## Lecture 4

# Arnoldi and GMRES 

## Computational Mathematics

## Adérito Araújo (alma@mat.uc.pt)

February 26, 2024

## Krylov Subspace

- Consider the Krylov subspace of order $k$,

$$
\mathcal{K}_{k}(A ; v)=\left\langle v, A v, \ldots, A^{k-1} v\right\rangle
$$

## Theorem 4.1

Let $A \in \mathbb{R}^{n \times n}$ and $v \in \mathbb{R}^{n}$. The Krylov subspace $\mathcal{K}_{k}(A ; b)$ has dimension equal to $k$ iff the degree of $v$ with respect to $A$ is not less than $k$.

- The degree of $v$ is defined as the minimum degree of a monic non null polynomial $p$ in $A$, for which $p(A) v=0$


## Richardson Method ( $P=I$ )

- Algorithm: Richardson Method $(P=I)$

$$
x^{(0)}=0 ; r^{(0)}=b-A x^{(0)}=b
$$

for $k=0,1, \ldots$

$$
\begin{aligned}
& \text { solve } I z^{(k)}=r^{(k)} \\
& \text { compute } \alpha_{k} \\
& x^{(k+1)}=x^{(k)}+\alpha_{k} z^{(k)} \\
& r^{(k+1)}=r^{(k)}-\alpha_{k} A z^{(k)}
\end{aligned}
$$

until convergence

- Residual at the $k$-th step

$$
r^{(k)}=\prod_{j=0}^{k-1}\left(I-\alpha_{j} A\right) b \quad \Rightarrow \quad r^{(k)}=p_{k}(A) b \in \mathcal{K}_{k+1},
$$

where $p_{k}(A)$ is a polynomial in $A$ of degree $k$

- The iterate $x^{(k)}$

$$
x^{(k)}=0+\sum_{j=0}^{k-1} \alpha_{j} r^{(j)}=\sum_{j=0}^{k-1} \alpha_{j} r^{(j)}=q_{k-1}(A) b \in \mathcal{K}_{k}
$$

## Krylov Subspace Methods

- Goal: Search for approximate solutions of the form

$$
x^{(k)}=q_{k-1}(A) b,
$$

such that $x^{(k)}$ be the best approximation of $x$ (exact solution of $A x=b$ ) in $\mathcal{K}_{k}$

- Two alternative strategies
- FOM (Full Orthogonalization Method) or Arnoldi method Compute $x^{(k)} \in \mathcal{K}_{k}$ such that the residual $r^{(k)} \perp \mathcal{K}_{k}$, i.e.,

$$
v^{\top}\left(b-A x^{(k)}\right)=0, \quad \forall v \in \mathcal{K}_{k}
$$

- GMRES method (Generalized Minimum RESidual method) Compute $x^{(k)} \in \mathcal{K}_{k}$ minimizing $\left\|r^{(k)}\right\|_{2}$, i.e.,

$$
\left\|b-A x^{(k)}\right\|_{2}=\min _{v \in \mathcal{K}_{k}}\|b-A v\|_{2}
$$

- (Preliminary) Goal: Compute an orthogonal basis of $\mathcal{K}_{k}$


## Arnoldi Iteration

## The Arnoldi Iteration

- For a fixed $k$ it is possible to compute an orthogonal basis for $\mathcal{K}_{k}$ using the so-called Arnoldi algorithm.
- The Arnoldi process reduces a general, nonsymmetric $A$ to Hessenberg form by similarity transforms: $A=Q H Q^{T}$
- Allows for reduced factorizations by a Gram-Schmidt-style iteration instead of Householder reflections
- Let $Q_{n}$ be the $n \times k$ matrix with the first $k$ columns of $Q$, and consider the first $m$ columns of $A Q=Q H$, or $A Q_{k}=Q_{k+1} \hat{H}_{k}$

$$
A\left[\begin{array}{l|l|l}
q_{1} & \cdots & q_{k} \\
& &
\end{array}\right]=\left[\begin{array}{l|l|l}
q_{1} & \cdots & q_{k+1} \\
& &
\end{array}\right]\left[\begin{array}{ccc}
h_{11} & \cdots & h_{1 k} \\
h_{21} & & \\
& \ddots & \vdots \\
& & h_{k+1, k}
\end{array}\right]
$$

## Hessenberg Matrix

- $H_{k} \in \mathbb{R}^{k \times k}$ is an upper Hessenberg matrix if

$$
H_{k}=\left[\begin{array}{cccc}
h_{11} & h_{12} & \ldots & h_{1 k} \\
h_{21} & h_{22} & & \\
& \ddots & \ddots & \vdots \\
& & h_{k, k-1} & h_{k k}
\end{array}\right]
$$

- The matrix $\hat{H}_{k} \in \mathbb{R}^{(k+1) \times k}$ is such that

$$
\hat{H}_{k}=\left[\begin{array}{cccc}
h_{11} & h_{12} & \ldots & h_{1 k} \\
h_{21} & h_{22} & & \\
& \ddots & \ddots & \vdots \\
& & h_{k, k-1} & h_{k k} \\
& & & h_{k+1, k}
\end{array}\right], \quad h_{i j}=q_{i}^{T} A q_{j}
$$

- Note that $H_{k}=Q_{k}^{T} A Q_{k}=\hat{H}_{1: k, 1: k}$


## The Arnoldi Algorithm

- The $k$-th column of $A Q_{k}=Q_{k+1} \hat{H}_{k}$ gives

$$
A q_{k}=h_{1 k} q_{1}+\cdots+h_{k k} q_{k}+h_{k+1, k} q_{k+1}
$$

which can be used to compute $q_{k+1}$ similarly to modified GS

- Algorithm: Arnoldi Iteration
$b$ arbitrary; $q_{1}=b /\|b\|$
for $k=1,2, \ldots$
$v=A q_{k}$
for $i=1$ to $k$ do
$h_{i k}=q_{i}^{T} v$
$v=v-h_{i k} q_{i}$
end for
$h_{k+1, k}=\|v\|_{2}$
$q_{k+1}=v / h_{k+1, k}$
end for
- Algorithm: Gram-Schmidt \% For orthonormalize $\left\{a_{1}, \ldots, a_{n}\right\}$
for $k=1$ to $n$ do

$$
v=a_{k}
$$

$$
\text { for } i=1 \text { to } k-1 \text { do }
$$

$$
\left\{\begin{array}{l}
r_{i k}=q_{i}^{T} a_{k}(\mathrm{CGS}) \\
r_{i k}=q_{i}^{T} V(\mathrm{MGS})
\end{array}\right.
$$

end for $v=v-r_{i k} q_{i}$
$r_{k k}=\|v\|_{2}$

$$
q_{k}=v / r_{k k}
$$

end for

- Exercise 1: What if $q_{1}$ happens to be an eigenvector of $A$ ?


## QR Factorization of Krylov Matrix

- The vectors $q_{j}$ from Arnoldi are orthonormal bases of the successive Krylov subspaces

$$
\mathcal{K}_{k}=\mathcal{K}_{k}(A ; b)=\left\langle b, A b, \ldots, A^{k-1} b\right\rangle=\left\langle q_{1}, q_{2}, \ldots, q_{k}\right\rangle \subseteq \mathbb{R}^{n}
$$

- $Q_{k} \in \mathbb{R}^{n \times k}$ is the reduced $Q R$ factorization $K_{k}=Q_{k} R_{k}$ of the Krylov matrix

$$
K_{k}=\left[\begin{array}{l|l|l|l}
b & A b & \cdots & A^{k+1} b \\
& & &
\end{array}\right]
$$

- The projection of $A$ onto this space gives $k \times k$ Hessenberg matrix $H_{k}=Q_{k}^{T} A Q_{k}$, whose eigenvalues may be good approximations of $A^{\prime}$ s


## Symmetric Matrices and the Lanczos Iteration (*)

- For symmetric $A, H_{k}$ reduces to tridiagonal $T_{k}$, and $q_{k+1}$ can be computed by a three-term recurrence:

$$
A q_{k}=\beta_{k-1} q_{k-1}+\alpha_{k} q_{k}+\beta_{k} q_{k+1}
$$

- Algorithm: Lanczos Iteration

$$
\beta_{0}=0 ; q_{0}=0 ; b \text { arbitrary; } q_{1}=b /\|b\|
$$

for $k=1,2, \ldots$

$$
\begin{aligned}
& v=A q_{k} \\
& \alpha_{k}=q_{k}^{T} v \\
& v=v-\beta_{k-1} q_{k-1}-\alpha_{k} q_{k} \\
& \beta_{k}=\|v\|_{2} \\
& q_{k+1}=v / \beta_{k}
\end{aligned}
$$

end for

## Properties of Arnoldi and Lanczos Iterations (*)

- Eigenvalues of $H_{k}$ (or $T_{k}$ in Lanczos iterations) are called Ritz values
- When $k=n$, Ritz values are eigenvalues
- Even for $k \ll n$, Ritz values are often accurate approximations to eigenvalues of $A$
- For symmetric matrices with evenly spaced eigenvalues, Ritz values tend to first convert to extreme eigenvalue
- With rounding errors, Lanczos iteration can suffer from loss of orthogonality and can in turn lead to spurious "ghost" eigenvalues.


## FOM / Arnoldi Method for Linear Systems

- Full Orthogonalization Method: iterative method for $A x=b$
- Compute $x^{(k)} \in \mathcal{K}_{k}$ such that $r^{(k)} \perp \mathcal{K}_{k}$, i.e.,

$$
v^{\top} r^{(k)}=v^{\top}\left(b-A x^{(k)}\right)=0, \quad \forall v \in \mathcal{K}_{k}
$$

- Considering $x^{(k)} \in \mathcal{K}_{k}$, we may write $x^{(k)}=Q_{k} y$ where $y$ is such that $r^{(k)} \perp \mathcal{K}_{k}$

$$
Q_{k}^{T} r^{(k)}=Q_{k}^{T}\left(b-A Q_{k} y\right)=Q_{k}^{T} b-Q_{k}^{T} A Q_{k} y=0
$$

- Due to the orthonormality of the basis we have

$$
Q_{k}^{T} b=\|b\|_{2} e_{1}, \quad\left(e_{1} \text { is the first unit vector in } \mathbb{R}^{k}\right)
$$

and $H_{k}=Q_{k}^{T} A Q_{k}$, we have

$$
Q_{k}^{T} b-Q_{k}^{T} A Q_{k} y=0 \quad \Leftrightarrow \quad H_{k} y=\|b\|_{2} e_{1}
$$

- The system can be easily solved ( $H_{k}$ is upper Hessenberg)

$$
x^{(k)}=Q_{k} y
$$

## FOM / Arnoldi Method for Linear Systems

## Theorem 4.2

In exact arithmetic, the Arnoldi method yields the solution of $A x=b$ after at most $n$ iterations. Moreover, if a breakdown occurs after $k<n$ iterations, $x^{(k)}=x$.

- Proof: Since $\mathcal{K}_{n}=\mathbb{R}^{n}$, if the method terminates at the $n$-th iteration, then $x^{(n)}=x$.
Conversely, from the relations

$$
Q_{k}^{T} A Q_{k}=H_{k}, \quad Q_{k}^{T} A Q_{k} y=Q_{k}^{T} b \quad \text { and } \quad x^{(k)}=Q_{k} y,
$$

if a breakdown occurs after $k<n$ iterations, we get

$$
x^{(k)}=Q_{k} H_{k}^{-1} Q_{k}^{T} b=A^{-1} b=x
$$

## FOM Algorithm

- Algorithm: FOM
$b$ arbitrary; $q_{1}=b /\|b\|$
for $k=1,2, \ldots$
〈 step $k$ of Arnoldi iteration >

$$
\text { Solve } H_{k} y=\|b\|_{2} e_{1}
$$

$$
x^{(k)}=Q_{k} y
$$

until convergence

- The residual is available by

$$
\left\|b-A x^{(k)}\right\|_{2}=h_{k+1, k}\left|e_{k}^{T} y\right|
$$

- Stopping criteria: for a fixed tolerance $\epsilon$

$$
h_{k+1, k}\left|e_{k}^{T} y\right| /\|b\|_{2} \leqslant \epsilon
$$

- Exercise 2: Implement the previous algorithm to solve the linear system $A x=b$ with $A=\operatorname{tridiag}_{100}(-1,2,-1)$ and $b$ such that the solution is $x=1$. The initial vector is $x^{(0)}=0$ and $\epsilon=1 e-10$. Plot $\left\|r^{(k)}\right\|_{2} /\|b\|_{2}$ as a function of $k$.


## Arnoldi Iteration Breakdown

- Exercise 3: Suppose that the Arnoldi algorithm is executed for a particular $A$ and $b$ until at some step $k$, an entry $h_{k+1, k}=0$ is encountred.
(a) Show that $A Q_{k}=Q_{k+1} \hat{H}_{k}$ can be symplified in this case.

What does it imply about the structure of a full $n \times n$
Hessembeg reduction $A=Q H Q^{T}$ of $A$ ?
(b) Show that $\mathcal{K}_{k}$ is an invariant subspace of $A$, i.e., $A \mathcal{K}_{k} \subseteq \mathcal{K}_{k}$.
(c) Show that $\mathcal{K}_{k}=\mathcal{K}_{k+1}=\mathcal{K}_{k+2}=\cdots$.
(d) Show that each eigenvalue of $H_{k}$ is an eigenvalue of $A$.
(e) Show that if $A$ is nonsingular, then the solution $x$ of $A x=b$ lies in $\mathcal{K}_{k}$.

- The appearence of any entry $h_{k+1, k}$ is called a breakdown of the Arnoldi interation


## GMRES

## Minimizing Residuals

- Generalized Minimal RESiduals: iterative method for $A x=b$
- Find $x^{(k)}=K_{k} y \in \mathcal{K}_{k}$ that minimizes $\left\|r^{(k)}\right\|_{2}=\left\|b-A x^{(k)}\right\|_{2}$
- This is a least squares problem: Find a vector $y$ such that

$$
\left\|A K_{k} y-b\right\|_{2}=\text { minimum }
$$

where $K_{k}$ is the $n \times k$ Krylov matrix

- QR factorization can us to solve for $y$, and $x^{(k)}=K_{k} y$
- In practice the columns of $K_{k}$ are ill-conditioned and an orthogonal basis is used instead, produced by Arnoldi iteration


## Minimal Residual with Orthogonal Basis

- Set $x^{(k)}=Q_{k} y$ (orthogonal columns of $Q_{k}$ span $K_{k}$ ) and solve

$$
\left\|A Q_{k} y-b\right\|_{2}=\text { minimum }
$$

- Find $x^{(k)} \in \mathcal{K}_{k}$ that minimizes $\left\|r^{(k)}\right\|_{2}=\left\|b-A x^{(k)}\right\|_{2}$
- Since for the Arnoldi iteration $A Q_{k}=Q_{k+1} \hat{H}_{k}$

$$
\left\|Q_{k+1} \hat{H}_{k} y-b\right\|_{2}=\text { minimum }
$$

- Left multiplication by $Q_{k+1}^{T}$ does not change the norm (since both vectors are in the column space of $Q_{k+1}$ )

$$
\left\|\hat{H}_{k} y-Q_{k+1}^{T} b\right\|_{2}=\text { minimum }
$$

- Finally, it is clear that $Q_{k+1}^{T} b=\|b\|_{2} e_{1}$

$$
\left\|\hat{H}_{k} y-\right\| b\left\|_{2} e_{1}\right\|_{2}=\text { minimum }
$$

## The GMRES Method

- Algorithm: GMRES
$b$ arbitrary; $q_{1}=b /\|b\|$
for $k=1,2, \ldots$
〈 step $k$ of Arnoldi iteration〉
Find $y$ to minimize $\left\|\hat{H}_{k} y-\right\| b\left\|_{2} e_{1}\right\|_{2}$

$$
x^{(k)}=Q_{k} y
$$

until convergence

- The residual $\left\|r^{(k)}\right\|_{2}$ does not need to be computed explicitly from $x^{(k)}$
- Least squares problem has Hessenberg structure, solve with QR factorization of $\hat{H}_{k}$ (computed by updating the factorization of $\hat{H}_{k-1}$ )
- Memory and cost grow with $k$ : restart the algorithm by clearing accumulated data (might stagnate the method)


## Convergence of GMRES

## Theorem 4.3

A breakdown occurs for the GMRES method at a step $k$ (with $k<n$ ) iff the computed solution $x^{(k)}$ coincides with the exact solution to the system.

- Exercise 4: The recurrence

$$
x^{(k+1)}=x^{(k)}+\alpha r^{(k)}=x^{(k)}+\alpha\left(b-A x^{(k)}\right),
$$

where $\alpha$ is a scalar constant is the Richardson iteration. What polynomial $p(A)$ at step $k$ does this correspond to?

- Exercise 5: Our statement of the GMRES begins with the initial guest $x^{(0)}=0, r^{(0)}=b$. Show that if one wishes to start an arbitrary initial guess $x^{(0)}$, this can be accomplished by an easy modification of the right-hand side $b$.


## GMRES and Polynomial Approximation

- GMRES can be interpreted as the related approximation problem: find $p_{k} \in P_{k}$, where

$$
P_{k}=\{\text { polynomial } p \text { of degree } \leqslant k \text { with } p(0)=1\}
$$

to minimize $\left\|p_{k}(A) b\right\|_{2}$.

- The iterate $x^{(k)}$ can be written as

$$
x^{(k)}=q_{k-1}(A) b,
$$

where $q$ is a polynomial of degree $k-1$

- The corresponding residual $r^{(k)}=b-A x^{(k)}$ is

$$
r^{(k)}=\left(I-A q_{k-1}(A)\right) b=p_{k}(A) b
$$

## Convergence of GMRES

- Two obvious observations based on the minimization in $\mathcal{K}_{k}$ : GMRES converges monotonically and it converges after at most $n$ steps,

$$
\left\|r^{(k+1)}\right\|_{2} \leqslant\left\|r^{(k)}\right\|_{2} \quad \text { and } \quad\left\|r^{(n)}\right\|_{2}=0
$$

This will happen because $\mathcal{K}_{n}=\mathbb{R}^{n}$.

- The residual $\left\|r^{(k)}\right\|_{2}=\left\|p_{k}(A) b\right\|_{2}$, where $p_{k} \in P_{k}$ is a degree $k$ polynomial with $p(0)=1$, so GMRES also finds a minimizing polynomial

$$
\left\|p_{k}(A) b\right\|_{2}=\text { minimum }
$$

- The factor that determines the size of this quantity is usually $\left\|p_{k}(A)\right\|_{2}$, that is

$$
\frac{\left\|r^{(k)}\right\|_{2}}{\|b\|_{2}} \leqslant \inf _{p_{k} \in P_{k}}\left\|p_{k}(A)\right\|_{2}
$$

- Exercise 6: Repeat Exercise 2 for the GMRES method.


## Convergence of GMRES

- How small can $\left\|p_{k}(A)\right\|_{2}$ be?
- If $A$ is diagonalizable $A=V \wedge V^{-1}$ for some nonsingular matrix $\Lambda$

$$
\|p(A)\|_{2} \leqslant\|V\|_{2}\|p(\Lambda)\|_{2}\left\|V^{-1}\right\|_{2}=K_{2}(V)\|p\|_{\Lambda(A)}
$$

being $\|p\|_{\Lambda(A)}=\sup _{\lambda \in \Lambda(A)}|p(\lambda)|$

## Theorem 4.4

At the step $k$ of the GMRES iteration, the residual $r^{(k)}$ satisfies

$$
\frac{\left\|r^{(k)}\right\|_{2}}{\|b\|_{2}} \leqslant \inf _{p_{k} \in P_{k}}\left\|p_{k}(A)\right\|_{2} \leqslant k(V) \inf _{p_{k} \in P_{k}}\left\|p_{k}\right\|_{\Lambda(A)} .
$$

- In other words: If $A$ has well-conditioned eigenvectors, the convergence is based on how small polynomials $p_{k}$ can be on the spectrum


## Other Krylov Subspace Methods

## Other Krylov Subspace Methods

- CG on the Normal Equations (CGN)
- Solve $A^{*} A x=A^{*} b$ using CG
- Poor convergence, squared condition number $K\left(A^{*} A\right)=K(A)^{2}$
- BiConjugate Gradients (BiCG)
- Makes residuals orthogonal to another Krylov subspace, based on $A^{*}$
- Memory requirements only constant number of vectors
- Convergence sometimes comparable to GMRES, but unpredictable
- Conjugate Gradients Squared (CGS)
- Avoids multiplication by $A^{*}$, sometimes twice as fast convergence
- Quasi-Minimal Residuals (QMR) and Stabilized BiCG (Bi-CGSTAB)
- Variants of BiCG with more regular convergence

