q_j=v_j/r_{jj} \\ \text{end for} \end{array}
```

Existence and Uniqueness

Theorem 1.3: Existence

Every $A \in \mathbb{C}^{m \times n}$ $(m \geqslant n)$ has a full QR factorization and a reduced QR factorization

Proof: For full rank A, Gram-Schmidt process gives the existence of $A = \hat{Q}\hat{R}$. Otherwise, when $v_j = 0$ choose arbitrary vector orthogonal to previous q_1, \ldots, q_{j-1} . For full QR, add orthogonal extension to Q (silent columns) and zero rows to R. \square

Theorem 1.4: Uniqueness

Each $A \in \mathbb{C}^{m \times n}$ $(m \ge n)$ of full rank has a unique $A = \hat{Q}\hat{R}$ with $r_{ii} > 0$

Proof: Again Gram-Schmidt, $r_{jj} > 0$ determines the sign. \square

Classical vs Modified Gram-Schmidt (*)

- Some modifications of classical Gram-Schmidt gives modified Gram-Schmidt (but see next slide)
- Modified Gram-Schmidt is numerically stable (less sensitive to rounding errors)
- ► Algorithm: Classical/Modified Gram-Schmidt

```
for j=1 to n do v_j=a_j \\ \text{for } i=1 \text{ to } j-1 \text{ do} \\ r_{ij}=q_i^*a_j \quad \text{(CGS)} \\ r_{ij}=q_i^*v_j \quad \text{(MGS)} \\ v_j=v_j-r_{ij}q_i \\ \text{end for} \\ r_{jj}=\|v_j\|_2 \\ q_j=v_j/r_{jj} \\ \text{end for}
```

Implementation of Modified Gram-Schmidt (*)

```
Algorithm: CGS

for j=1 to n do

v_j=a_j

for i=1 to j-1 do

r_{ij}=q_i^*a_j

v_j=v_j-r_{ij}q_i

end for

r_{jj}=\|v_j\|_2

q_j=v_j/r_{jj}

end for
```

```
Algorithm: MGS

for i=1 to n do

v_i=a_i
end for

for i=1 to n do

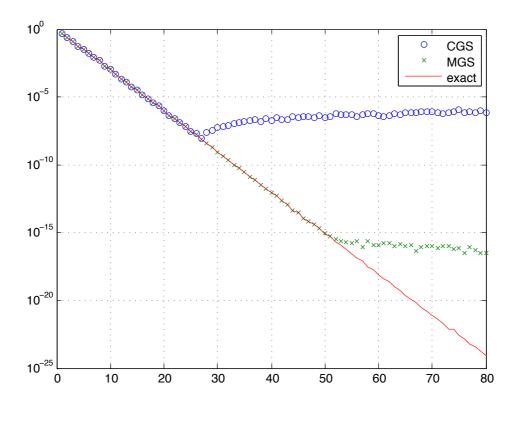
r_{ii}=\|v_i\|_2
q_i=v_i/r_{ii}
for j=i+1 to n do

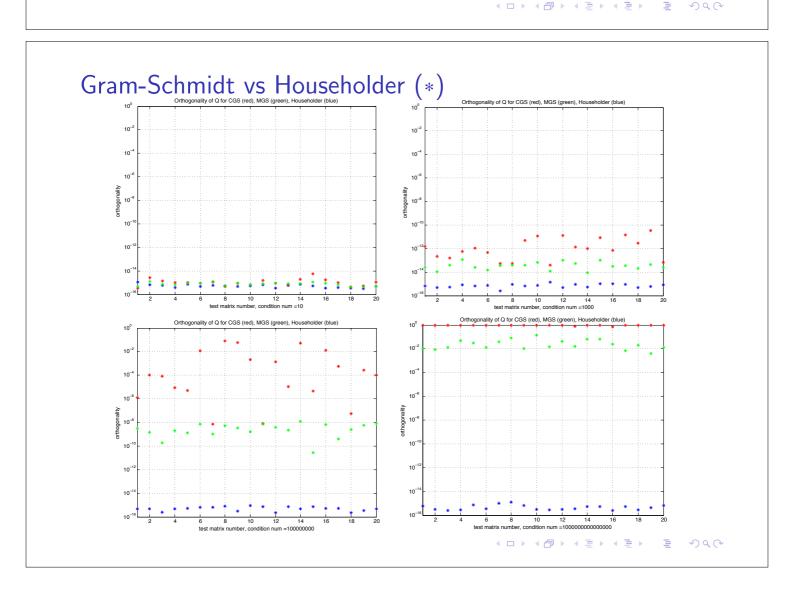
r_{ij}=q_i^*v_j
v_j=v_j-r_{ij}q_i
end for
```

Example: Classical vs Modified Gram-Schmidt (*)

```
% Create a random orthogonal matrix Q
n = 80;
[Q,X] = qr(randn(n));
% Make an ill-conditioned R (with diagonal
% entries = 2^-j, j=1,...,n)
R = diag(2.^{(-1:-1:-n)})*triu(ones(n)+0.1*randn(n));
% Compute QR factorization with classical and with
% modified GS, compare diagonal elements of
% computed R's
A = Q*R;
[QC,RC] = clgs(A);
[QM,RM] = mgs(A);
semilogy(1:n,diag(RC),'o',1:n,diag(RM),'x',1:n,diag(R))
legend('CGS', 'MGS', 'exact')
grid on
```

Example: Classical vs Modified Gram-Schmidt (*)





The LU Factorization

The LU Factorization

- ▶ Transform $A = \mathbb{R}^{n \times n}$ into upper triangular U by subtracting multiples of rows
- ▶ Each L_i introduces zeros below diagonal of column i:

$$\underbrace{L_{n-1}\cdots L_2L_1}_{L^{-1}}A=U\Rightarrow A=LU \text{ where } L=L_1^{-1}L_2^{-1}\cdots L_{n-1}^{-1}$$

"Triangular triangularization"

The Matrices L_k

▶ At step k, eliminate elements below A_{kk} :

$$x_k = \begin{bmatrix} x_{1k} & \cdots & x_{kk} & x_{k+1,k} & \cdots & x_{nk} \end{bmatrix}^T$$
 $L_k x_k = \begin{bmatrix} x_{1k} & \cdots & x_{kk} & 0 & \cdots & 0 \end{bmatrix}^T$

ightharpoonup Each L_i introduces zeros below diagonal of column i:

$$\underbrace{L_{n-1}\cdots L_2L_1}_{I^{-1}}A=U\Rightarrow A=LU \text{ where } L=L_1^{-1}L_2^{-1}\cdots L_{n-1}^{-1}$$

▶ The multipliers $\ell_{jk} = x_{jk}/x_{kk}$ appear in L_k :

Forming L

► The *L* matrix contains all the multipliers in one matrix (with plus signs)

$$L = L_1^{-1} L_2^{-1} \cdots L_{n-1}^{-1} = \begin{bmatrix} 1 \\ \ell_{21} & 1 \\ \ell_{31} & \ell_{32} & 1 \\ \vdots & \vdots & \ddots & \ddots \\ \ell_{n1} & \ell_{n2} & \cdots & \ell_{n,n-1} & 1 \end{bmatrix}$$

▶ Define $\ell_k = (0, \dots, 0, \ell_{k+1,k}, \dots, \ell_{nk})$. Then

$$L_k = I - \ell_k e_k^T$$

where e_k is the column vector with 1 in position k and 0 elsewhere

First,
$$L_k^{-1} = I + \ell_k e_k^T$$
, since $e_k^T \ell_k = 0$ and
$$(I - \ell_k e_k^T)(I + \ell_k e_k^T) = I - \ell_k e_k^T \ell_k e_k^T = I$$

▶ Also,
$$L_k^{-1}L_{k+1}^{-1} = I + \ell_k e_k^T + \ell_{k+1}e_{k+1}^T$$
, since $e_k^T\ell_{k+1} = 0$ and
$$(I - \ell_k e_k^T)(I + \ell_{k+1}e_{k+1}^T) = I + \ell_k e_k^T + \ell_{k+1}e_{k+1}^T$$

Gaussian Elimination without Pivoting

- ▶ Factorize $A \in \mathbb{R}^{n \times n}$ into A = LU:
- Algorithm: Gaussian Elimination (no pivoting)

```
U=A,\ L=I for k=1 to n-1 do for j=k+1 to n do \ell_{jk}=u_{jk}/u_{kk} u_{j,k:n}=u_{j,k:n}-\ell_{jk}u_{k,k:n} end for
```

 The inner loop can be written using matrix operations instead of for-loop

Pivoting (*)

▶ At step k, we used matrix element k, k as pivot and introduced zeros in entry k of remaining rows

▶ But any other element $i \le k$ in column k can be used as pivot:

Pivoting (*)

▶ Also, any other column $j \leq k$ can be used:

- Choosing different pivots means we can avoid zero or very small pivots
- Instead of using pivots at different entries, change rows or columns and use the standard triangular algorithm (pivoting)
- ► A computer code might account for the pivoting indirectly instead of actually moving the data

Partial Pivoting (*)

- Searching among all valid pivots is expensive (complete pivoting)
- Consider pivots in column k only and interchange rows (partial pivoting)

Pivot selection

Row interchange

Elimination

▶ In terms of matrices:

$$L_{n-1}P_{n-1}\cdots L_2P_2L_1P_1A=U$$

The PA = LU Factorization (*)

▶ To combine all L_k and all P_k into matrices, rewrite as

$$L_{n-1}P_{n-1}\cdots L_{2}P_{2}L_{1}P_{1}A = U$$
$$(\bar{L}_{n-1}\cdots \bar{L}_{2}\bar{L}_{1})(P_{n-1}\cdots P_{2}P_{1})A = U$$

where

$$\bar{L}_k = P_{n-1} \cdots P_{k+1} L_k P_{k+1}^{-1} \cdots P_{n-1}^{-1}$$

▶ This gives the LU factorization of A

$$PA = LU$$

Gaussian Elimination with Partial Pivoting (*)

- ▶ Factorize $A \in \mathbb{R}^{n \times n}$ into PA = LU:
- ► Algorithm: Gaussian Elimination (partial pivoting)

$$U=A,\ L=I,\ P=I$$
 for $k=1$ to $n-1$ do
$$\text{Select } i\geqslant k \text{ to maximize } |u_{ik}|$$

$$u_{k,k:n}\leftrightarrow u_{i,k:n} \qquad \text{% interchange two rows}$$

$$\ell_{k,1:k-1}\leftrightarrow \ell_{i,1:k-1}$$

$$p_{k,:}\leftrightarrow p_{i,:}$$
 for $j=k+1$ to n do
$$\ell_{jk}=u_{jk}/u_{kk}$$

$$u_{j,k:n}=u_{j,k:n}-\ell_{jk}u_{k,k:n}$$
 end for end for

Cholesky Factorization for SPD/HPD Matrices (*)

Eliminate below pivot and to the right of pivot:

$$A = \begin{bmatrix} a_{11} & \omega^* \\ \omega & K \end{bmatrix} = \begin{bmatrix} \alpha & 0 \\ \omega/\alpha & I \end{bmatrix} \begin{bmatrix} \alpha & \omega^*/\alpha \\ 0 & K - \omega\omega^*/a_{ii} \end{bmatrix}$$
$$= \begin{bmatrix} \alpha & 0 \\ \omega/\alpha & I \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & K - \omega\omega^*/a_{ii} \end{bmatrix} \begin{bmatrix} \alpha & \omega^*/\alpha \\ 0 & I \end{bmatrix}$$
$$= R_1^* A_1 R_1$$

where
$$\alpha = \sqrt{a_{11}}$$

- $K \omega \omega^*/a_{11}$ is a principal submatrix of PD matrix $R_1^*A_1R_1$, therefore its upper-left entry is positive
- Apply recursively to obtain

$$A = (R_1^* R_2^* \cdots R_n^*)(R_n \cdots R_2 R_1) = R^* R, \qquad r_{ii} > 0$$

The Cholesky Factorization Algorithm

- ▶ Factorize hermitian positive definite $A \in \mathbb{R}^{n \times n}$ into $A = R^*R$
- ► Algorithm: Cholesky Factorization (*)

$$R=A$$
 for $k=1$ to n do for $j=k+1$ to n do
$$r_{j,j:n}=r_{j,j:n}-r_{k,j:n}r_{k,j}^*/r_{kk}$$
 end for
$$r_{k,k:n}=r_{k,k:n}/\sqrt{r_{kk}}$$
 end for end for

Existence and uniqueness: Every PD matrix has a unique Choleskey factorization

Backslash in MATLAB

- x=A\b for dense A performs these steps (stopping when successful):
 - 1. If A is upper or lower triangular, solve by back/forward substitution
 - 2. If A is permutation of triangular matrix, solve by permuted back substitution (useful for [L,U]=lu(A) since L is permuted)
 - 3. If A is symmetric
 - Check if all diagonal elements are positive
 - Try Cholesky, if successful solve by back substitutions
 - 4. If A is Hessenberg (upper triangular plus one subdiagonal), reduce to upper triangular then solve by back substitution
 - 5. If A is square, factorize PA = LU and solve by back substitutions
 - 6. If A is not square, run Householder QR, solve least squares problem

Conditioning and Condition Numbers

Conditioning

▶ Absolute Condition Number of a differentiable problem *f* at *x*:

$$\hat{k} = \lim_{\delta \to 0} \sup_{\|\delta x\| \le \delta} \frac{\|\delta f\|}{\|\delta x\|} = \sup_{\delta x} \frac{\|\delta f\|}{\|\delta x\|} = \|J(x)\|,$$

where the Jacobian $J_{ij}=\partial f_i/\partial x_j$, and the matrix norm is induced by the norms on δf and δx

► Relative Condition Number:

$$k = \sup_{\delta \times} \left(\frac{\|\delta f\|}{\|f(x)\|} \middle/ \frac{\|\delta x\|}{\|x\|} \right) = \frac{\|J(x)\|}{\|f(x)\|/\|x\|}$$

Condition of Matrix-Vector Product

▶ Consider f(x) = Ax, with $A \in \mathbb{C}^{m \times n}$

$$k = \frac{\|J(x)\|}{\|f(x)\|/\|x\|} = \|A\|\frac{\|x\|}{\|Ax\|} = [Ax = b] = \|A\|\frac{\|x\|}{\|b\|}$$

▶ For A square and nonsingular, use $||x||/||Ax|| \le ||A^{-1}||$:

$$k \leqslant \|A\| \|A^{-1}\|$$

(equality achieved for the last right singular vector $x = v_m$)

- ▶ The condition number of Ax if ∞ if $x \in \text{null}(A)$
- Also the condition number for $f(b) = A^{-1}b$ (solution of linear system Ax = b):

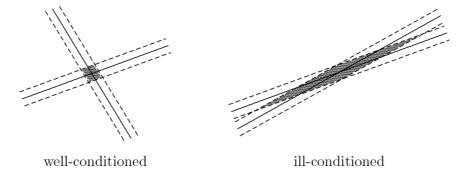
$$k = \|A^{-1}\| \frac{\|b\|}{\|x\|} \le \|A\| \|A^{-1}\|$$

Condition Number of a Matrix

Condition number of matrix A:

$$k(A) = ||A|| ||A^{-1}|| = [\text{for 2-norm}] = \frac{\sigma_1}{\sigma_m} \geqslant 1$$

- ▶ If A is singular we consider, by convention, $k(A) = \infty$
- Measure of uncertainty



Condition of System of Equations

Exercise 7: For fixed A, consider $f(b) = A^{-1}b$. Prove that

$$k = \frac{\|\delta x\|}{\|x\|} / \frac{\|\delta b\|}{\|b\|} \leqslant k(A).$$

Then, if the input data is accurate to the $\epsilon_{machine}$

$$\frac{\|\delta x\|}{\|x\|} \leqslant k(A)\epsilon_{machine}.$$

Exercise 8 (Theorem 3.1 (QSS, page 60)): Let $A \in \mathbb{C}^{m \times m}$ be a non singular matrix and let $\delta A \in \mathbb{C}^{m \times m}$ be such that $\|A^{-1}\| \|\delta A\| < 1$. Let Ax = b and $(A + \delta A)(x + \delta x) = b + \delta b$. Prove that

$$\frac{\|\delta x\|}{\|x\|} \leqslant \frac{k(A)}{1 - k(A)\frac{\|\delta A\|}{\|A\|}} \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|b\|}\right),$$

where k(A) is the condition number of the matrix A.

Example: Condition of Hilbert system

```
% Initialise settings, constants and vectors
clc; clear; close all;
N = 12; error = zeros(1,N-1); estimate = zeros(1,N-1);
% Loop on the order of the matrix
for n = 2:N
    H = hilb(n);
    x = ones(n,1); b = H*x;
                               % Exact values
    xbar = H\b; bbar = H*xbar; % Computed values
    % Compute error and error estimate
    error(n-1) = norm(x-xbar)/norm(x);
    estimate(n-1) = cond(H)*norm(b-bbar)/norm(b);
end
semilogy(2:n,error,'-o',2:n,estimate,'-x')
legend('error', 'estimate')
xlabel('order'), ylabel('relative error')
```

Example: Condition of Hilbert system

