Lecture 2

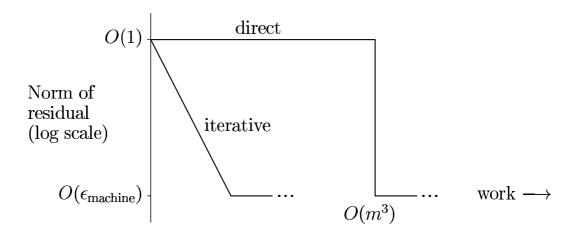
Iterative Methods

Computational Mathematics

Adérito Araújo (alma@mat.uc.pt) February 12, 2024

Direct vs Iterative Methods

- ▶ Direct methods: compute the exact solution after a finite number of steps (in exact arithmetic); Gaussian elimination, QR factorization, etc.
- ▶ Iterative methods: produce a sequence of approximations $x^{(0)}, x^{(1)}, \ldots$ that hopefully converge to the true solution; Jacobi, Conjugate Gradient (CG), GMRES, BiCG, etc.



Iterative Methods

▶ The basic idea of iterative methods is to construct a sequence of vectors $x^{(k)}$ such that

$$x = \lim_{k \to \infty} x^{(k)},$$

where *x* is the solution to the system

$$Ax = b \tag{1}$$

▶ To start with, we consider iterative methods in the form

$$x^{(0)}$$
 given, $x^{(k+1)} = Bx^{(k)} + f$, $k \ge 0$ (2)

▶ The iterative method is said to be consistent with Ax = b if B and f are such that x = Bx + f

Convergence of Iterative Methods

Let

$$e^{(k)} = x^{(k)} - x.$$

The condition of convergence amounts to requiring that

$$\lim_{k \to \infty} e^{(k)} = 0 \Leftrightarrow \lim_{k \to \infty} \|e^{(k)}\| = 0$$

The choice of the norm does not influence the result since in $\mathbb{R}^{n\times n}$ all norms are equivalent

Theorem 2.1: Convergence

Let (2) be a consistent method. Them the sequence of vectores $\{x^{(k)}\}$ converges to the solution of (1) for any choice of $\{x^{(0)}\}$ if and only if $\rho(B) < 1$.

- lacktriangle A sufficient condition for convergence to hold is that $\|B\| < 1$
- It reasonable to expect that the convergence is faster when $\rho(B)$ is smaller

Classes of Matrices

► Symmetric Positive Definite (SPD):

$$x^T A x > 0$$
, for $x \neq 0$

Strictly Row Diagonal Dominant (SRDD):

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|, \qquad i = 1, ..., n$$

► Strictly Column Diagonal Dominant (SCDD):

$$|a_{jj}| > \sum_{i=1, i \neq j}^{n} |a_{ij}|$$
 $j = 1, ..., n$

Linear Iterative Methods

Consistent Linear Iterative Methods

- Let A = P N, where P and N are two suitable matrices and P is nonsingular; P is called preconditioning matrix or preconditioner
- Given $x^{(0)}$ one can compute $x^{(k)}$ by solving the system

$$Px^{(k+1)} = Nx^{(k)} + b, \quad k \ge 0$$
 (3)

- ▶ The iteration matrix is $B = P^{-1}N$ and $f = P^{-1}b$
- ▶ The iterative method (3) can be written as

$$x^{(k+1)} = x^{(k)} + P^{-1}r^{(k)}, \quad k \geqslant 0,$$

where

$$r^{(k)} = b - Ax^{(k)},$$

denotes the residual vector at step k

SPD Matrices

▶ If $A \in \mathbb{R}^{n \times n}$ is SPD, then $(x, y)_A = x^T A y$ defines an inner product on \mathbb{R}^n and $\|x\|_A = (x^T A x)^{1/2}$ is a norm on \mathbb{R}^n

Theorem 2.2: Monotone Convergence (*)

Let A = P - N, with A and P be SPD. If 2P - A is PD, the iterative method is convergent for any choice of $x^{(0)}$ and

$$\rho(B) = \|B\|_{A} = \|B\|_{P} < 1.$$

Moreover, the convergence is monotone w.r.t. $\|\cdot\|_A$ and $\|\cdot\|_P$:

$$\|e^{(k+1)}\|_A < \|e^{(k)}\|_A$$
, and $\|e^{(k+1)}\|_P < \|e^{(k)}\|_P$.

Theorem 2.3: Monotone Convergence (*)

If A is SPD and $P+P^T-A$ is PD, then P is invertible and the iterative method is monotonically convergent w.r.t. $\|\cdot\|_A$ and $\rho(B)=\|B\|_A<1$.

Jacobi Method

Let A be a matrix with nonzero diagonal entries and

$$P = D$$
, $N = D - A$,

where D is the diagonal matrix of the diagonal entries of A

The iteration matrix of the Jacobi method is given by

$$B_J = D^{-1}(D - A) = I - D^{-1}A$$

▶ Jacobi method:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right], \quad i = 1, \dots, n$$

Jacobi Over-Relaxation Method (JOR)

▶ The iteration matrix is given by

$$B_I(\omega) = \omega B_I + (1 - \omega)I$$

▶ JOR method:

$$x_i^{(k+1)} = \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right] + (1 - \omega) x_i^{(k)}, \quad i = 1, \dots, n$$

• Exercise 1: JOR is consistent for any $\omega \neq 0$ and the residual form is:

$$x^{(k+1)} = x^{(k)} + \omega D^{-1} r^{(k)}, \quad k \geqslant 0$$

• For $\omega=1$ JOR coincides with the Jacobi method

Optimal Choice of Parameter

Theorem 2.4: Optimal Choice of Parameter for JOR

Assume that B_J has real eigenvalues and $\rho(B_J) < 1$. Then $\rho(B_J(\omega))$ becomes minimal for the relaxation parameter

$$\omega_{opt} = rac{2}{2 - \lambda_{max} - \lambda_{min}}$$

and the spectral radius

$$\rho_{opt} = \frac{\lambda_{max} - \lambda_{min}}{2 - \lambda_{max} - \lambda_{min}},$$

where λ_{min} and λ_{max} denote the smallest and the largest eigenvalue of B, respectively.

In the case $\lambda_{max} \neq -\lambda_{min}$ the convergence of the Jacobi method with optimal relaxation parameter is faster then the convergence of the Jacobi method without relaxation

Gauss-Seidel Method

▶ Let A be a matrix with nonzero diagonal entries and

$$P = D - E$$
, $N = F$,

where D is the diagonal matrix $(d_{ii} = a_{ii})$, E is the lower triangular matrix $(e_{ij} = -a_{ij}, i > j)$ and F is the upper triangular matrix $(f_{ij} = -a_{ij}, j > i)$

▶ The iteration matrix of the Gauss-Seidel method is given by

$$B_{GS} = (D - E)^{-1}F$$

Gauss-Seidel:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right], \quad i = 1, \dots, n$$

Gauss-Seidel Over-Relaxation Method (SOR)

► SOR:

$$x_i^{(k+1)} = \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right] + (1 - \omega) x_i^{(k)}, \ i = 1, \dots, n$$

The method can be written as

$$(I - \omega D^{-1}E)x^{(k+1)} = [(1 - \omega)I + \omega D^{-1}F]x^{(k)} + \omega D^{-1}b,$$

and the iteration matrix is

$$B_{GS}(\omega) = (I - \omega D^{-1}E)^{-1}[(1 - \omega)I + \omega D^{-1}F]$$

• Exercise 2: The SOR method is consistent for any $\omega \neq 0$ and for $\omega = 1$ and the residual form is:

$$x^{(k+1)} = x^{(k)} + \left(\frac{1}{\omega}D - E\right)^{-1}r^{(k)}, \quad k \geqslant 0$$

For $\omega=1$ it coincides with the Gauss-Seidel method

Convergence of Jacobi and Gauss-Seidel Methods

Theorem 2.5: Convergence of Jacobi and Gauss-Seidel

If A is SRDD, then the Jacobi and Gauss-Seidel methods are convergent.

Theorem 2.6: Monotone Convergence of Jacobi (*)

If A and 2P-A are SPD, then the Jacobi method is convergent for any choice of $\boldsymbol{x}^{(0)}$ and

$$\rho(B_J) = \|B_J\|_A = \|B_J\|_D < 1.$$

Moreover, the convergence is monotone w.r.t. $\|\cdot\|_A$ and $\|\cdot\|_D$.

Theorem 2.7: Convergence of JOR for SPD Matrices

If A is SPD and $0 < \omega < 2/\rho(D^{-1}A)$, then the JOR method is convergent.

Convergence of Jacobi and Gauss-Seidel Methods

Theorem 2.8: Convercence of JOR

If the Jacobi method is convergent, then the JOR method converges if 0 $<\omega\leqslant 1.$

Theorem 2.9: Monotone Convergence of Gauss-Seidel

If A is SPD then the Gauss-Seidel method is monotonically convergent with respect to the norm $\|\cdot\|_A$.

Theorem 2.10: Convergence of SOR

For any $\omega \in \mathbb{R}$ we have $\rho(B_{GS}(\omega)) \geqslant |\omega - 1|$. Therefore the SOR method fails to converge if $\omega \leqslant 0$ or $\omega \geqslant 2$.

Theorem 2.11 (Ostrowski): Monotone Convergence of SOR

If A is SPD, then the SOR method is convergent if and only if $0 < \omega < 2$. Moreover, it is monotonically convergent w.r.t. $\|\cdot\|_A$.

1 D > 1 A D > 1 E > 1 E > 9 Q Q

Richardson Method

Richardson Method

Let

$$R = I - P^{-1}A$$

the iteration matrix associated to the method

$$x^{(k+1)} = Rx^{(k)} + P^{-1}b \iff x^{(k+1)} = x^{(k)} + P^{-1}r^{(k)}, \quad k \geqslant 0$$

Stationary Richardson method:

$$x^{(k+1)} = x^{(k)} + \alpha P^{-1} r^{(k)}, \quad k \geqslant 0$$

► Nonstationary Richardson method:

$$x^{(k+1)} = x^{(k)} + \frac{\alpha_k}{\alpha_k} P^{-1} r^{(k)}, \quad k \geqslant 0$$

▶ The iteration matrix of the k-th step for these methods is

$$R(\alpha_k) = I - \alpha_k P^{-1} A$$

Richardson Method

- If P = I, the methods is called nonpreconditioned
- ▶ The Jacobi (resp. Gauss-Seidel) method is stationary Richardson method with $\alpha=1$ and P=D (resp. P=D-E)
- ► Algorithm: Nonstationary Richardson Method

$$x^{(0)}$$
 and P given; $r^{(0)} = b - Ax^{(0)}$ for $k = 0, 1, \ldots$ solve $Pz^{(k)} = r^{(k)}$ % compute preconditioned residual compute α_k % acceleration parameter $x^{(k+1)} = x^{(k)} + \alpha_k z^{(k)}$ % update the solution $r^{(k+1)} = r^{(k)} - \alpha_k Az^{(k)}$ % update the residual until convergence

Convergence of Richardson Method

Theorem 2.12: Convergence

For any nonsingular matrix P, the stationary Richardson method is convergent if and only if

$$\frac{2\operatorname{Re}\,\lambda_i}{\alpha|\lambda_i|^2} > 1 \quad \forall i = 1,\ldots,n,$$

where $\lambda_i \in \mathbb{C}$ are the eingenvalues of $P^{-1}A$.

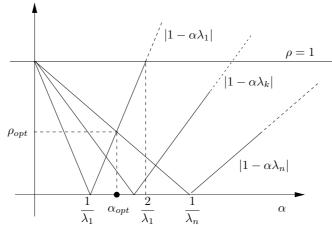
▶ Remark: If the sign of the real parts of the eigenvalues of $P^{-1}A$ is not constant, the stationary Richardson method cannot converge.

Convergence of Richardson Method

Theorem 2.13: Convergence

Let P be a nonsingular matrix and $P^{-1}A$ with positive real eigenvalues $\lambda_1 \geqslant \lambda_2 \geqslant \ldots \geqslant \lambda_n > 0$. Then, the stationary Richardson method is convergent if and only if $0 < \alpha < 2/\lambda_1$. Moreover, if $\alpha = \alpha_{opt} = 2/(\lambda_1 + \lambda_n)$ then $\rho(R(\alpha))$ is minimum and $\lambda_1 - \lambda_n$

 $\rho_{opt} = \frac{\lambda_1 - \lambda_n}{\lambda_1 + \lambda_n}.$



Convergence of Richardson Method for SPD Matrices

- ▶ If $P^{-1}A$ is SPD, the convergence of the Richardson method is monotone with respect to either $\|\cdot\|_2$ and $\|\cdot\|_A$
- ▶ In such case

$$lpha_{opt} = rac{2\|P^{-1}A\|_2}{K_2(P^{-1}A) + 1}$$
 and $ho_{opt} = rac{K_2(P^{-1}A) - 1}{K_2(P^{-1}A) - 1}$

Theorem 2.14: Convergence for SPD matrices

If A is SPD, then the non preconditioned stationary Richardson method is convergent for any choice of $x^{(0)}$ and

$$||e^{(k+1)}||_A \le \rho(R(\alpha))||e^{(k)}||_A, \quad k \le 0.$$

The same result hold for the preconditioned Richardson method, provided that the matrices P, A and $P^{-1}A$ are SPD.

Preconditioning Matrices

All methods can be regarded as being methods for solving

$$P^{-1}Ax = P^{-1}b$$

- ► This last is called *preconditioned system*, being *P* the preconditioning matrix or left preconditioner
- Right preconditioners can also be introduced and the system is transformed as

$$P_I^{-1}AP_R^{-1}y = P_I^{-1}b, \quad y = P_Rx$$

- ▶ Optimal preconditioner: a preconditioner which is able to make the number of iterations required for convergence independent of the size of the system
- P = A is optimal but inefficient; P = I is efficient but not useful

Choice of Preconditioners

- ▶ In the choice of the preconditioner the computational cost and memory requirements must be taken into account
- ▶ Diagonal preconditioners: choosing *P* as the diagonal off *A* is generally effective if *A* is SPD. An usual choice in the non symmetric case is to set

$$p_{ii} = \left(\sum_{j=1}^{n} a_{ij}^2\right)^{1/2}$$

 Polynomial preconditioners: the preconditioner matrix is defined as

$$P^{-1} = p(A),$$

where p is a polynomial in A, usually of low degree

...

Gradient Method

Gradient Method for SPD Matrices

- The expression of the optimal parameter requires the knowledge of the extremal eigenvalues of $P^{-1}A$
- ▶ Exercise 3: For SPD matrices, solving Ax = b is equivalent to finding the minimizer $x \in \mathbb{R}^n$ of the quadratic form

$$\phi(y) = \frac{1}{2} y^T A y - y^T b$$
 (energy of the system)

▶ Goal: Determine the minimizer $x \in \mathbb{R}^n$ of ϕ . Starting from $x^{(0)} \in \mathbb{R}^n$.

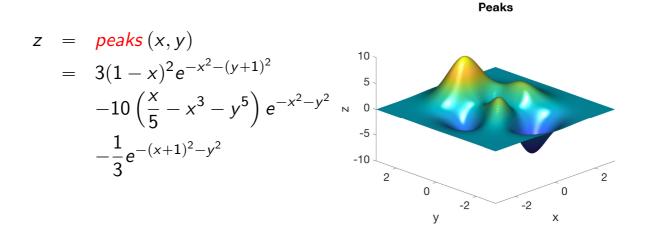
$$x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}, \quad k \geqslant 0,$$

where $d^{(k)}$ is a descent direction

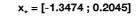
Example: Finding Minima

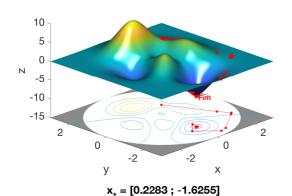
Compute the minimizer of

peaks :
$$D \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$$



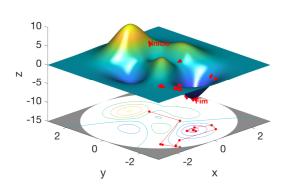
An Iterative Process

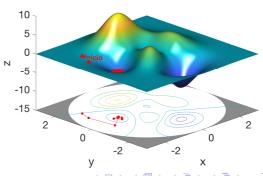




10 5 -5 -10 -15

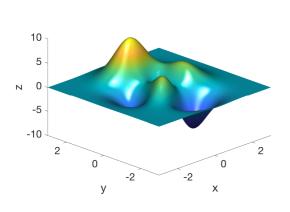
 $x_* = [-1.3474 ; 0.2045]$

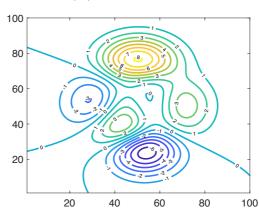




Directional Derivative and Gradient Vector

▶ Directional derivative: $D_d \phi(x) = \nabla \phi(x)^T d$

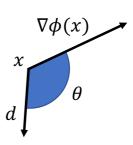




► The directional derivative is given by

$$D_d \phi(x) = \nabla \phi(x)^T d = \|\nabla \phi(x)\| \|d\| \cos \theta,$$

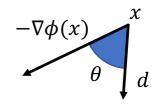
where θ the angle between $\nabla\phi(\mathbf{x})$ and the direction d



Directional Derivative and Gradient Vector

- ▶ Exercise 4: If $\phi \in C^1(\Omega)$ the maximum (resp. minimum) of the directional derivative $D_d\phi(x)$ occurs when d has the same direction as the gradient vector $\nabla \phi(x)$ (resp. $-\nabla \phi(x)$)
- ▶ Descent direction: $d \in \mathbb{R}^n$ is a descent direction of ϕ in x if exists $\overline{t} > 0$ such that $\phi(x + td) < \phi(x)$, for all $t \in (0, \overline{t})$
- Exercise 5: If the angle between d and $-\nabla \phi(x)$ is less than $\pi/2$, i.e.

$$-\nabla \phi(x)^T d > 0,$$

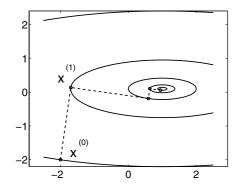


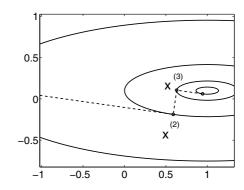
then d is a descent direction

Gradient/Steepest Descent Method

Starting from a point $x^{(0)} \in \mathbb{R}^n$, the step k+1 is computed as $x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}.$

where
$$d^{(k)} = -\nabla \phi(x^{(k)})$$





Exercise 6: Prove that

$$\nabla \phi(\mathbf{x}^{(k)}) = A\mathbf{x}^{(k)} - b = -\mathbf{r}^{(k)},$$

so the gradient method, as the Richardson method, moves at each step k along the direction $r^{(k)}$

Computing the Acceleration Parameter

▶ To compute α_k let us write $\phi(x^{(k+1)})$ as a function of a parameter α ,

$$\phi(x^{(k+1)}) = \frac{1}{2} (x^{(k)} + \alpha r^{(k)})^T A (x^{(k)} + \alpha r^{(k)}) - (x^{(k)} + \alpha r^{(k)})^T b$$

• Exercise 7: Differentiating with respect to α , the value of α_k (which depends only on the residual) is

$$\alpha_k = \frac{r^{(k)}^T r^{(k)}}{r^{(k)}^T A r^{(k)}}$$

Gradient/Steepest Descent Method

► Algorithm: Gradient/Steepest Descent Method

$$x^{(0)}$$
 given; for $k=0,1,\ldots$ $r^{(k)}=b-Ax^{(k)}$ % compute residual
$$\alpha_k = \frac{r^{(k)}{}^T r^{(k)}}{r^{(k)}{}^T A r^{(k)}}$$
 % acceleration parameter $x^{(k+1)} = x^{(k)} + \alpha_k r^{(k)}$ % update solution until convergence

Theorem 2.15: Convergence

Let A be SPD. Then the gradient method is convergent for any choice of $x^{(0)}$ and

$$\|e^{(k+1)}\|_A \leqslant \frac{K_2(A)-1}{K_2(A)+1}\|e^{(k)}\|_A.$$