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Love a↵airs

§ Rn: Romeo’s love/hate for Juliet on day n; Jn Juliet’s
love/hate for Romeu on day n.

§ Rn ° 0: Romeo loves Juliet; Rn † 0: Romeo hates Juliet;
Rn “ 0: Romeo is neutral towards Juliet.

§ Jn ° 0: Juliet loves Romeo; Jn † 0: Juliet hates Romeu;
Jn “ 0: Juliet is neutral towards Romeo.



Love a↵airs: mathematical model

§ Add linear terms that represent the response of Romeo and
Juliet to the feelings of the other:

"
Rn`1 “ aRRn ` pRJn,
Jn`1 “ aJJn ` pJRn,

aR , aJ ° 0, pR , pJ P IR.

§ The sign of the p parameter determines a particular romantic
style:

§ if pR ° 0, then Romeo gets excited by Juliet’s love for him,
while he gets discouraged by Juliet’s hate for him;

§ if pR † 0, then Juliet’s hate for him contributes to his love for
her, while Juliet’s love for him contributes to his hate for her.
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Figure 2.19. Four case studies for Romeo and Juliet. Graphs in the left column
show Rn and Jn as functions ofn. Graphs in the right column show the orbits in the (/?„, </„)
phase plane. In all cases, initial conditions used are

simulate this model, for example, on a spreadsheet, and experiment with different sets of
parameters. Here, we present four case studies, illustrating typical types of behavior of the
system.

In Figure 2.19, we show two side-by-side graphs for each of the four case studies.
Graphs in the left column show Rn and /„ as functions of n. Graphs in the right column
show the orbits in the (/?„, Jn) phase plane. In these graphs, time n is suppressed, and
successive coordinates (/?„, /„) are plotted. The direction of the orbit as n increases is
indicated with arrows.

Ro = jo=1. (a) aR + 0.5 aj = 0.7,
Pr = 0.2 pg = 0.5. (b) aT = 0.5 aj =0.7 pt = 0.7 pj = 0.9. (c) aR = 1.0. aj = 1.0.0
Pr = 0.2 pg= -0.2 (d) ar = 0.5 aj = 0.8, pr = 0.2 pj = 0.5.

Figure: Graphs in the left column show Rn and Jn as functions of n.
Graphs in the right column show the orbits in the pRn, Jnq phase plan.
R0, J0 “ 1 a) aR “ 0.5, aJ “ 0.7, pR “ 0.2, pJ “ 0.5. (b) aR “ 0.5,
aJ “ 0.7, pR “ 0.7, pJ “ 0.9.
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Figure 2.19. Four case studies for Romeo and Juliet. Graphs in the left column
show Rn and Jn as functions ofn. Graphs in the right column show the orbits in the (/?„, </„)
phase plane. In all cases, initial conditions used are

simulate this model, for example, on a spreadsheet, and experiment with different sets of
parameters. Here, we present four case studies, illustrating typical types of behavior of the
system.

In Figure 2.19, we show two side-by-side graphs for each of the four case studies.
Graphs in the left column show Rn and /„ as functions of n. Graphs in the right column
show the orbits in the (/?„, Jn) phase plane. In these graphs, time n is suppressed, and
successive coordinates (/?„, /„) are plotted. The direction of the orbit as n increases is
indicated with arrows.

Ro = jo=1. (a) aR + 0.5 aj = 0.7,
Pr = 0.2 pg = 0.5. (b) aT = 0.5 aj =0.7 pt = 0.7 pj = 0.9. (c) aR = 1.0. aj = 1.0.0
Pr = 0.2 pg= -0.2 (d) ar = 0.5 aj = 0.8, pr = 0.2 pj = 0.5.

Figure: Graphs in the left column show Rn and Jn as functions of n.
Graphs in the right column show the orbits in the pRn, Jnq phase plan.
R0, J0 “ 1 c) aR “ 1.0, aJ “ 1.0, pR “ 0.2, pJ “ ´0.2. (d) aR “ 0.5,
aJ “ 0.8, pR “ 0.2, pJ “ 0.5.

Fixed points and linear stability

Consider the two-dimensional discrete-time system:

"
xn`1 “ f pxn, ynq,
yn`1 “ gpxn, ynq.

Fixed points: all px ,̊ y q̊ such that x˚ “ f px ,̊ y q̊ and y
˚ “gpx ,̊ y q̊.

Consider Jacobian matrix at the fixed point px˚, y˚q:

J “
« Bf

Bx px˚, y˚q Bf
By px˚, y˚q

Bg
Bx px˚, y˚q Bg

By px˚, y˚q

�

The dynamics are determined by the size of the eigenvalues of J:

§ px˚, y˚q is stable if all eigenvalues of J have magnitude † 1;

§ px˚, y˚q is unstable if at least one of the eigenvalues has
magnitude ° 1.



Eigenvalues

To calculate the eigenvalues, � we solve the characteristic equation

detpJ ´ �I q “ 0.

For two-dimensional systems, that is

�2 ´ trJ� ` detJ “ 0.

Jury conditions: For two-dimensional systems,

|trJ| † 1 ` detJ † 2,

are necessary and su�cient conditions for all eigenvalues of J to
have magnitude less than 1, that is, for the fixed point in question
to be stable.

Host-parasitoid models

Host-parasitoid models: models that address the life cycles of two
interacting species of insects, one a host and the other a parasitoid.

Example of a Host-parasitoid model:

§ Parasitoids are insects whose females lay their eggs in or on
the bodies of the host insects. Parasitoid eggs develop into
parasitoid larvae at the expense of their host.

§ Hosts that have been parasitized thus give rise to the next
generation of parasitoids, while only hosts that are not
parasitized will give rise to the next generation of hosts.



Example of a Host-parasitoid model

Let Hn (resp. Pn) be the number of the hosts (resp. parasitoids)
at generation n and f pHn,Pnq be the fraction of hosts that are not
parasitized.

§ f pHn,PnqHn = number of hosts not parasitized,

§ p1 ´ f pHn,PnqqHn = number of hosts parasitized.

Two assumptions:

§ The host population grows geometrically in the absence of the
parasitoids, with reproductive rate k ° 1.

§ The average number of eggs laid in a single host that give rise
to adult parasitoids is c .

Host-parasitoid model:

"
Hn`1 “ kf pHn,PnqHn

Pn`1 “ cp1 ´ f pHn,PnqqHn.

Nicholson and Bailey’s model

We assume that:

§ encounters between hosts and parasitoids occur at random
and are independent;

§ the number of encounters is proportional to the product
HnPn, that is, aHnPn.

The average number of encounters per host is thus

⌫ “ aHnPn

Hn

“ aPn.

Since the encounters are random and independent, they follow a
Poisson process

ppiq “ ⌫ i
e

´⌫

i !
“ paPnqie´aPn

i !
,

where ppiq is the probability that a host experiences i encounters.



Nicholson and Bailey’s model

The fraction of hosts not parasitized is

f pHn,Pnq “ pp0q “ e
´⌫ “ e

´aPn .

Nicholson and Bailey’s classic model:

"
Hn`1 “ ke

´aPnHn,
Pn`1 “ cp1 ´ e

´aPnqHn.
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Figure 2.21. The Nicholson-Bailey model, (2.91)-(2.92), exhibits growing oscil-
lations. The left panel shows a typical solution for Hn and Pn as functions ofn. The right
panel shows the orbit in the (//„, Pn) phase plane. Model parameters used are k = 1.05,
a = 0.005, and c — 3, and initial conditions are HQ = 50 and PQ = 10.

in (2.91) with

where K is the carrying capacity of the host insect population, and r determines the rate of
approach to the carrying capacity. Their full host-parasitoid model thus reads

Two simulations of this model are shown in Figure 2.22. The simulation shown in Fig-
ure 2.22 (a) shows co-existence at a stable fixed point, and the one in Figure 2.22 (b) shows
coexistence in a stable cycle. The determination of fixed points and their stability is tedious,
and the reader is referred to [ 16] for details.

Ecological processes other than intraspecific competition in the host population also
can stabilize the system. Examples are intraspecific competition in the parasitoid population,
spatial heterogeneity of the environment, parasitoid dispersal among host patches, and so
forth. It has proven extremely difficult to ascertain which, if any, of these mechanisms
operate in nature, and research continues in this fascinating area of mathematical biology.
One reason why host-parasitoid systems continue to receive much attention is their potential
for biological control, where parasitoids are introduced to reduce the host population of a
pest on agricultural crops. Questions of interest are what the qualities of a parasitoid should
be, what can go wrong, and so on. Readers interested in learning more about host-parasitoid
systems and biological control are referred to the books by Godfray [68] and Hassell [80]
and the article by Murdoch [119].

Figure: The Nicholson-Bailey modelexhibits growing oscilations. The left
panel shows a typical solution for Hn and Pn as functions of n. The right
panel shows the orbit in the pPn,Hnq phase plane. Model parameters
used are k “ 1.05, a “ 0.005, and c “ 3, and initial conditions are
H0 “ 50 and P0 “ 10.



Fixed points and stability

The Nicholson-Bailey model has two fixed points:

§ the trivial fixed point, pH˚
1 ,P˚

1 q “ p0, 0q;
§ the nontrivial fixed point

pH˚
2 ,P˚

2 q “
ˆ

k ln k

acpk ´ 1q ,
ln k

a

˙
,

provided that k ° 1.

Important question: Do we have a situation where there is
coexistence of the two insect species?

To answer we have to study the stability of the nontrivial fixed
point.

Fixed points and stability

The Jacobian matrix, evaluated at the nontrivial fixed point, is

JpH˚
2 ,P˚

2 q “

»

—–
1 ´ k ln k

cpk ´ 1q
cpk ´ 1q

k

ln k

k ´ 1

fi

�fl ,

so that

trJ “ 1 ` ln k

k ´ 1
, detJ “ ln k ` ln k

k ´ 1
.

Since k ° 1:

§ the first of the Jury conditions always is satisfied;

§ the second Jury condition can never be satisfied (detJ ° 1).



Fixed points and stability

§ The nontrivial fixed point, pH˚
2 ,P˚

2 q, is always unstable.

§ Instability of the nontrivial steady state in itself does not
preclude coexistence of the two insect species. For example,
coexistence could come in the form of a stable cycle.

§ However, for the Nicholson-Bailey model, no choice of
parameter values leads to coexistence.

Beddington model

Let us modify the equation for the host population to

Hn`1 “ e
rp1´Hn{Kq

Hn.

Their full host-parasitoid model thus reads

"
Hn`1 “ e

rp1´Hn{Kq
e

´aPnHn,
Pn`1 “ cp1 ´ e

´aPnqHn.
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Figure 2.22. Two types of behavior exhibited by the Beddington model, (2.97)-
(2.98). Graphs in the left column show Hn and Pn as functions of n; graphs in the right
column show corresponding orbits in the (Hn, Pn} phase plane, (a) The host andparasitoid
coexist at a stable fixed point (K = 200). (b) The host and parasitoid coexist in a stable
cycle (K = 250). Other model parameters are r = 1.1, a — 0.005, and c = 3.

2.4 Exercises for Discrete-Time Models
Exercise 2.4.1: German population. Write down a simple discrete birth-death model
describing the following situation. Individuals die at rate 8 and are born at rate IJL. On
December?>\, 1998, Germany had a population of 82,031,000. In 1999, there were 770,744
live births and 846,330 deaths (source: Statistisches Bundesamt). Find 8 and IL. What will
happen to the German population in the future? How should the model be altered to be
more realistic?

Exercise 2.4.2: Drug prescriptions. Consider the following model for a drug prescription:

where an is the amount of a drug (in mg, say) in the bloodstream after administration ofn
dosages at regular intervals (hourly, say).

(a) Discuss the meaning of the model parameters k and b. What can you say about their
size and sign?

Figure: Two types of behavior exhibited by the Beddington model.
Graphs in the left column show Hn and Pn as functions of n; graphs in
the right column show corresponding orbits in the pHn,Pnq phase plane,
(a) The host and parasitoid coexist at a stable fixed point (K “ 200).
(b) The host and parasitoid coexist in a stable cycle (K “ 250). Other
model parameters are r “ 1.1, a “ 0.005, and c “ 3.

Homework #3

Exercise 1.7: Study the stability of the nontrivial fixed points of
the Beddington model, reproducing the figures in the previous
slide. Explain the situations where the host and parasitoid coexist.

Exercise 1.8: Consider the discrete-time model developed for the
relationship between Romeo and Juliet.

1. Study the stability of the fixed point pR˚, J˚q “ p0, 0q.
2. Draw the trajectories and the phase plane for di↵erent sets of

parameters in order to illustrate the di↵erent types of
behaviour. Hint: use the parameters corresponding to the
plots in the figures.


