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Direct vs lterative Methods

» Direct methods: compute the exact solution after a finite
number of steps (in exact arithmetic); Gaussian elimination,
QR factorization, etc.

» Iterative methods: produce a sequence of approximations
x© x(@) " that hopefully converge to the true solution:
Jacobi, Conjugate Gradient (CG), GMRES, BIiCG, etc.
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Iterative Methods

» The basic idea of iterative methods is to construct a sequence
of vectors x(¥) such that

x = lim x(k),
k—00

where x is the solution to the system
Ax =b (1)
» To start with, we consider iterative methods in the form
x0 given, xk*1) = Bx(K) 4 f k=0 (2)

» The iterative method is said to be consistent with Ax = b if
B and f are such that x = Bx + f

Convergence of Iterative Methods

> Let
— X.

The condition of convergence amounts to requiring that

lim e =0« Iim |e®] =0
k—0o0 k—a0

» The choice of the norm does not influence the result since in
R"*™ all norms are equivalent

Theorem 2.1: Convergence

Let (2) be a consistent method. Them the sequence of vectores
{x()} converges to the solution of (1) for any choice of {x(@} if
and only if p(B) < 1.

> A sufficient condition for convergence to hold is that |B| < 1

> |t reasonable to expect that the convergence is faster when
p(B) is smaller




Classes of Matrices

» Symmetric Positive Definite (SPD):
xTAx > 0, for x # 0

» Strictly Row Diagonal Dominant (SRDD):

n

|a,-,-| > Z |a,-j\, | = 1,...,n

» Strictly Column Diagonal Dominant (SCDD):

n

ajl > > layl  j=1,...n
i=1,i#j

Linear lterative Methods




Consistent Linear lterative Methods

» Let A= P — N, where P and N are two suitable matrices and
P is nonsingular; P is called preconditioning matrix or
preconditioner

» Given x(© one can compute x(%) by solving the system
Px 1) — Nx) 4 b k=0 (3)

» The iteration matrix is B = P~ 1N and f = P~ 1p

> The iterative method (3) can be written as

xKTD) — (k) 4 p=1,.(0) >0

where
rK) = p— Ax(R),

denotes the residual vector at step k

SPD Matrices

> If Ae R™" is SPD, then (x,y)a = x" Ay defines an inner
product on R” and |x|4 = (x7 Ax)/? is a norm on R”

Theorem 2.2: Monotone Convergence (*)

Let A= P — N, with A and P be SPD. If 2P — A is PD, the
iterative method is convergent for any choice of x(® and

p(B) = [Bla=|Blp <1.
Moreover, the convergence is monotone w.r.t. |- |4 and || - [|p:

[e“*D)a < [e¥)]a, and D] < .

Theorem 2.3: Monotone Convergence (*)

If Ais SPD and P + PT — A is PD, then P is invertible and the
iterative method is monotonically convergent w.r.t. | - |4 and
p(B) = ||Bla < 1.




Jacobi Method

» Let A be a matrix with nonzero diagonal entries and
P=D, N=D-A,

where D is the diagonal matrix of the diagonal entries of A

» The iteration matrix of the Jacobi method is given by
Bj=DYD-A)=I1-D1A

» Jacobi method:

1 n
X,'(k+1) - [bi - 2 aif)(j(k)] , I=1,...,n
dii j=lj#i

Jacobi Over-Relaxation Method (JOR)

» The iteration matrix is given by
Bj(w) =wBy+ (1 —w)l
» JOR method:
Xi(k+1) = % [b,- — Z a,-jxj(k)] + (1—w)xl.(k), i=1,...,n
" J:]-’J#I

» Exercise 1: JOR is consistent for any w # 0 and the residual

form is:
x(kH1) = (k) wD_lr(k), k>0

» For w = 1 JOR coincides with the Jacobi method




Optimal Choice of Parameter

Theorem 2.4: Optimal Choice of Parameter for JOR

Assume that B; has real eigenvalues and p(B;) < 1. Then
p(Bj(w)) becomes minimal for the relaxation parameter

2

Wopt =
2 — )\max - >\min

and the spectral radius

)\max - )\min

Popt =

P 2 — >\max — >\min,
where \pin and Apax denote the smallest and the largest
eigenvalue of B, respectively.

» In the case Apax # —Amin the convergence of the Jacobi
method with optimal relaxation parameter is faster then the
convergence of the Jacobi method without relaxation

Gauss-Seidel Method

» Let A be a matrix with nonzero diagonal entries and
P=D-E, N-=F,

where D is the diagonal matrix (dj; = aj;), E is the lower
triangular matrix (ejj = —ajj, i > j) and F is the upper
triangular matrix (f; = —aj;, j > i)

» The iteration matrix of the Gauss-Seidel method is given by
Bes = (D —E)"'F

» Gauss-Seidel:

(k+1) _ 1 b-—- (k+1 (k) 4
N D W I N

j=1 Jj=i+1




Gauss-Seidel Over-Relaxation Method (SOR)

» SOR:
(k1) W O kD) © (k) (k)
+ + -
X :a_,-,- b;— ajjX; — Z ajjX; —|—(1—w)xi ,1=1,...,n
j=1 j=i+1

» The method can be written as
(I —wDLE)x* D) — [(1 — w)l + wD7 F]x®) + wD™1h,
and the iteration matrix is
Bes(w) = (I —wD™YE) (1 —w)l + wDLF]

» Exercise 2: The SOR method is consistent for any w # 0 and
for w = 1 and the residual form is:

1
(D) ) (lD _ E) RO
w

» For w = 1 it coincides with the Gauss-Seidel method

Convergence of Jacobi and Gauss-Seidel Methods

Theorem 2.5: Convergence of Jacobi and Gauss-Seidel

If A is SRDD, then the Jacobi and Gauss-Seidel methods are
convergent.

Theorem 2.6: Monotone Convergence of Jacobi (x)

If Aand 2P — A are SPD, then the Jacobi method is convergent
for any choice of x(© and

p(By) = ||Byja=|By|p < 1.

Moreover, the convergence is monotone w.r.t. |- |4 and || - ||p.

Theorem 2.7: Convergence of JOR for SPD Matrices

If Aiis SPD and 0 < w < 2/p(D~tA), then the JOR method is
convergent.




Convergence of Jacobi and Gauss-Seidel Methods

Theorem 2.8: Convercence of JOR

If the Jacobi method is convergent, then the JOR method
converges if 0 < w < 1.

Theorem 2.9: Monotone Convergence of Gauss-Seidel

If Ais SPD then the Gauss-Seidel method is monotonically
convergent with respect to the norm | - | 4.

Theorem 2.10: Convergence of SOR

For any w € R we have p(Bgs(w)) = |w — 1|. Therefore the SOR
method fails to converge if w < 0 or w > 2.

Theorem 2.11 (Ostrowski): Monotone Convergence of SOR

If Ais SPD, then the SOR method is convergent if and only if
0 < w < 2. Moreover, it is monotonically convergent w.r.t. | - | a.

Richardson Method




Richardson Method

> Let
R=1-P1A

the iteration matrix associated to the method
xUFD) = Rtk 4 plp o xUkHD) — x(k) 4 p=1,0k) g >
» Stationary Richardson method:
D) — x4 op=1/K) k>0
» Nonstationary Richardson method:

xHD) = x(0 4o Pt g

\Y

0
» The iteration matrix of the k—th step for these methods is

R(oy) =1 — axP1A

Richardson Method

» If P =1, the methods is called nonpreconditioned

> The Jacobi (resp. Gauss-Seidel) method is stationary
Richardson method with & =1 and P = D (resp. P = D — E)

» Algorithm: Nonstationary Richardson Method

x©) and P given; r® = p — Ax(©
for k=0,1,...
solve Pz(K) = r(K)
compute oy
xk+1) = x(k) 4 z(K)
rtkt1) — p(K) — o AZ(K)

until convergence




Convergence of Richardson Method

Theorem 2.12: Convergence

For any nonsingular matrix P, the stationary Richardson method is
convergent if and only if

2Re )\,’ .
—>1 Vi=1,...
Oé‘)\,'|2 > / - , N,

where \; € C are the eingenvalues of P~1A.
» Remark: If the sign of the real parts of the eigenvalues of

P~1A is not constant, the stationary Richardson method
cannot converge.

Convergence of Richardson Method

Theorem 2.13: Convergence

Let P be a nonsingular matrix and P~1A with positive real
eigenvalues \; > Ao = ... > A\, > 0. Then, the stationary
Richardson method is convergent if and only if 0 < o < 2/;.
Moreover, if & = agpr = 2/(A1 + Ap) then p(R(«)) is minimum
and A — )\,

Popt = m

/
,’/ ‘1 — Oé)\1|
/

|1 - Oz)\k|

P opt

M A An




Convergence of Richardson Method for SPD Matrices

» If P~1A is SPD, the convergence of the Richardson method is
monotone with respect to either || - |2 and | - ||

» In such case

N 2|PA|2
PET Ky (P1A) + 1

Theorem 2.14: Convergence for SPD matrices

If Ais SPD, then the non preconditioned stationary Richardson
method is convergent for any choice of x(®© and

[V ]a < p(R(@)|e™]a, k<o

The same result hold for the preconditioned Richardson method,
provided that the matrices P, A and P~1A are SPD.

Preconditioning Matrices
» All methods can be regarded as being methods for solving
P 'Ax = P7'b

» This last is called preconditioned system, being P the
preconditioning matrix or left preconditioner

» Right preconditioners can also be introduced and the system
is transformed as

P 1APly = Plb, y = Pgrx

» Optimal preconditioner: a preconditioner which is able to
make the number of iterations required for convergence
independent of the size of the system

» P = Ais optimal but inefficient; P = [ is efficient but not
useful




Choice of Preconditioners

» In the choice of the preconditioner the computational cost and
memory requirements must be taken into account

» Diagonal preconditioners: choosing P as the diagonal off A is
generally effective if A is SPD. An usual choice in the non
symmetric case Is to set

n 1/2
pii = Z 33-)
=1

» Polynomial preconditioners: the preconditioner matrix is

defined as
P~ = p(A),

where p is a polynomial in A, usually of low degree

Gradient Method




Gradient Method for SPD Matrices

» The expression of the optimal parameter requires the
knowledge of the extremal eigenvalues of P~1A

» Exercise 3: For SPD matrices, solving Ax = b is equivalent to
finding the minimizer x € R" of the quadratic form

1
oly) = EyTAy —yTb (energy of the system)

» Goal: Determine the minimizer x € R"” of ¢. Starting from
x(0) ¢ R",
xK D = 5B 4  d® k>0,

where d(%) is a descent direction

Example: Finding Minima

» Compute the minimizer of

peaks: D c R? — R

Peaks

z = peaks(x,y)

— 31— xRe U




An lterative Process

x, = [0.2283 ; -1.6255] X, = [-1.3474 ; 0.2045]

x, = [0.2283 ; -1.6255] x, = [-1.3474 ; 0.2045]

Directional Derivative and Gradient Vector
> Directional derivative: Dgop(x) = Vo (x)Td
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> The directional derivative is given by Vo (x)
Dag(x) = Vo(x)'d = |[Ve(x)]|d] cos,

where 6 the angle between V¢(x) and
the direction d




Directional Derivative and Gradient Vector

> Exercise 4: If ¢ € CY(Q) the maximum (resp. minimum) of
the directional derivative Dy¢(x) occurs when d has the same
direction as the gradient vector Vo (x) (resp. —V¢(x))

» Descent direction: d € R" is a descent direction of ¢ in x if
exists t > 0 such that ¢(x + td) < ¢(x), for all t € (0, t)

» Exercise 5: If the angle between d and
—V¢p(x) is less than 7/2, i.e. =V (x)

_v¢(X)Td > 07 0 d

then d is a descent direction

Gradient/Steepest Descent Method
> Starting from a point x(9) € R”, the step k + 1 is computed as

KD 0 4 gk

where d(K) = —V¢(x(¥)

» Exercise 6: Prove that
Vo(xW) = AxK) — p = — k),

so the gradient method, as the Richardson method, moves at
each step k along the direction r(¥)




Computing the Acceleration Parameter

» To compute ay let us write ¢(x(¥*1D) as a function of a
parameter «,

P(xk+1)y = %(x(k) + ar®™)T AW 4 ar)—(xM) 4 ar(k))Tb

» Exercise 7: Differentiating with respect to «, the value of ay
(which depends only on the residual) is
FOMFO

o = ————
KT LT Ak

Gradient/Steepest Descent Method
> Algorithm: Gradient/Steepest Descent Method

x(0) given;
for k=0,1,...
rtk) = p— Ax(K) % compute residual
PR T (k)
Qp = ——=F—— % acceleration parameter
r(k) " Ap(k)

xk+1) = (k) 4 o r(0) 9% update solution
until convergence

Theorem 2.15: Convergence

Let A be SPD. Then the gradient method is convergent for any
choice of x(¥ and

Ka(A) — 1

(k+1) < e -
e lla < Ko(A) + 1

[€)]]a.




