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Krylov Subspace

» Consider the Krylov subspace of order k,

Ke(Aiv) = (v, Av,.... A1y

Theorem 4.1

Let A€ R™" and v € R". The Krylov subspace Kk (A; b) has

dimension equal to k iff the degree of v with respect to A is not
less than k.

» The degree of v is defined as the minimum degree of a monic
non null polynomial p in A, for which p(A)v =0




Richardson Method (P = 1)
> Algorithm: Richardson Method (P = 1)

x© =0; r0 = p— AxO) = p
for k=0,1,...
solve [z(K) = r(K)
compute oy
xk+1) = x(k) 4 z(K)
r(k+1) = (k) — o AZ(K)
until convergence
» Residual at the k-th step
k—1
r = T]0-aA)b = r% = p(A)be Ky,
Jj=0
where py(A) is a polynomial in A of degree k
» The iterate x(K)

k—1 k—1
xF) =0+ Z ozjr(j) = Z ajr(j) = qx—1(A)b € Kk
=0 j=0

Krylov Subspace Methods
» Goal: Search for approximate solutions of the form

x50 = g _1(A)b,

such that x(¥) be the best approximation of x (exact solution
of Ax = b) in Kk

» Two alternative strategies

> FOM (Full Orthogonalization Method) or Arnoldi method
Compute x*) € K such that the residual r®) L Ky, i.e.,

vi(b— AxM)) =0, VYveK,

» GMRES method (Generalized Minimum RESidual method)

Compute x9) € K, minimizing ||r(®|,, i.e.,

|b— Ax¥) [, = min |b— Av|,
VG’Ck

> (Preliminary) Goal: Compute an orthogonal basis of Iy




Arnoldi Iteration

The Arnoldi lteration

» For a fixed k it is possible to compute an orthogonal basis for
ICk using the so-called Arnoldi algorithm.

» The Arnoldi process reduces a general, nonsymmetric A to
Hessenberg form by similarity transforms: A = QHQT

» Allows for reduced factorizations by a Gram-Schmidt-style
iteration instead of Householder reflections

» Let @, be the n x k matrix with the first k columns of @, and
consider the first m columns of AQ = QH, or AQx = Q11 Hx

hi1 -+ hik

ho1
A qi1 | - | gk — qi1 | - | Gk+1

hey1k




Hessenberg Matrix

» H, € R¥*K is an upper Hessenberg matrix if

ho1 hoo
Hk - } ) . )

hek—1 hek |

> The matrix H, € RTD*K i such that

[ h1 hi2 hik
ha1 hoo

I
=
I
5>
<
|
X
"~
>
S

hek—1  huk
hev1k

> Note that Hy = QT AQx = Fli.x.1.4

The Arnoldi Algorithm
» The k-th column of AQy = Qk+1I:Ik gives

Aqk = hikqr + - + hik Qi + hi1 kGr+1

which can be used to compute g, 1 similarly to modified GS

> Algorithm: Arnoldi lteration > Algorithm: Gram-Schmidt
b arbitrary; g1 = b/|b|
for k =1,2,... for k =1 to ndo
v = Aqgx vV = ak
for i =1 to k do fori=1to k—1do
hix =gl v rik = q; ai (CGS)
v =v— hyq; {rik = g/ v (MGS)
end for end forv = VT ki
hisi6 = [[v]2 ek = | vil2
Qr+1 = V/ g1k qk = V/rk
end for end for

» Exercise 1: What if g; happens to be an eigenvector of A?




QR Factorization of Krylov Matrix

> The vectors g; from Arnoldi are orthonormal bases of the
successive Krylov subspaces

Ki = Ki(A;b) = (b,Ab,...,AIbY = (q1,q0,...,qc) = R"

» Qi € R™k is the reduced QR factorization K, = QxR of the
Krylov matrix

Ab | --- | Aktlp

=
||
(op

» The projection of A onto this space gives k x k Hessenberg
matrix H, = QkTAQk, whose eigenvalues may be good
approximations of A's

Symmetric Matrices and the Lanczos Iteration ()

» For symmetric A, H) reduces to tridiagonal Ty, and gk, 1 can
be computed by a three-term recurrence:

Agk = Bk—19k—1 + akqk + Brqk+1

» Algorithm: Lanczos lteration

Bo =0; qo = 0; b arbitrary; g1 = b/| b|

fork=1,2,...
v = Agy
Q) = qkTv
V=V—Br_1qk—1 — qxk
Bi = |lv2
Jk+1 = v/ Bk

end for




Properties of Arnoldi and Lanczos Iterations ()

» Eigenvalues of Hy (or Ty in Lanczos iterations) are called Ritz
values

» When k = n, Ritz values are eigenvalues

» Even for k « n, Ritz values are often accurate approximations
to eigenvalues of A

» For symmetric matrices with evenly spaced eigenvalues, Ritz
values tend to first convert to extreme eigenvalue

» With rounding errors, Lanczos iteration can suffer from loss of
orthogonality and can in turn lead to spurious "ghost”
eigenvalues.

FOM or Arnoldi for Linear Systems




FOM / Arnoldi Method for Linear Systems

» Full Orthogonalization Method: iterative method for Ax = b
» Compute x(K) ¢ ICx such that r(k) | Kk, i.e.,
virk) — vT(b— AxK)) =0, Vve Ky

» Considering x(%) e K, we may write x(k) = Q,y where y is
such that r(& 1 K,

Qe r = Qf (b~ AQuy) = Qb — Q AQey =0
» Due to the orthonormality of the basis we have
Q! b = |b|2e1, (e is the first unit vector in R¥)
and Hy, = QkTAQk, we have
Qlb— Q[ ARy =0 < Hy = |b|2er
» The system can be easily solved (Hy is upper Hessenberg)

x®) = Quy

FOM / Arnoldi Method for Linear Systems

Theorem 4.2

In exact arithmetic, the Arnoldi method yields the solution of
Ax = b after at most n iterations. Moreover, if a breakdown
occurs after k < n iterations, x(kK) = x.

» Proof: Since K, = R”", if the method terminates at the n-th
iteration, then x(N) = x.
Conversely, from the relations

QUAQk = Hi, QIAQy = Q(b and x = Qyy,
if a breakdown occurs after k < n iterations, we get

xK = QH Q[ b=A"1b=x. O




FOM Algorithm
» Algorithm: FOM

b arbitrary; g1 = b/| b||
fork=1,2,...
( step k of Arnoldi iteration )
Solve Hry = |b|2€1
x5k = Quy
until convergence

» The residual is available by
|b—AxR)|5 = hyyrilel v
» Stopping criteria: for a fixed tolerance €

ex yl/Ibl2 < e

hii1,k

» Exercise 2: Implement the previous algorithm to solve the
linear system Ax = b with A = tridiag;gg(—1,2,—1) and b
such that the solution is x = 1. The initial vector is x(©) = 0
and € = 1e — 10. Plot |r®)|/|b|2 as a function of k.

Arnoldi Iteration Breakdown

» Exercise 3: Suppose that the Arnoldi algorithm is executed for
a particular A and b until at some step k, an entry hyi 1, =0
Is encountred.

(a) Show that AQx = Qk+1I:Ik can be symplified in this case.
What does it imply about the structure of a full n x n
Hessembeg reduction A = QHQT of A?

(b) Show that Ky is an invariant subspace of A, i.e., AKx < K.
(c) Show that IOy = Kgi1 = Kyyo =---.

(d) Show that each eigenvalue of Hy is an eigenvalue of A.

(e) Show that if A is nonsingular, then the solution x of Ax = b

lies in ICy.

> The appearence of any entry hy 1 « is called a breakdown of
the Arnoldi interation




GMRES

Minimizing Residuals

v

Generalized Minimal RESiduals: iterative method for Ax = b

v

Find x(k) = Kry € K that minimizes Hr(k) |2 =|b— Ax(k) |2

v

This is a least squares problem: Find a vector y such that
|AKky — b|2 = minimum

where Ky is the n x k Krylov matrix

v

QR factorization can us to solve for y, and x(¥) = Ky

v

In practice the columns of K are ill-conditioned and an
orthogonal basis is used instead, produced by Arnoldi iteration




Minimal Residual with Orthogonal Basis

» Set x(K) = Quy (orthogonal columns of Qx span Kj) and solve

|IAQky — b|2 = minimum

v

Find x(5) € K\ that minimizes ||r(®|, = |b — Ax¥) |,

v

Since for the Arnoldi iteration AQ, = QkHI:Ik

HQk+1/:/ky — b|j2 = minimum

v

Left multiplication by QkT+1 does not change the norm (since
both vectors are in the column space of Qx.1)

H/:Iky — QkTHsz = minimum

v

Finally, it is clear that Q] ;b = |b|2e;

| Ay — |b|2€1]2 = minimum

The GMRES Method

» Algorithm: GMRES

b arbitrary; g1 = b/| b||

fork=1,2,...
( step k of Arnoldi iteration )
Find y to minimize ||Hxy — ||b|l2e12
xk) = Quy

until convergence

> The residual [r(%¥)], does not need to be computed explicitly
from x(k)

» Least squares problem has Hessenberg structure, solve with
QR factorization of Hy (computed by updating the
factorization of Hy_1)

» Memory and cost grow with k: restart the algorithm by
clearing accumulated data (might stagnate the method)




Convergence of GMRES

Theorem 4.3

A breakdown occurs for the GMRES method at a step k (with
k < n) iff the computed solution x(k) coincides with the exact
solution to the system.

» Exercise 4: The recurrence
xFD) = x () a0 = x(K) (b — Ax(F),

where « is a scalar constant is the Richardson iteration. What
polynomial p(A) at step k does this correspond to?

» Exercise 5: Our statement of the GMRES begins with the
initial guest x(® =0, r(® = p. Show that if one wishes to
start an arbitrary initial guess x(©), this can be accomplished
by an easy modification of the right-hand side b.

GMRES and Polynomial Approximation

» GMRES can be interpreted as the related approximation
problem: find px € Py, where

P, = {polynomial p of degree < k with p(0) = 1},
to minimize | px(A)b|2.
> The iterate x(k) can be written as
x5 = qu_1(A)b,
where g is a polynomial of degree kK — 1
> The corresponding residual r6) = p — Ax(K) s

% = (I — Age_1(A))b = px(A)b




Convergence of GMRES

» Two obvious observations based on the minimization in ICy:
GMRES converges monotonically and it converges after at
most n steps,

[ )2 < 92 and P2 = 0.

This will happen because IC,, = R".
> The residual [r®) |2 = |pk(A)b|2, where pi € Py is a degree k
polynomial with p(0) = 1, so GMRES also finds a minimizing
polynomial
|pk(A)b|2 = minimum
» The factor that determines the size of this quantity is usually
Ipk(A)|2, that is

|r0 ]2
|b]2

» Exercise 6: Repeat Exercise 2 for the GMRES method.

< inf |oe(A)l.
Pk€E Pk

Convergence of GMRES

» How small can |px(A)|2 be?

» If A is diagonalizable A = VAV ™! for some nonsingular
matrix A

Ip(A)l2 < [VI2lp(N) 2] V2 = Ka(V) | Placay.

being ||pl[aca) = suPxen(a) [P(N)]
Theorem 4.4

At the step k of the GMRES iteration, the residual r(¥) satisfies

[ :
< inf Alll2 < k(V) inf :
HbH2 Hpk( )H2 ( ) P, HpkH/\(A)

Pk€E Py

» In other words: If A has well-conditioned eigenvectors, the
convergence is based on how small polynomials py can be on
the spectrum




Other Krylov Subspace Methods

Other Krylov Subspace Methods

» CG on the Normal Equations (CGN)
» Solve A*Ax = A*b using CG
» Poor convergence, squared condition number
K(A*A) = K(A)?
» BiConjugate Gradients (BiCG)
» Makes residuals orthogonal to another Krylov subspace, based
on A*
» Memory requirements only constant number of vectors
» Convergence sometimes comparable to GMRES, but
unpredictable
» Conjugate Gradients Squared (CGS)
> Avoids multiplication by A*, sometimes twice as fast
convergence
> Quasi-Minimal Residuals (QMR) and Stabilized BiCG
(Bi-CGSTAB)

» Variants of BiCG with more regular convergence




