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Krylov Subspace

§ Consider the Krylov subspace of order k ,

KkpA; vq “ xv ,Av , . . . ,Ak´1
vy

Theorem 4.1

Let A P Rnˆn and v P Rn. The Krylov subspace KkpA; bq has
dimension equal to k i↵ the degree of v with respect to A is not
less than k .

§ The degree of v is defined as the minimum degree of a monic
non null polynomial p in A, for which ppAqv “ 0



Richardson Method (P “ I )
§ Algorithm: Richardson Method (P “ I )

x
p0q “ 0; r p0q “ b ´ Ax

p0q “ b

for k “ 0, 1, . . .
solve I z

pkq “ r
pkq

compute ↵k

x
pk`1q “ x

pkq ` ↵kz
pkq

r
pk`1q “ r

pkq ´ ↵kAz
pkq

until convergence
§ Residual at the k-th step

r
pkq “

k´1π

j“0

pI ´ ↵jAqb ñ r
pkq “ pkpAqb P Kk`1,

where pkpAq is a polynomial in A of degree k

§ The iterate x
pkq

x
pkq “ 0 `

k´1ÿ

j“0

↵j r
pjq “

k´1ÿ

j“0

↵j r
pjq “ qk´1pAqb P Kk

Krylov Subspace Methods
§ Goal: Search for approximate solutions of the form

x
pkq “ qk´1pAqb,

such that x pkq be the best approximation of x (exact solution
of Ax “ b) in Kk

§ Two alternative strategies

§ FOM (Full Orthogonalization Method) or Arnoldi method

Compute x
pkq P Kk such that the residual r pkq K Kk , i.e.,

v
T pb ´ Ax

pkqq “ 0, @v P Kk

§ GMRES method (Generalized Minimum RESidual method)

Compute x
pkq P Kk minimizing }r pkq}2, i.e.,

}b ´ Ax
pkq}2 “ min

vPKk

}b ´ Av}2

§ (Preliminary) Goal: Compute an orthogonal basis of Kk



Arnoldi Iteration

The Arnoldi Iteration

§ For a fixed k it is possible to compute an orthogonal basis for
Kk using the so-called Arnoldi algorithm.

§ The Arnoldi process reduces a general, nonsymmetric A to
Hessenberg form by similarity transforms: A “ QHQ

T

§ Allows for reduced factorizations by a Gram-Schmidt-style
iteration instead of Householder reflections

§ Let Qn be the n ˆ k matrix with the first k columns of Q, and
consider the first m columns of AQ “ QH, or AQk = Qk`1Ĥk

A

»

———–
q1 ¨ ¨ ¨ qk

fi

���fl “

»

———–
q1 ¨ ¨ ¨ qk`1

fi

���fl

»

———–

h11 ¨ ¨ ¨ h1k

h21

. . .
...

hk`1,k

fi

���fl



Hessenberg Matrix

§ Hk P Rkˆk is an upper Hessenberg matrix if

Hk “

»

———–

h11 h12 . . . h1k

h21 h22
. . .

. . .
...

hk,k´1 hkk

fi

���fl ,

§ The matrix Ĥk P Rpk`1qˆk is such that

Ĥk “

»

—————–

h11 h12 . . . h1k

h21 h22
. . .

. . .
...

hk,k´1 hkk

hk`1,k

fi

�����fl
, hij “ q

T

i Aqj

§ Note that Hk “ Q
T

k
AQk “ Ĥ1:k,1:k

The Arnoldi Algorithm
§ The k-th column of AQk “ Qk`1Ĥk gives

Aqk “ h1kq1 ` ¨ ¨ ¨ ` hkkqk ` hk`1,kqk`1

which can be used to compute qk`1 similarly to modified GS

§ Algorithm: Arnoldi Iteration

b arbitrary; q1 “ b{}b}
for k “ 1, 2, . . .

v “ Aqk

for i “ 1 to k do

hik “ q
T

i
v

v “ v ´ hikqi

end for

hk`1,k “ }v}2
qk`1 “ v{hk`1,k

end for

§ Algorithm: Gram-Schmidt

%For orthonormalize ta1, ..., anu
for k “ 1 to n do

v “ ak

for i “ 1 to k ´ 1 do"
rik “ q

T

i
ak (CGS)

rik “ q
T

i
v (MGS)

v “ v ´ rikqi
end for
rkk “ }v}2
qk “ v{rkk

end for

§ Exercise 1: What if q1 happens to be an eigenvector of A?



QR Factorization of Krylov Matrix

§ The vectors qj from Arnoldi are orthonormal bases of the
successive Krylov subspaces

Kk “ KkpA; bq “ xb,Ab, . . . ,Ak´1
by “ xq1, q2, . . . , qky Ñ Rn

§ Qk P Rnˆk is the reduced QR factorization Kk “ QkRk of the
Krylov matrix

Kk “

»

———–
b Ab ¨ ¨ ¨ A

k`1
b

fi

���fl

§ The projection of A onto this space gives k ˆ k Hessenberg
matrix Hk “ Q

T

k
AQk , whose eigenvalues may be good

approximations of A’s

Symmetric Matrices and the Lanczos Iteration (˚)

§ For symmetric A, Hk reduces to tridiagonal Tk , and qk`1 can
be computed by a three-term recurrence:

Aqk “ �k´1qk´1 ` ↵kqk ` �kqk`1

§ Algorithm: Lanczos Iteration

�0 “ 0; q0 “ 0; b arbitrary; q1 “ b{}b}
for k “ 1, 2, . . .

v “ Aqk

↵k “ q
T

k
v

v “ v ´ �k´1qk´1 ´ ↵kqk

�k “ }v}2
qk`1 “ v{�k

end for



Properties of Arnoldi and Lanczos Iterations (˚)

§ Eigenvalues of Hk (or Tk in Lanczos iterations) are called Ritz
values

§ When k “ n, Ritz values are eigenvalues

§ Even for k ! n, Ritz values are often accurate approximations
to eigenvalues of A

§ For symmetric matrices with evenly spaced eigenvalues, Ritz
values tend to first convert to extreme eigenvalue

§ With rounding errors, Lanczos iteration can su↵er from loss of
orthogonality and can in turn lead to spurious ”ghost”
eigenvalues.

FOM or Arnoldi for Linear Systems



FOM / Arnoldi Method for Linear Systems
§ Full Orthogonalization Method: iterative method for Ax “ b

§ Compute x
pkq P Kk such that r pkq K Kk , i.e.,

v
T
r

pkq “ v
T pb ´ Ax

pkqq “ 0, @v P Kk

§ Considering x
pkq P Kk , we may write x

pkq “ Qky where y is
such that r pkq K Kk

Q
T

k
r

pkq “ Q
T

k
pb ´ AQkyq “ Q

T

k
b ´ Q

T

k
AQky “ 0

§ Due to the orthonormality of the basis we have

Q
T

k
b “ }b}2e1, (e1 is the first unit vector in Rk)

and Hk “ Q
T

k
AQk , we have

Q
T

k
b ´ Q

T

k
AQky “ 0 ô Hky “ }b}2e1

§ The system can be easily solved (Hk is upper Hessenberg)

x
pkq “ Qky

FOM / Arnoldi Method for Linear Systems

Theorem 4.2

In exact arithmetic, the Arnoldi method yields the solution of
Ax “ b after at most n iterations. Moreover, if a breakdown
occurs after k † n iterations, x pkq “ x .

§ Proof: Since Kn “ Rn, if the method terminates at the n-th
iteration, then x

pnq “ x .
Conversely, from the relations

Q
T

k
AQk “ Hk , Q

T

k
AQky “ Q

T

k
b and x

pkq “ Qky ,

if a breakdown occurs after k † n iterations, we get

x
pkq “ QkH

´1
k

Q
T

k
b “ A

´1
b “ x . l



FOM Algorithm
§ Algorithm: FOM

b arbitrary; q1 “ b{}b}
for k “ 1, 2, . . .

x step k of Arnoldi iteration y
Solve Hky “ }b}2e1
x

pkq “ Qky

until convergence

§ The residual is available by

}b ´ Ax
pkq}2 “ hk`1,k |eT

k
y |

§ Stopping criteria: for a fixed tolerance ✏

hk`1,k |eT
k
y |{}b}2 § ✏

§ Exercise 2: Implement the previous algorithm to solve the
linear system Ax “ b with A “ tridiag100p´1, 2, ´1q and b

such that the solution is x “ 1. The initial vector is x p0q “ 0
and ✏ “ 1e ´ 10. Plot }r pkq}2{}b}2 as a function of k .

Arnoldi Iteration Breakdown

§ Exercise 3: Suppose that the Arnoldi algorithm is executed for
a particular A and b until at some step k , an entry hk`1,k “ 0
is encountred.
(a) Show that AQk “ Qk`1Ĥk can be symplified in this case.

What does it imply about the structure of a full n ˆ n

Hessembeg reduction A “ QHQ
T of A?

(b) Show that Kk is an invariant subspace of A, i.e., AKk Ñ Kk .

(c) Show that Kk “ Kk`1 “ Kk`2 “ ¨ ¨ ¨ .
(d) Show that each eigenvalue of Hk is an eigenvalue of A.

(e) Show that if A is nonsingular, then the solution x of Ax “ b

lies in Kk .

§ The appearence of any entry hk`1,k is called a breakdown of
the Arnoldi interation



GMRES

Minimizing Residuals

§ Generalized Minimal RESiduals: iterative method for Ax “ b

§ Find x
pkq “ Kky P Kk that minimizes }r pkq}2 “ }b ´ Ax

pkq}2
§ This is a least squares problem: Find a vector y such that

}AKky ´ b}2 “ minimum

where Kk is the n ˆ k Krylov matrix

§ QR factorization can us to solve for y , and x
pkq “ Kky

§ In practice the columns of Kk are ill-conditioned and an
orthogonal basis is used instead, produced by Arnoldi iteration



Minimal Residual with Orthogonal Basis

§ Set x pkq “ Qky (orthogonal columns of Qk span Kk) and solve

}AQky ´ b}2 “ minimum

§ Find x
pkq P Kk that minimizes }r pkq}2 “ }b ´ Ax

pkq}2
§ Since for the Arnoldi iteration AQk “ Qk`1Ĥk

}Qk`1Ĥky ´ b}2 “ minimum

§ Left multiplication by Q
T

k`1 does not change the norm (since
both vectors are in the column space of Qk`1)

}Ĥky ´ Q
T

k`1b}2 “ minimum

§ Finally, it is clear that QT

k`1b “ }b}2e1

}Ĥky ´ }b}2e1}2 “ minimum

The GMRES Method

§ Algorithm: GMRES

b arbitrary; q1 “ b{}b}
for k “ 1, 2, . . .

x step k of Arnoldi iteration y
Find y to minimize }Ĥky ´ }b}2e1}2
x

pkq “ Qky

until convergence

§ The residual }r pkq}2 does not need to be computed explicitly
from x

pkq

§ Least squares problem has Hessenberg structure, solve with
QR factorization of Ĥk (computed by updating the
factorization of Ĥk´1)

§ Memory and cost grow with k : restart the algorithm by
clearing accumulated data (might stagnate the method)



Convergence of GMRES

Theorem 4.3

A breakdown occurs for the GMRES method at a step k (with
k † n) i↵ the computed solution x

pkq coincides with the exact
solution to the system.

§ Exercise 4: The recurrence

x
pk`1q “ x

pkq ` ↵r pkq “ x
pkq ` ↵pb ´ Ax

pkqq,

where ↵ is a scalar constant is the Richardson iteration. What
polynomial ppAq at step k does this correspond to?

§ Exercise 5: Our statement of the GMRES begins with the
initial guest x p0q “ 0, r p0q “ b. Show that if one wishes to
start an arbitrary initial guess x p0q, this can be accomplished
by an easy modification of the right-hand side b.

GMRES and Polynomial Approximation

§ GMRES can be interpreted as the related approximation
problem: find pk P Pk , where

Pk “ tpolynomial p of degree § k with pp0q “ 1u,

to minimize }pkpAqb}2.
§ The iterate x

pkq can be written as

x
pkq “ qk´1pAqb,

where q is a polynomial of degree k ´ 1

§ The corresponding residual r pkq “ b ´ Ax
pkq is

r
pkq “ pI ´ Aqk´1pAqqb “ pkpAqb



Convergence of GMRES
§ Two obvious observations based on the minimization in Kk :
GMRES converges monotonically and it converges after at
most n steps,

}r pk`1q}2 § }r pkq}2 and }r pnq}2 “ 0.

This will happen because Kn “ Rn.

§ The residual }r pkq}2 “ }pkpAqb}2, where pk P Pk is a degree k

polynomial with pp0q “ 1, so GMRES also finds a minimizing
polynomial

}pkpAqb}2 “ minimum

§ The factor that determines the size of this quantity is usually
}pkpAq}2, that is

}r pkq}2
}b}2

§ inf
pkPPk

}pkpAq}2.

§ Exercise 6: Repeat Exercise 2 for the GMRES method.

Convergence of GMRES
§ How small can }pkpAq}2 be?

§ If A is diagonalizable A “ V⇤V´1 for some nonsingular
matrix ⇤

}ppAq}2 § }V }2}pp⇤q}2}V´1}2 “ K2pV q}p}⇤pAq,

being }p}⇤pAq “ sup�P⇤pAq |pp�q|

Theorem 4.4

At the step k of the GMRES iteration, the residual r pkq satisfies

}r pkq}2
}b}2

§ inf
pkPPk

}pkpAq}2 § kpV q inf
pkPPk

}pk}⇤pAq.

§ In other words: If A has well-conditioned eigenvectors, the
convergence is based on how small polynomials pk can be on
the spectrum



Other Krylov Subspace Methods

Other Krylov Subspace Methods

§ CG on the Normal Equations (CGN)
§ Solve A

˚
Ax “ A

˚
b using CG

§ Poor convergence, squared condition number
K pA˚

Aq “ K pAq2
§ BiConjugate Gradients (BiCG)

§ Makes residuals orthogonal to another Krylov subspace, based
on A

˚
§ Memory requirements only constant number of vectors
§ Convergence sometimes comparable to GMRES, but

unpredictable

§ Conjugate Gradients Squared (CGS)
§ Avoids multiplication by A

˚, sometimes twice as fast
convergence

§ Quasi-Minimal Residuals (QMR) and Stabilized BiCG
(Bi-CGSTAB)

§ Variants of BiCG with more regular convergence


