Lecture 3

Conjugate Gradient Method

Computational Mathematics

Adérito Araújo (alma@mat.uc.pt)

February 16, 2024

Gradient Method

- For SPD matrices, solving $A x=b$ is equivalent to finding the minimizer $x \in \mathbb{R}^{n}$ of the quadratic form

$$
\phi(y)=\frac{1}{2} y^{T} A y-y^{T} b=(y, y)_{A}-(y, b)
$$

- Two phases: (i) choosing a descent direction (the residual);
(ii) picking up a point of local minimum for ϕ along that direction
- For a given direction $p^{(k)}$, the value of α_{k} was obtained such that $\phi\left(x^{(k)}+\alpha p^{(k)}\right)$ is minimized

$$
\begin{equation*}
\alpha_{k}=\frac{p^{(k)^{T}} r^{(k)}}{p^{(k)^{T}} A p^{(k)}}=\frac{\left(p^{(k)}, r^{(k)}\right)}{\left(p^{(k)}, p^{(k)}\right)_{A}} \tag{4}
\end{equation*}
$$

- For the gradient method $p^{(k)}=r^{(k)}$

Richardson and Gradient Methods

- Richardson Method $(P=I)$ $x^{(0)}$ given; $r^{(0)}=b-A x^{(0)}$ for $k=0,1, \ldots$
solve $I z^{(k)}=r^{(k)}$
compute α_{k}
$x^{(k+1)}=x^{(k)}+\alpha_{k} z^{(k)}$
$r^{(k+1)}=r^{(k)}-\alpha_{k} A z^{(k)}$
until convergence
- Gradient Method
$x^{(0)}$ given; $r^{(0)}=b-A x^{(0)}$
for $k=0,1, \ldots$

$$
\begin{aligned}
& \alpha_{k}=\frac{r^{(k)^{T}} r^{(k)}}{r^{(k)^{T}} \operatorname{Ar} r^{(k)}} \\
& x^{(k+1)}=x^{(k)}+\alpha_{k} r^{(k)} \\
& r^{(k+1)}=r^{(k)}-\alpha_{k} A r^{(k)}
\end{aligned}
$$

until convergence

- Exercise 1: Prove that, for $p^{(k)}=r^{(k)}$

$$
\left(p^{(k)}, r^{(k+1)}\right)=p^{(k)^{T}} r^{(k+1)}=0 \quad \Leftrightarrow \quad p^{(k)} \perp r^{(k+1)}
$$

i.e., the new residual becomes orthogonal to the search direction

Improve Steepest Descent Method

- For the gradient method

$$
\left\|e^{(k+1)}\right\|_{A} \leqslant \frac{K_{2}(A)-1}{K_{2}(A)+1}\left\|e^{(k)}\right\|_{A}
$$

- Goal: Improve the convergence, minimizing $\left\|e^{(k)}\right\|_{A}$ at each step

Conjugate Gradient (CG) Method

- Goal: Find search direction $p^{(k)}$ that provides a faster convergence
- Let $p^{(0)}=r^{(0)}$. Search for directions of the form

$$
p^{(k+1)}=r^{(k+1)}-\beta_{k} p^{(k)}, \quad k=0,1, \ldots
$$

where $\beta_{k} \in \mathbb{R}$ must be determined in such way that

$$
\left(p^{(j)}, p^{(k+1)}\right)_{A}=0, \quad j=0,1, \ldots, k,
$$

i.e., the directions are conjugate orthogonal (or A-orthogonal)

- Exercise 2: Prove that, for $j=k$,

$$
\beta_{k}=\frac{\left(p^{(k)}, r^{(k+1)}\right)_{A}}{\left(p^{(k)}, p^{(k)}\right)_{A}}, \quad k=0,1, \ldots
$$

and, by induction, using the above β_{k}, that

$$
\left(p^{(j)}, p^{(k+1)}\right)_{A}=0, \quad j=0,1, \ldots, k-1
$$

Conjugate Gradient (CG) Method

- Algorithm: Conjugate Gradient Method
$x^{(0)}$ given; $r^{(0)}=b-A x^{(0)} ; p^{(0)}=r^{(0)}$ for $k=0,1, \ldots$

$$
\begin{array}{ll}
\alpha_{k}=\frac{\left(p^{(k)}, r^{(k)}\right)}{\left(p^{(k)}, p^{(k)}\right)_{A}} & \text { \% step lenght } \\
x^{(k+1)}=x^{(k)}+\alpha_{k} p^{(k)} & \text { \% update solution } \\
r^{(k+1)}=r^{(k)}-\alpha_{k} A p^{(k)} & \text { \% update residual } \\
\beta_{k}=\frac{\left(p^{(k)}, r^{(k+1)}\right)_{A}}{\left(p^{(k)}, p^{(k)}\right)_{A}} & \text { \% improvement th } \\
p^{(k+1)}=r^{(k+1)}-\beta_{k} p^{(k)} & \text { \% search direction }
\end{array}
$$

until convergence

- Exercise 3: Show that the algorithm requires only one matrix-vector product $A p^{(k)}$ per iteration

Conjugate Gradient (CG) Method

- Algorithm: Conjugate Gradient Method
$x^{(0)}=0 ; r^{(0)}=b ; p^{(0)}=r^{(0)}$
for $k=0,1, \ldots$

$$
\begin{array}{ll}
\alpha_{k}=\frac{\left(p^{(k)}, r^{(k)}\right)}{\left(p^{(k)}, p^{(k)}\right)_{A}} & \text { \% step lenght } \\
x^{(k+1)}=x^{(k)}+\alpha_{k} p^{(k)} & \text { \% update solution } \\
r^{(k+1)}=r^{(k)}-\alpha_{k} A p^{(k)} & \text { \% update residual } \\
\beta_{k}=\frac{\left(p^{(k)}, r^{(k+1)}\right)_{A}}{\left(p^{(k)}, p^{(k)}\right)_{A}} & \% \text { improvement this step } \\
p^{(k+1)}=r^{(k+1)}-\beta_{k} p^{(k)} & \% \text { search direction }
\end{array}
$$

until convergence

- Exercise 4: Show that

$$
\alpha_{k}=\frac{\left\|r^{(k)}\right\|^{2}}{\left\|p^{(k)}\right\|_{A}^{2}} \quad \text { and } \quad \beta_{k}=-\frac{\left\|r^{(k+1)}\right\|^{2}}{\left\|r^{(k)}\right\|^{2}}
$$

Krylov Subspace

Krylov Subspace

- Krylov Subspace: $\mathcal{K}_{k}=\mathcal{K}_{k}(A ; b)=\left\langle b, A b, \ldots, A^{k-1} b\right\rangle$
- CG for $A x=b, A \in \mathbb{R}^{n \times n}$ SPD, $x^{(0)}=0, p^{(0)}=r^{(0)}=b$

Theorem 3.1

As long as $r^{(k-1)} \neq 0$ (CG not yet converged), the algorithm proceeds without divisions by zero and

$$
\begin{aligned}
\mathcal{K}_{k} & =\left\langle x^{(1)}, x^{(2)}, \ldots, x^{(k)}\right\rangle=\left\langle p^{(0)}, p^{(1)}, \ldots, p^{(k-1)}\right\rangle \\
& =\left\langle r^{(0)}, r^{(1)}, \ldots, r^{(k-1)}\right\rangle=\left\langle b, A b, \ldots, A^{k-1} b\right\rangle .
\end{aligned}
$$

- Exercise 5: Prove that the residuals are orthogonal,

$$
r^{(k)^{T}} r^{(j)}=0, \quad j<k,
$$

and the search directions are A-orthogonal (or A-conjugate),

$$
p^{(k)^{T}} A p^{(j)}=0, \quad j<k .
$$

Convergence Result

Theorem 3.2: Monotonic convergence

If the iteration has not yet converged then $x^{(k)}$ is the only point in \mathcal{K}_{k} that minimizes $\left\|e^{(k)}\right\|_{A}$. The convergence is monotonic,

$$
\left\|e^{(k)}\right\|_{A} \leqslant\left\|e^{(k-1)}\right\|_{A}
$$

and $\left\|e^{(k)}\right\|_{A}=0$ is achieved for some $k \leqslant n$.

- Proof: For any other point $y=x^{(k)}-\Delta y \in \mathcal{K}_{k}$, the error is

$$
\begin{aligned}
\|e\|_{A}^{2} & =\left(e^{(k)}+\Delta y\right)^{T} A\left(e^{(k)}+\Delta y\right) \\
& =\left(e^{(k)}\right)^{T} A e^{(k)}+(\Delta y)^{T} A(\Delta y)+2\left(e^{(k)}\right)^{T} A(\Delta y)
\end{aligned}
$$

But $\left(e^{(k)}\right)^{T} A(\Delta y)=\left(r^{(k)}\right)^{T}(\Delta y)=0$ since $r^{(k)} \perp \mathcal{K}_{k}$, so Δy minimizes $\|e\|_{A}^{2}$. Since $A \in S P D$, the monotonic convergence follow from $\mathcal{K}_{k} \subseteq \mathcal{K}_{k+1}$, and $\mathcal{K}_{k} \subseteq \mathbb{R}^{n}$ unless converged.

Optimization in CG

- CG can be interpreted as a minimization algorithm
- We know it minimizes $\|e\|_{A}$, but this cannot be evaluated
- CG minimizes the quadratic function $\phi(y)=\frac{1}{2} y^{T} A y-y^{T} b$:

$$
\begin{aligned}
\left\|e^{(k)}\right\|_{A} & =\left(e^{(k)}\right)^{T} A e^{(k)}=\left(x-x^{(k)}\right)^{T} A\left(x-x^{(k)}\right) \\
& =\left(x^{(k)}\right)^{T} A x^{(k)}-2\left(x^{(k)}\right)^{T} A x+x^{T} A x \\
& =\left(x^{(k)}\right)^{T} A x^{(k)}-2\left(x^{(k)}\right)^{T} x^{T} b \\
& =2 \phi\left(x^{(k)}\right)+\text { constant }
\end{aligned}
$$

- At each step α_{k} is choosen to minimizes $x^{(k+1)}=x^{(k)}+\alpha_{k} p^{(k)}$
- Conjugated search directions $p^{(k)}$ give minimization over \mathcal{K}_{k}

Polynomial Approximation by CG

- $P_{k}=\{p: p$ is a polynomial of degree $\leqslant k, p(0)=1\}$
- Find $p_{k} \in P_{k}$ such that

$$
\begin{equation*}
\left\|p_{k}(A) e^{(0)}\right\|_{A}=\text { minimum } \tag{5}
\end{equation*}
$$

Theorem 3.3

If the CG iteration has not yet converged, the problem (5) has a unique solution $p_{k} \in P_{k}$ and the iterate $x^{(k)}$ has error $e^{(k)}=p_{k}(A) e^{(0)}$ for this same polynomial p_{k}. Moreover

$$
\frac{\left\|e^{(k)}\right\|_{A}}{\left\|e^{(0)}\right\|_{A}}=\inf _{p \in P_{k}} \frac{\left\|p(A) e^{(0)}\right\|_{A}}{\left\|e^{(0)}\right\|_{A}} \leqslant \inf _{p \in P_{k}} \max _{\lambda \in \Lambda(A)}|p(\lambda)| .
$$

- Proof: It is clear that $x^{(k)}=q_{k-1}(A) b=q_{k-1}(A) A x$ with q_{k-1} of degree $k-1$, Then $e^{(k)}=p_{k}(A) e^{(0)}$ with $p_{k} \in P_{k}$. The equality follows from Theorem 3.2; for the inequality, expand in eigenvectors of A and conclude the result \square

Rate of Convergence

- Exercise 6: Prove that, if A has only k distinct eigenvalues, the the CG method converges in at most k steps

Theorem 3.4: Rate of convergence

The error $e^{(k)}$ at the k-th iteration (with $k<n$) is orthogonal to $p^{(j)}, j=0, \ldots, k-1$, and
$\left\|e^{(k)}\right\|_{A} \leqslant \frac{2 c^{k}}{1+c^{2 k}}\left\|e^{(0)}\right\|_{A} \leqslant 2 c^{k}\left\|e^{(0)}\right\|_{A}, \quad$ with $c=\frac{\sqrt{K_{2}(A)}-1}{\sqrt{K_{2}(A)}+1}$.

- Note that

$$
\frac{\sqrt{K_{2}(A)}-1}{\sqrt{K_{2}(A)}+1} \sim 1-\frac{2}{\sqrt{K_{2}(A)}},
$$

and the convergence to a specified tolerance can be expected in $\mathcal{O}\left(\sqrt{K_{2}(A)}\right)$ iterations.

Some Remarks

- CG was proposed by Hestenes and Stiefel in 1952 as a direct method
- For systems with matrices of large size, CG is usually employed as an iterative method
- The dependence of the error reduction factor on the condition number of the matrix is more favourable when compared with the steepest descent method
- We have derived only an upper bound for the error; the convergence may be faster

Preconditioned Conjugate Gradient (PCG) Method

- If P is SPD (preconditioning matrix)

$$
P^{-1 / 2} A P^{1 / 2} y=P^{-1 / 2} b, \quad y=P^{1 / 2} x
$$

- Not explicitly require the computation of $P^{1 / 2}$ or $P^{-1 / 2}$
- Algorithm: Preconditioned Conjugate Gradient Method $x^{(0)}$ and P given; $r^{(0)}=b-A x^{(0)} ; z^{(0)}=P^{-1} r^{(0)} ; p^{(0)}=r^{(0)}$ for $k=0,1, \ldots$

$$
\begin{array}{ll}
\alpha_{k}=\frac{p^{(k)^{T}} r^{(k)}}{p^{(k)^{T} A p^{(k)}}} & \text { \% step lenght } \\
x^{(k+1)}=x^{(k)}+\alpha_{k} p^{(k)} & \text { \% update solution } \\
r^{(k+1)}=r^{(k)}-\alpha_{k} A p^{(k)} & \text { \% update residual } \\
P_{z}^{(k+1)}=r^{(k+1)} & \text { \% update residual } \\
\beta_{k}=\frac{\left(A p^{(k)}\right)^{T} z^{(k+1)}}{\left(A p^{(k)}\right)^{T} p^{(k)}} & \text { \% improvement this step } \\
p^{(k+1)}=z^{(k+1)}-\beta_{k} p^{(k)} & \% \text { search direction }
\end{array}
$$

until convergence

Homework Exercises

- Exercise $7(*)$: Let $A \in \mathbb{R}^{805 \times 805}$ matrix with eigenvalues 1.00 , 1.01, 1.02, ..., 8.98. 8.99, 9.00 and also 10, 12, 16, 24. How many steps CG must take to be sure of reducing of $\left\|e^{(0)}\right\|_{A}$ by a factor 10^{6} ?
- Exercise 8: The CG is applied to a SPD matrix A with results $\left\|e^{(0)}\right\|_{A}=1,\left\|e^{(10)}\right\|_{A}=2 \times 2^{-10}$. Based solely on this data, what bound can you give for $K_{2}(A)$ and $\left\|e^{(20)}\right\|_{A}$?
- Exercise 9: Let $A \in \mathbb{R}^{100 \times 100}$ tridiagonal SPD matrix with 1 , $2, \ldots, 100$ on the diagonal and 1 on the sub/super-diagonals, and set $b=(1,1, \ldots, 1)^{T}$. Write a program that takes 100 steps of CG and the steepest descent (SD) iterations to approximately solve $A x=b$. Produce a plot with four curves: the computed residual $\left\|r^{(k)}\right\|_{2}$ for CG, the actual residual $\left\|b-A x^{(k)}\right\|$ for CG, the residual $\left\|r^{(k)}\right\|_{2}$ for SD, and the estimate $2 c^{k}$ of Theorem 3.4. Comment on the results.

