Computational Mathematics

Adérito Araujo
DMUC, University of Coimbra, Portugal

UNIVERSIDADE B

COIMBRA

Coimbra, 2024

Module Overview

Numerical Linear Algebra

Computational Matehematics

Adérito Aratjo (alma@mat.uc.pt)
February 7, 2024

Syllabus

» What is numerical linear algebra?

» Solving linear algebra problems using efficient algorithms on
computers

» Module topics: direct and iterative methods for solving
simultaneous linear equations (Ax = b)

» Matrix factorization and decomposition.

» Stationary iterative methods: Jacobi, Gauss-Seidel and
relaxation methods

» Non stationary iterative methods: Arnoldi and GMRES
methods

> The two-grid/multigrid and domain decomposition methods

Syllabus

» Direct and iterative methods

» Direct methods: solve the problem by a finite sequence of
operations and in the absence of rounding errors, would deliver
an exact solution; operate directly on elements of a matrix

> lterative methods: solve a problem by finding successive
approximations to the solution starting from an initial guess,
that hopefully converge to the true solution; often are easier to
implement on parallel computers

> Prerequisite/co-requisite
» Good knowledge in linear algebra
> Programming experience in MATLAB (Fortran, C, C++)
» Good numerical skils

» Required Textbook: Alfio Quarteroni, Riccardo Sacco, Fausto
Saleri, Numerical Mathematics, Texts in Applied Mathematics
Volume 37, 2007, ISBN: 978-1-4757-7394-1 (Chapters 3 - 4)

> Grading: Assignments (5 x 20%)

Lecture 1

Foundations of Matrix Analysis

Computational Mathematics

Adérito Araidjo (alma@mat.uc.pt)
February 7, 2024

Orthogonal Vectors and Matrices, Norms

Transpose and Adjoint

» For real A, the transpose of A is obtained by interchanging
rows/columns

11 A1 di1 d21 431
A = a1 dao» :AT=
d21 422 asp
d31 432

» The adjoint or hermitian conjugate also takes complex

conjugates
di1 412 - _ _
di1 d21 431
A= dl?1 4a = A* = — — _3
dp1 a2 as2
d31 432

> Ais symmetric (hermitian) if A= AT (A = A*)

Inner Product

» Inner product of two column vectors x,y € C”

» Euclidean length of x

x| = Vx*x = (Z |x,-|2>
i=1

» Angle o between x, y

x*y

cosa =
Ix[llyl

v

Positive Definite Matrices

A hermitian matrix A is symmetric (hermitian) positive

definite if xT Ax > 0 (x*Ax > 0) for x # 0

» Exercise 1: x*Ax is always real

» Exercise 2: If Ae C™*™ is PD and X has full column rank,
then X*AX is PD

» Any principal submatrix of a PD matrix A is PD, and every
diagonal entry a;; > 0

» Exercise 3: PD matrices have positive real eigenvalues and
orthogonal eigenvectors

norm(x)

In MATLAB
Quantity MATLAB Syntax | Comment
Transpose of A A Transpose only
Adjoint of A A’ Transpose + complex conjugate
Inner product x*y | x’*y ’* assumes column vector
dot (x,y)
Lenght | x| sqrt (x’*x) ’x assumes column vector

Orthogonal Vectors

» The vectors x,y € C" are orthogonal if
x*y =0
» The sets os vectors X, Y are orthogonal of
every x € X is orthogonal to every y € Y
> A set of (nonzero) vectors S is orthogonal if
vectors pairwise orthogonal, i.e., for x,y € 5, x # y = x*y =0
and orthonormal if, in addition

every x € S has ||x|| =1

Orthogonal and Unitary Matrices

> A square matrix Q@ € C"*" is unitary (orthogonal in real case)
if
* -1
RT=Q
» For unitary @
R*Q=1<qiq = Jj

> Interpretation of unitary-times-vector product
x=Q*b = solutionto Qx = b

= the vector of coefficients of the expansion of b

in the basis of columns of @

Preservation of Geometry Structure

» Inner product is preserved under multiplication by unitary @

(@)*(Qy) = x*Q*Qy = x™y

» Therefore lengths of vectors and angles between vectors are

preserved

> A real orthogonal @ is either a rigid rotation or reflection

Rotation Reflection

Norms in MATLAB

Quantity

MATLAB Syntax

Ix[x
|2
I
%[0

sum(abs(x)) or norm(x,1)
sqrt(x’*x) or norm(x)
sum(abs(x)."p) . (1/p) or norm(x,p)
max (abs(x)) or norm(x,inf)

|Al
|All2
[Allo0
|AllF

max (sum(abs(A),1)) or norm(A,1)
norm(A)

max (sum(abs(A),2)) or norm(A,inf)
sqrt(A(:)’*A(:)) or norm(x,’fro’)

The Singular Value Decomposition

Diagonalizable Matrices

» A square matrix A is called diagonalizable or non-defective if
it is similar to a diagonal matrix, i.e., there exists an invertible
matrix P and a diagonal matrix D such that

P7IAP =D

» Exercise 4: If Ae C"™" has n linear independent columns,
there exists an eigenvectors the eigenvalue decomposition
(EVD)

XAX1=A

» If Ais real and symmetric, the EVD is always possible
A= UANUT,

with U an unitary matrix

The SVD - Brief Description

> Suppose that Ae C™*" with m > n and full rank (r = n)
» Choose orthonormal basis
Vi,...,V, for the row space

ui, ..., U, for the column space

such that Av; is in the direction of u;: Av; = o;u;

» The singular values 01 = g5 > - -

The SVD - Brief Description

» In matrix form, Av; = o;u; becomes
AV = 05 < A= 0sVv*
where ¥ = diag(o1,02,...,0n)
» This is the reduced singular value decomposition

» Add orthonormal extension to U and add rows to 3. to obtain
the full sigular value decomposition

A= UxV*

The Full Singular Value Decomposition

» Let A be an m x n matrix. The singular value decomposition
of A is the factorization A = UXV* where
U is m x m unitary (the left singular vectors of A)

V is n x n unitary (the right singular vectors of A)

U is m x m unitary (the left singular vectors of A)

The Reduced Singular Value Decomposition

» A more compact representation is the reduced SVD, for

m = n:

where

Uis m x n, V' is n x n, Yisnxn

The SVD and The Eigenvalue Decomposition

> The eigenvalue decomposition A = XAX ™!

>

uses the same basis X for row and column space, but the SVD
uses two different basis V and U

generally does not use an orthonormal basis, but the SVD does
is only defined for square matrices, but the SVD exists for all
matrices

» For symmetric positive definite matrices A, the EVD and SVD
are equal

Matrix Properties (Exercise 5)

1. The rank of A is r, the number of nonzero singular values

2. range (A) =u1,...,uy and null (A) ={veg1,. .0y Vi)

3. |Al2 = o1 and |AlF = /0 + 03+ + o

2

4. Nonzero eigenvalues of A*A are nonzero o7, eigenvectors are

2

vj; Nonzero eigenvalues of AA™ are nonzero o7, eigenvectors
are u;

5. |nA=A*,O','= |)\j

J !

, where)\; are eigenvalues of A

6. For square A, |det(A)| =2, 0;

Existence and Uniqueness

Theorem 1.1: Existence

Every matrix Ae C™*" has a SVD

Theorem 1.2: Uniqueness

The singular values {o;} are uniquely determined. If A is square
and the o; are distinct, the left and right singular vectors are
uniquely determined up to complex signs

2 2
Example: A = [) _1]

» Prove that the eigenvalues of

r. [5 3
AA—[35,

are \; = 8 and \» = 2 and the (orthonormal) eigenvectors are

(Y] e[

» Then

=[P e[T

|

Example: A = [i _21] (cont.)

» The columns of U are obtained by

SRR EHREIRSE

and

a3 (18]) [
» The SVD of A= ULV is

- Wl 1) -

» Exercise 6: Obtain the SVD of A = [1 (1)])

Low-Rank Approximations

» The SVD can be written as a sum of rank-one matrices
r
—_— . . *
A= 20Uy
j=1

> (Eckart-Young, 1936) The best rank 7 approximation in the
2-norm is

n
Ay =) ojuivi
j=1
with
HA - AnH2 = Op+1

» Also true in the Frobenius norm, with

|A=Ayle = o2+ + 0

Application: Image Compression

> View m x n image as a (real) matrix A, find best rank 7
approximation by SVD

> Storage 1 x (m + n) instead of m x n

Original (Rank 200)

Application: Image Compression

10

0 100 200 300 400
Cleave Moler Textbooks: www.mathworks.com/moler/

Solving Systems of Linear Equations (Ax = b)

» Let A= USV* = USV* (rank(A) = r)
» Ax = b is solvable iif b L null(A*)

» A solution of Ax = b, if exists, is given by

A A

£=VE 0% =VItU*h=ATb,
where AT = VYT U* is the pseudo inverse of A

» The vector X = AT b represents the uniquely determined
solution of Ax = b with minimal euclidean norm

» If Ax = b has no solution, X = A" b represents its least
squares solution with minimal euclidean norm

The QR Factorization

The QR Factorization - Main ldea

> Find orthonormal vectors g; that span the successive spaces
spanned by the columns of A:

<al> - <ala a2> - <al7 daz, a2> c .-

> This means that (for full rank A)

<q1,q2,...qj>=<al,32,...aj>, fOI’j=]_,...,I7

The QR Factorization - Matrix Form

> In matrix form {q1, q2,...q;) = (a1, a2, .. . aj) becomes

ni n2 -+ nNn
r -+ I2p
a1 ar to dp = a1 a2 e dn
| rnn
or
A= QR

» This is the reduced QR factorization

» Add orthogonal extension to @ and add rows to R of obtain the full
QR factorization

The Full QR Factorization

» Let A be an m x n matrix. The full QR factorization of A is
the factorization A = QR, where

Q@ is m X m unitary

R is m x n upper-triangular

The Reduced QR Factorization

» A more compact representation is the reduced QR
factorization A = QR, where (for m > n)

Q® is m x n with orthonormal columns

R is n x n upper-triangular

Gram-Schmidt Orthogonalization ()

> Find new q; orthogonal to q1, ..., gj—1 by subtracting
components along previous vectors

vi = a;— (97a;)q1 — (gaj)q2 — -+ — (qf_1aj)Qj—1
> Normalize to get g; = v;/|vj|
» We then obtain a reduced QR factorization A = @f? with
rij = qi aj, (i #)
and
[l =

Jj—1
3= 2, i
i=1

» "Triangular Orthogonalization”

2

Classical Gram-Schmidt (=)

» Straight-forward application of Gram-Schmidt
orthogonalization

» Numerically unstable

» Algorithm: Classical Gram-Schmidt

for j=1to ndo

Vj = 4j
fori=1toj—1do
_ * 5.

rij = q; 4a;

Vi = Vi — rijq;
end for
rii = |lvjl2
qj = vj/rjj

end for

Existence and Uniqueness

Theorem 1.3: Existence

Every Ae C™*" (m > n) has a full QR factorization and a reduced
QR factorization

Proof: For full rank A, Gram-Schmidt process gives the existence
of A= QR. Otherwise, when vj = 0 choose arbitrary vector
orthogonal to previous q, ..., gj—1. For full QR, add orthogonal
extension to @ (silent columns) and zero rows to R. []

Theorem 1.4: Uniqueness

Each Ae C™*" (m > n) of full rank has a unique A = QR with
rjj >0

Proof: Again Gram-Schmidt, r; > 0 determines the sign. []

Classical vs Modified Gram-Schmidt ()

» Some modifications of classical Gram-Schmidt gives modified
Gram-Schmidt (but see next slide)

» Modified Gram-Schmidt is numerically stable (less sensitive to
rounding errors)

> Algorithm: Classical/Modified Gram-Schmidt

for j =1 to ndo

Vi = 4j
fori=1toj—1do
ko,
rij = q; 4a;
_ X,
Fij = q; Vv
Vi = Vj — Iijd;
end for
ri = |vill2
qj = vj/rjj

end for

Implementation of Modified Gram-Schmidt (=)

» Algorithm: CGS

for j=1to ndo

Vj = 4j
fori=1toj—1do
_ * 4.
Fij = q; 4d;
Vi = Vj — Ijq;
end for
ri = [vill2
qj = vj/rj
end for

> Algorithm: MGS

fori =1 to ndo

Vi = a;
end for
for i =1 to ndo
ri = [vil2
qi = vi/rii
for j=1i+1to ndo
rjp = q; vj
Vi = Vi — hijqi
end for
end for

Example: Classical vs Modified Gram-Schmidt ()

% Create a random orthogonal matrix Q

n = 80;
[Q,X] = gr(randn(n));

% Make an ill-conditioned R (with diagonal

% entries = 2°-j, j=1,...,n)

R = diag(2.7(-1:-1:-n))*triu(ones(n)+0.1*randn(n)) ;

% Compute QR factorization with classical and with

% modified GS, compare diagonal elements of

% computed R’s

A = Q*R;
[QC,RC] = clgs(A);
[QM,RM] = mgs(A);

semilogy(1:n,diag(RC),’0’,1:n,diag(RM),’x’,1:n,diag(R))

legend(’CGS’>, ’MGS’, ’exact’)

grid on

Example:

10

10
10
10

—25

10

20 |

Classical vs Modified Gram-Schmidt (=

XXX X oxx
5 XX xxxxxxxxxxxxx Xy
X X

0 10 20 30 40 50 60 70 80

Gram-Sch

o

Orthogonality of Q for CGS (red), MGS (green), Householder (blue)

midt vs Householder (=

Orthogonality of Q for CGS (red), MGS (green), Householder (blue)
T T T T T T T

10 - T 10° - T
107 | 4 102 - 4
107 . 107 L]
10° | 4 10° | d
2 z
T s
s 8 c _§
§ 10° |- . § 10°]
2 o
£ £
° H
107 q 1070k 4
¥ * . *
1071 . 121 ! * *
107128 O * % .
¥
*ox % * *
" * . ¥ or o * * P
10 § 1ol * * i]
*
* * * % * *
L *3@1*1**3}***;i*¢e t . ox X % PR I L
107 L L L L L L L L L 107" L L [I I I I I
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
test matrix number, condition num =10 test matrix number, condition num =1000
Orthogonality of Q for CGS (red), MGS (green), Householder (bive) e Orthogonality of Q for CGS (red), MGS (green), Householder (blue)
o))
10 . . ; y . g , ; . ¥ * 1 1 g = * 1
¥
%
* 4 H . I . b o .
107 1 * * 4 107 e - * * " =
* *
* *
107 Ly 4 10 - =
*
oy, . .
10 & | 10° i
z £
H ! £ 10
" L i
§.‘0 F Fowegy * * * ¥ 8
£ % * % * * * £
T * I
° * 10
107k * 1 10771 i
%
2
10721 4 1071 4
-
107 4 107 1
*
* *
R (- o A * *ox ok * P * *os
PN : : . : + ! . * ool i ! i ! i ; f
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

test matrix number, condition num =100000000 test matrix number, condition num =1000000000000000

The LU Factorization

The LU Factorization

» Transform A = R"*" into upper triangular U by subtracting
multiples of rows

» Each L; introduces zeros below diagonal of column i:

Loy LaliA=U=A=LUwhere L= L' L1

~
L—l
* ok *x * *x x x % *x X k% * *x *
*x x *x * Ly 0 % = = Ly *x x % L3 *x *
— —> —>
*x x * x 0 % = = 0 % = *x x
*x x x x 0 % = = 0 =% = 0 =
A L1 A L1 A IEYEYRY.

» “Triangular triangularization”

The Matrices L,

» At step k, eliminate elements below Ajy:

T
X = [X1k "t Xkk o Xk41l,k 0 Xnk]
-
Lka: [Xlk o o e ka O .« o o 0
» Each L; introduces zeros below diagonal of column i:

Lp1---Lali A=U= A= LUwhere L= L1 L1

I_—l

> The multipliers £ = Xjx/xxk appear in Ly:

1
1
L, =
g L1k 1
Forming L
» The L matrix contains all the multipliers in one matrix (with
plus signs)
-1 -
621 1
L=L7 5t = b fe2]
| Knl £n2 En,n—l 1]

> Define ¢, = (0, -+ ,0,%ks1k, - ,€nk). Then
L =1—10ce],

where ¢ is the column vector with 1 in position k and 0
elsewhere
> First, L;l =/ + KkekT, since ekak =0 and

(/ —EkekT)(l +€kekT) = —ékekTékekT =/
> Also, L;lL;il =+ EkekT -+ €k+1ekT+1, since ekTﬁkH =0 and

(I —lre] Y+ bxrref 1) = 1+ lee] + lyref o

Gaussian Elimination without Pivoting

» Factorize Ac R"™ " into A= LU:

» Algorithm: Gaussian Elimination (no pivoting)

U=A L=1
fork=1ton—1do
forj =k+1tondo
Uik = Ujie/ Upk
Ujken = Uj k:n — LikUk k:n
end for
end for

» The inner loop can be written using matrix operations instead
of for-loop

Pivoting ()

» At step k, we used matrix element k., k as pivot and
introduced zeros in entry k of remaining rows

* * * ok * * * * x *
Xkk * * * Xkk * * *

* * x x — 0 E I S

* * x * 0 EE

* * kx * 0 * % %

» But any other element / < k in column k can be used as pivot:

* ok x ok * N
* x Kk % 0 =*= =% =%
* O — 0 ¥ % %
Xik * * * Xik * * *
* Kx k% 0 = =% =%

Pivoting (*)

» Also, any other column j < k can be used:

SO— S— * x x Kk ok
* S— = 0 =% =%
* S— — * 0 =% =%
* Xik * * * Xk * *
* kX % = 0 % %

» Choosing different pivots means we can avoid zero or very
small pivots

> Instead of using pivots at different entries, change rows or
columns and use the standard triangular algorithm (pivoting)

» A computer code might account for the pivoting indirectly
instead of actually moving the data

Partial Pivoting (*)

» Searching among all valid pivots is expensive (complete

pivoting)
> Consider pivots in column k only and interchange rows (partial
pivoting)
[* * * *] [* * * * *] [* * * * *]
* * * Xik * * * Xik * * *
! L
I — * x ok x — 0 =x= = =%
Xj k% % ¥ % %k % 0 % =% =%
* X k% * ok ok ok 0 % = =%
Pivot selection Row interchange Elimination

» |In terms of matrices:

Lho1Pp—1---LaoP2LiP1A=U

The PA = LU Factorization ()

» To combine all Lx and all P, into matrices, rewrite as

Lh—1Pp—1---LaoPLiP1A=U
(Zn—l < [2[1)(P,,_1 S P2P1)A = U

where _
Lk:Pn—l""Dk—i—lLkPk__&l"'Pn__ll

» This gives the LU factorization of A

PA= LU

Gaussian Elimination with Partial Pivoting (*)

» Factorize Ae R™ " into PA = LU:

> Algorithm: Gaussian Elimination (partial pivoting)

U=AL=1I P=1
fork=1ton—1do
Select i > k to maximize |uj|
Uk k:n <> Uj k:n
Ci1:k—1 < Ci1:k—1
Pk,: <> Pi,:
forj = k+1tondo
Uik = Ujk/ Uik
Uj k:n = Uj j:n — Lik Ui k:n
end for
end for

Cholesky Factorization for SPD/HPD Matrices (*)

» Eliminate below pivot and to the right of pivot:

A — ain w* | a 0 « w* /o
B w K | | wa | 0 K—ww*/aj
0
/

e e Sl <]

where o = /a11

» K —ww™/a11 is a principal submatrix of PD matrix Rf A1 R},
therefore its upper-left entry is positive

» Apply recursively to obtain

A=(RfR;---Rn*)(Rn---RQRl)ZR*R, rjj>0

The Cholesky Factorization Algorithm

» Factorize hermitian positive definite Ae R"*" into A = R*R

> Algorithm: Cholesky Factorization ()

R=A
for k =1 to ndo
forj=k+1to ndo

C = e . *
fjin = Tijin = Thyjenli i/ Thk

end for
Fikin = Tk k:n/~/Tkk
end for

end for

» Existence and uniqueness: Every PD matrix has a unique
Choleskey factorization

Backslash in MATLAB

» x=A\b for dense A performs these steps (stopping when
successful):

1.

If A is upper or lower triangular, solve by back/forward
substitution

. If A is permutation of triangular matrix, solve by permuted

back substitution (useful for [L,U]=1u(A) since L is
permuted)

. If A is symmetric

» Check if all diagonal elements are positive
> Try Cholesky, if successful solve by back substitutions

. If A is Hessenberg (upper triangular plus one subdiagonal),

reduce to upper triangular then solve by back substitution

. If A is square, factorize PA = LU and solve by back

substitutions

. If A is not square, run Householder QR, solve least squares

problem

Conditioning and Condition Numbers

Conditioning

» Absolute Condition Number of a differentiable problem f at x:

ot llof]l
k = lim sup = sup
50 |5 <5 0] e Jlox]]

= 4,

where the Jacobian Jj; = 0f;/0x;, and the matrix norm is
induced by the norms on 6f and dx

» Relative Condition Number:

o (81 /1IN 100l
k‘ax"(ufwu qu) /I

Condition of Matrix-Vector Product

» Consider f(x) = Ax, with Ae C™*"

R N R
K= Tl ~ Al — (A = ol = 1Al

> For A square and nonsingular, use ||x|/|Ax| < |A7Y|:
k< |A|IATY

(equality achieved for the last right singular vector x = v;;)
» The condition number of Ax if oo if x € null(A)

> Also the condition number for f(b) = A~!b (solution of linear
system Ax = b):

]

= [A7
]

< [AJIA7

Condition Number of a Matrix

» Condition number of matrix A:

k(A) = |A[|A7Y] = [for 2-norm] = 2~ > 1

> If A is singular we consider, by convention, k(A) = o

» Measure of uncertainty

well-conditioned ill-conditioned

Condition of System of Equations
> Exercise 7: For fixed A, consider f(b) = A~1bh. Prove that

lox] slob]

k =
Ixl /g6l =

< k(A).
Then, if the input data is accurate to the €machine
— < k<A>€machine-

» Exercise 8 (Theorem 3.1 (QSS, page 60)): Let Ae C™*™ be
a non singular matrix and let A € C™*"™ be such that

HA‘lHHéAH < 1. Let Ax =band (A+ JA)(x + 6x) = b+ db.
Prove that

[ox| _ k(A <H5AH H5bH)

|
I~ 1—k(A)”TA IAl- bl

where k(A) is the condition number of the matrix A.

Example: Condition of Hilbert system

% Initialise settings, constants and vectors
clc; clear; close all;
N = 12; error = zeros(1,N-1); estimate = zeros(1,N-1);

% Loop on the order of the matrix

for n = 2:N
H = hilb(n);
x = ones(n,1); b = H*xx; % Exact values

xbar = H\b; bbar = H*xbar; 7 Computed values
% Compute error and error estimate
error(n-1) = norm(x-xbar)/norm(x);
estimate(n-1) = cond(H)*norm(b-bbar)/norm(b) ;

end
semilogy(2:n,error,’-o’,2:n,estimate,’-x’)

legend(’error’, ’estimate’)

xlabel(’order’), ylabel(’relative error’)

Example: Condition of Hilbert system

10 T T

—o— error
—x— estimate

107

1078

relative error

10710
-12

10

1074

10-16 1 1 1 1 1 1 1 1 1

