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Preface

Mathematical biology is growing rapidly. Mathematics has long played a dominant role
in our understanding of physics, chemistry, and other physical sciences. However, whole-
sale application of mathematical methods in the life sciences is relatively recent. Now
questions about infectious diseases, heart attacks, cell signaling, cell movement, ecology,
environmental changes, and genomics are being tackled and analyzed using mathematical
and computational methods.

While the application of quantitative analysis in the life sciences has borne fruit in the
research arena, only recently has it impacted undergraduate education. Until a few years
ago, the number of undergraduate texts in mathematical biology could be counted on one
hand. Now this has changed dramatically. Recent undergraduate texts range from simple
introductions to biological numeracy (Burton [35, 36]), freshman calculus for students in
the life sciences (Adler [1], Neuhauser [125]), modeling with differential equations (Taubes
[155], Edelstein-Keshet [51], Britton [29]), computer algebra (Yeargers, Shonkwiler, and
Herod [168]), and dynamical computer-based systems (Hannon and Ruth [78]), to name but
a few.

Despite the plentitude of new books, mathematical biology is still rarely offered as
an undergraduate course. This book is designed for undergraduate students. Our target
audience are students in mathematics, biology, physics, or other quantitative sciences at the
sophomore or junior level. Our aim is to introduce students to problem solving in the context
of biology. The focus in our presentation is on integrating analytical and computational tools
in the modeling of biological processes.

The book stems from pedagogic material developed by the authors for a 7-11 day
workshop in mathematical biology, which has been taught since 1995 at the University of
Tubingen (Germany) and since 2001 at the University of Alberta (Canada). Additional ma-
terial has been added to make the book suitable for use in a full-term course in mathematical
biology.

There are three parts to this book: (I) analytical modeling techniques, (II) computa-
tional modeling techniques, (HI) problem solving.

Part I covers basic analytical modeling techniques. We discuss the formulation of
models using difference equations, differential equations, probability theory, cellular au-
tomata, as well as model validation and parameter estimation. We emphasize the modeling
process and qualitative analysis, rather than explicit solution techniques (which can be found
in other textbooks). Classical models for disease, movement, and population dynamics are
derived from first principles. Each section provides a number of biologically motivated
exercises.

ix



x Preface

Part II introduces computational tools used in the modeling of biological problems.
Students are guided through symbolic and numerical calculations with Maple (for readers
who prefer an alternative software package, such as Mathematica or MATLAB, see "How
to Use This Book" below). Many of the examples and exercises of this part relate directly
to the models discussed in Part I. This part of our book has been designed such that students
can work through the material independently and at their own pace. Readers without any
programming background will pick up valuable computational skills. Readers who already
have programming background will be able to skip some elementary exercises and focus
attention on the biological applications.

Part HI provides open-ended problems from epidemiology, ecology, and physiology.
Each problem is formulated in a way that makes it accessible to students. In most cases,
questions will guide the student through the modeling process. These problems can be used
as the basis for extended investigation, for example, as a term project or as a team project.
We conclude Part III with a detailed presentation of two projects (cell competition and the
chemotactic paradox) based on solutions developed by teams of undergraduate students
who participated in one of our workshops.

The field of mathematical biology is, admittedly, immense. This book does not attempt
to achieve a comprehensive introduction to the field. Subjects are tempered by the test of
being able to teach them effectively in a short period of time. Problems are biased towards
the authors' interests, but are sufficiently wide-ranging to include something of interest
for most students. Ultimately, we hope that this book offers the first step into a detailed
modeling of problems in the life sciences.

How to Use This Book

We envision that this book can be used in a number of ways. Here we list some ideas about
how a course could be designed based on the material of this book.

Full-Term Course: During a full-term course, material from Part I can be covered.
Students should have access to computers to complete Part II and for the project work of Part
III. Although students can work through the computer tutorial on their own, we recommend
a two-hour computer lab during which an instructor is available to help the students get
started. Projects from the open-ended problems from Part III may be assigned early in the
course, with students submitting a written report, or presenting the project in class (or both)
towards the end of the course.

10-Day Workshop: During the first half of the workshop, the focus should be on
learning modeling with analytical and computational tools, based on Parts I and II of this
book. Ideally a mixture of discrete-time equations, differential equations, and stochastic
models should be covered. Specific topics would depend on the background of the instruc-
tor(s). We feel that Sections 2.2, 3.1 -3.4,4.3, and 5.1-5.6 should be included in any course.
Lectures on these topics may be supplemented by homework. In our experience, students
need about 15 hours to work through the computer tutorial of Part II.

During the second half of the workshop, students should work in teams of two (maybe
three) on one of the open-ended problems from Part III. Under the guidance of an instructor,
students develop a model, analyze and/or simulate the model, and prepare a presentation.
We have found it important to stress that problems are open-ended, and have no "right
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solution" per se. It is the process of model development that is most important, not nec-
essarily the end product. In many cases, students will need to simplify their problem and
build a hierarchy of models, each model incorporating additional realism from the original
problem.

Substituting Maple with Other Software: Although we have based Part II of
this book on Maple, we do not wish to give the impression that Maple is necessarily
the ideal software to be used. In fact, we believe that it does not really matter which
software package is used. Instructors or students proficient with other software, such as
Mathematica or MATLAB, will readily be able to adapt the examples and exercises of
Part II for the alternative software. A version of Part II in Mathematica is available at
http://www.siam.org/books/mml 2.

Working on Open-Ended Projects: Since the problems from Part HI are open ended
there is a danger of aiming too high. Some of the problems are currently being studied by
experienced researchers, and it would be impossible to follow all the relevant literature. For
a beginning modeler, we give the following guidelines.

From the project description, readers should be able to understand the biological
problem at hand to a certain extent. Some reading of supplemental material might be useful.
For most projects, a specific reference is given, and the Internet is always a good resource.
It is not required to study the biological topic at length. Initial efforts in mathematical
modeling require only the identification of basic mechanisms.

When the biological problem at hand is understood, students should determine first
which of the model classes presented in Part I might be useful (discrete/continuous, deter-
ministic/stochastic). With the help of an instructor, they then proceed to develop a math-
ematical model. After the students and the instructors agree upon a reasonable model, the
students work on it, do the analysis, and write the software. Many projects are accompanied
with data. In that case, data fitting will be an important element of the project. Last but not
least, the model should be used to explain important aspects of the biological phenomenon
and to make predictions for other experiments or observations.

Internet Resources: A webpage related to this book that contains solutions to most
of the exercises and the computer tutorial of Part II in Mathematica can be found at
http://www.siam.org/books/mm 12.
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Chapter 1

Introduction

1.1 The Modeling Process
Mathematical biology dwells at the interface of two fields: applied/computational mathe-
matics and biology. Individually, these fields are growing quickly due to rapidly changing
technology and newly emerging subdisciplines. Coupled together, the fields provide the
basis for the emerging scientific discipline of mathematical biology, whose focus is inter-
disciplinary scientific problems in quantitative life sciences.

What can biology offer mathematics and computation? Biological models offer a
seemingly endless supply of challenging and interesting nonlinear problems to solve. These
nonlinear problems can provide a testing ground for applied mathematical and computational
methods, and generate the impetus to develop new mathematical and computational methods
and approaches.

What can mathematics and computation offer biology? Mathematics and computation
can help solve a growing problem in biological research. Data collection, varying from
gene sequencing to remote sensing via satellites, is now inundating biologists with complex
patterns of observations. The ability to collect new data outstrips our ability to heuristically
reason mechanisms of cause and effect in complex systems. It is the analysis of mathematical
models that allows us to formalize the cause and effect process and tie it to the biological
observations.

The mathematical model describes interactions between biological components. Anal-
ysis of the model, via computational and applied mathematical methods, allows us to deduce
the consequences of the interactions. For example, voltage-dependent data on movement of
electrically charged ions across a nerve membrane are inputs for models of electrophysiol-
ogy. The output is a prediction of the dynamics of electrical activity in nerves. The behavior
and survival of newly infected individuals are inputs to disease models. The output is a
prediction of when and where the disease will outbreak, and how it can be controlled.

To become a successful modeler, modeling tools are required. The first part of this
book gives an introduction to some of the more powerful modeling tools, such as discrete
models, ordinary differential equations, partial differential equations, stochastic models,

3



4 Chapter 1. Introduction

Figure 1.1. (a) Arrow diagram for a simple epidemic model, showing the relation-
ships between the classes of susceptible, infected, and recovered individuals, (b) Subgraph
of the arrow diagram in (a) representing the recovery of infected individuals, with probability
p or rate a.

cellular automata, and parameter estimation techniques. The second and third parts of the
book apply the modeling tools to biological problems.

1.2 Probabilities and Rates
We start with the derivation of a simple epidemic model for the spread of an infectious
disease, such as influenza, through a population of healthy individuals. Assume that one
infected individual is introduced into the population. In addition, assume that the infection
is spread from individual to individual through contact, and that the infected recover after
a certain period of time (two weeks for influenza). Recovered individuals are not available
to catch the disease again.

Thus, after some time, the population consists of three types of individuals, namely,
susceptible (healthy), infected, and recovered individuals. The relationships between these
three classes are shown in Figure 1.1 (a). Note that in the diagram, recovered individuals
can become susceptible again. In this case, we can think of recovered individuals being
temporarily immune to the disease. Individuals return to the susceptible class when the
immunity wears off.

In order to create a model for this situation, we need to quantify this diagram. To do
that, we follow these three steps:

1. First, we identify the important quantities (the dependent variables) to keep track
of. In our example, there are three classes of individuals. Let S be the number of
susceptibles in the population, / the number infected, and R the number recovered.

2. Second, we identify the independent variables, such as time /, space x, or age a, and
so on. For our example, we write S(x, t), I(x, t), and R(x, t) if we wish to include
time and space dependence, but not age dependence.

3. Finally, we quantify the transitions and/or interactions between these classes, as indi-
cated by the arrows in Figure 1.1 (a). To do this, we use either probabilities or rates,
as explained below.
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To explain the use of probabilities versus rates, we consider a subgraph of Figure 1.1 (a),
concerning only the recovery of infected individuals, shown in Figure 1.1 (b). In the
discussion below, note that we ignore the generation of infected individuals through contact
between infected and susceptible individuals (the full epidemic model will be treated in
Section 3.3.3). In order to create a model representing this particular process, we apply the
three steps outlined above:

1. The dependent variable is the number of infected individuals, /.

2. As time progresses, infected individuals recover. Thus, the independent variable is
time, t.

3. If we assume that 2 out of every 100 infected individuals recover per day, then the
probability of recovery in a single day is p\ = -^. The corresponding rate, Q?I, is
defined as the probability per unit of time, that is,

Similarly, the probability of recovery in two days is pi = -$$ (we use pn to denote
the probability of recovering in n days). The corresponding rate, 012, is then

For a time unit of ^ of a day, we get p\_ = ̂  and

We find that the rate a is independent of the time unit chosen, whereas the probability
depends on the chosen time unit. Since the rate is independent of the chosen time
unit, we can generalize. Let A? denote a general unit of time, and let p&t be the
probability of recovering in A/. Then the number of infectives after one unit of time
is given as

With some rearrangements, we get

where now the rate a = ̂  appears.

Since a is constant for all values of A?, we can take the limit as A? -> 0. On the left,
we obtain the differential quotient, and we obtain the following equation governing
the dynamics of I(t):
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To summarize, for the simple subgraph shown in Figure 1.1 (b), we found two models,
namely, a discrete-time model with probabilities,

and a continuous-time model with rates (a differential equation).

Both models can be solved, analyzed, and simulated. For the discrete-time model,
(1.1), we have to specify a time unit, say Af = | day. Then p&t = p\ = a • I
define /„ := l(n • Af), then we obtain the simple difference equation

which has the solution

where IQ denoted the initial number of infected individuals. The differential equation, (1.2),
is solved by an exponential, I ( t ) = I (0) e~at. The latter solution indicates that the number
of infected individuals decreases with time, as expected intuitively (recall that the generation
of new infected individuals has been ignored).

In Figure 1.2, we compare the solutions of the discrete-time and continuous-time
models over a time period of 15 days, starting with 100 infected individuals (/(O) = TO =

Figure 1.2. Comparison of the solutions to the discrete-time model, (1.1), and the
continuous-time model, (1.2), starting with 100 infected individuals (1(0) = IQ = 100),
and using a recovery rate ofa= 0.3.



1.3. Model Classes

100) and using a recovery rate of a = 0.3 per day and a time increment of Ar = 1/2 day.
The full epidemic model corresponding to the arrow diagram shown in Figure 1.1 (a) will
be discussed in detail in Section 3.3.3.

In Figure 1.2, the agreement of the discrete and the continuous models is quite con-
vincing. However, this is not always the case. In Exercise 1.4.2, the reader is asked to vary
Af and to investigate if the agreement is still good.

1.3 Model Classes
In the previous section, we derived two models for the recovery of infected individuals,
namely, a discrete-time or difference equation, (1.1), and a differential equation, (1.2).
The difference between these models is that the time variable is discrete for the difference
equation, whereas it is continuous for the differential equation. So far, both models appear
suitable. The final choice of model depends on the scientific question asked, the purpose of
the model, the available data, etc.

The independent or state variables also can be chosen to be either discrete or contin-
uous. For example, a discrete state variable may represent the number of individuals in a
population, whereas a continuous variable may represent a density or a concentration.

Both of the above models are called deterministic. That means that if you know the
state of the system at a certain point in time t, you can determine all future states by solving
the corresponding model. Sometimes, however, stochastic effects play a dominant role. For
example, in a laboratory setting you can predict that a pair of healthy rabbits will produce
offspring. Outside the laboratory, life is less predictable, and the same pair of rabbits may
not reproduce. In general, stochastic variations are more important for small population
sizes. A model for small populations and unpredictable environments should include the
uncertainty via a stochastic formulation. Large populations in constant environments (such
as an aggregate of cellular slime molds, which contains about 100,000 cells) usually are
modeled by deterministic models.

The number of choices presented above generates many types of models. A discussion
of all types of models is beyond the scope of this book. We have chosen to restrict the material
in this book to the most common model classes, summarized in the following list:

Difference Equations: The state (or dependent variable) can be discrete or continuous but
the time is always discrete. Discrete models are suitable for seasonal events. We treat
deterministic difference equations in Chapter 2 and stochastic difference equations in
Chapter 5.

Ordinary Differential Equations (ODEs): ODEs are used to describe population evolution
over a continuous time period. Deterministic ODEs are one of the major modeling
tools and are discussed in detail in Chapter 3. The theory of stochastic differential
equations is quite involved and is not covered in this book.

Partial Differential Equations (PDEs): PDEs are used if two or more continuous inde-
pendent variables are used, for example, time and space, or time and age. We discuss
age-structured models and reaction-diffusion equations for spatial spread in Chap-
ter 4. Historically, stochastic PDEs were used primarily in the context of statistical

7
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physics. Only recently have such models been considered to describe population
dynamics (see, e.g., [76]).

Stochastic Processes: Stochastic processes and Markov chains are completely stochastic
model classes. They are particularly useful for small populations. We treat them in
detail in Chapter 5.

Cellular Automata: Cellular automata and related models are fully discrete models. All
independent variables (such as time and space) and all dependent variables (such as
population sizes) are discrete. The analysis of cellular automata is mainly restricted
to computer analysis and numerical simulation. We give an introduction in Chapter 6.
Cellular automata can be either deterministic or stochastic, using a random number
generator.

1.4 Exercises for Modeling

Exercise 1.4.1: Discrete-time versus continuous-time models. Assume you have a culture
of bacteria growing in a petri dish, and each cell divides into two identical copies of itself
every 10 minutes.

(a) Choose a unit of time, and find the corresponding probability of cell division.

(b) Write down a discrete-time model which balances the amount of cells at time t and
at time t + At.

(c) Define the growth rate, and derive the corresponding continuous-time model.

(d) Solve both the discrete-time and continuous-time models, and compare the solutions.

(e) When is a discrete-time model appropriate? When is a continuous-time model ap-
propriate?

Exercise 1.4.2: Comparison of discrete and continuous models. Study the two models
(1.2), (1.1) which lead to Figure 1.2 and vary the time increment At (e.g., try At — | day,
| day, 1 day, 2 days, 10 days). What do you observe? Which choice of At gives the best,
and which gives the worst agreement? Can you explain why?

Exercise 1.4.3: Structured populations.

(a) Give examples of spatially structured problems. What kind of effects cannot be un-
derstood without spatial structure?

(b) Give an example of an age-structured problem.

(c) Give an example of a size-structured problem.

8



Chapter 2

Discrete-Time Models

2.1 Introduction to Discrete-Time Models
In this chapter, we use discrete-time models to describe dynamical phenomena in biology.
Discrete-time models are appropriate when one can think about the phenomenon in terms
of discrete time steps or when one wishes to describe experimental measurements that have
been collected at fixed time intervals.

In general, we are concerned with a sequence of quantities,

where Jt,- denotes the quantity at the /th measurement or after i time steps. For example, Xj
may represent

• the size of a population of mosquitoes in year / ;

• the proportion of individuals in a population carrying a particular allele of a gene in
the r'th generation;

• the number of cells in a bacterial culture on day i ;

• the concentration of oxygen in the lung after the I'th breath;

• the concentration in the blood of a drug after the z th dose.

You can undoubtedly think of many more such examples. Note that the time step may or
may not be constant. In the example of the bacterial culture, the time step is fixed to be a day,
but in the example of the oxygen concentration in the lung, the time step is variable from
breath to breath. Also, time steps can be anywhere from milliseconds to years, depending
on the biological problem at hand.

We can now ask ourselves, what does it mean to build a discrete-time model? In
the context of our sequence of quantities jc, , a discrete model is a rule describing how the
quantities change. In particular, a discrete model describes how jt,,+i depends on xn (and

9
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perhaps xn-\, xn-2,.. .)• Restricting ourselves to the case where jc,J+j depends on xn alone,
a model can then be thought of as an updating function (Adler [1]) of the form

Equation (2.1) is often referred to as a discrete-time equation or difference equation, and /
is called a map.

Given some initial condition JCQ, the updating function can be iterated to give x\ —
f(xo),X2 = /(jci),jf3 = /(jt2),andsoon. The resulting simulated sequence Jt0, jci, J t 2 , . . .
is called an orbit of the map. A good model should be able to produce orbits that are in
close agreement with observed experimental data.

Finding the precise function / that describes experimental data well or that gives a
certain desired type of behavior is not always straightforward. It is often said that modeling
(here, finding the right function /) is more of an art than a science. One starts with a
particular function /, and then makes adjustments. Insight into how a function / should
be adjusted to get a better model can often be obtained from knowledge of the behavior of
the current model.

Simple but powerful analytical tools are available to help determine possible types
of behavior of a given model. In this chapter, we will give an introduction to some com-
monly used tools. We divide the chapter into two main sections. Section 2.2 deals with
scalar discrete-time equations of the form (2.1), while Section 2.3 deals with systems of
discrete-time equations. Throughout the chapter, applications of discrete-time equations
to real biological systems, such as population growth and genetics, are discussed. More
applications can be found in the exercises at the end of this chapter.

2.2 Scalar Discrete-Time Models

2.2.1 Growth of a Population and the Discrete Logistic Equation

In this section, we build a simple model describing the growth of a population of Paramecium
aurelia. Aparamecium is a unicellular organism found in large numbers in freshwater ponds.
It is a member of the group of organisms called protozoa and feeds on small organisms such
as bacteria and other protozoa.

We will build the model based on a classic data set collected by Gause [63]. In
Table 2.1, the mean density of Paramecium aurelia, measured in individuals per 0.5 cm3,
is tabulated as a function of time, measured in days. The corresponding graph of the data is
shown in Figure 2.1. The population was grown in isolation and provided with a constant
level of nutrients.

Let pn be the mean density of this population on day n. A good starting point for
building a model for pn is to think of the word equation

future value = present value + change,

which readily translates to the following mathematical equation:

The goal of the modeling process, then, is to find a reasonable approximation for Apn that
more or less reproduces the given set of data.
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Table 2.1. Growth of Paramecium aurelia in isolation. Here, density is the number
of individuals per 0.5 cm3. Data taken from Cause [63].

Day

(«)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Mean density
of P. Aurelia

(Pn)

2
—
14
34
56
94
189
266
330
416
507
580
610
513
593
557
560
522
565
517
500
585
500
495
525
510

Change
in density

(A/?n = pn+i - pn)

—
—
20
32
38
95
77
64
86
91
73
30
-97
80
-36
3
-38
43
-48
-17
85
-85
-5
30
-15
—

Finding a suitable form for A/?w is not always easy. But let's examine the data more
closely. Initially, the population increases slowly; values of A/?,,, tabulated in the third
column of Table 2.1, are relatively small. As time progresses, values of A/?,, increase and
reach a maximum approximately halfway through the experiment. After that, they decrease
again. We can attribute the decrease in the growth rate to intraspecific competition for
nutrients and space. At the end of the experiment, the population appears to be leveling off
when it reaches a mean density of approximately 540 individuals per 0.5 cm3 (roughly, A/?,,
is negative when pn > 540 and &pn is positive when pn < 540). To keep things relatively
simple, we will ignore the fluctuations in the population. Note that the choice of using 540
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Figure 2.1. Graph of the data shown in Table 2.1.

for the limiting density may not be the best. However, it will do for a first approximative
model. For clarity, then, we continue to use this number in the following discussion, but
keep in mind that there may be room for improvement.

Based on the above observations, we must find a suitable form for A/?,, that is small
when pn is close to 0 and 540, and positive for intermediate values of pn. The following
quadratic expression fits the bill:

Note that this expression ensures that A/?n < 0 when pn > 540 and A/?n > 0 when
pn < 540. Substituting (2.3) into (2.2), we obtain the following model for the population:

where the value of the parameter k remains to be determined.
The experimental data contains enough information to allow us to obtain an estimate

for k from the data set. In particular, note that we have hypothesized that A/?n = pn+i — pn

is proportional to the product (540 — pn)pn, with the parameter k being the constant of
proportionality. To test our hypothesis, we plot Apn = pn+\ — pn versus p,,(540 — pn) and
check whether there is reasonable proportionality. The graph is shown in Figure 2.2.

Although the data looks scattered, we can fit it nicely with a straight line passing
through the origin, consistent with our hypothesis. The line of best fit has slope approxi-
mately 0.00145 (in Chapter 8, you will learn how to obtain lines of best fit using Maple).
Thus, setting k = 0.00145, we obtain the following model for the growth of the population:

Last but not least, we compare the behavior of our model with the observed initial
data. We start our simulation with p2 = 14 since there is no data point for n = 1. As we
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Figure 2.2. Testing (2.4) against the data shown in Table 2.1. The slope of the line
of best fit is approximately 0.00145.

Figure 2.3. Comparison of the data simulated with (2.5) and the data observed by
Cause, from Table 2.1.

iterate (2.5), we obtain the sequence {p2, Pn, /?4,...}. The simulated data and the observed
data are shown together in Figure 2.3. We see that the agreement looks good. Recall that
the choice to use 540 in the model was rather arbitrary, and improvement in the fit may be
possible by adjusting this number (see the exercises).
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In general, we can write the model just developed as

where N is the maximum population that can be sustained by the environment. N often is
referred to as the carrying capacity of the population. As we have just seen, this model can
be used to describe the growth of a population in an environment with limited resources.
The model can be used for other purposes as well. In particular, it can be used to describe
the spread of an infectious disease, such as the flu or the common cold, through a small,
closed population of size N. Here, xn is the number of infected individuals after n time
steps (e.g., days). Then (N — xn) is the number of individuals who have not yet become
ill. The parameter k is a measure of the infectivity of the disease, as well as the contact
rate between healthy and infected individuals. Similarly, the model can be used to describe
the spread of a rumor through a population of size N. In this case, xn is the number of
individuals who have heard the rumor, and N — xn is the number of individuals who have
not yet heard the rumor. The parameter k measures how juicy the rumor is. The larger k,
the juicier the rumor, and the faster its spread through the population.

Equation (2.6) generally is rewritten as follows:

where

Since this model is similar in appearance to the continuous-time model known as the logistic
model or the Verhulst model (you will encounter this model in Section 3.1), the model here
is known as the discrete logistic model.

Although the discrete logistic model provides a nice fit to Cause's data, it has the
unfortunate (but mathematically interesting) property that it does not exhibit logistic growth
(exponential growth initially, after which growth levels off until the population's carrying
capacity is reached) for all choices of the model parameters.

In Section 2.2.4, we will discuss possible alternatives to the discrete logistic model.
We first make a mathematical detour. In Section 2.2.2, we introduce techniques that can be
used to analyze discrete-time equations of the form

In Section 2.2.3, we use these techniques to explore in some detail the dynamical behavior
of the discrete logistic equation in various parameter regimes.
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Figure 2.4. Cobwebbing for the discrete logistic model (2.7). Parameter values
used are r = 2.8 and K — 1.

2.2.2 Cobwebbing, Fixed Points, and Linear Stability Analysis

With the fast computers of today, it is easy to generate many orbits by varying initial
conditions and model parameters, and get a feel for the dynamics of the model. However,
it is easy to miss some subtle behavior. We often can gain valuable insight into the model
dynamics from sophisticated, but easy-to-learn, mathematical techniques. We will examine
a few of these techniques in this section.

We begin with cobwebbing, which is a graphical solution method allowing one to
quickly visualize the orbits and their long-term behavior without explicity calculating each
and every iterate along the way.

We demonstrate the cobwebbing technique in Figure 2.4, which shows the graphs of
the function xn+\ = f(xn) — rx,,(i — ̂ -), using r = 2.8 and K = I, and the straight
line xn+i = xn. We choose our first iterate, JCQ, on the horizontal axis. The next iterate is
*i = /0*o)» which we can just read off the parabola. Visually, this is shown by a vertical
line from XQ on the horizontal axis to the point (JCQ, *i) on the parabola. The next iterate, Jt2,
can be obtained in a similar way from JC[. We first need to locate XY on the horizontal axis.
We already have xi on the vertical axis, and the easiest way to get it onto the horizontal axis
is to reflect it through the diagonal line jc,,+i = xn. Visually, this is shown by a horizontal
Line from x\ on the vertical axis to point (jci, x\} on the diagonal line, and then a vertical
line from point (jci, JCi) on the diagonal line to jc( on the horizontal axis. This process is
repeated for subsequent iterates.

In summary, one starts by traveling from jc0 vertically to the parabola, then horizontally
to the diagonal line, vertically to the parabola, and so on, as indicated by the solid portion of
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Figure 2.5. Illustration of stable and unstable fixed points of the difference equation
xn+i = f(xn). The fixed points xf and jc* are stable (indicated by a filled circle), and the
fixed point x% is unstable (indicated by an open circle).

the vertical and horizontal lines on the cobwebbing diagram in Figure 2.4. In this particular
case, the orbit converges to the rightmost intersection of the parabola and the diagonal line.

Any intersection of the parabola and the diagonal line represents a special point. Let
jt* be such a point. Then /(**) = x*. We call any such point afixedpoint (or an equilibrium
point or a steady state) of the model. If any iterate is x*, then all subsequent iterates also
are jc*. A question of interest is, what happens when an iterate is close to, but not exactly at,
a fixed point? Do subsequent iterates move closer to the fixed point or further away? In the
former case, the fixed point is said to be stable, whereas in the latter case, the fixed point is
said to be unstable.

Examples of both stable and unstable fixed points are shown in Figure 2.5. The three
fixed points shown are x*, x%, and x%. Choosing an initial condition XQ just to the left of
*2, we see that the orbit moves away from jc£, and towards x*. Similarly, choosing the
initial condition XQ just to the right of x%, we see that the orbit again moves away from x%,
but now towards jc*. Choosing the initial condition JCQ near x* or jt* results in the orbit
moving towards x* or Jt*, respectively. We say that x% is an unstable fixed point of the
model xn+[ = /(JCM), and x* and Jt* are stable fixed points.

From Figure 2.5, note that the slope of / at the stable fixed points x* and ** is less
than 1 (the slope of the straight diagonal line), whereas the slope of / at the unstable fixed
point j^2 is greater than 1. We can formalize these ideas via a linear stability analysis.

We choose the nth iterate to be close to a fixed point x* of (2.1),
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with yn small, so that xn can be thought of as a perturbation of x*. The question of interest
now is, what happens to yn, the deviation of x,, from x*, as the map is iterated? If the
deviation grows, then the fixed point x* is unstable, and if the deviation decays, then it is
stable. We can find the equation for the deviation by substituting (2.10) into (2.1) to obtain

We expand the right-hand side using a Taylor series about jt*, with a remainder term of
Ri(yn}, to obtain

Since jt* is a fixed point, we can replace f(x*} on the right-hand side by x*. If, in addition,
we neglect all the terms in the Taylor series that have been collected in the term /?2(}Vi),
then we are left with the following equation for the deviation:

We recognize that f'(x*) is some constant, say X. The equation for the deviation is thus the
linear difference equation

We can write yn+\ explicitly in terms of A and the initial condition yQ:

The behavior of the deviation yn, and the subsequent conclusion regarding the stability
of the fixed point x*, can be summarized as follows:

geometric growth; fixed point x* is unstable;
geometric decay; fixed point jt* is stable;
geometric decay with sign switch; fixed point x* is stable;
geometric growth with sign switch; fixed point jc* is unstable.

The four cases are illustrated in Figure 2.6. Note that no conclusion can be reached about the
stability of the fixed point x* when A. = dbl. These two cases require advanced treatment,
involving a careful examination of the neglected terms that were collected in the term R2(yn)
in (2.12), which is beyond the scope of this book. For treatment of these cases, the reader
is referred to Kuznetsov [104].

More generally, we can summarize the results of the analysis in the following theorem.

Theorem 2.1. Let x* be a fixed point of xn+\ = f(x,,). Then,

x* is stable when

x* is unstable when

there is no conclusion about the stability of
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Figure 2.6. Behavior of the general linear difference equation, (2.14), as a function
of the iterates n,for the cases (a)

That is, the linear stability of a fixed point x* is determined by the slope of the map
f ( x ) at the fixed point, as intuited earlier. The parameter A. = /(**) generally is referred
to as the eigenvalue of the map at x*.

2.2.3 Analysis of the Discrete Logistic Equation

We now return to the discrete logistic equation, (2.7), and apply the tools discussed in the
previous section. We begin with eliminating the parameter K by using the transformation
xn = ^ to obtain, after dropping the overbars,

Note that if we have xn > 1, then jc,,+i < 0. To avoid such situations, we impose the
restriction 0 < r < 4 (can you think of the reason why this should be so?), so that xn € [0, 1]
for all n provided Jt0 € [0, 1].

The fixed points of the map can be found exactly by setting /(**) = x* and solving
for x*. There are two fixed points. The trivial fixed point, x* = 0, always exists, while the
nontrivial fixed point, x* = ~, is positive only when r > 1.

To determine the stability of the fixed points, we need f'(x), which is

At the trivial fixed point, x* = 0, the eigenvalue is /'(O) = r. That is, the trivial fixed point
is stable for 0 < r < 1 and unstable for 1 < r < 4. At the nontrivial fixed point,
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Figure 2.7. Partial bifurcation diagram for the resettled discrete logistic equation,
(2.15). Shown are the fixed points and their stability as a function of the model parameter r.
Solid lines indicate stability of the fixed point, and dashed lines indicate instability. The
filled circles represent bifurcation points.

the eigenvalue is f'('—^-} = 2 — r . That is, the nontrivial fixed point is stable for 1 < r < 3,
and unstable for 3 < r < 4.

The existence and stability of the fixed points is summarized in the bifurcation diagram
of the fixed points versus the parameter r, shown in Figure 2.7. Reading the diagram from
left to right, note that the trivial fixed point becomes unstable as soon as the nontrivial fixed
points come onto the scene at r = 1, when the eigenvalue moves through +1. The nontrivial
fixed point is stable initially, but loses its stability at r = 3, when the eigenvalue moves
through — 1.

The two points r = 1 and r = 3 are known as bifurcation points. A bifurcation point
is a parameter value at which there is a qualitative change in the dynamics of the map.
The bifurcation at r = 1 is called a transcritical bifurcation, referring to an exchange of
stability when two branches of fixed points meet (the two branches meeting here are Jt* = 0
and Jt* = ^). The bifurcation at r = 3 is called a. flip bifurcation or a period-doubling
bifurcation. We will see shortly how the dynamics of the map changes at this flip bifurcation.

There are many other types of bifurcations. A detailed discussion of bifurcation theory
is beyond the scope of this book, and the interested reader is referred to Alligood, Sauer,
and Yorke [4], Kuznetsov [104], and Strogatz [152].

We can easily read the long-term behavior of the logistic map from the bifurcation
diagram. As before, let us think of xn as the size of a population (now scaled by the factor K).
We can distinguish three cases (indicated along the bottom of Figure 2.7). In the first case,
for 0 < r < 1, the population goes extinct, no matter what the size of the initial population,
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Figure 2.8. Dependence of the shape of the parabola
value of the model parameter r.

XQ, is. In the second case, for values of r between 1 and 3, the population reaches a nonzero
steady state. The larger the value of r, the larger the steady-state population. What happens
when the parameter exceeds 3 is not clear. Before investigating this third case, however,
it pays to perform a graphical analysis complementing the results from the linear stability
analysis.

Figure 2.8 shows how the shape of the parabola f ( x n ) = rxn(\ — xn) depends on the
value of the model parameter r. Note that the roots remain fixed at xn = 0 and xn = 1.
However, the maximum of the parabola is -j, and thus increases with r.

For the first case, 0 < r < 1, the parabola lies entirely below the diagonal line
xn+i = xn, and the only point of intersection is at the origin. That is, the only fixed point is
the trivial fixed point. Since the slope of / at the origin clearly is positive but less than 1,
the trivial fixed point is stable. Any population will go extinct, eventually. This situation is
illustrated in Figures 2.9 (a) and (b).

When r = 1, the parabola is tangent to the diagonal line xn+i = xn at the origin. This
event marks the transition to the second case. As soon as r > 1, the slope of / at the origin
exceeds 1 (i.e., the fixed point at the origin has switched from being stable to unstable) and
there is an additional point of intersection, namely, the nontrivial fixed point, x* = ^.
The slope of / at the nontrivial fixed point is always less than 1. Initially, for 1 < r < 3
(case 2), the slope of / at the nontrivial fixed point is greater than — 1, and so the fixed
point is stable. Any population will eventually reach a steady-state size. This situation is
illustrated in Figures 2.9 (c) and (d).

When r — 3, the slope of / at the nontrivial fixed point is — 1, and this event marks
the transition to the third case. When 3 < r < 4 (case 3), the slope of / at the nontrivial
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Figure 2.9. (a) and (b) Case 1 (0 < r < 1), for r — 0.9. The only faced point
x = 0 is stable, and the population goes extinct, (c) and (d) Case 2(1 < r < 3), for r = 2.
The faced point x = 0 is unstable, the nontrivial fixed point is stable, and the population
size stabilizes.

fixed point is less than — I, and so the fixed point now is unstable, as we had inferred earlier
from linear stability analysis (Theorem 2.1).

We now continue with the graphical analysis and cobwebbing to determine what hap-
pens in the third case. In Figure 2.10, we show the dynamics of the discrete logistic equation
for three values of r between 3 and 4. The plots in the left column of Figure 2.10 show values
of the iterates xn as a function of n for various values of r. Corresponding cobwebbing
diagrams are shown in the right column of Figure 2.10 (to clarify the cobwebbing diagrams
shown in (b) and (d), only the last few iterates are used).

In Figures 2.10 (a) and (b), for r = 3.2, we observe that the population eventually
oscillates between two values. We refer to the oscillation as a 2-cycle. In Figures 2.10 (c) and
(d), for r = 3.55, we eventually observe a 4-cycle, or an oscillation between four population
sizes. Values of r can be found at which the discrete logistic equation exhibits an S-cycle,
a 16-cycle, and so on. But not all values of r > 3 give periodic oscillations. An example of
an aperiodic oscillation is shown in Figures 2.10 (e) and (f), for r = 3.88. The orbit appears
chaotic, and indeed, it can be shown that the discrete logistic equation exhibits chaos in the
mathematical sense. A careful mathematical definition of chaos is beyond the scope of this
book, and the interested reader is referred to Alligood, Sauer, and Yorke [4] and Strogatz
[152] for more information. For the purposes of our discussion, it suffices to observe that
the simple model under investigation can exhibit some very complicated dynamics.

We can broaden our analysis to determine the origin of the 2-cycle. When an orbit
converges to a 2-cycle, it oscillates between two values, say u and v (see Figure 2.10 (b)),
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Figure 2.10. Illustration of the various types of dynamical behavior of the discrete
logistic equation in case 3, when 3 < r < 4. (a) and (b) Two-cycle with r = 3.2. (c) and
(d) Four-cycle with r = 3.55. (e) ant/ (f) Chaos with r = 3.88.

with

or, equivalently,

Recalling the definition of a fixed point (jc is a fixed point of /(jc) if /(jc) = Jt), we see
that the above equations imply that u and u are fixed points of the second-iterate map,

The graph of the second-iterate map f2 is shown in Figure 2. 1 1 for various values
of the parameter r. For values of r < 3 (Figure 2.1 1 (a)), the second-iterate map has two
fixed points, namely, the origin, which is unstable, and the nontrivial fixed point, jt* = ~
of the original logistic map, which is stable (note that any fixed point of the logistic map
automatically also is a fixed point of the second-iterate map). That is, no interesting 2-cycles
exist for these values of r. As r increases, the maxima of the second-iterate map rise and

f (f (x)) = f2(x)
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Figure 2.11. The second-iterate Junction, x,,+2 = f2(xn), for the logistic map, for
various values ofr. (a) r < 3; (b) r = 3; (c) r > 3.

the local minimum descends, until at r = 3 (Figure 2.11 (b)), the local minimum is tangent
to the diagonal line xn+2 = xn. At this point, two new stable fixed points of the second-
iterate map emerge, namely, u and u, corresponding to the 2-cycle (Figure 2.11 (c)). At the
same time, the nontrivial fixed point x* becomes unstable (this is in accordance with our
findings from the analysis of the original logistic map). The bifurcation at r = 3 is called a
period-doubling or flip bifurcation.

Initially, u and v are close together, so the 2-cycle is barely noticeable. But as r
increases, u and v move away from each other, and the 2-cycle becomes more pronounced.
The stability of u and v corresponds to the stability of the 2-cycle. That is, the 2-cycle is
stable initially, since the graph of /2 at u and v is shallow. As r increases beyond 1 + \/6
(see Exercise 2.4.6), the slope of f2 at u and v becomes less than —1, indicating that the
2-cycle becomes unstable. At this point (another flip bifurcation), the 4-cycle arises. We
could continue the analysis by graphing /4 for various values of r, but this is left as an
exercise for the reader.

We can update the bifurcation diagram shown in Figure 2.7 by including information
about the 2-cycle, as shown in Figure 2.12.

Ideally, we should also include information about the 4-cycle, the 8-cycle, and so on.
The algebra to do so becomes unwieldy rather quickly. However, we can use the computer
to create a similar diagram. The idea is to let the computer program determine the long-term
behavior of the map for many values of the parameter r. For example, for r = 2, the iterates
converge to x = |, the stable fixed point of the map for this value of r. If we had computed
2000 iterates, say, from an arbitrary initial condition, then the last 100 or so iterates will all
have a value virtually indistinguishable from |. So, plotting these last 100 iterates above
r — 2 on a diagram of Jc versus r just gives a point, (r, x) = (2, |). If we chooser = 3.2(cf.
Figure 2.10 (a)), the last 100 iterates or so will jump back and forth between the values of the
corresponding 2-cycle. Plotting these iterates above r — 3.2 gives two points, and so on.
A lot of computation, using many values of r close together, eventually leads to the orbital
bifurcation diagram, also known as the Feigenbaum diagram, shown in Figure 2.13. Note
that since the computations only detect stable behavior (stable fixed points, stable 2-cycles,
and so on), the orbital bifurcation diagram differs from the bifurcation diagrams shown in
Figures 2.7 and 2.12 in that the branches of unstable behavior, indicated by dashed lines,
no longer are shown.
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Figure 2.12. Updated bifurcation diagram for the discrete logistic equation shown
earlier in Figure 2.7. Shown are the fixed points, as well as the 2-cycle for values of
r > rj = 3. The 2-cycle is stable uptor2 = \ + \/6, and unstable thereafter.

Figure 2.13. Orbital bifurcation diagram for the discrete logistic equation.

By examining the orbital bifurcation diagram, it can be seen that the 4-cycle exists
only over a small range of r, the 8-cycle over an even smaller range of r, etc. It can be
shown (see, e.g., Holmgren [89]) that the bifurcation points leading to higher-order cycles
converge at r % 3.57. Beyond r ^ 3.57, the logistic map becomes chaotic, that is, the
iterates no longer appear to follow a predictable pattern, although they are confined to take
on only certain values (e.g., when r — 3.6, the iterates never take on values below 0.324
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or above 0.900, but they can take on any intermediate value). We say that the attractor of
the map is a strange attractor. By computing the orbital bifurcation diagram over a smaller
range of r, say for 3 < r < 4, with higher resolution, many interesting features of the map
can be observed, such as periodic windows surrounded by chaos. A periodic window is a
small range of r where the attractor is periodic again. For example, near r = 3.83, one
can find 3-cycles. From this periodic window, the transition back to chaos occurs through
a series of period-doubling or flip bifurcations, leading to 6-cycles, 12-cycles, and so on.

The discrete logistic equation is a well-studied difference equation, and there are many
interesting mathematical investigations that can be pursued. We will stop here and refer the
interested reader to Devaney [43] and Strogatz [152].

In the 1970s, May [113] noticed that simple difference equations can give rise to
very complicated dynamics. He hypothesized that the wild fluctuations observed in some
natural populations might reflect chaotic orbits of low-dimensional systems of difference
equations. J. M. Gushing and his colleagues [41] have followed up on this hypothesis. They
conducted controlled experiments on laboratory populations of flour beetles living under
constant environmental conditions. They showed that the population dynamics can be
described and predicted accurately by a relatively simple model of difference equations that
reflect well-understood facts about the life cycle of the flour beetle. In addition, they were
able to explain observed dynamics of the population and demonstrate nonlinear phenomena
such as bifurcations, periodic orbits, and chaos in real biological populations. Thus, their
work has lent credibility to the use of models such as those described in this chapter. It
should be no surprise, then, that these models continue to be used on a regular basis.

2.2.4 Alternatives to the Discrete Logistic Equation

In the previous section, we saw that the behavior of the discrete logistic equation, (2.7), is
quite complex. For many choices of the model parameters, the solution does not exhibit
logistic growth (exponential growth initially, followed by a leveling off of the growth rate,
until the population reaches a steady state). Also, for some choices of parameter values, the
model gives unrealistic results. For example, if the population xn > K in any year, then the
population is extinct (negative) the next year. For these reasons, it is worthwhile to examine
alternative models that do not have these problems and that are widely used.

In particular, we examine the Beverton-Holt and Ricker models. Before discussing
these models in detail, we note that these two models and the discrete logistic equation
belong to a class of models that can be written in the following general form:

Many other population models can be written in this form. Of course, the simplest
model belonging to this class is the geometric growth model, using g(xn) = r, so that

where r > 0. We have encountered this model previously, as (2.14) in the discussion of
linear stability analysis. When r > 1, xn —>• oo as n -> oo; when r < 1, xn -> 0 as
n -> oo. In this case, the growth rate g(xn} = r is constant; that is, the number of offspring
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Figure 2.14. The discrete logistic model, (2.7). (a)Graphofg(xn) = r(\—xn/K}.
(b) Graphs of

per adult does not depend on the current population. We say that growth in the geometric
model is density independent.

Regulatory mechanisms that control the growth of populations need to be included
in any realistic model. There are many hypotheses regarding the mechanisms at play in
regulating the size of populations. For example, populations are influenced by changes in
the weather, a limited food supply, competition for resources such as nutrients and space,
territoriality, predation, diseases, etc. The discrete logistic equation as well as the Beverton-
Holt and Ricker models contain self-regulatory mechanisms that are density dependent; that
is, the growth rate g(xn) depends nontrivially on the current population xn. The models
differ in their form of density dependence.

In the case of the discrete logistic model, we have g(xn) = r(\ — xn/K). Thus,
the growth rate decreases linearly, as shown in Figure 2.14 (a). It is because g(xn) < 0
when xn > K that the model predicts extinction within a year whenever xn > K (see
Figure 2.14 (b)). Thus, any good alternative to the discrete logistic model should have
g(xn) > 0. Both the Beverton-Holt and Ricker models satisfy g(xn) > 0. We now discuss
these models in some detail.

The Beverton-Holt Model

The Beverton-Holt model was derived in the context of fisheries [22]. The growth rate is
given by g(xn) = . ' \ , with r > 0 and K > 0, giving

i *• Xfj

The graph of g(jt), for r > 1, is shown in Figure 2.15 (a), and the resulting Beverton-
Holt model is shown in Figure 2.15 (b). We see that the Beverton-Holt map increases
monotonically, approaching the asymptote jc,,+i = rK/(r — 1).
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Figure 2.15. The Beverton-Holt model, (2.23). (a) Graph of g(xn) =
r/(l + z=±xn). (b) Graphs of

Fixed points of the Beverton-Holt map are the nontrivial fixed point at the origin,
jc* = 0, and the nontrivial fixed point at the carrying capacity, x% = K. To determine the
stability of the fixed points, we need

Then

Thus, when r > 1, the trivial fixed point, x* = 0, is unstable, and the nontrivial fixed
point, *2 = K, is stable (when 0 < r < 1, the stability reverses). Cobwebbing confirms
our analytical result. In fact, it is easy to verify with cobwebbing that convergence to
x% = K is monotonic. That is, starting from a small initial condition 0 < XQ <3C K, the
population initially increases quickly. Growth slows down when the population approaches
the carrying capacity K. Similarly, when the initial condition XQ > K, the population
decreases smoothly to K. Complex behavior such as cycles and chaos is not possible.

The Beverton-Holt model is one of the few nonlinear models for which a solution in
closed form can be written down (see the exercises). It can be shown, then, that the solution
behavior of the Beverton-Holt model is precisely that of the continuous version of the logistic
model (equation (3.6), discussed in detail in Section 3.1). In fact, the Beverton-Holt model
is the time-one map of the continuous logistic equation, and as such, we can consider it
to be another discrete analog of the continous logistic equation. We defer derivation of
the Beverton-Holt equation via the time-one map to Section 3.6.2. In the meantime, we
reiterate that we now have two discrete-time models that can be considered analogous to
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Figure 2.16. The Richer model, (2.24). (a) Graph of
(b) Graphs of

the continuous logistic equation. In particular, we have the discrete logistic equation, which
is analogous in the sense that the form of the equation is the same, and the Beverton-Holt
model, which is analogous in the sense that the form of the solution is the same.

In Section 2.2.1, we fit the discrete logistic equation, (2.7), to Cause's classic data for
the growth of Paramecium aurelia (cf. Figure 2.1). As we have just seen, it may be more
appropriate to fit the Beverton-Holt model to the data instead. This is left as an exercise for
the reader.

The Ricker Model

The Ricker model also has its roots in fisheries [ 137]. In this case,
with r > 0 and K > 0, giving

We can think of the factor exp(r) as a constant reproduction factor, and of the factor
exp (—rxn/K) as a density-dependent mortality factor. The larger the population xn, the
more severe the mortality factor.

The graph of g(x) is shown in Figure 2.16 (a), and the resulting Ricker map is shown
in Figure 2.16 (b). Comparing Figures 2.15 (a) and 2.16 (a), we see that the shape of the
graph of g(x) is similar to that for the Beverton-Holt model. However, the exponential
function decreases more quickly than the inverse function, and as a result, the Ricker map
has a single local maximum (it sometimes is referred to as a single-hump map), as is the
case in the discrete logistic map (see Figure 2.14 (b)). However, the Ricker map remains
positive for all values of xn. Thus, the model can exhibit complex dynamics such as cycles
and chaos, but it never yields unrealistic (negative) populations.
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Fixed points of the Ricker map are given by the trivial fixed point at the origin, jcj5 = 0,
and the nontrivial fixed point at the carrying capacity, x* = K. To determine the stability
of the fixed points, we need

Thus, the trivial fixed point x* = 0 is always unstable. Since | l—r| < IwhenO < r < 2, the
nontrivial fixed point is stable for 0 < r < 2 and unstable for r > 2. Numerical simulation
of the model shows that the nontrivial fixed point is reached from any initial condition
jto > 0 when 0 < r < 2; that is, the nontrivial fixed point is globally asymptotically stable.
When r > 2, cycles and chaos are observed.

Further detailed analysis of the Ricker model mirrors the investigation of the discrete
logistic equation in the previous section and is the subject of Section 8.2 in the chapter on
Maple.

2.2.5 Models in Population Genetics

We now move away from population biology and show another application of discrete-time
equations, namely, in the study of population genetics. Population genetics concerns itself
with the genetic basis for evolution in a population.

We begin with a review of some terminology in the study of genetics. We consider
diploid organisms, whose genetic material rests on two sets of chromosomes, one obtained
from each parent. Chromosomes contain genes, which are the fundamental units of heredity,
carrying information from one generation to the next. Due to mutations, a gene can exist
in different forms, or alleles. Two homologous alleles, one originating from each parent,
interact to produce a trait, such as eye color in humans or wing color in moths.

Suppose we are interested in a trait determined by one gene for which there are two
alleles. For example, consider wing coloration in moths. Let the two alleles be denoted by
W and w. That is, individual moths may have one of three genotypes (allelic composition):
WW, Ww, and ww. Individuals with WW or ww are called homozygous; those with Ww
are called heterozygous. Let's further suppose that individuals have one of two phenotypes
(outward expression of the genetic code): individuals with genotype WW and Ww develop
white wings, whereas individuals with genotype ww develop black wings. In this case, the
W allele is capable of expressing the color trait at the expense of the w allele; we say it is
dominant. Similarly, the w allele fails to have an impact when paired with the W allele; we
say it is recessive.

A question of interest in population genetics is how the genetic make-up of a popu-
lation changes over time. In particular, how do allele frequencies change, if at all, across
the generations? Do recessive alleles disappear gradually? What happens when there is
selection?

Then
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Table 2.2. Punnett square summarizing how the frequencies of the Wand w alleles
in the current generation give rise to three different genotypes in the next generation.

W Pn

Father
w I- pn

W
Pn

P2n

Pn(l-Pn

Mother
w

1- Pn

Pn(l - Pn)

) (1 - Pn)2

We divide this section into three parts. First, we develop a model to track the frequency
of the W allele in the population and derive a well-known result in population genetics
known as the Hardy-Weinberg law. We then introduce selection and examine the effect of
selection in a population with two phenotypes and a population with three phenotypes. The
model for the latter case exhibits a type of behavior not encountered previously, namely,
bistability. Throughout this section, we restrict ourselves to the study of organisms with
discrete generations, so that discrete-time equations are appropriate. The development of
this section was inspired by [154].

The Hardy-Weinberg Law

Let pn be the frequency of the W allele in the population, that is, the number of alleles W
divided by the total number of alleles in the population, during the nth generation. Similarly,
let qn be the frequency of the w allele during the nth generation. Of course, since pn +qn = 1,
it is sufficient to track only pn, since qn can always be recovered via qn = 1 — pn.

To derive a model for /?„, we need to make a number of assumptions. To begin, we
assume the following:

• mating is completely random (white moths don't preferentially mate with other white
moths nor with black moths);

• all genotypes are equally fit; that is, all genotypes are equally likely to survive to
breed;

• there is an absence of mutation;

• the frequency of the allele in either sex is the same as in the entire population.

To compute pn+i, it helps to construct a Punnett square, as shown in Table 2.2,
which summarizes the frequencies of the alleles in the current generation and the resulting
frequencies of the three different genotypes in the next generation. Thus, the frequencies of
the next generation with genotypes WW, Ww (= wW), and ww are p2

t, 2pn(\ — /?„), and
(1 — Pn}2, respectively. The frequency of the W allele in the next generation is equivalent
to the probability of obtaining a W allele by randomly choosing one allele from a random
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individual. The probability of obtaining a W allele from an individual with genotype WW
is 1, from an individual with genotype Ww, it is i, and from an individual with genotype
ww, it is 0. Computing a weighted average of these probabilities thus yields the following
expression for the frequency of the W allele:

We see that allele frequencies do not change from generation to generation, provided the
assumptions stated above hold, of course. This conclusion is known as the Hardy-Weinberg
law.

Selection in a Population with Two Phenotypes

The assumptions stated in the previous section imply that there is no selection. What happens
when there is selection? For example, suppose that white-winged moths are more conspicous
and therefore more likely to be eaten by birds than black-winged moths. Will white-winged
moths become extinct? What if white-winged moths have the selective advantage instead?
Will black-winged moths become extinct?

Let a be the fraction of white-winged moths surviving to produce the next generation,
with 0 < a < 1. Similarly, let y be the fraction of black-winged moths surviving, with
0 < y < 1. Choosing a > y gives white-winged moths a selective advantage, while a < y
gives black-winged moths a selective advantage.

Just before reproduction, the genotype ratio WW : Ww : ww is ap% : 2apn(l — pn) :
y(\ — pn}

2. The resulting frequency of W alleles in the next generation is then

Note that when a = y, that is, when there is no selective advantage, we recover the Hardy-
Weinberg equilibrium, namely pn+i = pn. But when a ^ y, we have a nonlinear equation
that warrants further investigation.

Let's begin by finding the fixed points p* of this equation and determining their
stability with a linear stability analysis. First, we look for values of p* such that /(/?*) = /?*,
where

It is easy to show that this equation has two distinct roots, corresponding to two fixed points,
namely, p* = 0 and p^ = 1. In terms of the genetic problem at hand, p* = 0 means that
the W allele has become extinct and all moths have black wings, whereas p\ — 1 means
that the w allele has become extinct and all moths have white wings. Intuitively, we expect



Figure 2.17. Cobwebbing diagrams for allele frequency equation (2.32).
(a) a < y (a = 0.2 and y = 0.8); (b) a > y (a = 0.8 and y = 0.2).

p* = 0 to be stable when black-winged moths have the selective advantage (a. < y), and
p* = 1 to be stable when white-winged moths have the selective advantage (a > y).

To determine the stability of these fixed points with linear stability analysis, we find

so that f'(p\) = /'(0) = Sf and /'(pp = /'(I) = 1. The appearance of the ratio a/y
looks promising in light of our intuition discussed above. Let's check the details. When
a < y, we have 0 < - < 1, and so we conclude that the fixed point p* = 0 is stable.
That is, when black-winged moths have the selective advantage, the W allele can indeed
become extinct if its frequency becomes sufficiently small (since the linear stability analysis
only is local, we cannot conclude that the W allele will become extinct per se). Similarly,
when a > y, the fixed point p* = 0 is unstable. Since f'(p%) = 1, the linear stability
analysis does not yield a conclusion about the stability of the other fixed point, p^ — \ (se
Theorem 2.1). A graphical stability analysis will be helpful.

Cobwebbing diagrams for the allele frequency equation (2.32) are shown in Fig-
ure 2.17. In Figure 2.17 (a), the case a < y is shown. Indeed, any initial condition PQ with
0 < po < 1 leads to the fixed point p* = 0. We conclude that p* = 0 is stable, and /?£ — 
is unstable (for any 0 < PQ < 1, which are the only biologically sensible initial conditions).
In Figure 2.17 (b), the case a > y is shown. Here, the situation is reversed. The fixed point
p* = 0 is unstable, and /?£ = 1 is stable (again, for any 0 < /?o < 1).

In summary, selection on the level of phenotype (white-winged versus black-winged),
when one allele is dominant and the other recessive, eventually leads to extinction of one
of the alleles. How fast the allele is driven to extinction depends on the relative strength of
the model parameters a and y. The larger the difference between a and y, the faster the
approach to extinction.

32 Chapter 2. Discrete-Time Models
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Selection in a Population with Three Phenotypes

Let's generalize this investigation one more step into the effect of selection. Suppose that
the W allele is no longer dominant and that the three genotypes, WW. Ww, and ww, give rise
to three distinct phenotypes. For ease of discussion, we will assume that individuals with
genotypes WW and ww will develop white and black wings, respectively, as before, and
that individuals with genotype Ww will develop gray wings. Furthermore, introduce the
parameter ft to represent the selective pressure on gray-winged moths, with 0 < ft < 1. Just
before reproduction, the genotype ratio WW: Ww : ww is ap% : 2ftpn(l — pn} : y(\ — pn)

2.
Questions of interest now include, under which conditions will all three phenotypes co-
exist? Similarly, can gray-winged moths be driven extinct? If so, will white-winged moths
or black-winged moths survive?

As before, it suffices to study the iterative map for the frequency of W alleles, which
is

This more general allele frequency equation looks a bit more intimidating than the previous
one, but doing the analysis is still quite reasonable. In particular, fixed points p satisfy
P* = /(/>*), where

yielding a cubic equation in p. One fixed point can be found by inspection, namely, p* = 0.
We are then left with a quadratic equation, and its roots are p% = 1 and

It is easy to check that /?* 6 (0, 1) only when ft < or, y or when ft > a,y. Otherwise,
p* = 0 and p^ = 1 are the only biologically relevant fixed points. We can now proceed to
determine the stability of the fixed points. As before, we require /'(/?), which is

Then (with a little help from Maple to simplify the algebra)
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Table 2.3. Summary of the outcome of the more general allele frequency equation, (2.34).

Case

I

II

III

IV

Model
parameter

a > 6 > Vi 1

a < 3 < yr I

ft > Y > a
or
ft > a > y

ft < y < a
or
ft < a < Y

Fixed points
and stability

0 is unstable
1 is stable

0 is stable
1 is unstable

0 is unstable
1 is unstable
p* is stable

0 is stable
1 is stable
p* is unstable

Long-term
behavior

p-+ 1/

p -> 0r

p-+ p*

P-+Q
or
p-+l

Biological
interpretation

White-winged moths have the se-
lective advantage and black- winged
moths have the selective disadvan-
tage; w allele becomes extinct;
all moths will have genotype WW
(white-winged).

Black-winged moths have the se-
lective advantage and white-winged
moths have the selective disadvan-
tage; W allele becomes extinct;
all moths will have genotype ww
(black-winged).

Gray-winged moths have the selec-
tive advantage; both W and w alleles
remain in the population, and their
frequencies reach an equilibrium; all
genotypes coexist.

Gray-winged moths have the selec-
tive disadvantage; either the W or the
w allele becomes extinct; all moths
will have either genotype WW or ww
(white-winged or black-winged).

We can now determine the fate of the moth population under different conditions by studying
the outcome of the model with different parameter sets. It can be shown that there are four
fundamentally different cases, as summarized in Table 2.3 (the reader is asked to work out
the details in the exercises). Representative cobweb diagrams for each case are shown in
Figure 2.18.

Cases I and II are straighforward, and the results are rather intuitive. In case I,
white-winged moths (genotype WW) have the selective advantage and black-winged moths
(genotype ww) have the selective disadvantage, so that the w allele is driven to extinction.
Consequently, both gray-winged and black-winged moths are driven to extinction, and
the only moths remaining are the white-winged moths (Figure 2.18 (a)). Case II is just
the opposite, with black-winged moths having the selective advantage and white-winged
moths the selective disadvantage, so that the only moths remaining are black-winged moths
(Figure 2.18 (b)).

A bit more interesting are cases III and IV. In case III (shown in Figure 2.18 (c)), gray-
winged moths have the selective advantage. Consequently, both W and w alleles remain
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Figure 2.18. Cobweb diagrams for the more general allele frequency equation,
(2.34), corresponding to the four cases summarized in Table 2.3. (a) Case I (a > ft > y),
with a = 0.8, ft = 0.5, and y = 0.1. (b) Case II (a < ft < y), with a = 0.1, ft = 0.5,
and y = 0.8. (c) Case III (ft > a, y), with a = 0.1, ft = 0.9, and y = 0.3. (d) Case IV
(ft < a, y), with a = 0.9, ft = 0. 1, and y = 0.7.

in the population (p — > /?*, which lies between 0 and 1), and all three genotypes coexist.
The equilibrium frequency for the W allele, /?*, depends on the relative strength of the three
selective pressure parameters. The larger the value of a, the larger p^, that is, the higher
the equilibrium frequency of the W allele, as might be expected biologically.

Finally, in case IV (shown in Figure 2.1 8 (d)), where gray-winged moths have the se-
lective disadvantage, we see a new and interesting dynamical behavior, known as bistability.
There are two stable fixed points, separated by an unstable fixed point. As time progresses,
either one of the stable fixed points is approached, depending on the initial condition. If
the initial frequency of the W allele is greater than /?*, then p — > p% = 1 is approached.
That is, provided the frequency of the W allele is sufficiently large initially, it will become
dominant. If it is less than /?*, then p — > p* = 0 is approached, and the W allele becomes
extinct.

It turns out that the ideas presented here find application in a real-life situation. The
peppered moth (Biston betularia) is common in both Europe and North America. Normally,
the moth has a "peppered" appearance, but sometimes it is completely black (melanic). On
lichen-covered tree trunks, the normal form is camouflaged, while the melanic form is rather
conspicuous and at a selective disadvantage. During the industrial revolution in England,
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lichen were killed by pollution, resulting in much darker tree trunks. Consequently, the
selective pressure on the two forms of the moths reversed, and the frequencies of the allele
for the gene responsible for wing coloration adapted quickly [101].

In this section, we have only scratched the surface of the types of problems in the
area of population genetics that can be studied with discrete-time equations. For further
exploration, the reader is referred to Chapter 4 in the text by Britton [29] and to Section 3.6
in the text by Edelstein-Keshet [51].

2.3 Systems of Discrete-Time Equations

2.3.1 Love Affairs: Introduction

Consider the relationship between two lovers, say Romeo and Juliet (with apologies to
Shakespeare). It is not unreasonable to think that their feelings for each other are dynamic.
In [ 151,152], Strogatz developed a simple model, consisting of a system of ODEs, describing
the dynamic love affair. Here, we will consider a discrete-time version of the model.

Let Rn be Romeo's love/hate for Juliet on day n, and let Jn be Juliet's love/hate for
Romeo on day n. We will agree upon the following interpretation of the values of Rn

(similarly for /„): when Rn > 0, Romeo loves Juliet; when Rn < 0, Romeo hates Juliet;
and when Rn = 0, Romeo is neutral towards Juliet. The larger the |/?n|, the stronger the
feeling of love/hate.

Next, let's assume that Romeo and Juliet respond to their own feelings in a linear
fashion. In particular, assume

It seems reasonable to take aR,aj > 0 so that we're not dealing with wild mood swings
(love one day, hate the next, and so on). Depending on the magnitude of the a parameter,
there are two romantic styles. If 0 < a#, a/ < 1, then the initial feeling becomes neutral
as time progresses. If OR, aj > 1, then the initial feeling intensifies.

Now we add simple linear terms that represent the response of Romeo and Juliet to
the feelings of the other, to get the following system of equations:

The p parameters describe how their love/hate changes in response to the current feeling
of the other. We allow PR, pj e E. In this case, the sign of the p parameter determines a
particular romantic style. For example, if pR > 0, then Romeo gets excited by Juliet's love
for him, while he gets discouraged by Juliet's hate for him. In contrast, if PR < 0, then
Juliet's hate for him contributes to his love for her, while Juliet's love for him contributes
to his hate for her.

Both Romeo and Juliet thus have four romantic styles. The outcome of their love
affair depends on the particular combination of romantic styles, the relative size of the a
and p parameters, and the initial feelings for each other. It is easy (and instructive too) to
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Figure 2.19. Four case studies for Romeo and Juliet. Graphs in the left column
show Rn and Jn as functions ofn. Graphs in the right column show the orbits in the (/?„, </„)
phase plane. In all cases, initial conditions used are

simulate this model, for example, on a spreadsheet, and experiment with different sets of
parameters. Here, we present four case studies, illustrating typical types of behavior of the
system.

In Figure 2.19, we show two side-by-side graphs for each of the four case studies.
Graphs in the left column show Rn and /„ as functions of n. Graphs in the right column
show the orbits in the (/?„, Jn) phase plane. In these graphs, time n is suppressed, and
successive coordinates (/?„, /„) are plotted. The direction of the orbit as n increases is
indicated with arrows.

Ro = jo=1. (a) aR + 0.5 aj = 0.7,
Pr = 0.2 pg = 0.5. (b) aT = 0.5 aj =0.7 pt = 0.7 pj = 0.9. (c) aR = 1.0. aj = 1.0.0
Pr = 0.2 pg= -0.2 (d) ar = 0.5 aj = 0.8, pr = 0.2 pj = 0.5.
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In Figure 2.19 (a), both Romeo and Juliet can be considered cautious lovers [152]. If
they were to respond to their own feelings only, their feelings for each other would become
neutral (0 < a/?, aj < 1). Although they respond in kind to each other, they only do so
tentatively (PR and pj are both positive, but relatively small). Different initial conditions
all lead to the same outcome: as n -> oo, Rn, Jn -> 0; that is, the love affair fizzles, and
both Romeo and Juliet become neutral to each other.

In Figure 2.19 (b), the p parameters have been increased slightly, so that Romeo and
Juliet both respond more decisively to the feelings of the other. In the case shown, the love
affair results in a love test, with both Rn, Jn —> +00 as n —> oo. With different initial
conditions, the love affair may result in war instead, with both /?„, /„ —» — oo as n -> oo.

In Figure 2.19 (c), we consider a case where both Romeo and Juliet remain true to
their initial feelings (a/?, aj = 1), but their p parameters have opposite sign (do opposites
attract?). Here, the love affair exhibits growing oscillations; that is, Romeo and Juliet
experience a perpetual cycle of love and hate, with their feelings ever intensifying as time
progresses.

Finally, in Figure 2.19 (d), we achieve an equilibrium of perpetual love, albeit one in
which Juliet loves Romeo more than Romeo loves Juliet.

One can continue to vary the model parameters and initial conditions to investigate
the outcome of the love affair. This becomes tiring quickly, and unsatisfying. Instead, it
would be nice to be able to predict the outcome of the love affair given a set of model
parameters. We can do so by extending the concept of fixed points and their stability from
scalar equations to systems of equations, which we do in the next section. We return to
Romeo and Juliet in Section 2.3.3, where we apply the results of linear stability analysis.

2.3.2 Fixed Points and Linear Stability Analysis for Systems of
Discrete-Time Equations

In this section, we extend the concept of fixed points and their stability from scalar equations
to systems of equations. For ease of notation, we present the material for a two-dimensional
system, but the results are generalized readily to higher-dimensional systems, as we will
see shortly.

Consider the following two-dimensional discrete-time system:

Fixed points of this system are all points (jt*, y*) satisfying /(**, y*) = jt* and
g(x*, y*) = y*.

To determine the stability of a fixed point, consider a small perturbation from the fixed
point by letting

where both un and vn are understood to be small, so that xn and yn can be thought of
as perturbations of x* and y*, respectively. Similar to the situation for one-dimensional
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discrete-time equations, discussed earlier, the question of interest is what happens to «„ and
vn, the deviations of xn and yn from x* and y*, respectively, as the map is iterated.

We can find the map for the deviation (un, vn} by substituting (2.44)-(2.45) into
(2.42)-(2.43) to obtain

We expand the right-hand side using a Taylor series about (jt*, y*), with remainder terms
RX3 and Ry^, respectively, to obtain

Since (x*, y*) is a fixed point, we can replace f ( x * , >'*) and g(x*, y*) on the right-hand
side by x* and y*, respectively. If, in addition, we neglect all the terms in the Taylor series
that have been collected in Rx2 and Ry 2, then we are left with the following map for the
deviation:

As before, we recognize that the partial derivatives appearing here are evaluated at
the fixed point (jc*, y*), and so they are all constants. We thus have a linear map, which can
be rewritten in matrix form:

where

and

is the Jacobian matrix of the original map, evaluated at the fixed point (jc*, y*) (earlier, we
used J to denote Juliet's love/hate for Romeo; however, the meaning should be clear from
the context of the equation).

Since we started with a two-dimensional system of equations, (2.42)-(2.43), w is a
2-vector, and the Jacobian matrix is a 2 x 2 matrix. In general, if we start with an m-
dimensional system, w is an m-vector, and the Jacobian matrix has dimension mxm. Thus,
now that we have switched to matrix notation, the results that follow apply not only to
two-dimensional systems, but also to m-dimensional systems in general.

Motivated by the form of the solution for scalar equations, we look for solutions of
the form
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where c is a constant vector. Substituting (2.55) into (2.52) gives

Cancelling A" and rearranging gives

where / denotes the identity matrix and 0 denotes the zero vector.
We recognize this last equation as the eigenvalue problem from linear algebra for the

matrix J: a nonzero vector c satisfying the equation is an eigenvector corresponding to the
eigenvalue A.

In order to obtain a nonzero vector c, we need

known as the characteristic equation of the matrix /. Since J is an m x m matrix, setting
det(/ — A/) = 0 gives a polynomial equation of degree m for A,. This polynomial is known
as the characteristic polynomial of the matrix. In general, the characteristic polynomial
has m distinct roots, AI , A 2 , . . . , Aw. The superposition principle then yields the following
general solution of (2.52) for the deviation ww:

where the At 's are arbitrary constants (determined by initial conditions), and c, is the eigen-
vector corresponding to the eigenvalue A/.

We are now in a position to evaluate the dynamics of the deviation \vn. As was the
case for scalar equations, the dynamics are determined by the size of the eigenvalues A,
relative to 1. In general, if all eigenvalues |A,-| < 1, then |wj -» 0 as n —> oo. If at least
one of the eigenvalues |A/| > 1, then |wn| -» oo as n —» oo.

The implication for the stability of the fixed points of the original map thus can be
summarized in the following theorem.

Theorem 2.2. Let x* be a fixed point of the m -dimensional difference equation Kn+\ = f (xn),
where x e Rm, f : W" -*• W", and f is at least twice continuously differentiable. Let J be
the Jacobian matrix off, evaluated at x*. Then

• x* is stable if all eigenvalues of the Jacobian matrix J have magnitude less than 1;

• x* is unstable if at least one of the eigenvalues has magnitude greater than 1.

It is not always necessary to calculate the eigenvalues of the Jacobian matrix / explic-
itly. In particular, Jury [96] derived necessary and sufficient conditions for all eigenvalues
of the Jacobian matrix to have magnitude less than 1. The so-called Jury conditions can
be written down in terms of the coefficients of the characteristic polynomial. They are
easy to write down and apply for two- and three-dimensional systems, but quickly become
unwieldy for high-dimensional systems.
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Figure 2.20. The stability triangle for two-dimensional discrete-time systems in
(tr J, det 7) space. Any fixed point for which (tr 7, det 7) lies within the triangle is stable.
Any fixed point for which (tr 7, det 7) lies outside the triangle is unstable. Eigenvalues are
complex if (tr 7, det 7) lies above the dashed line, and real if (tr 7, det 7) lies below the
dashed line.

For two-dimensional systems, the characteristic polynomial can be written as

In the exercises, the reader is asked to verify that the following Jury conditions,

are necessary and sufficient conditions for all eigenvalues of 7 to have magnitude less than
1, that is, for the fixed point in question to be stable. The Jury conditions for systems of
higher dimension can be found in the paper by Jury [96] and also in the text by Edelstein-
Keshet[51].

For two-dimensional systems, the Jury conditions can be visualized in (tr 7, det 7)
space, as shown in Figure 2.20. In particular, the Jury conditions hold on the interior of the
stability triangle, determined by the intersection of the three following regions:

The system undergoes a bifurcation as parameter values are varied and (tr 7, det 7) crosses
one of the boundaries of this triangle. On the boundary of the triangle, one of the Jury con-
ditions is violated through equality, giving rise to bifurcations. A treatment of bifurcations
is beyond the scope of this book, but the reader is referred to [104] for details.
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2.3.3 Love Affairs: Model Analysis

We now return to the love affair of Romeo and Juliet and attempt to understand the outcome
of their affair as observed in the four case studies discussed in Section 2.3.1 in terms of the
stability of any fixed points.

Fixed points (/?*, /*) of the system for Romeo and Juliet, (2.40)-(2.41), must satisfy

Rearranging, we obtain the following linear system for /?* and /*:

which can be written as

We have a homogeneous linear system. Thus, this system has a unique solution, namely.
(R*, /*) = (0,0), provided that det(A) ^ 0, where

It can be verified easily that this condition holds for the three case studies shown in Fig-
ures 2.19 (a)-(c). When det(A) = 0, as is the case for the fourth case study, shown in
Figure 2.19 (d), there is an infinite number of solutions or fixed points. We begin by dis-
cussing the results of the first three case studies and defer discussion of the fourth case study
to later.

Orbits shown in the phase planes in Figures 2.19 (a)-(c) suggest that the fixed point
(R*, J*) = (0,0) is stable in the first case study, while it is unstable in the second and third
case studies. We can easily verify this with a linear stability analysis. Since the original
system, (2.40)-(2.4l), is already linear, there is little work to be done.

The Jacobian matrix is simply

with

Applying the Jury conditions, (2.61), we require

for the fixed point (/?*, /*) = (0,0) to be stable.
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Indeed, for the first case study (aR = 0.5, aj = 0.7, pR = 0.2, p j = 0.5, shown in
Figure 2.19 (a)), both Jury conditions are satisfied, and hence the fixed point is stable, as
we had guessed. For the second case study (aR = 0.5, aj = 0.7, pR = 0.7, p j = 0.9,
shown in Figure 2.19 (b)), the first Jury condition is violated, and hence the fixed point is
unstable, also as we had guessed. For the third case study (aR = aj = 1.0, pR = 0.2,
pj — —0.2, shown in Figure 2.19 (c)), it is the second Jury condition that is violated,
verifying that indeed the fixed point is unstable in this case as well. The oscillatory nature
of the love affair results from the fact that the eigenvalues no longer are real in this case,
but are complex conjugates.

Last but not least, we examine the fourth case study in more detail. Recall that in this
case, the fixed point (/?*, /*) = (0,0) no longer is unique, since det(/4) = 0, where A is
the matrix defined in (2.70). Instead, from (2.69), we note that there is a continuum of fixed
points satisfying (aR — \)R* + pRJ* = 0 or, equivalently, pjR* + (aj — I)/* = 0 (since
det(A) = 0, one of the equations in (2.69) is redundant; we can choose either one of the
two to work with). Choosing to work with the first equation, we obtain

Thus, all points of the form

are fixed points. For example, in our case (aR = 0.5, aj = 0.8, pR — 0.2, p j = 0.5), al
fixed points are of the form

that is, if the fixed points are stable, Romeo and Juliet will either both love or hate each
other, with Juliet's feeling always 2.5 times as strong as Romeo's. We will verify shortly
that the fixed points indeed are stable with our choice of parameter values. For now, we
investigate which of the infinite number of fixed points is approached as n -> oo.

Consider the original system, using the specific model parameters from the fourth
case study:

Notethata/? + /?y = 0.5+0.5 = 1 and/?/?+a/ = 0.2+0.8 = 1. In terms of the love affair,
we can interpret these conditions as follows: the total amount of love/hate that Romeo and
Juliet feel for each other initially is preserved on all subsequent days. Each day, Romeo's
love/hate for Juliet is split 50/50 between Romeo and Juliet. Similarly, Juliet's love/hate for
Romeo is split unequally, with 20% transferred to Romeo and the remaining 80% retained
by Juliet herself.

The reader is asked in the exercises to show that det(A) == 0 whenever Romeo
and Juliet preserve their love/hate from day to day, that is, whenever aR + p j = 1 an
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PR+OJ = I . In what follows, we will restrict ourselves to the situation in which Romeo
and Juliet are in love/hate-preserving mode.

Although the insight just obtained is perhaps somewhat unromantic, it does allow us
to determine the final outcome of Romeo and Juliet's relationship. Since the total amount
of love/hate between Romeo and Juliet is initially RQ + JQ and it is preserved, we must have
R* -f 7* = R0 -f /0, provided that the orbit converges to (/?*, /*). Thus,

yielding the following solution for the fixed point that is approached:

For our choice of parameter values and initial conditions (RQ = J0 = 1), we obtain R* %
0.571429 and .7* % 1.428571.

We now investigate the stability of the fixed points. In the exercises, the reader is
asked to show that the two eigenvalues of the Jacobian matrix are

The first eigenvalue, A-i, is precisely equal to 1, reflecting the fact that the first Jury condition
is just violated through equality. Because the original system is linear, the stability of the
fixed points is determined by the magnitude of the second eigenvalue, X2 (remember, this
is not the case for nonlinear systems!). The fixed points are stable provided |A.2| < 1, that
is, provided 0# + aj < 2, which simply is the second Jury condition. For our choice of
parameter values, A, 2 = 0.5 -f 0.8 — 1 = 0.3; that is, the fixed points are stable (as expected
from the solution shown in Figures 2.19).

2.3.4 Host-Parasitoid Models

Host-parasitoid models are a classic example of the use of discrete-time systems in popu-
lation dynamics. These types of models address the life cycles of two interacting species of
insects, one a host and the other a parasitoid.

Parasitoids are insects whose females lay their eggs in or on the bodies of the host
insects. Parasitoid eggs develop into parasitoid larvae at the expense of their host. Hosts
that have been parasitized thus give rise to the next generation of parasitoids, while only
hosts that are not parasitized will give rise to the next generation of hosts.

We will limit our attention to hosts and parasitoids with one nonoverlapping generation
per year so that discrete-time equations are appropriate.

Let Hn and Pn be the number of the hosts and parasitoids, respectively, at generation
n. Further, let f ( H n , Pn) be the fraction of hosts that are not parasitized. This fraction is a
function of the rate of encounter of the two insect species and will be specified shortly. We



2.3. Systems of Discrete-Time Equations 45

thus have the following:

f(Hn, Pn)Hn = number of hosts not parasitized,

[1 — /(//„, Pn)] Hn = number of hosts parasitized.

The following two assumptions allow us to complete the basic host-parasitoid model:

1. The host population grows geometrically in the absence of the parasitoids, with re-
productive rate k > 1.

2. The average number of eggs laid in a single host that give rise to adult parasitoids
is c.

We obtain

We now develop the functional form of f(Hn, Pn). We assume that encounters be-
tween hosts and parasitoids occur at random and are independent (the latter means that
parasitoids do not distinguish between hosts that have been parasitized and hosts that have
not yet been parasitized). The Law of Mass Action, which will be treated in depth in Sec-
tion 3.3.1, states that the number of encounters is proportional to the product Hn Pn, that is,
aHn />„, where a is the constant of proportionality representing the searching efficiency of
the parasitoids. The average number of encounters per host is thus

Of course, not all hosts experience this many encounters. Some will experience more, others
less. Let

/>(/) = the probability that a host experiences / encounters.

Since we assumed that encounters are random and independent, they are said to follow a
Poisson process, and we can use the Poisson distribution for /?(/) [1]. In particular,

Recalling that we defined f(Hn, Pn) to be the fraction of hosts not parasitized, we have

Substituting (2.90) into (2.85)-(2.86), we obtain Nicholson and Bailey's classic
model [126],
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It can be shown (see the exercises) that the Nicholson-Bailey model has two fixed
points, namely, the trivial fixed point, (//*, Pf} = (0, 0), and the following nontrivial fixed
point:

provided k > 1. The trivial fixed point represents the situation in which both the host and
the parasitoid are extinct. We are interested in situations where there is coexistence of the
two insect species. Hence, of interest is the stability of the nontrivial fixed point.

The Jacobian matrix, evaluated at the nontrivial fixed point, is

so that

Since k > 1, the first of the Jury conditions, (2.61), always is satisfied. Since det J > 1 for
all k > 1 (see the exercises), the second Jury condition can never be satisfied. We conclude
that the nontrivial fixed point, (H^, Pf), is always unstable.

Instability of the nontrivial steady state in itself does not preclude coexistence of the
two insect species. For example, coexistence could come in the form of a stable cycle.
However, for the Nicholson-Bailey model, no choice of parameter values leads to coex-
istence. Instead, the model exhibits growing oscillations, an example of which is shown
in Figure 2.21. We observe that parasitoid levels can become extremely low. That is, the
model predicts near-extinction of the parasitoids. Of course, as soon as the parasitoids have
gone extinct, the hosts grow geometrically.

It appears that the model is not very realistic. Indeed, it cannot be used to predict
long-term dynamics of a host-parasitoid interaction. However, the model has been used
successfully to describe short-term oscillations in host-parasitoid systems. For example,
Burnett [33] used the model to fit data for approximately two dozen generations of popu-
lations of the greenhouse whitefly Trialeurodes vaporairorum and the parasitoid Encarsia
formosa grown under laboratory conditions.

The work of Nicholson and Bailey [126] was an important milestone in the modeling
of host-parasitoid systems, showing that host-parasitoid interactions can result in large-
amplitude oscillations when host density is limited solely by the parasitoid. Further, the
Nicholson-Bailey model is used as a starting point for many contemporary models. These
models all include features that have a stabilizing effect on the nontrivial fixed point.

For example, Beddington, Free, and Lawton [16] modified the equation for the host
population, so that its growth is density-dependent instead of geometric in the absence of
parasitoids. In particular, they replaced
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Figure 2.21. The Nicholson-Bailey model, (2.91)-(2.92), exhibits growing oscil-
lations. The left panel shows a typical solution for Hn and Pn as functions ofn. The right
panel shows the orbit in the (//„, Pn) phase plane. Model parameters used are k = 1.05,
a = 0.005, and c — 3, and initial conditions are HQ = 50 and PQ = 10.

in (2.91) with

where K is the carrying capacity of the host insect population, and r determines the rate of
approach to the carrying capacity. Their full host-parasitoid model thus reads

Two simulations of this model are shown in Figure 2.22. The simulation shown in Fig-
ure 2.22 (a) shows co-existence at a stable fixed point, and the one in Figure 2.22 (b) shows
coexistence in a stable cycle. The determination of fixed points and their stability is tedious,
and the reader is referred to [ 16] for details.

Ecological processes other than intraspecific competition in the host population also
can stabilize the system. Examples are intraspecific competition in the parasitoid population,
spatial heterogeneity of the environment, parasitoid dispersal among host patches, and so
forth. It has proven extremely difficult to ascertain which, if any, of these mechanisms
operate in nature, and research continues in this fascinating area of mathematical biology.
One reason why host-parasitoid systems continue to receive much attention is their potential
for biological control, where parasitoids are introduced to reduce the host population of a
pest on agricultural crops. Questions of interest are what the qualities of a parasitoid should
be, what can go wrong, and so on. Readers interested in learning more about host-parasitoid
systems and biological control are referred to the books by Godfray [68] and Hassell [80]
and the article by Murdoch [119].
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Figure 2.22. Two types of behavior exhibited by the Beddington model, (2.97)-
(2.98). Graphs in the left column show Hn and Pn as functions of n; graphs in the right
column show corresponding orbits in the (Hn, Pn} phase plane, (a) The host andparasitoid
coexist at a stable fixed point (K = 200). (b) The host and parasitoid coexist in a stable
cycle (K = 250). Other model parameters are r = 1.1, a — 0.005, and c = 3.

2.4 Exercises for Discrete-Time Models

Exercise 2.4.1: German population. Write down a simple discrete birth-death model
describing the following situation. Individuals die at rate 8 and are born at rate IJL. On
December?>\, 1998, Germany had a population of 82,031,000. In 1999, there were 770,744
live births and 846,330 deaths (source: Statistisches Bundesamt). Find 8 and IL. What will
happen to the German population in the future? How should the model be altered to be
more realistic?

Exercise 2.4.2: Drug prescriptions. Consider the following model for a drug prescription:

where an is the amount of a drug (in mg, say) in the bloodstream after administration ofn
dosages at regular intervals (hourly, say).

(a) Discuss the meaning of the model parameters k and b. What can you say about their
size and sign?
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(b) Find the fixed points of the model and their stability via linearization.

(c) Perform a cobwebbing analysis for this model. What happens to the amount of
drug in the bloodstream in the long run ? How does the result depend on the model
parameters ?

(d) How should b be chosen to ensure that the drug is effective, but not toxic?

Exercise 2.4.3: Improving the fit of the logistic model to the data. Note to the instructor:
This question requires nonlinear fitting techniques, which are not treated in this chapter, nor
in the chapter on Maple. However, students may be asked to attempt this question after
studying the project on cell competition in Section 10. 1.

In Section 2.2. 1, we fit (2.4) to Cause 's data. Recall that the choice to use the number
540 in this equation was rather arbitrary. Consider the more general model,

(a) Use nonlinear fitting techniques to determine the best fit of both model parameters,
k and N.

(b) Simulate the model with the best fit values for k and N, and make a plot to compare
the model results with the data observed by Cause. Were you able to improve upon
the comparison shown in Figure 2.3?

Exercise 2.4.4: Fluctuations in the population of JR aurelia. In Section 2.2.1, we ignored
the fluctuations in the population of P. aurelia at carrying capacity. Discuss possible rea-
sons for the appearance of the fluctuations.

Exercise 2.4.5: Whale population. Consider the survival of a population of whales,
and assume that if the number of whales falls below a minimum survival level m, then
the species will become extinct. In addition, assume that the population is limited by the
carrying capacity M of the environment. That is, if the whale population is above M, then
it will experience a decline because the environment cannot sustain that large a population
level.

(a) Let an represent the whale population after n years. Discuss the model

where k > 0. Does it make sense in terms of the description above?

(b) Find the fixed points of the model, and determine their stability via linearization. You
may assume that M = 5000, m = 100, and k = 0.0001.

(c) Perform a graphical stability analysis. Are your results consistent with the results
from (b)?

(d) Sketch the graphs ofan versus n for various initial conditions.

(e) The model has two serious shortcomings. What are they? Hint: Consider what
happens when ao < m, and when a® ^> M.
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(f) Think of a possible way to fix the model so as to overcome the shortcomings. You are
encouraged to be creative, innovative—you do not need to write down the equation of
an improved model; it is sufficient to describe your ideas with words and/or sketches
of graphs.

Exercise 2.4.6: Second-iterate map. This exercise deals with the second-iterate map,
f2(x),for the logistic map, f ( x ) = rx(l — x).

(a) Compute f2(x).

(b) Find the fixed points of f2(x). Verify that a nontrivial 2-cycle exists only for r > 3.

(c) Compute j ^ f 2 ( x ) .

(d) Verify that the nontrivial 2-cycle is stable for 3 < r < 1 + Vo, and unstable for
r > 1 + N/6.

Exercise 2.4.7: Fourth-iterate map. This exercise deals with the fourth-iterate map,
f4(x),for the logistic map, f ( x ) — rx(\ — x).

(a) Graph f4(x)for various values of the model parameter r. Compare to the graphs of
f ( x ) and f2(x).

(b) At which value ofr does a 4-cycle appear?

(c) At which value ofr does the 4-cycle become unstable?

Exercise 2.4.8: Exact solution for the Beverton-Holt model. The Beverton-Holt model,
(2.23), is one of the few nonlinear models which has a solution in closed form, that is, xn in
terms of the model parameters and the initial condition XQ. Use the transformation un = —
to show that the solution can be written as

Exercise 2.4.9: Fitting the Beverton-Holt model to Cause's data. In Section 2.2.1,
we fit Cause's data for P. aurelia with the discrete logistic equation. In Section 2.2.4, we
learned about alternatives to the discrete logistic equation. In particular, we saw that
the Beverton-Holt model would be a suitable alternative model to describe populations
undergoing logistic growth. Fit the Beverton-Holt model to the data in Table 2.1.

Hint: The use of line-fitting techniques with Maple will be helpful (see Chapter 8).

Exercise 2.4.10: The tent map. The tent map is an approximation to the discrete logistic
equation: xn+i = f ( x n ) with

(a) Sketch the graph of f for //, > 0.

(b) Find the steady states and their stability.
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(c) Find orbits of period 2.

(d) Plot f for ft = 2. Carefully try to find an orbit of period 3.

Exercise 2.4.11: Blood cell population. In this exercise, we will investigate a model for
the size of the red blood cell population in the human body (see also [65]). Let xn be the
number of red blood cells in the human body on day n. We wish to write down an updating
function for the number of red blood cells on day n -f 1. We will think of the updating
function in terms of destruction and production of red blood cells. If we let d(x,,) represent
the number of red blood cells lost due to cell death on day n, and p(xn) the number of red
blood cells gained due to production by the bone marrow on day n, then we can write

that is, the number of red blood cells tomorrow is the number of red blood cells today minus
those destroyed plus those produced.

It is widely accepted that a constant fraction c of cells is destroyed each day, that
is, d(xn} — cxn. There is less information on the production of red blood cells, but the
qualitative features of p(xn) are generally assumed to be as for the Richer curve. That is,
if there are not many red blood cells, then the bone marrow is rather productive, whereas if
there are already many red blood cells, the bone marrow is less productive. Two possible
forms for p(xn) are

with a > 0 and b > 0 (see [105]), and

with b>Q,0>Q, and m > 0 (see [112]).

(a) Sketch a graph of p2(xn)for different values of 9 and m. What is the significance of
b, 6, and m ?

(b) It is known that the production of red blood cells involves a delay of several days.
How would you modify the above model to take account of the delay?

Exercise 2.4.12: Population genetics. The general allele frequency equation, (2.34), ex-
hibits four fundamentally different outcomes, summarized in Table 2.3. Prove that indeed
there are four fundamentally different cases.

Exercise 2.4.13: Competition. Consider the following simple competition model:

where /U( , 1^2, M3, M4 are positive constants.

(a) Find all fixed points.
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(b) Determine the stability of the fixed points for the specific case IJL\ = 1.2, 1^2 = 1.3,
fi3 - 0.001, and AM = 0.002.

Exercise 2.4.14: Spread of infectious disease. Consider the following model for the spread
of an infectious disease (such as the flu or the common cold) through a population of size N:

where In is the number of infected (and infectious) individuals on day n, and k is a measure
of the infectivity and how well the population mixes.

(a) What does the model predict? You may assume that kN < 2.

The above model does not take into account recovery of individuals. Consider recovery with
immunity (i.e., once a person recovers, (s)he cannot get sick a second time), and assume
that an individual recovers in exactly d days.

(b) Modify the model to incorporate immunity. Explain (justify) your model. What
additional assumptions have you made?

Exercise 2.4.15: Jury conditions. Let J be the Jacobian matrix, (2.54), corresponding to
the general two-dimensional discrete-time system, (2.42)-(2.43).

(a) Show that the characteristic polynomial for J can be written as

(b) Show that necessary and sufficient conditions for both eigenvalues of J to have
magnitude less than 1 are the following Jury conditions:

Exercise 2.4.16: Romeo and Juliet in love/hate-preserving mode. Consider the discrete-
time model developed for the relationship between Romeo and Juliet, (2.40)-(2.41), and
assume that the amount of love/hate that Romeo and Juliet feel for each other initially is
preserved on all subsequent days, that is, OR + p j = 1 and aj + PR = 1.

(a) Show that det(A) = 0, where the matrix A is defined in (2.70).

(b) Show that the two eigenvalues of the Jacobian matrix are

Exercise 2.4.17: Host-parasitoid systems: The Poisson distribution. Assuming that the
average number of encounters with a parasitoid per host is v, the Poisson distribution states
that

P(i) = the probability that a host experiences i encounters
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Show that

Exercise 2.4.18: Host-parasitoid systems: The Nicholson-Bailey model. Consider the
Nicholson-Bailey model, (2.91)-(2.92).

(a) Show that fixed points of the Nicholson-Bailey model are the trivial fixed point,
(//*, /*,*) = (0,0), and the following nontrivial fixed point:

provided k > 1. Why is the restriction k > 1 necessary?

(b) Determine the stability of the trivial fixed point, (//*, P*).

(c) In the text, we investigated the stability of the nontrivial fixed point, (H^, Pf), and
stated that

for all k > 1. The inequality implies that the second Jury condition cannot be
satisfied; that is, the nontrivial fixed point is always unstable. Prove the inequality.

Hint: Consider f(k)=k\nk-k+l,and show / (£)>/(! )= 0/or k > 1.

Exercise 2.4.19: Host-parasitoid systems: The Beddington model. Consider the Bed-
dington model, (2.97)-(2.98).

(a) Determine all fixed points.

(b) Determine the stability of the fixed points. Under which conditions on the model
parameters are fixed points stable? Unstable?

(c) Use Maple to iterate the model, and confirm the results of the stability analysis.
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Chapter 3

Ordinary Differential
Equations

3.1 Introduction to ODEs
We have seen in the introductory section (Section 1.2) that the recovery of infected indi-
viduals can be modeled by a differential equation (equation (1.2)). In general, differential
equations are extremely useful in modeling biological processes. On the one hand, model-
ing with differential equations is quite transparent, even for complicated biological systems.
On the other hand, there is an enormously powerful mathematical theory available, which
includes explicit solutions, approximate solutions, numerical solutions, qualitative behav-
ior, and the theory of dynamical systems. As soon as a model has been derived, it can be
treated as a mathematical entity. General theorems and analytical methods can be applied
to generate useful results. These results can then be interpreted in biological terms.

The possibility of abstraction is the essential advantage of mathematical modeling.
For example, to understand the behavior of solutions of the equation

it does not matter whether x ( t ) describes a growing fish population, a growing tumor, or
the increase in infected individuals. Mathematically, it is just the equation for exponential
growth which can be treated and solved without referring to the interpretation at hand. Once
the results are established, they need to be understood in biological terms.

An ordinary differential equation (ODE) is an equation for an unknown function of
one variable, sayjt(0, which involves the function and some of its derivatives. For example,

are three differential equations. A solution is a function which satisfies the differential
equation. For the above examples, (3.1), it is easy to check that the solutions are of the form
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respectively, with constants of integration c\, €2, and CT,. The solutions as given in (3.2) are
called general solutions. If we specify one value for jc, y, or z, then the value of c\, Q, or
03 is fixed and we obtain a unique solution. In many cases, we specify an initial condition,
for example,

With use of the above general solutions, we find c\ = 1, C2 = 2, and cj = 1.
We say that x(t) = 2t + 1 solves the initial value problem

Similarly, y(t) = %t2 + 2 solves the initial value problem y'(t) = 3t, y(0) = 2, and
z(t) = e~^ solves the initial value problem z'(t) = \z(t}, z(0) = 1.

In general, an ODE for an unknown function, x(t)

has the following interpretation. The left-hand side, x'(t), describes the rate of change of the
quantity x(t} over time. The right-hand side, f ( x ( t ) , t}, describes all sources of change in
x(t). For the recovery from a disease (equation (1.2)), the change in the amount of infected
individuals, J7^(0> is given by the recovery rate —a. times the number of infected 7(0-

To solve a differential equation means to use local information ("What happens next?")
to deduce long-time behavior ("What happens in the future?").

This interpretation makes ODEs useful for modeling biological processes. If we
know all factors for the process at hand, and if we know the rates of change these factors
invoke, then we can write down a differential equation. We analyze and solve it and find
explanations and predictions for our biological question.

Before we come to modeling, we will introduce some of the wonderful analytical
methods for ODEs, which can be explained using elementary calculus.

3.2 Scalar Equations
We first study scalar equations of the first order, that is, equations of the form

where x ( t ) is a scalar function and the equation involves first-order derivatives. If the
function f(x,t) does not depend on t, we call the equation autonomous. For first-order
autonomous scalar ODEs,

the phase-line analysis explains the qualitative behavior of solutions without even solving
the equation. We consider f ( x ) = x(l — x)(2 — x), for which the graph is shown in
Figure 3.1. The function f ( x ) has zeros at 0, 1, and 2. We can easily check that x ( t ) = 0,
x(t) = 1, and x(t) = 2 are three constant solutions to the differential equation
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Figure 3.1. Phase-line analysis of f ( x ) = x(l — jc)(2 — x). The arrowheads
indicate whether the solution of the corresponding ODE is increasing or decreasing.

Figure 3.2. Vector field of (3 A).

These special solutions are called equilibria or steady states of (3.4). If initially, at t = 0,
a solution has value 0 (or 1 or 2), it remains so for all times t > 0. The left-hand side
of (3.4) describes the change of x ( t ) over time: the solution x ( t ) is increasing whenever
/(jc) > 0 and decreasing whenever f ( x ) < 0. In our example, x ( t ) is increasing in the
intervals (0, 1) and (2, oo); it is decreasing in the intervals (—oo, 0) and (1,2). We indicate
this behavior by adding arrowheads to the jc-axis in Figure 3.1. If, for instance, the initial
condition jt(0) is in (0, 1), then the solution will grow and converge to x = 1 for t —> oo.

To get an even better qualitative understanding of the behavior of the solutions of
(3.4), we plot the corresponding vector field. For that, we evaluate the slope of the solution
x(t) for many points (t, x) and draw a short arrow indicating the slope in the (t, Jt) diagram.
Since x' = f ( x ) , the slope is given by f ( x ) . In Figure 3.2, we show the time interval
of [0, 10] and the jc-interval of [0, 2.5]. At approximately 200 points, we have indicated
the slope of the solution with a short arrow. Now, solutions x ( t ) must have slope x'(t),
hence solution curves are tangential to these short arrows. In Figure 3.3, we show two
typical solutions. Note how nicely they follow the vector field. The steady states 0, 1, 2,
which we discussed earlier, appear as lines with horizontal arrows, which means the slope
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Figure 3.3. Two typical solutions in the vector field of (3.4).

Figure 3.4. (a) Phase-line analysis for Example 3.2.1, for r = 2; (b) vector field
and typical solution for r — 2; (c) typical solution for r = — 2.

is zero (x'(t) = 0). Solutions which do not start at 0, 1, or 2 tend to get away from the two
equilibria jc = 0 and x = 2, while they converge to x — 1. We say that jc = 1 is a stable
equilibrium, and x — 0 and x = 2 are unstable equilibria.

With the above phase-line analysis and vector-field analysis we get a very good under-
standing of the qualitative properties of the solutions without solving (3.4). Equation (3.4)
can be solved explicitly as well, using separation and partial fractions (see the exercises).
These classical solution techniques can be found in most introductory ODE textbooks (such
as Boyce and DiPrima [25]).

Example 3.2.1: Exponential Growth and Exponential Functions. Solutions to the
exponential growth equation,

have the form N(t) = Noert, where NQ = N(G) is the initial condition. The phase line, the
vector field, and a typical solution for r > 0 are shown in Figures 3.4 (a) and (b). Figure 3.4
(c) shows a solution for r < 0. For r > 0, equation (3.5) describes exponential growth,
which can be applied to population growth. In the case of r < 0, equation (3.5) describes
exponential decay, which can be applied to radioactive decay or to the decay of a drug in
the blood circulation.
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Figure 3.5. (a) Phase-line analysis for Example 3.2.1; (b) vector field and a typical
solution.

Logistic Growth

In many cases, exponential growth is not an appropriate model. At a certain size, a growing
population will reach a limit where all available resources are used to sustain the high
population level, but the habitat will not support any more individuals. Hence, we alter the
previous model and consider the logistic equation, also known as the Verhulst equation,

where r > 0 is the intrinsic growth rate and K is the carrying capacity. Compared to the ex-
ponential growth model (3.5), the logistic equation contains the additional term —(r/K)N2.
This term can be understood as a competition term from individuals of the same species
who compete for the same resources. We use phase-line analysis in Figure 3.5 to obtain
the qualitative behavior of the solution N ( t ) . The population grows and converges to the
equilibrium solution TV = K for t —> oo. Note that it will not reach K in finite time, since
solutions of ODEs do not intersect (see Theorem 3.2). In Section 10.1, we use a logistic
equation to model growth of cell populations.

3.2.1 The Picard-Lindelof Theorem

Let us return to the theory of differential equations. There is a general result which states
that, under reasonable assumptions, solutions of differential equations do not intersect. To
formulate the corresponding theorem, we need the notion of Lipschitz-continuity. This
means that the function f ( x ) is continuous and, in addition, it satisfies a growth inequality.

Definition 3.1. A function f : D -> R with domain D C R is called Lipschitz continuous
if there is a constant L > 0 such that

Theorem 3.2 (Picard-Lindelof). Assume the function f : D -> R is Lipschitz contin-
uous. Let the initial condition JCG lie in D. Then there is an £ > 0 such that the initial
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value problem

has a unique solution x(t}for 0 < / < s.

Remark 3.2.1.

1. Although the theorem is formulated for a small time interval [0, s], it implies that
solutions to different initial data never intersect. Why?

2. The same result holds true for systems of differential equations which can be written
in vector notation as

In this case, we require that each of the functions f\ , . . . , / „ is Lipschitz continuous
in all of its arguments.

3. A continuously differentiate function is always Lipschitz continuous (on a bounded
domain D c R). Hence as soon as /i . . . , /„ are differentiable, solutions will never
intersect. This includes all differential equations which are built from polynomials,
exponentials, sine functions or cosine functions, etc.

3.3 Systems of Equations
For many biological processes, it is necessary to follow the time evolution of more than
one factor or more than one species. For example, a predator-prey system needs two
dependent variables: predator and prey. Similarly, an epidemic SIR model needs three
variables: the susceptibles, 5, the infected, /, and the recovered, R. We are automatically
led to systems of differential equations. To introduce modeling with systems of ordinary
differential equations, we study chemical networks, interacting populations, and the spread
of an infectious disease in the following sections.

3.3.1 Reaction Kinetics

In this section, we introduce the Law of Mass Action, and we show how to use it to model
chemical reactions. This method is certainly important for the modeling of many physio-
logical processes. It also serves as a good tool for modeling populations. In fact, as we
will see shortly, the epidemic model of Figure 1.1 can be understood in terms of reaction
kinetics.
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The Law of Mass Action

First, we consider an irreversible reaction process in which reactants A and B produce C:

where k is the reaction constant. We are interested in the product C and we argue as follows:

Let a = [A], b = [B], and c = [C] denote the concentrations of the reactants A, B, and
C, respectively. The product r\ab&t is a good approximation to the number of collisions
in time A?. The probability that a collision has enough energy to overcome the activation
energy of this reaction is denoted by a constant r2. If we let AC denote the change of the
product C over time, then the above work equation can be written as

where k = r\r^. Dividing both sides by A?, we obtain

In the limit of A? —> 0, we get

which is called the Law of Mass Action. Please note that although it is called a Law of Mass
Action, it is indeed a mathematical model. It is no longer valid if the concentration of one
participating is many orders of magnitude larger than the other.

Reversible Reactions

For a reversible reaction,

we assume that the molecules of C break apart at a rate that is in proportion to the con-
centration of C molecules. If we balance all production and consumption terms for each
participating chemical, then we obtain the following system of differential equations:
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Michaelis-Menten Kinetics

One situation where the Law of Mass Action is not directly applicable is the enzymatic
reaction

involving the reaction of a substrate S with an enzyme E to gain a product P and the enzyme.
Note that enzymes are catalyzers. A better description of an enzymatic reaction is the
Michaelis—Menten kinetic. We assume that substrate 5 and enzyme E form an intermediate
complex, C, which then decays into P and E:

where k\, k-\, and £2 are rate constants. Let s = [S], e = [E], c = [C], p = [P]. As
before, we can describe the process using a system of differential equations, as follows:

The Michaelis-Menten kinetics model serves as a well-established model for enzyme ki-
netics and is used widely in the area of mathematical physiology. For more details on the
Michaelis-Menten kinetics and on related models, we refer to Keener and Sneyd [99].

3.3.2 A General Interaction Model for Two Populations

To further explain modeling with systems of differential equations we investigate the fol-
lowing general two-species interaction model:

where x(t) and y(t) denote the concentrations (or numbers) of two populations and a, ft, y,
and 8 are constant real parameters. In what follows, we will treat all terms of this model and
explain the situations they describe. This approach leads to a systematic understanding of
typical model ingredients which can later be used and/or modified for specific applications.

The linear terms ax and yy describe the growth or decay of the corresponding pop-
ulation Jt or y in isolation. For example, if a > 0 and ft = 0, then population x will grow
like eat; if a < 0, it will decay exponentially. Similarly, if 8 = 0, then the sign of y decides
whether y(t) is exponentially growing or decaying.
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Table 3.1. Classification of the general two-species interaction model, (3.8).

or
+
+
-
-
+
+
-
+
+

ft
+
+
+
+
+
+
+
-

_

Y
+
-
+
-
+
-
-
+

_

8
-
-
-
-
+
+
+

-

—

Predator (x) - prey (y) models

Mutualism or symbiosis models

Competition models

Interaction of the two populations is modeled by the nonlinear terms ftxy and 8xy.
These terms look like "Law of Mass Action" terms. This reflects that two individuals of x
and y have to meet before they can interact. If they meet, then ft or 8 describes the likelihood
that an interaction indeed occurs. Alternatively, the term fly can be interpreted as a rate of
change of x due to interaction with y. It has turned out that the application of the Law of
Mass Action to populations can be very useful.

Now, assume ft > 0 and 8 < 0. This means that whenever x and y meet, population
x grows, while population y declines. Be reminded of the fact that the left-hand side of the
second equation of (3.8), y, denotes the change of y with respect to t. The negative term
— |<5|jty on the right-hand side contributes negatively to the growth of y. In the case of ft > 0
and 8 < 0, population x benefits from interaction and population y suffers. We denote this
form of interaction predator-prey interaction. In that case, x denotes the predator density
(or number) and y denotes the prey.

The situation for ft < 0 and 8 > 0 is very similar. In this case x denotes the prey and
y the predator. We consider these two cases (ft < 0, 8 > 0 and ft > 0, 8 < 0) as identical.
In fact, a switch of notation from (x, y) to (y, x) leads from one case to the other.

Considering the general model (3.8), each of the four parameters can have two signs.
Thus, there are 24 = 16 cases to consider. Since we consider the switch of notation as
equivalent, there are only 10 qualitatively different cases. These cases are represented by
the following sign patterns for

The reader might want to verify that the other cases, like (H ---- h) or ( --- h +), are
included via a transformation of variables.

In Table 3.1, we show a summary of these cases. We have seen that the signs of a and
y describe only the growth properties of each species in isolation. We use the interaction
terms to classify the cases. All cases with ft > Oand(5 < 0 represent predator-prey models.
If both ft > 0 and 8 > 0, then interactions are beneficial to both populations. We call these
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models mutualistic or symbiotic models. Finally, if ft < 0 and 8 < 0, then the interaction
is disadvantageous for both populations, and the models are called competition models.

With the general model (3.8) in hand, it is not difficult to choose the sign pattern of
the model to a given experiment. For example, in Section 10.1 we model the competition
between two cell populations TVi and N2:

The signs of the interaction terms (assuming KI , K2 > 0 and /3\2, @2i > 0) show that this
is indeed a competition model. The difference with model (3.8) is in the growth terms of
the species in isolation. We use logistic growth instead of exponential growth.

In Section 3.4.3, we will analyze model (3.8) qualitatively. For further details on
predator-prey, competition, and mutualism models, we refer to Murray [121,122], Edelstein-
Keshet [51], or Britton [29].

3.3.3 A Basic Epidemic Model

In this section, we consider the spread of an infectious disease in a host population. Let 5, /,
and R denote the number of susceptible, infectious, and recovered individuals, respectively.
The infection process can be described as shown in Figure 1.1 in Section 1.2. The parameter
ft > 0 is the transmission coefficient, or > 0 is the recovery rate, and y > 0 is the rate for
the loss of immunity.

If the disease is transmitted through direct contact, then the rate of new incidences,
ft IS, is in proportion to the number of susceptible and to the number of infectious individuals,
according to the Law of Mass Action. With these assumptions, the disease process shown
in Figure 1.1 is described by the following classical SIR (susceptibles-infected-recovered)
model:

For simplicity, we assume that y = 0. This can be understood as assuming the mean
immune period - = oo; namely, the disease incurs permanent immunity. The simplified
model is known as the Kermack-McKendrick model [100]:

We will study this model further in Section 3.4.4, after we learn some techniques of quali-
tative analysis.
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3.3.4 Nondimensionalization

Some of the models mentioned above have a large number of free parameters. If the model is
used to describe an experiment or an observation, then the parameters might be found in the
literature or by fitting to experiments. Mathematical analysis, however, has the advantage of
studying the qualitative behavior of a model for all possible values of the parameters, which
means we try to understand questions of growth, death, extinctions, epidemic outbreaks,
and so on, based on algebraic relations between the parameters. In the following sections
we will develop the corresponding theory. Here we show an important technique to reduce
the number of free parameters without losing any properties of the model. The method is
called nondimensionalization and the complexity of a model can be reduced significantly.
We give two examples.

Example 3.3.1: First we study the logistic growth model (3.6). The quantity N has
the dimension of a population size. We can nondimensionalize if we relate N to some
reference population size. In this case we can choose the carrying capacity K and define
N — N/K. Then the logistic model reads (divide (3.6) by K)

In a next step we transform the time variable and introduce t = rt. Then from the chain
rule we obtain

Hence the logistic equation now reads

Both parameters r and K have disappeared. The transformations which we used are all
equivalent transformations and the original function can be generated from N:

To understand the qualitative behavior of N ( t ) , it is sufficient to study (3.12) instead. You
will find in the literature that many authors nondimensionalize and then disregard the tilde.
Then the nondimensionalized model that corresponds to the logistic equation reads

Example 3.3.2: Here we reduce the number of parameters for the general two-species
interaction model (3.8) for the case of or, ft, 8 > 0. We set

If we apply these transformations to the original equations (3.8) and remove the tilde from
the resulting equations, we obtain

The resulting model depends on a single parameter /it and the qualitative behavior can be
studied, depending on /u. Also here the transformations are invertible and the original
functions ;c and y can be generated from (3.13).
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Figure 3.6. (a) Construction of the vector field for (3.14); (b) the direction field for
Example 3.4.2 and one typical trajectory; (c) the nullclines with vector field at the nullclines.

3.4 Qualitative Analysis of 2 x 2 Systems

In this section, we develop a qualitative theory for systems of two differential equations,
much in the spirit of Section 3.2, where we introduced phase-line and vector-field analysis.
Here, we will use phase-plane analysis, vector-field analysis, and the phase portrait. With
these methods, the qualitative behavior of a system of equations can be understood without
solving the equations explicitly. Explicit solution methods can be found in other textbooks
on ODEs (such as Boyce and DiPrima [25]).

Consider a system of two differential equations,

At each x = (x\,x2) € M2, the vector field f ( x ) = (/i(jc), f2(x)) represents a vector, as
shown in Figure 3.6. A solution x(t) = (x\(t), x2(t)) represents a parametric curve in the
(jci, jc2) plane, called a trajectory or an orbit, whose tangent vector x'(t) = (x[ (t), x2(t)) is
specified by the vector field f ( x ( t ) ) = (fi(x[(t), x2(t)), f2(xi(t), x2(t))). We can obtain a
good impression of the overall dynamics if we plot many vectors in the (jci, x2) plane. For
each chosen point (xi, x2), we calculate (f\ (x\, x2), f2(x\, x2)) and sketch this vector. In
Figure 3.6 (a), we show how to calculate one such vector. We repeat this procedure at many
different points until the whole plane is filled with vectors. It is sometimes convenient to
consider only the direction of vector field and not the magnitude. This yields a direction
field for the system (Figure 3.6 (b)).

Since solution curves are tangential to the vector field, /, we often can follow trajec-
tories just by following the arrows. In Figure 3.6 (b), a typical solution curve is shown (in
this case, we have a spiral converging to the stable origin). The vector field can be used to
sketch more than one typical solution, starting at different initial conditions. The sketch of
the (xi,x2) plane with a number of typical solutions is called a phase portrait. Of course,
"typical" is a rather vague notion and you need some experience to be able to decide which
solutions represent the qualitative behavior. We will demonstrate and practice this in what
follows.

Many computer packages provide a routine to draw the vector field and the phase
portrait of an ODE system. In Chapter 8, we will learn how to do this with Maple.
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Another helpful tool for obtaining insight into the phase portrait are nulldines (or
0-isoclines). The Jti -nullcline, n \, is the set of points (x\, x2) such that jcj = f(x\, XT) — 0,
that is,

Similarly, the Jt2-nullcline, n2, is

whose unique steady state is the origin, (x\, i2) = (0, 0). In matrix form, we can write

Note that \\ and A. 2 are the eigenvalues of the matrix

Solutions to (3.15) are

On the jti-nullcline, n\, all vectors of the vector field are vertical (since jcj = 0). Similarly,
on n2, all vectors are horizontal (since x'2 = 0). At intersections of n\ and n2, we have
x[ = 0 and x2 = 0. Hence a steady-state or equilibrium point exists at any intersection of
n\ and n2. In Figure 3.6 (c), we show the nullclines corresponding to the vector field of
Figure 3.6 (b).

In general, equilibria, or steady states of (3.14) are solutions of

which we denote by (xi,x2). The steady states play an important role in the understanding
of the whole dynamics. In many cases, if the behavior near each steady state is known,
then the global behavior of solutions can be understood quite well. It turns out that we
can classify all possible behaviors which can occur near a steady state. We will do so in
the following two sections. In Section 3.4.1, we first treat specific linear systems. After
that, we generalize to arbitrary linear systems. In Section 3.4.2, we consider nonlinear
systems. Phase-plane analysis will then be applied to the population interaction model (in
Section 3.4.3) and to the epidemic model (in Section 3.4.4).

3.4.1 Phase-Plane Analysis: Linear Systems

Step 1: Specific Linear Systems

(1a) Real Eigenvalues

Consider the simplest linear system,
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Figure 3.7. Three qualitatively different phase portraits for system (3.15) depend-
ing on the sign pattern of\i and A.2. (a) ^i» ^-2 > 0; (b) X\ > 0, A, 2 < 0; (c) A-i, \i < 0.
Here it is assumed that X2 is the larger eigenvalue when sketching (a) and (c).

Plotting the parametric curves (x\(t), x2(t)) for different initial values (jti(O), Jt2(0)), we
arrive at three distinct phase portraits, depending on the signs of X\ and ^2, as shown in
Figure 3.7.

Case (a): If both eigenvalues AI and A-2 are positive, then all solutions diverge from the
steady state (0, 0). In Figure 3.7 (a), several trajectories are shown for positive, negative, or
mixed initial conditions. In this case, the steady state (0, 0) is called a source or an unstable
node.

Case (b): If the eigenvalues have opposite signs, A t > 0 and A2 < 0, say, then x i ( t )
is exponentially increasing, while JCzCO is decreasing. All solutions approach the jci-axis,
as shown in Figure 3.7 (b). In this case, the steady state (0, 0) is called a saddle.

Case (c): If both eigenvalues are negative, then all solutions converge to the steady
state (0,0), as shown in Figure 3.7 (c). The steady state is called a sink or stable node.

(1 b) Complex Eigenvalues

Consider the linear system

For ft ̂  0, the system has the origin, (0, 0), as its only steady state. The coefficient matrix
A = (" ?\ has two complex conjugate eigenvalues

We can verify (see the exercises) that (3.16) has two special solutions, namely,

The superposition principle of linear systems implies that all solutions to (3.16) are of the
form
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Figure 3.8. Three qualitatively different cases for system (3.16), depending on the
value of the parameter a. (a) a = 0; (b) a > 0; (c) a < 0. Graphs in the left column show
phase portraits. Graphs in the right column show a typical solution for X[(t). Here it is
assumed that ft > 0 when sketching (a)-(c), so that the spirals move clockwise.

or

where a and 0 are determined by the initial conditions, (jci(O), Jt2(0)).
Using (3.17), we can classify three distinct cases.
Case (a): a = 0, so that both eigenvalues are purely imaginary. All solutions are

periodic, and all trajectories are closed orbits surrounding the steady state (0,0), as shown
in Figure 3.8 (a). The steady state is called a center.

Case (b): a > 0, so that both eigenvalues have positive real parts. The exponential
function eat grows for t > 0. All trajectories spiral away from the steady state (0,0), as
shown in Figure 3.8 (b). The steady state is called an unstable spiral or a spiral source.
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Case (c): a < 0, so that both eigenvalues have negative real parts. The exponential
function eat decays for t > 0. All trajectories spiral towards the steady state (0,0), as
shown in Figure 3.8 (c). The steady state is called a stable spiral or a spiral sink.

Corresponding solutions jcj (0 for each case are shown in Figure 3.8.

Step 2: General Linear Systems

We now consider a general linear system,

If we make the transformation of coordinates

where P is a 2 x 2 invertible matrix, then y — (y\, y2) satisfies the system

where B = P 1AP. The matrix B is similar to A—it has identical eigenvalues (Hirsch
and Smale [86]). Hence,

Systems (3.18) and (3.19) have the same phase portraits.
It is known from linear algebra (see [106]) that if A has two distinct real eigenvalues

A,i and A-2 such that A.J ^ A.2, then we can choose P such that

If A has two complex conjugate eigenvalues A-i = A. 2 = oc + fit, then we can choose P such
that

Thus, we conclude that the phase portraits of (3.18) will be the same as those of systems
(3.15) or (3.16), studied earlier. Before presenting a theorem about the stability of the origin,
we work out the details of computing the matrix B for two specific examples.

Example 3.4.1: Consider the linear system

In vector matrix notation, we have

It is straightforward to verify that the eigenvalues and corresponding eigenvectors of A are
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Figure 3.9. The phase portraits of (a) (3.21) and (b) (3.20).

The eigenvalues of A are real and distinct. If we use the eigenvectors £i and £2 as
columns of a matrix P, we obtain the transformation

then

From the solution of the related linear system

we can recover the solution of (3.20) via

The phase portrait of (3.21) is shown in Figure 3.9 (a), and the corresponding phase portrait
of (3.20) is shown in Figure 3.9 (b). The transformation P maps the unstable direction
Q of (3.21) onto the unstable direction (J) of (3.20). Similarly, the stable direction Q

of (3.21) is mapped onto the stable direction (') of (3.20). Note that the phase portrait
shown in Figure 3.9 (b) is a compressed and rotated version of the phase portrait shown in
Figure 3.9 (a).

Example 3.4.2: We consider the system

The eigenvalues of the corresponding matrix are
The corresponding (complex) eigenvectors are
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We write £1 = </> + itfr with real vectors 0 and t/f and obtain the transformation matrix
P = ((j)iff) (see Perko [132]), namely,

with inverse

Using this transformation P, we obtain the matrix

and the transformed system has the form of (3.16):

The solution can be written in the general form

The solution describes oscillations around (0, 0) with frequency n {, where the amplitude
decays exponentially like e~*. Hence solutions converge to (0,0) and the steady state (0,0)
is a stable spiral. The vector field and one solution curve were shown in Figure 3.6 (b).

In all the cases discussed above, solutions only converge to the steady state at (0,0)
when both eigenvalues A-i, Aj < 0 (the origin is a stable node), or when the real part of the
eigenvalues satisfies a < 0 (the origin is a stable spiral). When solutions converge to the
steady state, we say the steady state is asymptotically stable.

We have seen that we can classify the equilibria of a linear system according to the
eigenvalues of the corresponding coefficient matrix,

Sometimes it is more convenient to use two other characteristic values of A, namely, the
trace, tr A = a + d, and the determinant, det A = a d — be. It is known that the trace is
always the sum of the eigenvalues, tr A = X\ + A2, and the determinant is the product, det
A = A.jA.2. Moreover, one can use the trace and determinant to calculate the eigenvalues.
In the exercises, the reader is asked to show that

Note that the formula in (3.22) holds only for 2 x 2 matrices. For higher-order matrices,
there is no simple formula of this form.
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From (3.22), we see that it is necessary to have tr A < 0 in order to have a steady
state that is asymptotically stable (otherwise at least one eigenvalue would have a positive
real part). If tr A < 0, then the discriminant, (tr A)2 — 4 det A, is either negative or
smaller than (tr A)2. Hence the real part of the eigenvalues is always negative, and (0,0)
is asymptotically stable. We can summarize our conclusions in the following theorem.

Theorem 3.3. Fora linear system, (3.18), the following are equivalent:

• the equilibrium (0, 0) is asymptotically stable;

• all eigenvalues of A have negative real parts;

• det A = ad — be > 0 and tr A = a + d < 0.

We can treat all different combinations for the sign of trace and determinant and obtain
a complete picture of possible behavior near an equilibrium point. Figure 3.10 shows the
"zoo" of all possible types of behavior for steady states of two-dimensional systems.

We can summarize the possible types of behavior as follows:

1. Case det A < 0. Then (tr A)2 - 4 det A > (tr A)2. From formula (3.22), it follows
that there is one positive and one negative eigenvalue, X\ > 0 and X2 < 0, say.
Hence, (0,0) is a saddle point. Moreover, solutions grow as eX}t in the direction of
the eigenvector (p\ corresponding to X \ , and solutions decay as e^2' in the direction
of the eigenvector <p2 corresponding to A.2. In Figure 3.10, the stable and unstable
eigenvectors are shown.

Figure 3.10. The zoo for the general linear system, (3.18). This is a modified
version of Figure 5.14 in Edelstein-Keshet [51].
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2. Case det A > 0, tr A < 0. If (trA)2 < 4det A (above the parabola in Figure 3.10),
then A-i, A2 are complex conjugate eigenvalues with real part ̂  < 0, and (0,0) is a
stable spiral. If (trA)2 > 4det A (below the parabola), then X \ , A.2 are real, but they
have the same sign, and (0, 0) is a stable node.

3. Case det A > 0, tr A > 0. Depending on the sign of (trA)2 — 4det A, we have either
an unstable spiral or an unstable node.

4. Case det A > 0, tr A = 0. In this case we have a center.

5. The remaining cases (det A = 0 or (tr A)2 — 4 det A = 0) will not be discussed. We
refer to Hirsch and Smale [86] for these cases.

3.4.2 Nonlinear Systems and Linearization

Consider a nonlinear system in R2,

where f\ and f2 are continuously differentiable functions.
In general, each pair (xi,x2) satisfying f\(xi,x2} = /2(xi,x2) = 0 is called an

equilibrium or a steady state for (3.23). We would like to understand the behavior of the
solutions near equilibria.

For linear systems, we observed that solutions converge to (0, 0), they diverge away
from (0, 0), or, in the center case, they stay close by. Before we can generalize these
observations to nonlinear systems, we need some definitions from dynamical systems theory
(seePerko[132]).

Definition 3.4.

(a) A steady state (x\, x2) is called stable if a solution which starts nearby stays nearby.

More formally: (x\,x2) is stable if for all e > 0, there exists a 8 > 0 such that
solutions to initial data (jcj, jc^) with IKjcJ, x2) — (x\, x2)\\ < 8 satisfy ||(jti(/)> x2(t)} —
(x\, x2}\\ < £ for all time t > 0. Here, ||.|| denotes the Euclidean vector norm.

(b) A steady state (Jci, x2) which is not stable is called unstable (there is at least one
solution which diverges from (xi, x^)).

(c) A steady state (x\, jc2) is called asymptotically stable // (Jci, x2) is stable and all
solutions near (X[, x2) converge to (x\, ^2)-

More formally: (x\, ^2) is asymptotically stable if (ii, ^2) is stable, and there exists a
8 > 0 such that all solutions with initial data (jcj, x2), with
satisfy lim,

We can determine the stability of a steady state (Jci, x2) by linearizing (3.23). The
process is similar to the linearization of discrete-time systems, treated in Section 2.3.2.
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Let

where zi (0 and Z2(0 are assumed to be small, so that they can be thought of as perturbations
to the steady state. We denote Jc = (x\, X2) and z = (z \, 12), and write the Taylor expansion
of / = (/i, /z) about (xi,X2):

where

contains the partial derivatives of / evaluated at (x\, $2) (for a reminder on partial deriva-
tives, see Section 4.1). The matrix Df(x\, ^2) is called the Jacobian matrix of / at (*i, Jc2).

We substitute the Taylor expansion into (3.23) and we drop the higher-order terms.
Since jcj = j-t(x\ +z\(t)) = z\ andjc^ = z2, and since f ( x ) = 0, we obtain a linear system
governing the dynamics of the perturbation (z\, 12)'-

We know already from the previous section how to treat linear systems. For most (but
not all) steady states, conclusions obtained for the linearized system indeed carry over to
the original nonlinear system.

Definition 3.5. (x\, X2) is called hyperbolic if all eigenvalues of the Jacobian Df(x\, .^2)
have nonzero real part.

Theorem 3.6 (Hartman-Grobman). Assume that (x\, X2) is a hyperbolic equilibrium.
Then, in a small neighborhood of (x\, X2), the phase portrait of the nonlinear system, (3.23),
is equivalent to that of the linearized system, (3.24).

Remark 3.4.1.

1. By Theorems 3.3 and 3.6, at a hyperbolic equilibrium Jc, stability properties are
determined by the eigenvalues of the Jacobian matrix, Df(xi, i2)- This method of
linearization may fail for nonhyperbolic equilibria.

2. The phrase "equivalent to" in the above theorem refers to topological equivalence of
vector fields. This means that in a neighborhood of (x i, ^2)»there is a homeomorphism
(a continuous one-to-one map between open sets) which maps the vector field of the
nonlinear system to the vector field of its linearization. In that case, the phase portrait
near the stationary point is one of those shown in Figure 3.10. The theory behind the
Hartman-Grobman theorem is given in Perko [132].

For an example, recall Example 3.4.1. The two phase portraits in Figure 3.9 are
topologically equivalent, and the homeomorphism is given by the matrix P.
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3.4.3 Qualitative Analysis of the General Population Interaction
Model

In this section, we use the qualitative theory developed above to re-examine the general two-
species model, (3.8). From the 10 different cases as summarized in Table 3.1, we select one
example for predator-prey, one example for mutualism, and one example for competition,
and treat these in detail. The other cases are left as exercises. Before we consider specific
cases, we determine the steady states and their linearizations.

We begin by writing (3.8) in vector notation:

with f\ (jc, y) = ax 4- fixy and /2(x, y) = yy + Sxy. To find the jc-nullcline, nx, we set
/i = 0. Hence,

Similarly, the y-nullcline is

The steady states (Jc, y) are intersection points of the nullclines, and they satisfy f\ (x, y) =0
and /2(i, y) = 0. We find two steady states, namely,

The linearization of (3.25) is given by

and

We evaluate this matrix at the two steady states, P\ and P^. For PI, we find

which has the two eigenvalues \\ = a and A.2 = y. Similarly, for PZ, we find

Since tr A = 0 and det A = —ay, formula (3.22) gives that the eigenvalues are given by
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To identify the type of steady states, we need to have more information. In particular, we
need to know the signs of the parameters a, ft, y, and 8. Analysis of three specific cases
follows.

Case (—h H—): A predator-prey model. We assume that a < 0, ft > 0, y > 0,
and 8 < 0. From (3.26), we see that one eigenvalue is negative (X\ = a < 0), and the other
eigenvalue is positive (X2 = y > 0). Hence, PI = (0,0) is a saddle.

Before we study P2 = (—£, — |), we have to ensure that it is biologically relevant,
i.e., — £ > 0 and — | > 0. Since y, 8 and a, ft have opposite signs, this is indeed true.

In (3.27), the product ay < 0, so that the eigenvalues are purely imaginary, namely,

Hence (— £, — |) is a center.
Thus, PI is not hyperbolic, and the Hartman-Grobman theorem does not apply. We

cannot decide the type of steady state: P2 may be a center, a stable spiral, or an unstable
spiral. We can obtain the missing information from a first integral, found by integrating

via separation of variables to yield h(x, y) = ctlny + /3y — (ylnx + 8x) = const. The phase
portion is comprised of closed curves, each corresponding to h(x, y) = const for a fixed
constant (Figure 3.11 (c)). We refer to P2 as a nonlinear center. The vector field and the
phase portrait for the case (—\- -\—) are shown in Figure 3.11. We observe predator-prey
oscillations between periods of high and low population sizes.

Case (—h —H): Mutualism of two species which cannot survive alone (a < 0
and y < 0). The eigenvalues of Df(0,0) are a < 0 and y < 0; hence (0,0) is a stable
node. Also, — | > 0 and — £ > 0, and hence P2 is biologically relevant. The product

ay > 0; hence P2 is a saddle. The vector field and phase portrait are given in Figure 3.12.
From the phase portrait we see that if the initial populations for .v and y are big enough,

then both populations can benefit and grow. If one of them is too small initially, then both
species go extinct (converge to zero).

Case (H ): A competition model. In this case (0,0) is a saddle and P2 is not
biologically relevant (—£ < 0). The vector field and phase portrait are given in Figure 3.13.

Figure 3.11. (a) Nullclines; (b) direction field; and (c) phase portrait for the
two-species model, (3.8), with sign pattern (—M—) (predator-prey).
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Figure 3.12. (a) Nullclines; (b) direction field; and (c) /7/zase portrait for the
two-species model, (3.8), w/f/i sign pattern (—I h) (mutualism).

Figure 3.13. (a) Direction field and (b) phase portrait for the two-species model,
(3.8), with sign pattern (-\ ) (competition).

Population y goes extinct while population x can grow without competition. See
Exercise 3.9.11 for the remaining cases.

3.4.4 Qualitative Analysis of the Epidemic Model

Here, we return to the epidemic model, (3.11), derived in Section 3.3.3. To find steady
states, we set S' = 0 and /' = 0. If S' = 0, then either 5 = 0 or / = 0. To satisfy /' = 0,
we must have either / = 0 or S = %. Therefore, (3.11) has a ray of steady states along the
positive S-axis,

The two eigenvalues are X j =0 and \i = ftS — <x.
The eigenvalue A-i = 0 corresponds to the neutrally stable direction along the ray of

steady states. The second eigenvalue, A-2 = ft S — a, is positive if 5 > | and negative if

To find the stability of each steady state (5,0), we examine the Jacobian matrix,
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5 < f- To construct the phase portrait, we write one unknown, /, as a function of the other,
S. This way, we still follow the trajectory of an epidemic, but we forget about the time
course for a moment. To achieve this, we use the chain rule. In particular, if I = 7(5(0),
then

Hence.

If we regard / as a function of 5, and integrate the above equation from SQ to 5, then we
obtain

Therefore,

where the constant Ci is determined by the initial condition

To obtain the phase portrait of (3.11), we shift the graph of | In S — S vertically, where the
amount of the shift is determined by the values of SQ and C\. As shown in Figure 3.14,
steady states to the right of |, namely, 5 > |, are unstable in the direction away from the
S-axis, and those to the left of | are stable. This conclusion agrees with our earlier result
obtained from local stability analysis.

Biologically, the phase portrait in Figure 3.14 reveals an important fact in epidemiol-
ogy: | represents the critical population size to sustain an epidemic; if the initial susceptible
population is below |, then no epidemic is possible and the number of infections decreases,
whereas if So > f»then the number of infections initially increases, reaching its maximum
when S = f, and then declines.p

Figure 3.14. Phase portrait of the epidemic model, (3.11).
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3.5 General Systems of Three or More Equations
The qualitative theory of linearization, vector fields, and phase portraits can be extended eas-
ily to systems of three or more differential equations, although the graphical illustration can
become tricky for higher-dimensional systems. Here, we follow the steps of Section 3.4.3
and just indicate how they generalize to higher-dimensional systems. For more details, we
refer the reader to texts about dynamical system theory (Perko [132] or Hirsch and Smale
[86]).

We write a general system for the n unknowns,

wherex(t) = (xi(t),..., xn(t)}
T, and

We can define nullclines in the same way as before. In particular, for j = ! , . . . ,«,
let

Steady states x of (3.28) are solutions of f(x) = 0 or, equivalently,

The linearization of (3.28) at x = (x\,..., jc,,) is given by the Jacobian matrix,

As before, the eigenvalues of Df(x) determine the stability of Jc. Suppose, for example,
that we have a six-dimensional problem and that we find two positive real eigenvalues
(Ai, A 2 > 0), one negative real eigenvalue (A,.-? < 0), one zero eigenvalue (A4 = 0), and
a pair of complex conjugate eigenvalues (A5 = A6) with negative real part. Let £1 , . . . , &
denote the corresponding eigenvectors. Solutions which start close to x will grow in the
£1 and £2 direction, and they will decay along the & direction. Since A4 = 0, we cannot
conclude from linearization whether the solutions grow or decay in the <4 direction. The
two complex eigenvalues X$ and Ag indicate rotations in the plane which is spanned by Re £>
and Im £5. Since the real parts of AS and ̂  are negative, solutions will spiral towards Jc in
this plane.

We call the plane spanned by £1 and £2 which goes through Jc the (local) unstable
manifold, Mu(x). The three-dimensional space spanned by (&, Re £5, Im £5) is called the
(local) stable manifold, Ms (Jc). The line through Jc in direction £4 is called the (local) center
manifold.

Visualizing the phase portrait in six-dimensional space is difficult, if not impossible.
Even though the graphical analysis is limited, it is important to know the dimensions of
the stable, unstable, and center manifolds. This can be used to understand the stability of
steady states, to prove or disprove the existence of limit cycles, or to predict the existence of
complicated dynamics. A detailed study of stable/unstable/center manifolds is out of reach
of this textbook. For further treatment of manifolds, we refer to Perko [ 132] or Hirsch and
Smale [86].
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3.6 Discrete-Time Models from Continuous-Time Models

There are important connections between discrete-time and continuous-time models. We
have seen already that linearization and linear stability analysis play a dominant role for
ODEs as well as for discrete models. There are other connections. In this section, we will
discuss two approaches by which to derive discrete-time equations corresponding to a given
ODE. In Section 3.6.1, we discuss numerical methods, and in Section 3.6.2, we discuss the
derivation of time-one maps.

3.6.1 Numerical Methods

In many cases, differential equations cannot be solved explicitly. We have learned how
to gain useful information from qualitative analysis and phase portraits without solving
the equations. However, sometimes it is desirable or necessary to find a quantitatively
accurate solution as well, which can be accomplished using computational approaches.
Computational approaches mostly use numerical methods to approximate the solution of an
ODE. We do not go into great detail about numerical methods here, but we can explain the
principle via the easiest numerical method, namely, the Euler method.

Assume we are interested in solving the differential equation

We choose a small time step, A?, A? > 0, and we approximate the derivative by its
differential quotient, that is,

We use this differential quotient in the differential equation and obtain, after some rear-
rangements,

If we let xn = x ( t ) and xn+\ = x(t 4- A?)» then we obtain

which we recognize as a discrete-time dynamical system. All methods, such as cobwebbing,
linear stability analysis, or bifurcation analysis, from Chapter 2 can be applied to the nu-
merical scheme. Details of more sophisticated numerical schemes can be found in Burden
and Faires [31].

3.6.2 The Time-One Map

Another connection between discrete-time equations and ODEs comes from the explicit
solution to an ODE. As seen in Section 3.1, the general solution of a differential equation
has an unknown constant of integration. This constant can be found if one value of the
solution is specified. In many cases, this is the initial condition.

Consider the following initial value problem:
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Given XQ, let the solution be denoted by x(t,xo). In this notation, we treat the initial
condition as a parameter. Of course, for different initial values we find different solutions.

Now assume that an experiment is described by the differential equation. The exper-
iment runs for one time unit, after which it is stopped. The result is jc(l, JCG). When the
experiment is continued, the value jc(l, JCQ) serves as initial value for the same differential
equation. Thus, after two time units, the result is

see Perko [132]. We can continue in this fashion. Mathematically, we define a map between
the time steps n and n -f 1. If we let xn = x(n, XQ), then we can write

or

where now the initial condition, z, becomes the argument of /. Hence we find a discrete-time
dynamical system, also known as the time-one map of the ODE.

To illustrate this method further we discuss two examples.
Example 3.6.1: Exponential Growth. The initial value problem for exponential

growth

is solved by

Thus, after one unit of time, we find

After two units of time, we find

In this case the time-one map reads

By this method, the linear discrete-time equation, xn+{ = axn, and the linear differential
equation, x' = rx, are directly related.

The next question is, What is the corresponding difference equation which appears as
a time-one map of the logistic equation?

Example 3.6.2: Logistic Growth. It can be shown (see the exercises) that the initial
value problem for the logistic equation

is solved by
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If we let r = eli, then the time-one map can be written as

which we recognize as the Beverton-Holt model (equation (2.23) in Section 2.2.4).

Remark 3.6.1.

1. Note that we can also choose other time increments, such as t = | or t — 2, and use the
above procedure. This would give the time-half map or time-two map, respectively,
and so on.

2. If x(t, jto) is a periodic orbit of period T, then the time-T map for initial values close
to *o is called a Poincare map.

3.7 Elementary Bifurcations

Mathematical models often give rise to differential equations that have many parameters,
such as a in the recovery model (1.2) or the growth rate r and the carrying capacity K in
the logistic model (3.6). When parameter values are changed, we may expect a change in
the behavior of the solution of the differential equation. If variation of a parameter changes
the qualitative behavior of the solution, we call it a bifurcation.

For example, consider the equation for linear growth or linear decay,

If IJL > 0, solutions grow exponentially; if [i < 0, all solutions tend to zero. The qualitative
behavior of solutions for IJL < 0 and /i > 0 are quite different, whereas the behavior of the
solution for \JL — 1 and IJL = 2 are very similar. For this example, // = 0 is a bifurcation
value.

To understand a mathematical model properly it is important to know when and how
a bifurcation occurs. In this section, we introduce four common bifurcations, namely,
bifurcations that occur at equilibria.

We consider a scalar differential equation depending on a scalar parameter,

where IJL is the parameter, and / : R2 —> R is continuously differentiable.

Definition 3.7. We say that x is a bifurcation point and jl is a bifurcation value //

where -j^ f denotes the partial derivative with respect to x.

Note that f ( x , yii) = 0 implies that x is a steady state of the differential equation
Recall that x is a hyperbolic steady state if fx(x, /I) ^ 0. Thus, the second
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Figure 3.15. Phase-line analysis of a saddle-node bifurcation.

equation in the definition implies that bifurcation points must be nonhyperbolic steady states.
In the following sections, we give the normal forms of the four most common bifurcations.
The first three (saddle-node, transcritical, and pitchfork) can be exhibited in scalar equations.
The Hopf bifurcation can occur in systems having dimension at least 2.

3.7.1 Saddle-Node Bifurcation

Consider

We have /(jc, /z) = 0 if and only if jc = i^/TZ. The partial derivative with respect to x is
•j^f(x, M) = T2V/M- Thus p.. = Ois the only bifurcation value, and Jc = 0 is the bifurcation
point.

Phase-line analysis for (3.30) for ̂  < 0, /u. = 0, and /z > 0 is shown in Figure 3.15,
and reveals the fashion in which this bifurcation occurs. We observe that no steady state
exists when /u < 0, a unique steady state exists at x = 0 when n = 0, and two steady states
appear when /n > 0. The steady state Jq = —^/Jl is unstable and jc2 = \/M is stable. This
information can be summarized in a bifurcation diagram, as shown in Figure 3.16. Each
curve in the bifurcation diagram represents a branch of the bifurcating steady states. This
type of bifurcation is called a saddle-node bifurcation. Stable steady states are denoted by
a solid curve; unstable steady states are denoted by a dashed curve.

3.7.2 Transcritical Bifurcation

Consider

We have
Differentiating (3.31) gives

Therefore, Jc = 0 is a bifurcation point and /it = 0 is a bifurcation value. Phase-line analysis
of (3.31) is shown in Figure 3.17. The corresponding bifurcation diagram is shown in



3.7. Elementary Bifurcations 85

Figure 3.16. Bifurcation diagram of a saddle-node bifurcation.

Figure 3.17. Phase-line analysis of a transcritical bifurcation.

Figure 3.18. In this bifurcation, two branches of equilibria exchange their stability as /JL
passes through the bifurcation value \JL = 0, and this bifurcation is called a transcritical
bifurcation.

3.7.3 Pitchfork Bifurcation

Consider

We have
Differentiating (3.32) gives

Therefore, a bifurcation occurs at the point (jt,/x) = (0,0). The phase-line analysis of (3.32)
is shown in Figure 3.19. The corresponding bifurcation diagram is shown in Figure 3.20.
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Figure 3.18. Bifurcation diagram of a transcritical bifurcation.

Figure 3.19. Phase-line analysis of a pitchfork bifurcation.

As JA increases through 0 the stable steady state at the origin becomes unstable, and two
new stable steady states, along the parabola IJL = jc2, are born. The bifurcation is called a
pitchfork bifurcation.

3.7.4 Hopf Bifurcation

Consider the two-dimensional system

with(jci,jc2) eR2, IJL € R.
Using polar coordinates,
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Figure 3.20. Bifurcation diagram of a pitchfork bifurcation.

Figure 3.21. Phase portraits of a Hopf bifurcation.

we can rewrite (3.33) as

Note that the equation for r in (3.34) is the normal form for a pitchfork bifurcation, (3.32).
Thus, as n, passes through the bifurcation value 0, (3.34) undergoes a pitchfork bifurcation
(see Figures 3.19 and 3.20). The steady state f — 0 of (3.34) corresponds to the steady
state (0,0) of (3.33), and the other steady state, f = ^/7Z, corresponds to a periodic orbit

Figure 3.21 results from a translation of Figure 3.19 from the polar coordinate r
into rectangular coordinates (jci, Jt2)- The corresponding bifurcation diagram is shown in
Figure 3.22. As n increases through 0, the branch of steady states at the origin, given by
(Jci, Jci) = (0,0), loses its stability, and a branch of stable periodic orbits emerges. This
bifurcation is called a Hopf bifurcation.
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Figure 3.22. Bifurcation diagram of a Hopf bifurcation.

Note that the Jacobian matrix Df(0,0) is given by

which has a pair of complex eigenvalues, namely,

3.7.5 The Spruce Budworm Model

InStrogatz [151], a bifurcation analysis is used to study Ludwiget al.'s [111] model for the
outbreak of a spruce budworm pest. The model for the spmce budworm dynamics reads (in
a non-dimensionalized form):

where x denotes the budworm population size and, as usual, r is the growth rate and
K the carrying capacity. The right-hand side of the equation has either two, three, or
four zeros. If we fix K = 6 and consider r as a bifurcation parameter, then we can
obtain a saddle-node bifurcation where a stable and an unstable steady state appears as r is
decreased. In Figure 3.23, we show the right-hand side of (3.35) (function /) for values of
r = 0.622,0.617, 0.608. For r = 0.622, we obtain two steady states: an unstable steady
state at x = 0 and a stable steady state at about x = 3.37 (the outbreak steady state). As
r is decreased, the curve touches the jc-axis at x = 1.35 and an additional steady state is
born. As r is reduced further, this new steady state splits into two, one a stable steady state
(the refuge steady state) and the other an unstable steady state (the threshold steady state).

At the bifurcation value /n = 0, the eigenvalues are purely imaginary. The occurrence of
purely imaginary eigenvalues for a set of parameter values is an important indicator for
Hopf bifurcation.
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Figure 3.23. Saddle-node bifurcation in a spruce budworm model. The carrying
capacity is K — 6 and the growth rate is r = 0.622 on the left, r = 0.617 in the center, and
r = 0.608 on the right. The right-hand panel exhibits bistable behavior. Populations start-
ing below the threshold steady state approach the refuge steady state, whereas populations
starting above approach the outbreak steady state.

This means that the outbreak of the budworm can be reduced significantly if r is reduced,
providing the population is first driven below the threshold steady state. These ideas, and
more complex extensions, are developed in Strogatz [151].

3.8 Further Reading
Most of the textbooks in mathematical biology that are reviewed in the appendix focus
on modeling with differential equations. In particular, the texts of Edelstein-Keshet [51],
Murray [121,122], Britton [29], and Jones and Sleeman [95] cover the classical ODE models
in mathematical biology and discuss their qualitative analysis in great detail.

The methods that have been introduced in this chapter were developed in the theory of
dynamical systems. That approach follows the tradition of Coddington and Levinson [39],
Hartman [79], Hirsch and Smale [86], Strogatz [152], and Perko [132]. In particular, the
textbooks of Strogatz and Perko are highly recommended. While Perko focus more on the
mathematical theory of dynamical systems, Strogatz discusses more applications to biology
and also to other sciences.

Also, a warning is in order. Some of the standard introductory textbooks on ODEs that
are commonly used in North American undergraduate education are of limited usefulness.
The contents of these books focus on explicit solution methods of differential equations.
Although these methods are important as well, the dynamical systems approach has been
proven to be much more useful for mathematical biology.

In this chapter on ODEs we covered many aspects only on the surface. For more
details on reaction kinetic models we refer to Keener and Sneyd [99]; more information on
population models can be found in Kot [ 102]; and epidemiology is studied in detail in Brauer
and Castillo-Chavez [26]. For the qualitative analysis of ODEs, the use of linear algebra, and
bifurcation theory we recommend Perko [132], Hirsch and Smale [86], and Strogatz [152].
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In the application of ODEs to model biological processes it is always useful to have
a computer language available that can solve ODEs numerically. In this textbook we
present Maple as a modeling tool. Equally useful are languages and software packages like
Mathematica, MATLAB, or XPP-AUT.

3.9 Exercises for ODEs

Exercise 3.9.1: The C14-method. The C^ -method is used to estimate the age of archaeo-
logical objects. It is known that living objects accumulate the radioactive C14 -isotope during
their lifetime, to a certain concentration CQ. If the organism dies, then the radioactive C14

decays with a half-life ofT\/2 — 5760 years.
Archaeologists found a piece of wood in the Nile delta which showed a concentration

of 75% of Co. Estimate the age of this piece of wood. Could Tutankhamen have been sitting
in a boat made from the same tree as the one from which this piece of wood came?

Exercise 3.9.2: Learning curves. Psychologists interested in learning theory study learn-
ing curves. A learning curve is the graph of a function P(t), the performance of someone
learning a skill as a Junction of the training time t.

(a) What does dP/dt represent?

(b) Discuss why the differential equation

where k and M are positive constants, is a reasonable model for learning. What is the
meaning ofk and M? What would be a reasonable initial condition for the model?
Include a graph ofdP/dt versus P as part of your discussion.

(c) Make a qualitative sketch of solutions to the differential equation.

Exercise 3.9.3: Harvesting. The Verhulst (logistic) model for population growth reads

where K denotes the carrying capacity and a is a reproduction rate. We assume that the
amount harvested is proportional to population size, with proportionality constant c. The
modified model then reads

Plot the vector field and find the steady states. For what values ofc does the population die
out? When does the population persist? Give a biological explanation.

Exercise 3.9.4: Fishing. In this exercise, you will be considering three simple models of a
fishery. Let N(t} be the population offish at time t. In the absence of fishing, the population
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is assumed to grow logistically, that is,

where r > 0 is the intrinsic growth rate of the population, and K > 0 is the carrying
capacity for the fish population. The effects of fishing are modeled with an additional term
in the equation for N. The three models are as follows:

where H\, fy, HT,, and A are positive constants.

(a) For each model, give a biological interpretation of the fishing term. How do they
differ? What is the meaning of the constants HI, H^, H^, and A?

(b) Critique Model 1. Why is it not biologically realistic?

(c) Which of Models 2 or 3 do you think is best and why?

Exercise 3.9.5: A metapopulation model. Levins [ 107] suggested modeling not the number
of individuals but the fraction of patches that a population occupies. He suggested the
following equation:

where P(t) denotes the fraction of occupied patches. The number h denotes the fraction
of patches that is actually habitable for the population and, hence, h — P is the number of
empty but habitable patches. Note that 0 < P < h < 1. The population colonizes empty
patches with rate c. Occupied patches become empty with rate /u.

(a) Find the steady states of the system.

(b) Assume that h can be varied (e.g., construction takes up habitable patches). Draw
the bifurcation diagram with h as the parameter. Do all the habitable patches have
to be destroyed before the population dies out?

Exercise 3.9.6: Gene activation. Consider a gene that is activated by the presence of a
biochemical substance S. Let g(t) denote the concentration of the gene product at time
t, and assume that the concentration of S, denoted by SQ, is fixed. A model describing the
dynamics of g is as follows:

where the k 's are positive constants.
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(a) Interpret each of the three terms on the right-hand side of the equation (be sure to
mention the meaning of the k's).

(b) Show that (3.36) can be put in the dimensionless form

where r > 0 and s > 0 are dimensionless groups. What are r and s in terms of the
original model parameters?

(c) A graph of ̂  versus x is shown in Figure 3.24 for the case s = 0 and r = 0.4. On
the same set of axes, sketch graphs of -j^ versus x for various values of s > 0. We
will keep r fixed at 0.4 throughout the remainder of this question.

Figure 3.24. Graph of j^ versus xfor (3.37).

(d) Make a qualitative sketch of the bifurcation diagram, showing the location and sta-
bility of the steady states of (3.37) as a function of the parameter s. Identify any
bifurcations).

(e) Assume that initially there is no gene product, that is, x (0) = 0, and suppose that s is
slowly increased from zero (i.e., the biochemical substance S is slowly introduced).

(f) What happens to X(T)? Why?

(g) What happens ifs then goes back to zero? Does the gene turn off again? Why?

Exercise 3.9.7: Linear systems. We study 2 x 2 systems of linear ODEs:

Classify the origin (jj) as a stable/unstable spiral, node, or saddle, and plot (or sketch) the
phase portrait for each of the following cases:
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Exercise 3.9.8: A linear system with complex eigenvalues. Show that

are two solutions of the linear differential equation (3.16).
The superposition principle for linear equations (see Boyce andDiPrima [25]) ensures

that each solution can be written as a linear combination ofx^ and x(2):

Write x(t} in the following form:

with a — Jc\ + c\. The parameter </> in the solution is called the phase. Find an expression
for the phase (j> depending on C[ and c-i.

Exercise 3.9.9: The trace-determinant formula. Prove formula (3.22).

Exercise 3.9.10: Using the trace-determinant formula. Use formula (3.22) to classify
the stability of(^} with A given by

Exercise 3.9.11: Two-population model. For the two-population model, (3.8), sketch the
phase portraits for the remaining sign patterns:

Give a biological interpretation for each case.

Exercise 3.9.12: Predator-prey model. Suppose that an insect population, x ( t ) , is con-
trolled by a natural predator population, y(t).

(a) Write down a model describing the interaction of these two populations.

(b) Suppose an insecticide is used to reduce the population of insects, but it is also toxic
to the predators; hence, the poison kills both predator and prey at rates proportional
to their respective populations. Modify your model from (a) to take this into account.

Exercise 3.9.13: Inhibited enzymatic reaction. Write down the differential equations
describing the following enzymatic reaction, where enzyme E is inhibited by inhibitor I:
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Exercise 3.9.14: A feedback mechanism for oscillatory reactions. Write down a differ-
ential equation model for the following pathway:

Exercise 3.9.15: Enzymatic reaction with two intermediate steps. Write down the equa-
tions describing the following reaction:

Exercise 3.9.16: Self-intoxicating population. Some populations produce waste products,
which in high concentrations are toxic to the population itself. For example, algae or
bacteria show the structure in Figure 3.25.

Figure 3.25. Arrow diagram for a self-intoxicating population.

Let the population density be denoted by n(t) and the toxin concentration by y(t).
Then

with

(a) Explain each term of the above system.

(b) Find the nullclines, the steady states, and sketch a phase portrait.

(c) Sketch the vector field.

(d) Linearize the system and characterize each of the steady states (stable/unstable, sad-
dle, node, spiral, center, etc.). Find the regions in parameter space such that the
nontrivial (coexistence) equilibrium is either a node or a spiral.

(e) Sketch some trajectories for the case of 8 < 4(oc — ft}, and explain what you see in
terms of the biology.

(f) Consider the case of higher dilution: 8 ^> 1, y/8 < oo.

Exercise 3.9.17: Fish populations in a pond. Imagine a small pond that is mature enough
to support wildlife. We desire to stock the pond with game fish, say trout and bass. Let T(t)
denote the population of the trout at any time t, and let B(t) denote the bass population.
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(a) Initially, assume that the pond environment can support an unlimited number of
trout in isolation (i.e., growth of the trout population is exponential). Write down
an equation that describes the evolution of the trout population in the absence of
competition.

(b) Modify the equation to account for competition of the trout with the bass population
for living space and a common food supply. You may assume that the growth rate of
the trout population depends linearly on the bass population.

(c) Repeat (a) and (b)for the bass population.

(d) Explain the meaning of the parameters you introduced into the model.

(e) What are the steady states of the system? Determine the stability of the steady states
using linearization.

(f) Perform a graphical analysis of the model. That is, find the nullclines, and sketch the
phase portrait, taking into account the information obtained in (e).

(g) Is coexistence of the two species in the pond possible? If so, how sensitive is the final
solution of the population levels to the initial stocked levels and external perturba-
tions? Explain.

(h) Replace the exponential growth term in each equation with a logistic growth term.
Use rt and r^ to denote the intrinsic growth rate of the trout and bass, respectively,
and Kt and Kb to denote the respective carrying capacities. Analyze the following
specific case: Kt > r^/h and Kf, > rt/It, where It (7&) represents the strength
of the effect of the bass (trout) population on the rate of change of the trout (bass)
population. How does the final outcome differ from before? Explain.

(i) The second model is a lot more realistic than the first model, as it no longer assumes
unlimited growth in the absence of competition. Think of at least one further improve-
ment to the model. How would the equations be affected? You should write down the
equations, but you do not have to analyze them.

Exercise 3.9.18: Exact solution for the logistic equation.

(a) Develop the solution of the initial value problem for the logistic equation,

Note that the differential equation is separable, and use the method of partial fractions
to find

Alternatively, you can linearize the differential equation using the transformation
u = l/N.

(b) Compare the solution obtained above to the solution of the Beverton-Holt model,
developed in Exercise 2.4.8.
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Chapter 4

Partial Differential
Equations

Partial differential equations (PDEs) involve partial derivatives and appear when we consider
quantities depending on more than one independent variable, such as space and time. In
Section 4.1, we review some basic facts about partial derivatives. We then treat two of the
most important examples of PDEs in mathematical biology. In Section 4.2, we discuss an
age-structured model, where the independent variables are time and age. In Section 4.3, we
discuss reaction-diffusion equations, where the independent variables are time and space.

4.1 Partial Derivatives
Let f ( x , y) be a function which depends on two variables, jc and y. A good way to illustrate
/ is to draw its graph. Let D c R2 be a domain such that / is defined on D. Then the
graph of / is

graph

Example 4.1.1: Consider

The level sets, or contour lines of f ( x , y), are curves in the (x, y) plane such that f ( x , y) —
k, where k is a constant. In Figure 4.1, we show the graph of /. Please note that the contour
lines are plotted on the graph as {(jc, y, k) : (x, y) € D}.

Since / depends on two variables, we can define two derivatives of /:

which we call the partial derivatives of /.
The partial derivatives as defined above are evaluated at (x, y), and hence they are

also functions of (x, y). When we arrange these two functions in a vector, we call it the

97
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Figure 4.1. Graph of the function f ( x , y)from Example 4.1.1.

gradient of /:

The gradient has a geometric interpretation. The vector grad/(jc, y) always points to the
direction of steepest ascent of the function f ( x , y). Equivalently, the vector grad/(jc, y) is
always perpendicular to the level curves.

Partial derivatives can be used to find tangent planes, normal lines, etc. We recommend
consulting a standard textbook on calculus for more detailed information about partial
derivatives.

4.2 An Age-Structured Model

4.2.1 Derivation

In this section, we will look at an age-structured model for females in a population. The
reason for being able to restrict our attention to females is that only females have the potential
of giving birth. We let u(t, a) denote the density of females with age a at time t. To derive
an evolution equation for u(t, a), we consider the population after a small time increment
A?. The change in the number of individuals between the ages of a and a + Aa is given by

The first term on the right-hand side of the equation represents the number of females
progressing from the previous age class, the second term represents the number of females
progressing to the next age class, and the third term represents the number of females that die,
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with /z(tf) being the age-dependent death rate. Dividing the equation by A? and applying
the usual limiting process, we obtain

or

Note that since age and time progress at the same rate, we have Aa = A? and da/dt = 1.
You may recognize the above equation as a transport or convection equation. The partial
derivative with respect to a is the transport term and represents the contribution to the change
in u(t, a) from females getting older (and the velocity with which females age is 1). We
have a first-order PDE, and we need two conditions to complete the model. In particular,
we need boundary conditions at a = 0 and t = 0. The distribution

represents the initial age distribution and can be any nonnegative function with finite number
NQ = j" UQ(a)da. The distribution u(t, 0) represents the newborns, and it is determined by
the biology as follows:

where ft (a) is the age-dependent reproduction rate. Thus, the integral represents the total
number of newborns at time t.

The model we have just derived is shown in the form of an arrow diagram in Figure 4.2.

Figure 4.2. Arrow diagram of an aging population. /u(a) is the age-dependent
death rate, and ft (a) is the age-dependent reproduction rate.
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4.2.2 Solution

To solve (4.2) with boundary conditions (4.3) and (4.4), we first introduce index notation
for partial derivatives

A common and powerful method to treat PDEs is to write it so that it looks like an ODE.
Here, we write (4.2) as

where £ is a linear differential operator which acts on functions. £ is linear since for two
continuously differentiable functions zi and Z2, and for two real constants «i and <*2, we
obtain

We can treat (4.5) similar to a system of linear differential equations written in matrix
form. We study eigenvalues, A,, and eigenfunctions, w(a), of £, which satisfy

If X is known, then we can explicitly solve for w(a) as follows. We rewrite (4.6) as

isolate wa to get

and integrate

where the constant M;O will be specified later.
Now that we have found the eigenfunction w(a), we proceed with separation of

variables. This approach expresses the hope that the solution, u(t,a), can be written as
a product u(t, a) = g(t)w(a) of one function, g(t\ which depends only on time /, and
another function, w(a), which depends only on age, a. It is not clear, at the beginning,
whether such a solution exists, but it is worth a try. We consider

where w(a) is the eigenfunction of £, as identified above. We substitute (4.7) into (4.2) and
obtain
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Since w(a) ^ 0, we obtain an equation for g(t):

with solution

where the constant go has to be specified later.
Hence, a general solution to (4.2) is

If we introduce another constant c = goWQ, then the general solution (4.8) contains two
constants which still have to be found: c and the eigenvalue A.. But we have two more
conditions, the initial condition (4.3) and the boundary conditions (4.4), which we can use
to determine c and X.

Setting t = 0 in (4.8) we have

This relation cannot be valid for all arbitrarily chosen initial conditions u0(a). This simply
means that the separation of variables method works only if (4.9) can be satisfied for a
constant c. If not, this method does not work (but there might be other methods which do).
Here, we assume that (4.9) is satisfied, and we continue with the boundary condition at age
a = 0 (4.4). We substitute the general solution (4.8) into (4.4) and obtain

Dividing both sides by cext gives a condition to find X, namely,

If ft (a) is not zero on an interval, then there is exactly one solution to this equation.

Lemma 4.1. Assume fi(a) > fto > Qfor some interval a € [a\, ci2\- Then there is a unique
X e E such that (4.10) holds.

Proof. The right-hand side (r.h.s.) of (4.10) is a strictly decreasing function in X. We have

Hence there is exactly one value X where the right-hand side equals 1 (compare with Fig-
ure 4.3).

We now know X from (4.10) and c from (4.9) and the solution u(t, a) in (4.8) is
specified. The time variable appears only in ext. Hence the sign of X alone determines the
asymptotic behavior. The following theorem has been proven in Webb [160].
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Theorem 4.2. // then u(t,a) If then u(t, a)
as t For each solution u(t, a); the function u(t, a] converges to w(a) as

for each age a

This result is also known as renewal theorem (Thieme [156]). It shows that over time,
the population age distribution approximates a profile determined by w(a), and this profile
either grows or decays exponentially with time, depending on the sign of the eigenvalue A.
Since w(a) is an eigenfunction of the differential operator £ in (4.5), the asymptotic profile
w(a) is uniquely determined by the mortality rate IJL(O). In Section 8.5, the reader is asked
to simulate the age-structured model numerically using Maple.

4.3 Reaction-Diffusion Equations
Another very important class of PDEs are reaction-diffusion equations, for which the inde-
pendent variables are time, t, and space, x. Reaction-diffusion equations are used whenever
the spatial spread of a population or chemical species is of importance. Reaction-diffusion
models have their limitations and there are more advanced models (such as correlated ran-
dom walks, transport equations, or integrodifference equations), but it is always a good idea
to start with a reaction-diffusion model for spatial spread. This has successfully been done in
epidemic models, for pattern formation, for predator-prey systems, and in signal transport,
to name a few areas. A good overview is given in Murray [ 122] and in Britton [28].

4.3.1 Derivation of Reaction-Diffusion Equations

Assume a population with density u(x, t) is living and moving in a container. To describe
movement, we introduce another dependent quantity, the particle flux, J(x,t) e R". At
each location x and at each time t, the flux J(x, t) is a vector which points in the general
direction of movement at that location. Its magnitude, \J(x,t)\, is proportional to the

Figure 4.3. There is exactly one value A. such that (4.10) is satisfied.
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Figure 4.4. Sketch of a test volume £2 with boundary r, population density u(x, t),
and flux J(x,t) through the boundary.

amount of particles which flow in that direction per unit time. Specifically, the flux J plays
the role of the heat flux in heat transport, or a concentration flux for a chemical reactor, and
so on.

We consider a test volume £2 with boundary F and we balance the fluxes inward and
outward on £2 through F (see Figure 4.4). In words,

Change ofu in £2 = flux through F + change due to birth, death.

Written in mathematical terms, this gives

where f(u(x, 0) describes birth and death, dV denotes integration over the space E" and
dS denotes surface integration in dimension R"~' .

We use the divergence theorem

and we get

The above equation is satisfied in each test volume Q. Then (if the measure dV is not
degenerate) it follows that
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Figure 4.5. Schematic of Tick's second law. A positive gradient ofu gives rise to
a negative flux J.

Next, we need an expression of the flux in terms of the population distribution. As for
chemical reactions, we use Pick's second law1

We assume that the flux J is proportional to the negative gradient of the particle distribution.
In Figure 4.5, we show a positive gradient of u (-j^u(x, t} > 0). The flux points to the left,
leading to the equilibration of u. If we combine the balance law (4.11) with Pick's law
(4.12), we get a reaction-diffusion equation,

where the Laplacian AM is defined as

If / = 0, then (4.13) is simply the diffusion equation or heat equation.

4.3.2 The Fundamental Solution

The fundamental solution is a particular solution of the diffusion equation (equation (4.13)
with / = 0) that can be used to find other solutions by convolution (see, e.g., Britton [28]).
Moreover, this solution shows many of the common properties of solutions of reaction-
diffusion equations in general.

The fundamental solution appears for a particle which starts at the origin 0. In terms
of random walks on a grid (see Chapter 5), it is straightforward to start with a particle at 0.
In the continuous case, however, we use a 8-distribution SQ(X). The 8-distribution is not a
function in the classical sense. It is defined by its action on smooth functions. If f ( x ) is a

1 In the interpretation of heat transport, this law is known as Fourier's low.
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smooth function, then 8o(x) is the one and only object which satisfies

and

To get an idea about the shape of So 00 keep in mind that

which is, however, not a valid definition of So 00-
The 5-distribution is the prototype of a class of functions which are called distributions

(we refer to Friedlander [60] for further details on distributions). For now, it is sufficient
to understand the properties as described above and consider the initial value problem for a
particle which diffuses in one dimension and starts with certainty at 0:

The fundamental solution (in one dimension) (see Exercise 4.5.2) is

In Figure 4.6, we show this solution at times t = 0, t = t\ > 0, and t = ti > t\, for D = 1.
Although the initial condition is not continuous, the solution (4.16) is continuous for all

Figure 4.6. Solutions of the diffusion equation (4.15) at three times,
and
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t > 0. In fact, it is infinitely often continuously differentiable, a property which is known
as the regularizing property of the diffusion equation.

At t = 0, we have SQ(X) = 0 for all x 7^ 0. However, as soon as t > 0, we have
g(x, t) > 0 for all x e IL There is a minimal chance to find the particle very far from its
starting point. The diffusion equation allows for infinitely fast propagation.

If we study the diffusion equation with a general initial condition,

then the solution can be found by convolution with g (see Evans [54]):

where the convolution integral is given by

4.3.3 Critical Domain Size

Reaction-diffusion equations can be used to estimate the size of a habitat that can support
a population. In general, it is not possible to establish a stable surviving population on an
island that is too small. For pests, like the spruce budworm (see Murray [120]), information
about the critical domain size can be used to determine how to split a woodland into small
enough patches so as to prevent the budworms from settling in.

To illustrate the use of reaction-diffusion equations in this context, we introduce
Fisher's equation, which shows all necessary features. Fisher [56] proposed the following
model for the spread of an advantageous gene in a population:

where u(x, t) is the density of the gene in the population at time t and location jc. The term
fjLu(l — u) is already familiar to us: it is Verhulst's law of growth with saturation. Fisher's
equation also applies for population growth of randomly moving individuals. We will study
this equation on a one-dimensional domain of size /, / = [0, /].

A PDE on a bounded domain needs boundary conditions. Here we are guided by the
application, and we discuss the most common possibilities.

The case of an island has already been mentioned. Appropriate island boundary
conditions are

These are also called homogeneous Dirichlet boundary conditions (see Figure 4.7). We can
also study a valley or a box, or a patch with sealing walls. Then no individual can leave the
patch. Appropriate box boundary conditions are
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Figure 4.7. A typical solution of (4.19) with homogeneous Dirichlet boundary
conditions (island conditions).

Figure 4.8. A typical solution of (4.19) with homogeneous Neumann boundary
conditions (box conditions).

These are also called homogeneous Neumann boundary conditions (see Figure 4.8). Obvi-
ously, combinations of island and box boundary conditions can occur if, for example, the
patch is bounded by a wall on the one side and by water on the other. We could also include
some semipermeable walls such that only a fraction of the population can leave the domain,
etc. We restrict our attention to the first two cases given above. Note that we need one set
of boundary conditions, either (4.20) or (4.21), but not both at the same time.

The question we are investigating is,

How large must an island or box be to support a population ?

It has been shown in research articles (see, e.g., Britton [28]) that it is equivalent to ask
when the trivial solution u(x, t) = 0 is unstable. If u(x, 0 = 0 would be stable, then each
solution (near 0) would converge to 0, and the population would die out. Hence, u (x, t) = 0
has to be unstable to allow for a surviving population. We are not introducing the notion of
stable or unstable for PDEs here, but we can use them in the same way as for ODEs (see
Chapter 3).

For Fisher's equation (4.19), the following questions are equivalent (Grindrod [73]).

(i) How large must an island or box be to support a population ?

(ii) What is the critical domain size I* such that u = 0 is stable for I < I* and unstable
for I >T?

(iii) What is the critical domain size I* such that a nontrivial stationary solution (steady
state) exists for I > /*?

We investigate (iii); that is, we will seek nontrivial steady-state solutions of Fisher's
equation (4.19).

A steady-state solution satisfies ut = 0, and hence
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We are looking for solutions w(jt) / 0 which satisfy the correct boundary conditions, and
we will use phase-plane analysis from Chapter 3 to study (4.22). With a new variable,
v := ux, we obtain the system

with Dirichlet boundary conditions (4.20)

or with Neumann boundary conditions (4.21),

Note that (4.23) is a 2 x 2 system of ODEs:

In the previous chapter, we considered ODEs with t being the independent variable. Here,
x is the independent variable, but the same methods apply.

The equilibria of (4.24) are

The Jacobian of (4.24) is

The linearization of (4.24) at PI is

which has purely imaginary eigenvalues A.,,2 = ±/ J^. Hence, (0,0) is a center.

At f*2» we find

with eigenvalues A.l/2 — ±^. Hence, (1, 0) is a saddle.
Since (1, 0) is a saddle for the linearization, it is also a saddle for the full, nonlinear

system (4.24). This follows from the Hartman-Grobman theorem (see Theorem 3.6). Un-
fortunately, the Hartman-Grobman theorem does not apply to the center case. We cannot
decide yet whether (0,0) is a stable spiral, an unstable spiral, or indeed a center for the
nonlinear system (4.24).
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Figure 4.9. Hamiltonian function H(u,v) and level curves.

We can obtain the missing information from a Hamiltonian function, which is a func-
tion H(u,v) that satisfies

For solutions (u(x), v(x)) of (4.24), we get via the chain rule

For (4.24), we can write down the Hamilton function explicitly:

From (4.26), it follows that the value of H does not change along solution curves (u(x), v(x)).
In Figure 4.9, we show H as a function of («, u). Since H does not change along

solution curves, the solution curves must follow the level curves of H. Since we have a
Hamiltonian function, it follows that each bounded solution is either

1. an equilibrium point,

2. a connection of equilibrium points, or

3. a closed orbit.

From Figure 4.9 then, we conclude that the steady state (0,0) is a center. We now have
enough information to sketch the phase portrait of (4.24) in Figure 4.10. Although the phase
portrait includes regions of u < 0, we consider only solutions which satisfy u > 0. Since
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Figure 4.10. Phase portrait of system (4.24). The curve a represents a solution
which satisfies homogeneous Dirichlet (island) boundary conditions, whereas curve b rep-
resents a solution with homogeneous Neumann (box) boundary conditions. The gray area
is not biologically relevant because u < 0.

M(JC) is a population density, it cannot be negative. We refer to the region u < 0 as not
biologically relevant.

To find relevant solutions, we have to consider the boundary conditions. A solution
satisfying Dirichlet (island) boundary conditions is a solution that starts with w(0) = 0
and ends with u(l) = 0, while u > 0 for all x. Curve a in Figure 4.10 is one such
solution. Similarly, a solution satisfying Neumann (box) boundary conditions is a solution
that connects u(0) = 0 with v(l) = 0. A typical solution is indicated by curve b in Figure
4.10. Of course, this solution is not biologically relevant. The only relevant solutions for
the Neumann case are u = 0 and u = 1.

Hence, we already can answer our original question if the domain is a box. Since
u (x, t) = 1 exists for any value of /, a box of any size supports a population up to the carrying
capacity. We conclude that the critical domain size under box conditions is /* =0.

What is the critical domain size for the island or Dirichlet problem? Let's take a closer
look at the Dirichlet solutions. Each solution has a unique intersection with the w-axis, say
at u (see Figure 4.11). As u -» 1, the solution approaches the saddle point. Very close to
the saddle point, it takes longer and longer to move forward. Hence, / -» oo for u —> 1.

One might guess that / -» 0 for u —> 0, but this is not correct. For u —>• 0, we enter the
range close to (0,0), where the linearization describes the behavior of the solutions. Recall
that (0,0) is a center with eigenvalues Km = ±ij^. As was shown in (3.17), the general

solution near (0,0) is given as
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If / > /*, we get a population distribution of the form shown in Figure 4.7 and
Figure 4.11 (b). If / < /*, the domain cannot support the population. Note that the case
/ = /* cannot be decided by linear analysis.

Now we are able to answer our original question as well if the domain is an island.
An island can support a population if its length I satisfies I > /* = ̂ J~- If I < l*> each
initial population will die out.

4.3.4 Traveling Waves

Another important problem in spatial ecology is if and how species can invade new habitats.
Our method for studying this is to look for traveling wave solutions of a reaction-diffusion
equation. To illustrate this, we again study Fisher's equation,

but now on the whole line BL We seek solutions which describe the invasion of the population
into a new habitat. In particular, we seek solutions u(x, t) that have the form shown in
Figure 4.12, and then move with constant speed c. A solution of this type can be expressed
as

For c > 0, the function (j)(x — ct) is the function </>(jt) shifted to the right by ct; see
Figure 4.13. The parameter c is the wave speed, the new variable z '•= x — ct is called the
wave variable, and the function </>(z) is called the wave profile.

Figure 4.11. (a) For each possible Dirichlet solution, there is a unique intersection
with the u-axis intersection at u. (b) The same Dirichlet solution shown as a function ofx.

Thus, near (0,0), a Dirichlet solution corresponds to a half-circle starting at (w(0),
u(0)) = (0,c,) and ending at (w(/), u(/)) = (0, -c,). From («(0), u(0)) = (0,c,), we
obtain the phase shift <p = jt/2. Similarly, from («(/), v(l)) = (0, —ci) , we obtain the

condition that J &l = n, or / = nJ —L. In the limit u —> 0, we get a critical domain size of
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Figure 4.12. A typical invasion traveling wave.

Figure 4.13. The profile (f>(x)from the top figure is shifted by 2 to the right (bottom).

We make the traveling wave ansatz

where instead of boundary conditions, we now have conditions at ±00. For x -> —oo, the
population already has grown to its carrying capacity (1 in this case), and for x ->• +00,
the population has not arrived yet.

From (4.28), we obtain

and (4.27) reduces to the following ODE for <f>(z):

As in the previous section, we introduce a new variable, ty := </»', and write (4.29) as a 2 x 2
system

The equilibria of (4.30) are PI = (0, 0) and P2 — (1,0). Using the linearization, we find
that the point PI = (0,0) is stable for c > 0. It is a stable spiral for c < 2-JD^i and a stable
node for c > 2^/D^. The point P2 — (1,0) is always a saddle.
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Figure 4.14. The traveling wave as a function of the wave variable z.

Figure 4.15. Heteroclinic connection from the saddle at (1, 0) to the stable spiral
at (0, 0). Here n = D — 1 and c < 2. There is no nonnegative traveling wave.

Recall that the boundary conditions for the wave profile are </> (—00) = 1 and0(+oo) =
0. Moreover, from the form of 0 as shown in Figure 4.14, it is clear that V(~°°) =
\j/(+oo) = 0. Hence, in the phase portrait of system (4.30), we have to find a connection
from the saddle (1, 0) to the stable point (0,0). We show these connections for c < 2,/T)JI
in Figure 4.15, and for c > 2^/TJJI in Figure 4.16.

The function 0 is the profile of the population density; hence it has to be nonnegative.
Thus solutions for c < 2>/Z5/Z are not biologically relevant. They correspond to an oscil-
lating front (see Figure 4.17). We obtain that the minimal speed c* for which a wave front
solution exists is given by c* = 2^/TJJI (here we argued graphically; a proof can be found
in Kallen, Arcuri, and Murray [97]).

General Fisher Equation

The above result on the minimal wave speed of traveling fronts can be generalized to general
Fisher equations
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Figure 4.16. Heteroclinic connection from the saddle at (1,0) to the stable node
at (0, 0). Here IJL — D = 1 and c > 2. There exists a nonnegative traveling wave.

Figure 4.17. Oscillations of the leading edge of the wave from Figure 4.15.

where /(«) has a shape similar to fjiu (l — -|-). The exact conditions on / are as follows:
There is a K > 0 such that

Moreover, if we assume that /(«) satisfies the subtangential condition,

then the minimal wave speed is

The Linear Conjecture

As we saw in the previous sections, the minimal wave speed c* is exactly that value where
(0,0) changes from spiral into node. If we consider the traveling wave solution close to
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(0, 0), then the behavior is described by the linearization around (0,0). The Jacobian of
(4.30) at (0,0) is

which has trace — -^ and determinant £. Hence, (0,0) is a node if and only if

or c > 2*jD]JL. The eigenvalues are then given by

and for c* = 2^/D^i, we have an eigenvalue of multiplicity 2:

The solution near (0,0) behaves like e 20x for x —> oo. Hence, — ̂  is the decay rate at
the wave front.

Indeed, in many cases, it is enough to measure the decay rate of the profile for large
x to get a good approximation for the minimal wave speed c*. This is known as the linear
conjecture.

4.4 Further Reading

There are a number of introductory textbooks on PDEs, such as the books by Haberman [75]
and Keane [98]. The contents of these and similar books have been developed in the context
of applications in engineering and physics. Most of the material deals with separation and
series solutions (see also Exercise 4.5.6). Although these methods are very important, they
do not play a major role in applications to biological systems. For PDEs in mathematical
biology, a more modern approach is used, which is based on dynamical system theory and
nonlinear dynamics. For example, the material in Section 4.3.3 cannot be found in any
of the classical introductory textbooks, although it can be understood easily with a basic
background in ODEs.

The text of Webb [160] is an introductory text and also a standard reference for
age-structured population models. The material from Section 4.2 is based on Webb. For
reaction-diffusion equations (including the Fisher equation), a standard reference is Murray
[122]. A very good introduction to critical domain size and traveling waves can be found
in Britton [28]. The traveling wave problem is also discussed in detail in Grindrod [73].

The material on critical domain size and on traveling waves is also covered in the
introductory biomath textbooks which are mentioned in the appendix, "Further Reading":
Britton [29], Jones and Sleeman [95], andTaubes [155].

Pattern formation, Turing instabilities, and activator-inhibitor systems have not been
discussed. We refer to the aforementioned texts of Murray, Britton, or Grindrod. Okubo and
Levin [127] give a detailed overview of the manifold applications of reaction-diffusion and
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reaction-advection-diffusion equations to biological problems (advection refers to directed
movement).

Two more recent books on reaction-diffusion equations and related models applied
to population dynamics are by Thieme [156] and Cantrell and Cosner [37]. Both texts give
a comprehensive treatment of the underlying theory of dynamical systems, bifurcations,
and functional analysis. Thieme's book deals with stage-structured population models,
and Cantrell and Cosner study questions about permanence and persistence in spatially
nonhomogeneous ecological systems.

To obtain a good basic knowledge of the theory of PDEs and their mathematical prop-
erties, we recommend the following textbooks: Evans [54], McOwen [116], and Renardy
and Rogers [135]. These texts are pure PDE courses and they do not feature biological ap-
plications. They are appropriate for a beginning graduate student, and they are not too easy.
To properly derive a solution theory for PDEs, one has to introduce appropriate function
spaces and one needs some function-analytical tools.

4.5 Exercises for PDEs

Exercise 4.5.1: Diffusion through a membrane. This question deals with diffusion through
a membrane. We assume that a membrane of width L separates two regions (e.g., the
interior and exterior of a cell). Consider a chemical that has a concentration c\ inside the
cell and c2 outside the cell. The transport through the membrane can be described by a
one-dimensional diffusion equation ut = Duxx. We assume that the solution settles onto
an equilibrium.

(a) Find the equilibrium and sketch the concentration at equilibrium as a function of
position.

(b) Using Pick's law, the flux across the membrane is given as

where u(x,t) is a solution of the diffusion equation. Find the flux at equilibrium. The
quotient D/L is known as the permeability of the membrane. Why do you think this
is so?

Exercise 4.5.2: Fundamental solution.

(a) Show that the function

solves the diffusion equation ut = Duxx.

(b) Make sure that g(x,t) > Ofor all t > 0 and x e E and investigate the limits of
x -» ±00 and t —> oo.

Exercise 4.5.3: Signaling in ant populations. Certain ant species (such as Pogono-
myrmex badiusj use pheromones as a signal for danger. A good model for the spread of the
pheromones in the tube is the one-dimensional diffusion equation. In experiments, Bossert
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and Wilson released ants in a long tube and stimulated one ant until it released a pheromone.
They measured within which distance and after which time delay the other ants would react
to the signal. We assume that at time t = 0 a signal of strength a is released. The diffusion
constant is D = 1. Other ants react to the stimulus if the concentration they perceive is
10% of a or higher.

(a) For each t > 0, find the region in the tube 0 < x < x(t) where the ants would react
to the stimulus (region of influence).

(b) Sketch the time evolution ofx(t).

(c) Find the time t* such that the region of influence is empty for all t > t*.

Exercise 4.5.4: Dingoes in Australia. A dingo population which lives in the eastern parts
of Australia is prevented from invasion to the west by a fence which runs north-south. In
this exercise, we study the case in which the fence breaks somewhere (at time t = 0).

Two farms, A andB, are located on the west side of the fence. The distance from farm
A to the fence is 100 miles, and the distance from farm A to B is another 100 miles. The
farmers would like to know how long it would take for the dingoes to reach their farms. We
model the spread of the dingo population with Fisher's equation

with k = 1 (I/month), and K = 1 (in the units ofu).

(a) The region between farm A and the fence is flat and the diffusion constant isD\ = 100
(miles1/month). When does the dingo population reach farm A?

(b) The region between farm A and B has rocks and slope; hence there the diffusion
constant is D^ = 50 (miles2/month). When does the dingo population reach farm B?

Hint: For part (a) consider a traveling wave and calculate the wave speed corresponding
to D] and k. Find the spatial decay rate X[ of this wave. For (b), take the exponentially
decaying wave from part (a) and use DI to find the wave velocity which corresponds to a
decay rate ofk\.

Exercise 4.5.5: Signal transport in the axon. Fitzhugh [57] and Nagumo, Arimoto, and
Yoshizawa [123] derived a model for signal transduction in the axon,

where u represents the membrane potential. We study this model on 0 < jc < 1 with
homogeneous Neumann boundary conditions,

(a) Determine the system of two ODEs which describe the steady-state solutions of (431).

(b) Find the equilibrium points of the system of (a) and study their stability.
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(c) Show that

is a Hamiltonian function for the system you found in (a).

(d) Sketch a phase portrait in the (u,ux) plane.

(e) Find the steady-state solutions that satisfy the Neumann boundary conditions, and
sketch them as a function ofx.

(f) Give a biological interpretation of these steady-state solutions.

Exercise 4.5.6: Separation. In this exercise, we flesh out the details of one of the standard
solution methods for linear PDEs, separation of variables. Here we consider the diffusion
equation,

on an interval [0, 1] with homogeneous Dirichlet boundary conditions,

This case and many other similar cases are studied in any introductory textbook on PDEs.
We recommend that you try this exercise first before you consult the literature.

We study solutions of the form

(a) For which values of a) is(j>(x,t)a solution of the diffusion equation with homogeneous
Dirichlet boundary conditions? Use a parameter k E N to enumerate all possible
values of co.

(b) Find the relationship between X^ andcok. This relation is called the dispersion relation.

(c) What is the qualitative behavior of4>(x, t) as t -> oo?

«2
(d) In a broader context, the operator A = -j^ is a linear map between Banach spaces,

much like a matrix on W1. The values A/t calculated above can be understood as
eigenvalues of A and sin(wkx) as corresponding eigenfimctions. For D = 1, plot
the first five eigenvalues in the complex plane, and plot the first five eigenfunctions
on [0, 1].

(e) Given an initial condition

with constant coefficients ak, k = [,..., N, guess the solution. Prove that your guess
is correct.
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Exercise 4.5.7: Linear transport. We investigate the following equation for u(x,t),t >

(a) The solution u(x,t) can be understood as a surface over the (x,t) plane. What is the
gradient ofu? Write the above equation in the following form: vector • grad u = 0.
Give an interpretation in terms of the solution u(x, t).

(b) For each constant k, the curve x — ct — k is called the characteristic curve. F<. =
{(?, x(t)) : x(t) = k + ct, t > 0}. Show that solutions are constant on these charac-
teristic curves.

(c) Solve the above initial value problem.

Exercise 4.5.8: Correlated random walk. In the next chapter, we will derive the diffusion
equation from an uncorrelated random walk. This means that the movement direction of a
random walker at time t is independent of time t — At. If correlation is included, we are
led to the following system (see Zauderer [169] for more details on the derivation):

where u±(x, t) denote densities for right/left moving particles, y is the movement speed,
and fJL is the rate of switching direction.

(a) Derive an equivalent system of two equations for the total population density u =
u+ + u~ and the population flux v = y(u+ — u~~).

(b) For the (u, v)-system from (a), consider the parabolic limit:

Which equation for u follows?

(c) Fromthe(u, v)-system from (a), derive a single second-order PDE for u alone. Again,
study the parabolic limit for this second-order equation.

(d) Interpret your results.
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Chapter 5

Stochastic Models

5.1 Introduction
In this chapter, we consider models where outcomes are uncertain. Even though outcomes
are uncertain, we can still assign probabilities to different outcomes, and then study how
these probabilities change with time. An excellent reference text in this area is [3].

Many biological systems change from one state to another over time. Nerves change
from quiescent to excited and back, cells change from healthy to diseased, or one plant
population replaces another. While changes between states can be uncertain, probabilities
of transitioning from one state to the next can be assigned nonetheless. If we know the
transition probabilities between states, then we can evaluate changes in the system over
time.

In preparation for the mathematical formulation of a model with uncertain outcomes,
we first define the mathematical quantities that will go into the model. If S is a sample space
(collection of all possible outcomes of an "experiment") with a probability measure, and X
is a real-valued function defined over the elements of «S, then X is a random variable. For
example, if X were the fork length of a captured fish in cm, then S would be the nonnegative
real numbers.

We can follow the change in a random variable as a parameter, such as time, increases.
A family of random variables {X (?)}, indexed by a parameter t, is called a stochastic process.

We start this chapter with an example of a memoryless stochastic process, or Markov
process (Section 5.2). We model ecosystem succession dynamics via a Markov process.
Here a Markov chain model, describing transitions from one state to the next, can be under-
stood with matrix theory. Next we focus on random variables (Section 5.3). We introduce
probability density (Section 5.3.1) and probability mass (Section 5.3.2) as measures for
sample space «S, and discuss descriptive statistics (Section 5.3.3) and probability generat-
ing functions (Section 5.3.4) as means to characterize random variables. The last part of
the chapter concerns applications and extensions of tools developed earlier in the chap-
ter. We consider random motion via diffusion processes (Section 5.4), branching processes
(Section 5.5), linear birth and death processes (Section 5.6), and nonlinear birth and death
processes (Section 5.7). These can be used to describe animal movement (Section 5.4.2), the
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extinction of family names (Section 5.3.4), the polymerase chain reaction (Section 5.5.2),
population extinction (Section 5.6.2), and dynamics of the common cold (Section 5.7.1).

5.2 Markov Chains
The simplest stochastic processes are those which can be completely characterized by their
current state, and where past states of a variable do not affect future outcomes. A stochastic
process (X(t)} is called a Markov process if it is history-independent. In the case with /
being a discrete sequence t\ , ?2, • • • , it is a one-step memory process, that is,

Here, Pr denotes the probability associated with an event, fl means "and," and | means
"given that." Markov processes are sometimes referred to as being memoryless; that is, the
next state for the stochastic process depends only upon the current state. A Markov chain
is a model which tracks the progression of a Markov process from time step to time step.

One example of a Markov chain involves succession in plant communities. As plant
communities mature to a climax ecosystem, certain plant species replace others. In this
section, we study succession in plant communities with Markov chains. We begin with a
two-tree forest in Section 5.2.1. We generalize the example to formulate a Markov theory
in Section 5.2.2. A large forest is considered in Section 5.2.3.

5.2.1 A Two-Tree Forest Ecosystem

By way of example, consider a population comprising red oak and hickory. At any point in
space, the sample space of possible outcomes is <5> = {RO, HI}, where RO represents red
oak and HI represents hickory. We assume that the life spans of the two trees are similar.
In each generation, red oak may be replaced by itself or by hickory, and hickory may be
replaced by itself or red oak. This is a Markov process, with the index / indicating the
generation.

For example, suppose that when a red oak tree dies, it is equally likely to be replaced
by hickory or red oak, and that when a hickory tree dies, it has probability 0.74 of being
replaced by red oak and 0.26 of being replaced by hickory. These transitions can be shown
in either a graphical (Figure 5.1) or a tabular (Table 5.1) format. Note that the columns of
the table sum to 1.

The table format can be translated into a transition matrix. For example, the entries
of Table 5.1 can be written in a transition matrix P,

To track the changes in the system over time, we define a vector ut = (ot,ht)
T which

describes the probability of red oak and of hickory at a given location in the forest after t
generations. In the case of a large homogeneous forest, the same transition model would
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Figure 5.1. Transitions between red oak and hickory vegetation shown as a graph.

Table 5.1. Transitions between red oak and hickory vegetation shown as a table.

% Saplings
Red oak
Hickory

Canopy
Red oak

0.50
0.50

Hickory
0.74
0.26

apply at every point in space. Hence, ot and ht can be interpreted as the proportions of red
oak and hickory in a large statistically homogeneous forest ecosystem.

If we suppose that the forest is initially 50% red oak and 50% hickory, then UQ =
(0.5,0.5)r. To find uj, we calculate as follows:

etc.

proportion
o\ — of red oak at

timeO

= (0.5)

0.62

proportion
h i = of red oak at

timeO

= (0.5)

0.38.

In terms of the matrix

probability
• red oak is replaced +

by red oak

(0.5) +

probability
• red oak is replaced +

by hickory

(0.5) +

formulation, we can write

ll! = PU0,

U2 = PU\,

proportion
of hickory
at time 0

(0.5)

proportion
of hickory
at time 0

(0.5)

probability
hickory is

replaced by red oak

(0.74)

probability
hickory is

replaced by hickory

(0.26)
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If we continue this process, we observe that the forest approaches an equilibrium
value. For example,

The forest has reached an equilibrium u* when

Here, u* is an eigenvector corresponding to eigenvalue A. = 1. To calculate the eigenvector
we solve

which has solution o* - 0.597, h* = 0.403.
A more complex model is given below in Section 5.2.3. However, before considering

this complex model, we derive the general theory.

5.2.2 Markov Chain Theory

We consider a system with n possible states for the system. Given that a transition occurs
from state y, the transition probability pij describes the probability of the transition taking
the system to state /, 1 < i, j, < n. When the transition probabilities are entered into a
transition matrix P = (ptj), the matrix columns sum to 1 because a transition occurring
from state j takes the system to some state /', 1 < / < w, with probability 1. Finally, to track
the probability associated with being in each state we define a probability vector, a vector
u = (MI, . . . , un)

T whose nonnegative entries sum to 1.
A general Markov model for transitions then takes the form of a discrete-time dynam-

ical system (Section 2.3),

where u, is a probability vector and P is a transition matrix. To calculate the long-term
probabilities associated with each state we can use the eigenvector of P corresponding to
eigenvalue A = 1. This result is made precise in the following theorem (see also [3]).

Theorem 5.1. Providing some power of P has aII positive entries, then for any probability
vector u0 and model ut+i = Put, u, -» u* as t -» oo, where Pu* = u*.

The requirement that some power of P has all positive entries (P is primitive) ensures
that, given enough time-steps, one can transition from any state to any other state and hence
the result is independent of the original state u0.

5.2.3 The Princeton Forest Ecosystem

A more complex model for successional dynamics was made for the well-studied Princeton
forest ecosystem [90, 91]. Here the transitional probabilities between five dominant trees
were measured in terms of which species replaced resident trees, once they died. Results
were as given in Figure 5.2 and Table 5.2.
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Figure 5.2. Transitions between tree species in the Princeton forest shown as a
graph. Based on [91, 90].

Table 5.2. Transition probabilities for the Princeton forest ecosystem shown as a
table. Based on [91, 90].

RO = Red oak
HI = Hickory

TU = Tulip tree
RM = Red maple
BE = Beech

% Saplings
Red oak
Hickory
Tulip tree
Red maple
Beech

Canopy
RO
0.12
0.12
0.12
0.42
0.22

HI
0.14
0.05
0.10
0.53
0.18

TU
0.12
0.08
0.10
0.32
0.38

RM
0.12
0.28
0.05
0.20
0.35

BE
0.13
0.27
0.08
0.19
0.33

For this full forest succession model, knowledge of the transitional probabilities can
be translated into a prediction for the climax successional community, u*, by applying
Theorem 5.1 (see Exercise 5.8.2):
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A comparison of the prediction and the observed proportions of trees in the climax forest
areas was made in [90, 91], where it was shown that the prediction and observation were
closely correlated.

5.3 Working with Random Variables

In the previous section, our mathematical analysis of the forest succession involved calcu-
lating changes in probabilities associated with the random variable X(t) taking on different
values. In that example, X(t) described the event of having a particular sort of tree at a
given location in the forest. In different problems, a random variable could describe any
number of things. For example, the random variable A could be used to describe the length
of time a cell remains alive.

Random variables can be broken down into two main classes: continuous (the set S of
values that X takes is continuous) and discrete (the set S of values that X takes is discrete).
For each of these classes, we need a mathematical formalism which assigns a probability to
the different values in S that the random variable can attain.

To derive more complex models for stochastic processes, we need some basic laws
of probability that can be applied to random variables. We motivate discussion of the laws
by a simple example which involves cell death.

Consider the length of time A for which a cell lives. A is a random variable defined
on the nonnegative real numbers which describes the age of the cell. We may be interested
in relating events associated with random variables, for example, the event in which the cell
dies by age a-i, given that it was alive at age a\ < a^.

The law of conditional probability can be used to relate conditional events to other
events. Specifically, if E\ and £2 are events which occur with nonzero probability, then

In the above example, if we let #2 be the event that A e («i, a2) and E\ be the event
that A > a\, then the probability that the cell dies during age interval (a\, #2), given that it
was alive at age a\ < 02, is

5.3.1 Probability Density

In the above instance of cell death, the age of cell death A is a continuous random vari-
able defined over the nonnegative real numbers. Here, the age of death is described by a
probability density function f ( a ) such that
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The related cumulative density function describing the probability that the cell dies by age
a is

The fundamental theorem of calculus relates the two functions by/(a) = F'(a). The actual
probability density function / depends upon the model we choose for cell death.

To show how / can be derived from first principles, we consider a simple model for
cell death. Suppose the age-dependent death rate is given by //(a). Our model assumes that
the probability of the cell dying in time interval (a, a + Aa), given that it was alive at age
a, is equal to /x(a) Aa + o(Aa), where o(x) is the Landau symbol, designating lower order
terms (lirn^o o(x)/x = 0). In terms of the random variable A, this model can be written
as

Now

Using (5.5) and (5.8), we rewrite the last statement as follows:

so that

Dividing both sides of (5.11) by Ao and taking the limit as Aa -^ 0 yields

where p(d) = Pr{A > a}. This differential equation for the probability of surviving to age
a has solution

Returning to the definition of the cumulative density function for the age of cell death (5.7),
we observe that F(a) = [ — p(a); hence the probability density for cell death is

For the case where ^(a) is a constant, we have an exponentially distributed waiting time or
cell death,

5.3.2 Probability Mass

When the random variable X is discrete, the probabilities associated with each outcome in
S = [XQ, x\, *2,...} are given by a probability mass Junction with values
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The simplest discrete random variable is a Bernoulli random variable. This random variable
X has only two possible outcomes: 0 (failure) or 1 (success). For example, it could be used
to describe whether a given cell is alive or dead at some fixed age a. Here, we associate
success with the outcome of being alive at the fixed age a. The sample space is «S = {0, 1},
and the probabilities associated with each outcome are /?o = Pr{X =0} = 1 — p and
p\ — Pr{X = !} = /?, where p = Prjsuccess}. For the above cell death model, p = p(a),
given by (5.13), describes the probability of being alive (success) at age a. A simpler
example is given by the outcome from flipping a coin, which yields X = 0 (tails) or X = 1
(heads). Here, X is distributed as a Bernoulli random variable and, if the coin is fair,
p = 0.5.

We now consider the case where there are many identical cells or, alternatively, many
coin flips. The sum of m independent identically distributed Bernoulli random variables is
a binomial random variable. The probability of n successes in m trials is

For example, the probability of seven heads in ten coin flips is/?7 = Bin(7; 10,0.5) = 0.117.
Note that the binomial theorem ensures that the probabilities sum to 1:

If we consider a population of m independent, identical cells, and denote

then we can count the number of cells alive at age a as

At any fixed age a, Y(a) is the sum of m independent, identical cells. Hence Y(a) is a
stochastic process described by a binomial random variable, with pn = Bin(«; m, p(a))
and p(a) as given in (5.13).

If each trial is an independent identically distributed Bernoulli random variable, then
the probability of the kth success occurring on the nth trial is governed by the negative
binomial distribution

successes on the first n — 1 trials} • Prfsuccess}
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For example, the probability of the seventh head occurring on the tenth coin flip is pi =
NB(7; 10,0.5) = 0.082. Returning to the example of cell death, the probability of finding
the fcth living cell on the nth cell checked is p,, = NB(n; k, p(a}}.

5.3.3 Descriptive Statistics

When we use stochastic processes to describe the uncertain behavior of biological models,
it is convenient to have summary statistics to describe the qualitative features. The most
commonly used measures are the mean, which describes average values, and the variance,
which describes variability about the mean.

Given a random variable X , whose sample space is the natural numbers and whose
probabilities are pn = Pr{X = «}, n = 0, 1, 2 , . . . , and any real-valued function of X,
denoted by tj>, the expected value of <j>(X) is

For some functions </>, the sum will not converge. When this is true, we say that E((f>(X))
does not exist.

We note that expectation is a linear operator, so that for any functions </> and 1/r, the
expectation of a linear combination of <p and \// is the linear combination of the expectations:
E(a(j>(X) + b\ff(X)) = aE((f)(X)) + bE(^(X)} for all real numbers a and b.

When </> = Xm, the ntth moment Mm is

The first moment M\ is also referred to as the expected value ofX, E(X), or mean ofX, fi.
The variance is the expected value of the squared deviations about the mean,

Using the linear operator property of expectation, we note that the variance can be rewritten
as var(X) = a2 = E(X2 - 2^X + ^2) = E(X2) - 2^E(X) + ̂  = M2 - M\. This is
sometimes referred to as the computational form of the variance.

While the variance gives a measure of squared deviations about the mean, we may be
interested in a measure for the typical spread about the mean. This is the standard deviation,
a = Vcr2. The coefficient of variation, a scaled measure of the spread, is c.v.= a/fjt.

We now consider some examples taken from the distributions discussed in earlier
sections. The first and second moments of a Bernoulli random variable are both given by
p, and hence the variance is M2 — M\ = p — p2 = p(l — /?), which is highest for values
of p intermediate between 0 and 1.
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To calculate the mean of the binomial distribution, we must evaluate

A similar calculation gives

Hence the variance is a2 = M2 - M\ = E(X(X - 1)) + M{ - M\ = mp(\ - p).
Note that the mean and variance of the binomial distribution are simply m times

the mean and variance for the Bernoulli distribution. In general, if Y = ]T]X,-, then
E(Y) - £E(X/), and if the X/'s are independent (E(XiXj) = E(Xi)E(Xj))1 then
var(F) = J] var(X/). The proof of this is left as an exercise (Exercise 5.8.3).

The expected values for continuous random variables are defined in an analogous
way to those for discrete random variables. Given a random variable X, whose sample
space is the nonnegative real numbers and whose probability density function is f ( x ) , the
expectation of <j>(X) is

providing it exists. As with the previous discussion of discrete random variables, the mean
and variance can be calculated from the moments of X.

In our cell death example, we may be interested in the mean and variance in the age
of death A for a cell where A is exponentially distributed. Here, integration by parts yields

and hence A has a mean of /JL l and the computational formula for the variance yields
var(A) = M2 -M\- M~2.

5.3.4 The Generating Function

One of the workhorses in stochastic processes is the generating function. Given any discrete
random variable Y that assumes values in the natural numbers n with probability /?„, the
generating function is defined as
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Formally, we may write

to denote the generating function. Note that the power series in (5.28) converges for all
0 < s < 1 and is an increasing function of s, with g(0) = /?0, g(l) = 1, and hence
P o < g ( s ) < 1.

All the information about the random variable Y is contained within its generating
function g(s). To observe this, note that Taylor's theorem permits us to expand a function in
terms of its derivatives at zero. Thus, by calculating derivatives, we regain the probabilities
pn associated with the random variable as follows:

The generating function allows us to compute the mean as

The variance takes only slightly more effort. We can write

yielding

In other words, the generating function allows us to compute all the probabilities and statis-
tics we need in a straightforward way. As we will show in several cases, it may be easier
to compute the generating function g(s) for a discrete random variable than to compute the
values of pn directly.

By way of example, we consider the Bernoulli random variable of Section 5.3.2.
Recall that the random variable Y has only two possible outcomes: 0 with probability I — p,
and 1 with probability p. The generating function is simply g(s) = ( ! — / ? ) + sp. The
derivatives, evaluated at s = 1, are g'(l) = p and £"(1) = 0. Hence formula (5.31) yields
the mean for the Bernoulli random variable as /?, and formula (5.33) yields the variance as
p([ — p). These formulae were derived, using different methods, in Section 5.3.3.

Just as we earlier calculated the variance for a sum of independent random variables,
we can also calculate the generating function for a sum of independent random variables.
Whereas the variances add, the generating functions multiply. Specifically, if X and Y are
independent random variables with probability mass functions gn and hn, and generating
functions g(s) and h(s), respectively, then X + Y has generating function g(s)h(s). To
show this, we first observe that
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Hence the generating function for X + Y is

Note that the calculation is made possible by the careful switching of the limits for the
double sum after the first "equals" sign of the above line. You may want to check this to
make sure you agree with it. This result can be extended in a straightforward way to the
sum of m random variables. The generating function for the sum is the m-fold product of
the individual generating functions. We use this result when analyzing branching processes
in Section 5.5.

We now extend the previous example of using generating functions to calculate the
mean and variance of a Bernoulli random variable. Recall that the sum of m independent
Bernoulli random variables is the binomial random variable Bin(n; m, p) (equation (5.16)).
Hence the generating function for Bin(« ; m , p) is simply the m-fold product of the Bernoulli
random variable generating function, (! — /? + s/?), with itself, g(s) = ( ! — / ? + sp)m. This
generating function g(s) has derivatives g ' ( l ) = mp and g"(l) = m(m — i)p2, and so
formulae (5.31) and (5.33) yield mp and mp(l — p) for the mean and variance, respectively.
These formulae were derived, using different methods, in Section 5.3.3.

In the remainder of the chapter, we apply the methods from this section to develop and
analyze a series of stochastic models. We motivate each model with a biological problem,
but the mathematical tools that are brought to bear on the problem have general application
to the analysis of stochastic processes.

5.4 Diffusion Processes
Most living organisms move in space. Given that we have some information about how an
organism moves over short time scales, can we determine where it is likely to be over long
time scales? If movement rules are simple, mathematical models can be used to translate
the movement rules into equations. As we will show in this section, analysis of the resulting
equations yields a probability density function that can be used to track the changing location
of the animal over time.

We consider an individual executing a random walk in one-dimensional space. At
each time step, the individual jumps to either the right or the left, and its new position is
determined by its current position plus a random increment to the left or right. This is another
example of a Markov process, because the current location plus the random increment is
sufficient to determine the next position. The precise path taken to get to the current location
plays no role in determining future positions.

In the next section, we calculate the probability mass function for the location of the
individual after a given number of time steps. We show that, after a sufficiently large number
of time steps, the probability mass function can be approximated by a Gaussian probability
density function.



5.4. Diffusion Processes 133

time step 1 2 3 4 5 6 7 8 9 10
L R L R L L L L R L

11 12 13 14 15 16 17 18 19 20
R L R L L L R L L L

Figure 5.3. Jumps to the left and right, for 20 time steps, are generated by flipping
a fair coin 20 times.

5.4.1 Random Motion in One Dimension

Suppose an individual, released at x =0, moves back and forth randomly along a line in
fixed steps X = AJE at fixed time intervals r = A/, and that this movement is unbiased
(equal probability of moving right and left). After k time steps (time = fcr), the individual
is anywhere from jc = — fcA, to x = kX.

We describe the stochastic process with pn(k), the probability the individual reaches
n space steps to the right (x = «A.) after k time steps (t = kr). Suppose that to reach nX,
the individual has moved a steps to the right and b steps to the left.

implying that k + n = 2a is even. Thus k odd implies n odd, and k even implies « even.
After n time steps, only every other point ("evens" or "odds") can be occupied.

For example, consider the case where, after k = 20 time steps, the jumps to the left
L and right R are given by the sequence shown in Figure 5.3. These were generated by
flipping a fair coin 20 times, and writing R for heads and L for tails. Here, a = 6, b =
14, k = 20, n = -8.

Other orderings of a = 6 jumps to the right and b — 14 jumps to the left in the k = 20
time steps would describe other paths that would still lead to location n = — 8 after k = 20
time steps. The number of possible ways to insert a = 6 R"s into a sequence of length 20
is given by the following combinatorial expression:

In general, the number of possible paths that an individual can take to reach x = nX. in k
time steps (time = fcr) is given by

with (*) being the number of possible combinations of a moves to the right in k time steps
(and a = ̂ ). The expression (*) is referred to as the binomial coefficient. It features in
both the binomial distribution, (5.16), and the binomial expansion
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The total number of possible fc-step paths is 2k, so

This is a binomial distribution, (5.16), where the probability of success is \. Note that for
n + k even,

where we used the facts that n = —k implies a = 0 and n = k implies a = k.
Providing k is sufficiently large (i.e., a sufficiently large number of time steps have

taken place), the binomial distribution can be approximated with a normal (Gaussian) dis-
tribution with variance k [3],

We can translate this result in terms of continuous time and space by recalling that
n = ^ and k = £. What happens when A, r —»• 0, but x — nX and t — kr are finite? The
relevant quantity is

if we assume

This assumption implies that individuals move very quickly (X/T —> oo), but switch direc-
tion very frequently (r —» 0). This limit is often referred to as the parabolic limit because,
as we will see below, it can be connected to the parabolic diffusion PDE. Since the speeds
and times can be scaled by changing the units used to measure them, we can say, equiva-
lently, that the parabolic limit is valid when we are describing movement over small spatial
scales ("small" units for space) and large time scales ("large" units for time), relative to the
characteristic space and time steps taken by the individual.

Note that (5.36) is the fundamental solution of the diffusion equation as shown in
Section 4.3.2. The coefficient D is called the diffusion coefficient.It has dimensions
Iength2/time and measures how efficiently individuals disperse from high to low density.
For example, hemoglobin in blood has diffusion coefficient D % 10~7 cm2/sec, whereas
oxygen in blood has diffusion coefficient D % 10"5 cm2/sec.

In the next section, we consider the limiting case of small time and space steps and
large velocity. In this case, the probability density function, describing the location of the
individual, satisfies a parabolic PDE called the diffusion equation.
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Figure 5.4. Movement on the lattice giving rise to the diffusion equation. Here an
individual arriving at x can come from locations x — A* and x 4- AJC, where AJC = X in
equation (5.38).

5.4.2 Diffusion Equation

An alternate approach to the random walk derives the diffusion PDE for a probability density
function describing the location of the individual directly from a master equation. Let X ( t )
be a stochastic process describing the location of an individual at time t, which is released
at location jc = 0 at time = 0 (X (0) = 0). We define a time-dependent probability density
function p(x, t) and small space interval X, such that p(x, /)X = probability an individual
released at jt = 0 and time = 0 is between jc and Jt + X at time t.

Assume the random walk is unbiased. The master equation which describes movement
on the lattice of points situated a distance X apart is

(see Figure 5.4).
Expanding in Taylor series gives

where h.o.t. indicates higher-order terms in the Taylor series. The above equation can be
simplified to yield

Taking the limit as A., T —» 0 so that ^—> D yields the diffusion equation
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The solution to (5.39), corresponding to the point release of an individual, is a Gaussian
centered about zero, with variance 2Dt:

as we found in (5.36), and also earlier in (4.16). This solution can be verified by substitution
and by noting that as t -» 0, p(x, t) —> 8(x) (see Exercise 4.5.2). Because (5.40) is an even
function, the first moment MI = E(X) is equal to zero (see (5.26)), and hence the variance
is the second moment. We can derive a differential equation for the second moment,

by using (5.39) and integrating by parts,

Solving this differential equation subject to the initial condition A/2(0) = 0 gives

which implies that the second moment MI grows linearly with time at rate 2D. This linear
growth in the second moment describes increasing uncertainty as to the location of the
individual as time progresses (see Figure 4.6).

5.5 Branching Processes

A branching process is a stochastic process that describes a reproducing population. The
random variable is the number of individuals in each generation, where it is assumed that the
behavior of the younger generation is (stochastically) independent from the older generation.
The simplest and most important example of a branching process is the Gallon-Watson
process, which is discussed in Section 5.5.1; an application to a polymerase chain reaction
is given in Section 5.5.2.

5.5.1 Galton-Watson Process

Reverend H.W. Watson and Francis Gallon [ 159] were interested in the extinction of family
names. In an age where family name inherilance was restricted to males, it was possible thai
a run of "bad luck" would resull in a family name going extinct even if, on average, a man
were to have more than one son. Watson and Gallon supposed lhal PQ, pi, P2, • • • were Ihe
probabilities that a man has 0, 1,2,. . . sons, and determined the probability lhal Ihe direcl
male line (i.e., family name arising from lhal original man) was exlincl after r generalions.
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Figure 5.5. TTze Gallon—Watson process.

More generally, they determined the probability associated with any specified number of
direct male descendants in a given generation. Whereas rules for inheritance of family
names have changed since the times of Gallon and Watson, the mathematics behind the
calculations remains relevant today and can be applied to a variety of interesting stochastic
problems.

The Gallon-Watson process is a Markov process in discrete time. Here, Yt denotes the
number of parents at time step t, t — 0, 1, 2, Initially, there is a single parent (y0 = 1),
who has a random number of offspring X with Pr(X = n} = pn. After a single generation,
Y\ = X. In the next generation, each of the Y\ offspring becomes a parent and has a random
number of offspring, and so on (Figure 5.5). Here the conditional distribution of Yt+i, given
that Yt = m, is the sum of m independent variables, each with the same distribution as X .
This is referred to as a branching process. An excellent discussion of branching processes
is given in [102], and we follow the approach given there.

Our investigation into Watson and Gallon's question starts by calculating the change
in the generating funclion for Ihe number of parenls, Y,, from one lime slep lo Ihe next By
knowing Ihe original number of parenls, F0, and by Iracking the change in generalion from
lime slep lo lime slep, we can calculate Ihe generaling funclion for Ihe number of parenls al
every lime slep. As discussed in Section 5.3.4 and shown in (5.30), the generaling funclion
will Ihen give us Ihe probability mass funclion for Ihe number of parenls in each lime slep.
If we are inleresled in Ihe likelihood of exlinclion of Ihe family name by generalion ?, Ihen
Ihis can be calculated as Ihe probability mass associated wilh Yt = 0.

We suppose lhal Ihe generaling funclion for Ihe number of offspring, X, from a parenl
is given by g(s), and lhal Ihere are Yt identical parenls al lime slep t. For example, if each
parenl had 0, 1, or 2 offspring wilh probability 1/3, Ihen /?o = p\ — Pi = 1/3, pn =0 for
n > 2, and g(s) = 1/3 + s/3 + s2/3.

The parenls in generalion t + 1 are Ihe offspring from generalion t. The number of
offspring arising from each of Ihe Yt parenls in generation t is assumed lo be independenl
from Ihe number of offspring arising from Ihe olher Yt — 1 parenls in generalion t. Hence
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the number of parents in generation t + 1 is given by the sum

where the X, 's are independent, identically distributed random variables, each with gener-
ating function g(s).

We know that the generating function for the sum of m independent, identically
distributed random variables, each with generating function g(s), is simply (g(s))m (see
Section 5.3.4). Therefore, if we knew the number of parents in generation t to be Yt = w,
then the generating function for the number of parents in the next generation would be
(g(s))m-

However, our calculation is complicated by the fact that the number of parents in
generation t, F,, is a random variable. So as to keep track of this random variable, we
denote the probability mass for the random variable Yt as qtm = Pr{F, = m} and the
generating function for Yt as ht(s). Thus the generating function for the number of parents
in generation t + 1 is (g(s))m, conditioned upon the different values that m can attain in
generation /,

where o indicates functional composition.
At t = 0, there is a single parent (F0 = 1) so that HQ(S) = s. Applying (5.43), we

observe that h\(s) = g(s). Continuing to the next generation, we have ti2(s) — g o g(s).
Returning to our above example where each parent has 0, 1, or 2 offspring with probability
1/3, we calculate ho(s)

and so forth. Using either the definition of the generating function (5.28) or equation (5.30),
we can deduce that, after two generations, the probabilities of having 0,1, 2, 3, or 4 parents
are 13/27, 5/27, 6/27, 2/27, and 1/27, respectively. Hence the probability of extinction after
two generations is 13/27.

With each new generation, we iterate with the generating function to obtain

where RQ = g'(l) = £'(}/i),andhence£'(F?) = Rf
Q, so the expectation grows geometrically

with reproduction ratio RQ.

a ?-fold composition of the generating function g(s). While the generating function ht(s)
may not have such a simple form as given in the example above, (5.44) gives us a straightfor-
ward method for calculating ht (s). From this generating function, we can use the methods
of Section 5.3.4 to calculate the probability mass function for the number of parents at each
time step.

The expected number of parents in the rth generation is
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Calculation of the variance from (5.33) by similar methods is a little more involved
and yields

where a2 is the variance of the generating function g(s) (see Exercise 5.8.7). Higher
moments also can be found in a similar manner.

To determine the chance of a lineage going extinct, we can use the cobwebbing method
of Section 2.2. The probability of being extinct in generation t, xt, is x, = ht(Q). Equation
(5.44) tells us that xt satisfies

with initial condition XQ = 0. Recall that RQ = g'(l), and hence there are two generic
behaviors, depending upon whether RQ < 1 (subcritical case; see Figure 5.6, top panel) or
RQ > 1 (supercritical case; see Figure 5.6, bottom panel). In the subcritical case, eventual
extinction is inevitable. In the supercritical case, xt -> x*, the unique root to g(x) = x,
and eventual extinction is possible, but not inevitable.

5.5.2 Polymerase Chain Reaction

Polymerase chain reaction (PCR) is a standard technique of molecular biology in which
a small amount of nucleic acid (DNA or RNA) taken from a probe is multiplied so that
it can be detected. This method is the first step in DNA fingerprinting, preceding the
sequencing of the amplified nucleic acid. However, most investigations are interested not
only in determining the sequencing of the nucleic acid, but also in calculating the amount
of the sequenced strands present in the original probe. Quantitative PCR allows the user to
calculate the starting amounts of the nucleic acid template by analyzing the amount of DNA
produced during each cycle of PCR. The technique relies on the fluorescence of a reporter
molecule that increases as product accumulates with each cycle of amplification.

The strings of nucleic acid encoding the DNA or RNA are incubated with a mixture of
primers and nucleotides. This mixture allows the strings to replicate. String replication is
stochastic, with the amplification factor (probability of doubling, or p^) ranging between 0.6
and 0.8. Each string is assumed to be independent of the others. Hence this can be described
as a Gallon-Watson process with po = 1 — pd, P2 = Pd (given), and pn — 0, n ^0,2.
The generating function associated with the PCR process is g(s) = (1 — pd} -+- p</s2, and
therefore the reproductive ratio is RQ = g'(l) = 2pd-

Using Y, to denote the number of copies of a given strand at time step t, we now
consider the question of estimating the number of strands in the original probe, YQ, given
estimates for the number of strands in two successive probes Yt, and Yt+\ for t large (typically
10 < t < 20). Here, the tilde indicates that we do not know the precise number of strands
Yt and Yt+\, only estimates based on fluorescence levels.

In the Galton-Watson process (above), we assumed a single parent at time t = 0. If
we modify the analysis to allow for YQ parents at time t = 0, the equation for the expected
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Figure 5.6. Sketch of the extinction probability for the subcritical case (top) and
the supercritical case (bottom). Cobwebbing tells us how the probability that the lineage
goes extinct changes with time (equation (5.41)). xt indicates the probability of being extinct
after t generations. The initial condition is XQ = 0. Top: In the subcritical case f/?o < 1),
extinction is certain. Here, cobwebbing shows xt —> 1. Bottom: In the supercritical case
f/?o > H extinction is possible, but not inevitable. Here, cobwebbing shows xt -» jc* / 1.

number of strands after t generations becomes E(Yt) = R^YQ and so RQ = E(Yt+i)/E(Yt).
We define the estimator for the reproductive ratio, RQ, as follows:

Knowing 7?o and t, we find YQ = E(Yt)/RQ. This yields a simple estimator for the original
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number of strands, namely,

Of course, each time the PCR experiment is repeated, this estimator will give slightly
different values for YQ. This is because the Yt values will vary between replicates. It is
possible to analyze the variance of the estimator (5.49) by using simulations and other
methods and to calculate confidence intervals, although we do not pursue this here.

5.6 Linear Birth and Death Process
Populations are subject to two primary types of stochasticity. Environmental stochasticity
refers to variation and uncertainty in the environmental conditions in which a population
finds itself. These conditions include effects of temperature, rainfall, competition from
other species, and so forth. Demographic stochasticity refers to variation and uncertainty
arising from the unpredictable behavior of the individuals that make up a population. It is
relevant when population sizes are small (e.g., fewer than 25). Here, populations with a
positive net growth rate can still go extinct due to a "run of bad luck," where insufficient in-
dividuals reproduce before they die. In this section, we consider how to model demographic
stochasticity in continuous time using a linear birth and death model. Here it is assumed that
individuals act independently from one another, so there are no nonlinear interaction terms
in the equations. We derive formulae for the mean and variance of a population undergoing
stochastic birth/death, and calculate the probability of extinction. We start by considering
a pure birth process in Section 5.6.1 and include death in Section 5.6.2.

5.6.1 Pure Birth Process

To start, we ignore death and consider a pure birth process where individuals give birth at
rate b. In the absence of demographic stochasticity, the underlying model equation would
be

where n(t) is the number of individuals in the population at time t, and no is the number of
individuals at time t = 0. This equation has the solution n(t} = no exp(bt).

We define the underlying stochastic process by

N(t) = number of individuals at time t (random variable),

pn(t) = Pr(N(t) = n}, n = 0,1,2

We assume that the birth event is a Poisson process, namely, that the probability of the event
occurring in a short period of time r is proportional to r, and the probability of two events
occurring during the short period of time is o(r).
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Figure 5.7. Stochastic simulation of the pure birth process given in (5.51). Pa-
rameters are b — 1/3 and no = 10. Fifty different trajectories are given. They differ only
in the seed for the random number generator used.

For one individual, we have

For n individuals, we have

Figure 5.7 shows a stochastic simulation of this process.
To translate this stochastic process into a differential equation, we require a master

equation that relates probabilities at different time steps,

After rearranging, we can write

As r —> 0, we obtain an infinite system of ODEs,
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with initial data, describing «o individuals present at time t = 0, as follows:

It is possible to solve this system exactly (see [102] or Exercise 5.8.9). However, we will
focus on calculating the mean MI and variance a2 = MI — M\ of N(t) (see (5.21) and
(5.23)), by first deriving differential equations for MI and M2 — M\:

Together with the initial condition Mi(0) = nQ, equation (5.54) has the solution

with the same solution as given by the linear deterministic model (5.50).
To find a differential equation for the variance a2 we consider first MI — M\ =

E(X(X - 1)) (5.25) and obtain

Hence ^{M2 — M t} = 2bM2. Using (5.54), this can be rewritten as

Thus, the differential equation for the variance is
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The initial condition (5.53) yields an initial variance of zero, a2(0) = 0. The above equation,
with <r2(0) = 0 and M\(G) = n0, can be solved with an integrating factor to yield

which implies that the variance increases exponentially for large time t. For example, for
the simulation shown in Figure 5.7, the values «o = 10 and b = 1/3 yield a final variance
of cr2(9) = 3833 and standard deviation of a(9) = 61.9 by the final time t - 9.

In the pure birth process, the probability of the population going extinct is zero,
because there is no death included in the model. To include death, we consider a simple
birth and death process in the next section.

5.6.2 Birth and Death Process

In the previous section, we neglected death of individuals, but could derive a simple system
that can be solved explicitly (see Exercise 5.8.9) and whose mean and variance can be
calculated in a straightforward way. Death cannot be ignored in realistic biological models.
When it is included, the model becomes only slightly more complex, but the analysis of the
model becomes considerably more challenging.

When we extend the analysis from the previous section to a population of individuals
that give birth at a rate b and die at a rate J, the transitions for n individuals in a time step
of length i become

and the probability of having more than one birth or death in the time step is o(r). Figure
5.8 shows these transitions diagrammatically, and Figure 5.9 shows a stochastic simulation
of the process.

The master equation for this process is

and the corresponding differential equation is

with initial condition

For the simple birth process, pn (t) depends only upon pn (t) and the preceding pn-\ (t).
In the birth-death process, pn(t) depends not only on pn(t) and /?„_! (t), but also on the as
yet unknown pn+\ (t).
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Figure 5.8. The linear birth-death process can be described by transitions beriveen
the natural numbers. Here, in a small time step r, a population of size n can arise because
of single birth in a population of size n — \, because of single death in a population of size
n +1, or because of no change in the population size. These transitions are shown in (5.57).

Figure 5.9. Stochastic simulation of the birth and death process given in (5.57).
Parameters are b = 1/3, d = 0.3, andn0 = 10. Fifty different trajectories are given. They
differ only in the seed for the random number generator used.

To get around this problem, we solve for all /?„ 's at once using the probability gener-
ating function.
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Here, the original definition of the generating function (5.28) has been extended to allow
for time-dependency so that the function g depends upon t as well as 5. The probability of
extinction at time t can be calculated directly from g:

The formulae for probabilities, mean, and variance follow from (5.30), (5.31), and (5.33):

To calculate g(s, t), we first derive a PDE satisfied by g, as follows:

Thus, the generating function satisfies a first-order PDE,

The solution to this equation can be found using the method of characteristics. While this
is a very useful method for solving first-order PDEs, it is beyond the scope of this book.
Details of the method applied to this equation are given in [102]. The interested reader is
encouraged to look up the solution method from [102]. Alternatively, the solution,

can be verified by substituting directly into (5.64). The case b = d is covered in detail in
[102].
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Substitution of the solution g(s,t) into the formula for the mean yields

as predicted by the deterministic model. The variance is

Growth or decay of the variance over time depends upon the sign of r = b — d: the variance
grows if b > d and decays ifb<d. The variance also scales with the birth and death rates.
It increases with b and d, even if r is held constant.

The probability of extinction is

For example, for the simulation shown in Figure 5.9, values of b = 1/3, d = 3/10, and
n0 = 10 give po(9) = 0.028. Thus, approximately 1 out of the 50 simulations should
have gone extinct by time 9. If we are interested in whether the population eventually goes
extinct, we must consider two cases, namely, b > d (r > 0) and b < d (r < 0). If b > d
(r > 0), then

which implies that the probability of extinction is greater than zero, even though the birth
rate is greater than the death rate. For example, for the simulation shown in Figure 5.9,
the probability of eventual extinction is (d/b)n° = 0.34, so approximately 17 out of the 50
simulations in Figure 5.9 should eventually go extinct. On the other hand, if b < d (r < 0),
then

which implies certain extinction.

5.7 Nonlinear Birth-Death Process

In this section, we develop techniques for dealing with a nonlinear birth-death process.
We already know linear birth-death processes, where individuals act independently of each
other. For many systems in biology, this hypothesis is not completely appropriate: a growing
population eventually reaches the limits of the carrying capacity of the ecosystem (individ-
uals start to compete for resources); an infection cannot grow exponentially (eventually all
susceptibles are infected). If the correlations between individuals are strong, then a linear
model is no longer appropriate and the dependence between the individuals must be taken
into account.

In the following two sections, we model the common cold in households as a nonlinear
birth-death process. Development of the model is given in Section 5.7.1, and analysis of
the model as an embedded discrete-time Markov process is given in Section 5.7.2.
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Table 5.3. Data for the final size distribution (taken from [15]). F/ denotes the
number of households of size N = 5 with i infected members at the end of the epidemic.

Total number of infected members
1
2
3
4
5

Number of households
Fi = 112
F2 = 35
F3=17
F4= 11
F5 = 6

5.7.1 A Model for the Common Cold in Households

As an example, we consider the common cold in households (see [10, 15]). Consider
households with N members and assume that one member catches a cold. At least in
principle, the disease can spread to other members of the household. Data collected from
181 families were reported in [83] (see Table 5.3). Our aim is to use a model to describe
the number of infected individuals in households, given in Table 5.3. Since our "population
dynamics" involves nonlinear interactions between infectives and susceptibles, a linear
birth-death process ("birth" means infection and "death" means recovery) will not suffice.
We have to look into the mechanisms of the spread in more detail.

State of a household: At each point of time, we find a certain number of susceptibles,
infected, and recovered (see Section 3.3.3). We may characterize the state of a household
by (i, r), where / and r denote the number of infected and recovered members, respectively
(see Figure 5.10). The number of susceptibles is N — i — r.

Dynamics: Next, we specify the rates by which the system changes state. As in the
classical SIR model, we assume that the recovery rate per individual is a constant, a. At a
transition from state (/, r) to state (/ — 1, r + 1), one of the / infected individuals recovers.
Hence, the rate of recovery in a household is ioc. Applying the Law of Mass Action, the
rate at which one susceptible individual will become infected is proportional to the number
of infected individuals. Accordingly, the rate for the transition from (/, r) to (/ + 1, r) is
pi(N-i -r).

Model equations: Let />,->r(0 be the probability of finding the system in state (/, r)
at time t. The master equation for p{,-(t) is then

with i = 0, . . . , N and r = 0,..., N — i. By convention, if an index exceeds N or is below
0, formally the corresponding probability is taken to be zero. We start with one infected
and N — I susceptible persons, i.e.,
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Figure 5.10. Possible states and transitions for a household of size N = 5. We
start with one infected person, that is, in state (1,0).

The data in Table 5.3 show the total number of infected individuals during the epidemic
which we refer to as the final size of the epidemic. A good test of our model is to see how
well it reproduces the data shown in Table 5.3. In the next section, we show how to calculate
the distribution of final sizes from (5.65).

5.7.2 Embedded Time-Discrete Markov Process and Final Size
Distribution

In this section, we consider probabilities associated with the system being state (/, r) under
the condition that the epidemic has come to an end. In other words, lim^oo /?,., (0- As
time tends to infinity, all infectives will have moved into the recovered class, so no infected
individuals are present anymore and the total mass of the probability />,-,,. is contained in the
states (0, r), r = 1 , . . . , 5. This means /?,,, = 0 if / ^ 0.

One way to obtain the distribution for t -> oo is to simulate the system of ODEs
(5.65) with a computer program over a long time interval. Faster, and more elegant, is
not to use the differential equations directly. Instead of using time, we count the events.
One event is either "infection" or "recovery" of an individual. An event is a transition
from one state (/, r) to a different state (/', r'). We can use the number of events as a new
"time" variable. Then we obtain a discrete-time dynamical system. This system is called
the embedded discrete-time Markov process or the embedded Markov chain. After a finite
number of iterations, we will end up with a probability distribution that has no mass at all
in states with infected individuals.
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Figure 5.11. We go from state A to state B with rate £, and from state A to state
C with rate £. In which state will we end up?

To develop this embedded discrete-time Markov model, we need the transition proba-
bilities from one state (/, r) into another (/', r') (note that these are probabilities, not rates).
Assume that we are in state (i,r). Which event will take place first? Recovery or infection?

We formulate this problem in a slightly more abstract way (see Figure 5.11). Assume
we are in state A, going to state B with rate £ and to state C with rate £. What is the
probability of moving from state A to state B (Pr(A —> B)) rather than moving from state
A to state C (Pr(A -» C))? Let PA(I), As(0» and pc(t) be the probabilities of being in
state A, fi, and C at time t, given that we are in state A at time t = 0. Then,

The solution to this system of linear equations is

Hence,

We observe that the transition probability from one state to another is the rate of this transition
to occur (£ or £) divided by the sum of all rates of all possible transitions leaving the first
state (£+<) .

With this rule in mind, we come back to our problem and define a discrete Markov
chain. Let /*(,»,(/>') = Pr((/, r) -> (i1, r'}} be the transition probability from state (/, r)
to state (/', r'). As in our example with states A, B, and C, here we also have two possible
paths by which to leave a state (/, r): recovery and infection. Then,
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for i and , and where Similarly,

for i — 1,. . . , TV and r = 0, ... ,N — i. Note that if we are in one of the states (0, r), then
we will not leave them. These states are called absorbing states. Hence,

and P(,»,(i',r') = 0 for all index combinations not mentioned so far. There is only one
parameter, /?0, in these equations, although our original model includes two parameters,
a and ft. The reduction of the number of parameters is possible since the final size of
the epidemic (the total number of individuals infected during the epidemic) is the only
information we need, and hence we can ignore the time course or the disease.

Finally we use the transition probabilities F(/,,).O'.C) to find the probability #,,,(«) that
the system is in state (/, r) after n events,

for i, r = I,..., N. In (5.69), we sum over all possible states (k, /). The system of
equations (5.66)-(5.68) forms a discrete-time model for our household. In Section 8.6, we
will implement this model and compare the model output with the data.

5.8 Exercises for Stochastic Models

Exercise 5.8.1: Forest ecosystem succession. Assume that one starts with a forest com-
prised of beech. Work out UL 112, and 113 for (5.2), with the entries of P as described in
Table 5.2. How many generations does it take before the maximum difference in any com-
ponent of the forest is within 5% of (5.3)1

Exercise 5.8.2: Princeton forest. Use Table 5.2 and show that the eigenvector u* of the
transition matrix P with eigenvalue 1 is given by formula (5.3).

Exercise 5.8.3: Mean and variance for a sum of random variables. Show that if Xj
are random variables and Y = ^T Xj, then E(Y) = £ E(Xj). Show that if the Xj's are
independent

Exercise 5.8.4: Mean and variance for a negative binomial distribution. Derive the
following formulae for the mean and variance of the negative binomial distribution by first
calculating E(X) and

Exercise 5.8.5: Random walk derivation of a diffusion-advection equation. Describe,
by means of a master equation, a random walk with movement to nearest neighbors on a two-
dimensional lattice with spacing X and time steps of size r. Here there is the probability of
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moving to the left L, right R, up U or down V. Assume that L = 0 .25—Xy\, R = 0.25+Xy\,
U = 0.25 + A.j/2. and V = 0.25 — A.}/2 where X denotes the spatial grid size. Derive a
diffusion-advection equation

by taking the appropriate diffusion limit of the random walk. Here c is an advection vector
which you should describe in terms ofy\ and j/2-

Exercise 5.8.6: Spatially varying diffusion model. We study two master equations as
models for diffusion in a spatially varying environment:

(a) For each of the models (5.70) and (5.71), give an interpretation of all terms. In
particular, what is the meaning of a and N?

(b) For each of the above models, use Taylor series expansion and the diffusion limit to
derive an equation for p(x, t). For (5.70) the diffusion limit has the form

where A(x) is a function you should determine. The second problem (5.71) leads to

where B(x) is a function you should determine.

(c) Compare and contrast the assumptions for the two models and the resulting equations
for p(x, t). Show that the difference between the two models can be expressed as an
advection term that appears in one model but not the other.

For further reading on nonhomogeneous spatial models see [9].

Exercise 5.8.7: Variance for a branching process. Show that the variance for the branch-
ing process is as given in (5.46). Hint: First derive the recursion relation

and then use the substitution h"(\) = R®ut to calculate /?"(!) explicitly. Finally, use the
fact that h"(\) = a2 + RQ(RQ — 1) to derive the required result.
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Exercise 5.8.8: The survival of right whales. A female right whale may produce 0, I, or
2 females the following year. A female at time t produces 0 offspring if it dies before t + 1,
1 offspring (itself) if it survives without reproducing, and 2 offspring (itself and its calf) if it
survives and reproduces. Let p be the survival probability and let m be the probability of
producing a female calf. Thus po = 1 — p, P[ = p(l — m), and p2 = pm. In 1980, survival
was estimated at p = 0.99 and the probability of producing a female calf at m = 0.063.
By 1999, these parameters had dropped to p = 0.94 and m — 0.038. Determine the popu-
lation growth rate and the extinction probability for 1980 and 1999. (Exercise taken from
[102] and based on the work o/[38].)

Exercise 5.8.9: An explicit solution for the pure birth process.TTre infinite system of
differential equations (5.52) can be solved, starting with pno and proceeding to pno+i> and
so on:

Use this approach to show that pn (t) is given by the negative binomial distribution, in which
the chance of success in a single trial, exp(-bt), decreases exponentially in time,

for each n > HQ. Calculate the mean and variance of the pure birth process from the mean
and variance of the negative binomial distribution (see Exercise 5.8.3).

Hint: Use the integrating factor method (or variation of constants method) to show
the base case:

Then use induction. Suppose pn is given by (5.72) and show that

satisfies
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Chapter 6

Cellular Automata and
Related Models

In Chapters 2 and 3, we saw models that describe the state of a system in time (e.g., the
number of individuals as a function of time). However, in some applications, space is
important as well. In Chapter 4, we saw how PDEs can be used to describe systems that
depend on both time and space. In this chapter, we consider another way to include spatial
information in a mathematical model, namely, with cellular automata.

6.1 Introduction to Cellular Automata
Cellular automata are models where all variables, both independent and dependent, take
on discrete values. Their main characteristic is locality; that is, individuals or particles are
only affected by their nearest neighbors. Cellular automata are therefore natural models
for infectious diseases, forest fires, or excitable media where the contact between two
individuals is typically of local nature. The dynamics of a cellular automaton is defined by
local rules. In the case of infectious diseases, such a rule could be, "If at least one of my
neighbors is infected, I will become infected myself." In a cellular automaton model, space
is represented by discrete points in space, called "cells." The cells can be seen either as the
locations where individuals live or, sometimes, as the individuals themselves. They can be
interpreted as biological cells, as impoundments on a river with separated fish populations,
as territories of birds, and so on.

Cellular automata and related models are interesting to biologists for several reasons.
First, many structures in biology are discrete, and a natural model to describe such structures
would be a discrete one (for example, DNA sequence data are discrete). Second, rules for
birth, death, or migration can be specified in a straightforward manner. Third, the time
courses and patterns of cellular automata can be interpreted directly in biological terms.

One of the first cellular automaton models was developed around 1952, by John
von Neumann [32], in the context of self-replication. At that time, the question of how a
complex system can create another system of the same complexity (e.g., a copy of itself) was
discussed. The question seems trivial today, since we're familiar with the concept of DNA
replication. But at that time, the idea was revolutionary. Von Neumann investigated his
model by pencil and paper only. This is quite remarkable, since his model had 29 possible
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Figure 6.1. One-dimensional neighborhood.

states of the cells and, in a proof of self-replication, he outlined an initial configuration of
about 200,000 cells.

The first tool to investigate cellular automata generally is to create a simulation. Until
reasonably powerful computers were available, only a few results on cellular automata
were published [166]. Broad exploration of cellular automata started with the availability
of computers and the advent of user-friendly simulation tools.

The study of deterministic discrete systems is now a very active field. The theory is
still developing and less established than the theories for continuous or stochastic systems.
The behavior of discrete spatial systems is very rich and cannot be summarized with general
results. From a theoretical point of view, cellular automata are very general structures. For
example, there are cellular automata capable of universal computation, analogous to Turing
machines [20, 62].

Before we give some specific examples of cellular automata, it helps to properly define
a cellular automaton.

Definition 6.1. A cellular automaton is a tuple A = (G, E, U, /) of a grid G of cells, a set
of elementary states E, a set defining the neighborhood U, and a local rule f.

In classical cellular automata, we have G = Zd, the ^-dimensional square grid.
Instead of grid points, we draw cells which can be colored to indicate the state of the cells.
We will extend this definition later to more general graphs. In an infectious disease model,
"white" could indicate a susceptible and "black" an infectious individual. The possible states
of each cell is an element of the set of elementary states E = {white, black}. Likewise, we
could use E = (0, 1}. In one dimension (d — 1), a cell is often influenced by adjacent cells
only. If we denote the cell at position i with jc,, then an example of a simple neighborhood
would be U(X{) = {jc,-i, xi, *i+i} as shown in Figure 6.1. In two dimensions (d = 2), the
most common neighborhoods are the von Neumann and the Moore neighborhoods. Let x,j
be the position of a cell. The von Neumann neighborhood (Figure 6.2, left) is described by
U(Xi) = {x\\\Xj — x\\i < 1}. The Moore neighborhood (Figure 6.2, right) is described by
U(Xj) = {x\\\Xj — jell,*, < 1}. Note that the use of a von Neumann or Moore neighborhood
is not consistent throughout the literature. Sometimes the center cell jt/j is included in the
neighborhood; sometimes only the surrounding cells are taken.

So far, we have a grid of cells with several possible elementary states and a neigh-
borhood. The collection of all states of the cells of the grid is called the state of the grid.
Mathematically, we define the state of the grid as a map z '• G H* E, which gives each grid
cell an elementary state.

The local rule, /, describes what happens from one time step to the next. Let z be
the state of the grid. Then z(x) is the state of cell x and z\u(X) is me occupation of the
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Figure 6.2. Illustration of the von Neumann neighborhood (left) and the Moore
neighborhood (right).

neighborhood of cell x. The new state of cell x depends only on the states of its neighbor
cells,

where the superscripts t and t + 1 denote the time steps. The local rule is applied to all
cells in parallel, that is, synchronously, and is usually implemented in mapping two arrays
alternating on each other. One of the arrays holds the current state at time t, while the other
array holds the updated state at time t 4- 1.

6.1.1 Wolfram's Classification

Let us look at a class of cellular automata with A = (Z, {0, 1}, {x(-i, x/, xi+i}, /), that
is, the one-dimensional nearest-neighbor automata with states zero and one. There are
2* = 8 possible occupations of the neighborhood. The local function can map to each
possible neighborhood configuration to zero or one, which gives us 28 = 256 different
local functions, that is, 256 different automata. If we look at their dynamics, we will find
quite different patterns. Wolfram [164] heuristically proposed four qualitative classes to
characterize cellular automata:

Wolfram class I: From any initial configuration we get a fixed point; that is, the pattern
becomes constant.

Wolfram class II: Simple stationary or periodic structures evolve. Small changes in the
initial configuration affect only a finite number of cells.

Wolfram class III: "Chaotic" patterns emerge. Changes in the initial configuration affect
a number of cells linearly growing in time.

Wolfram class IV: Complex localized patterns evolve with long-distance correlations. The
effect of changes in the initial configuration cannot be predicted.

To identify each of the 256 local functions, Wolfram has constructed a simple system,
known as Wolfram's enumeration: First, we order the eight possible neighborhood occupa-
tions UQ = 000, U[ = 001, U2 — 010,..., U7 = 111, enumerated like three-digit binary
numbers from 0 to 7. For a given local rule /, let c, = /((/,) be the next state of cell x
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Table 6.1. Examples of Wolfram's enumeration.

/
Ut
2'

Rule 254, c/

Rule 50, a

Rule 90, a

0
000

1

0

0

0

1
001

2

1

1

1

2
010
4

1

0

0

3
Oil
8

1

0

1

4
100
16

1

1

1

5
101
32

1

1

0

6
110
64

1

0

1

7
111
128

1

0

0

£c/2'' =254

£c/2'=50

Ec/2/ =9°

Figure 6.3. Space-time patterns of the one-dimensional nearest-neighbor au-
tomata that correspond to the rules 254, 50, and 90 (from left to right). The first row in
each square shows the initial configuration, which is the same for all three simulations.
The following rows show successive iterates. White indicates z(x) — 1 and black indicates
z(x) = 0. The boundary cells are kept constant 0 (white).

with neighborhood f/,-, for i — 1, . . . , 7. Then the number of this local rule is XlLo(c'2')>
as shown in Table 6.1. Let us discuss the rules with the numbers 254, 50, and 90.

Rule 254: Consider a simple infection automaton where a cell becomes infected if
one of its neighbors is infected. The local function / for this situation is

where s = jt,-_i + ** + jc,+i is the number of infectious neighbors of cell x = Xj. As shown
in Table 6.1, the number of this rule is 2+4+8+16+32+64+128 = 254. The dynamical
behavior of rule 254 is quite easily understood. If we start with a random configuration of
ones and zeros, we reach a state where all cells are in state one. This means that all cells
become infected, as shown in Figure 6.3 (left). If we start with all cells zero, then all cells
will stay zero forever. In both cases, a stationary pattern is reached. Therefore, rule 254 is
an example of an automaton from Wolfram class I.
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Rule 50: Another simple infection model is rule 50. A cell becomes infected if one
of its neighbors is infected, but infectious cells recover after one time step. Thus,

Starting from a random configuration, we get a pattern where every cell periodically changes
from zero to one and back (Figure 6.3, middle). Therefore, rule 50 is an example which
belongs to Wolfram class II.

Rule 90: For an example of Wolfram class III, consider rule 90. It maps 000, 010,
101, and 111 to zero, and 001, Oil, 100, and 110 to one. The patterns evolving have been
described as "fractal-like" or chaotic (Figure 6.3, right).

There are no one-dimensional nearest-neighbor automata with class IV behavior, but
we will come back to this later.

6.1.2 The Game of Life

In this section, we discuss one of the most popular cellular automata: the Game of Life,
proposed by Conway (see [133]). It is a two-dimensional cellular automaton, in which
each cell is either dead or alive. A living cell stays alive if it has two or three living
neighbors; otherwise it dies. A dead cell becomes alive if exactly three neighbors are living.
Biologically, these simple rules mimic a birth process where cells may die by isolation or
overcrowding. More formally, we have A = (Z2, {0, 1}, Moore neighborhood without the
cell itself, /) with the local function

where s is the number of living neighbors

From these simple rules, an astonishing behavior emerges. If we start with a random
configuration of dead and living cells in a rectangular area of the grid, the pattern often
becomes 2-periodic (but it may take some time). Groups of three living cells alternating
in shape or stationary 4-blocks often appear (see Figure 6.4). However, configurations
exist with a much more interesting behavior (these often have visual names like "ship" or
"beehive"). Simple configurations can expand and resemble fireworks before they collapse
again. The rich patterns can hardly be described here but should be viewed like a movie.
Numerous simulation tools for the Game of Life are available, and readers are invited to
experiment on their own. We conclude with a summary of observations that are interesting
from a more theoretical point of view:

• The evolution of most initial configurations cannot be predicted. Small changes in
the initial configuration may lead to totally different patterns.

• There are patterns with different, sometimes large, periods. For example, a configu-
ration known as "queen bee" has period 30.
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Figure 6.4. Two-dimensional spatial patterns ofConway's Game of Life. Initial
configuration (on the left) and after 1300 iterations (on the right). The boundary cells are
kept constant 0 (white).

• A configuration named "glider" travels diagonally across the grid. There is also the
"glider gun" which generates a stream of gliders. It is an example of an unbounded
pattern which expands forever, developing from an initial configuration with finite
support.

• It has been shown that the Game of Life is computationally universal; that is, ev-
erything which is computable can be computed with the Game of Life [133], which
indicates that this cellular automaton is very complex.

• Given the rich behavior of the Game of Life it is plausible that it is an example of
Wolfram class IV.

6.1.3 Some Theoretical Results on Cellular Automata

After these two examples of cellular automata, the question of analytic results for cellular
automata arises. Wolfram's classification is mainly phenomenological. An example of a
theoretical result is the algorithm of how to construct, for every (finite) automaton A with
arbitrary neighborhood, another automaton A simulating it with a von Neumann neighbor-
hood. Usually, if we simplify the neighborhood, we have to "pay" with a larger number
of elementary states; that is, we usually will have \E\ <$C \E\. Similarly, if we construct an
automaton A with only the elementary states {0, 1}, we usually have to use a much larger
neighborhood U with \U\ » \U\. This sounds useful in deriving the dynamics of a new
automaton to find an analogous known automaton. However, an equivalent automaton with
a basic neighborhood may have a very complicated, nonintuitive local function that is not
well investigated.

As we mentioned, cellular automata are a developing field. Massive simulations
are used to characterize automata models by tools from statistical physics, for example.
Theoretical results for numerous classes of automata have also been obtained by using a wide
variety of methods. In the following sections we discuss Greenberg-Hastings automata.
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6.2 Greenberg-Hastings Automata

We follow [71] and investigate the Greenberg-Hastings automata, which have been formu-
lated as models for excitable media such as the cardiac muscle, cultures of Dictyostelium
discoideum, forest fires, or infectious diseases. For an infectious disease, each cell of the
automaton represents an individual or the territory an individual lives in. Individuals are
classified by their epidemiological state. They are either susceptible, infectious, or immune.
An important assumption is that infection can only happen by direct contact between indi-
viduals, and only neighboring cells have contact. An infectious disease can then be modeled
by the following rules:

• If a susceptible cell has at least one infectious neighbor, it becomes infectious itself;
otherwise it stays susceptible.

• An infected cell stays infectious for a > 0 time steps; then it becomes immune.

• An immune cell stays immune for g > 0 time steps and then becomes susceptible
again.

These rules can be used to model infection with different infectious or recovery peri-
ods. Let the set of elementary states be E — {0, 1,. . . , a, a + 1, . . . , a + g} = {0,..., e\.
Then an infection is described by the transitions

More formally the local function of the Greenberg-Hastings automata reads

where 5 is the number of infectious cells in the neighborhood of x. Finally, we choose
G = Z2 and the von Neumann neighborhood.

The above rule (6.1) implies that either a cell stays susceptible or it moves through
the infection-recovery cycle to finally become susceptible again.

As in [71], let us concentrate on the case a, g > 1, with a + g > 3 and 1 < a < e/2\
that is, we have at least the same number of immune as infectious stages. Possible choices
for e < 6 are shown in Table 6.2. Starting with a configuration with a finite number of

Table 6.2. Greenberg-Hastings automata for e < 6.

e
3
4
5
6

a = infectious stages
1
lor 2
lor 2
1,2, or 3

g = immune stages
2
3 or 2
4 or 3
5, 4, or 3
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Figure 6.5. Distance and signed distance between states.

infected cells (finite support), there are two possibilities. Either the epidemic "dies out"
(i.e., in any finite region of the grid all cells will be in state zero in finite time), or the pattern
persists (i.e., there is at least one cell which becomes infected again and again). Greenberg,
Greene, and Hastings [71] found a condition which allowed them to predict the fate of initial
configurations. To investigate this prediction in some detail, we define the distance between
states in E.

Definition 6.2.

(a) The distance between two states m, n € E of cells is defined as

(b) We identify every state k € E with the point exp(2nk/(e + 1)) on the unit circle in
the complex plane. The signed distance between two states m,n € E is

In Figure 6.5, we illustrate how states can be located on the unit circle (mathematically
speaking, how we calculate distances between states modulo e + 1).

We see that the distance is the shorter arc between two states, therefore d(m, n) =
d(n,m). The above rule (6.1) implies that a cell can only advance by 1 state per unit of
time, which implies 0 < d(z(xY, z(x)t+l) < 1. The signed distance includes information
on the orientation of the arc, so we have cr(m, n) = —o(n, m}.

The following definition focuses on the topological structure of cells.

Definition 6.3. A cycle is an ordered n-tuple (x\,..., xn, Jt,,+i) such that X [ , . . . ,xn are
distinguished, xn+\ = xi, and xi+\ is a neighbor ofxjfor / = !,...,«.

Thus, a cycle is an ordered set of cells such that two successive cells are neighbors
and the last and the first cells of the cycle are the same ones. To combine information on
arrangement and states of the cells, we introduce the following definition.
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Figure 6.6. Cycle with four different cells (n = 4). Let a — 1, g = 2, so that
e = 3. Then both configurations show continuous cycles. The cycle in the middle has
winding number zero; the one on the right has winding number one.

Definition 6.4.

(a) A cycle C is called continuous at time t ifd(z(x/y, z(jt,+i)f) < a for ! < / < « .

(b) The winding number W,(C) of a continuous cycle at time t is defined as

Figure 6.6 gives an example of a small cycle with four different cells (n — 4, a = 1,
g = 2, e = 3). In both configurations, the four cells constitute a continuous cycle, one with
winding number zero and the other with winding number one. We see that from these two
initial configurations, different patterns develop (Figure 6.7). To achieve persistence, we
basically have to ensure that susceptible cells of a cycle will be infected again. Only a cycle
with nonzero winding number ensures persistence.

Now we can formulate the theorem for persistence.

Theorem 6.5 (Greenberg, Greene, and Hastings [71]). Given a Greenberg-Hastings
automaton with a + g > 3 and 1 < a < e/2 and a, g > I, a configuration with finite
support is persistent if and only if there is a time t' > 0 where we find a continuous cycle C
such that \Vt'(C) ^0.

In the theorem, the "if and only if" phrase suggests that we can determine the fate of
any configuration, whether it will persist or it will die out. Unfortunately, this is not true.
If we find a continuous cycle with winding number unequal to zero, then the configuration
will persist. But even if there is no such cycle, as in the third example in Figure 6.7, it
can happen that such a cycle evolves later. Therefore, we have only a sufficient, but not a
necessary, condition for persistence if only the initial configuration is checked (/' = 0). A
proof of Theorem 6.5 can be found in [71].

To obtain persistence for finitely supported initial conditions (only a finite number of
cells is nonzero), it is sufficient to check a finite number of iterations for continuous cycles
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Figure 6.7. Two-dimensional spatial patterns evolving from simple initial config-
urations. Each row represents one simulation and shows the patterns at 0, 13, 14, 15, 16,
and 17 iterations. The cycle with winding number zero from Figure 6.6 (center) is used as
the initial condition for the first row. An epidemic wave travels once across the grid and
then dies out. The cycle with winding number nonzero from Figure 6.6 (right) is used as
initial condition of the center row. It leads to persistence of the epidemic and a periodic-
pattern evolves. The last row shows an example where a continuous cycle with nonzero
winding number evolves and leads to persistence. For these simulations, the boundary cells
were fixed at Q.

with nonzero winding number. An upper bound for the number of iterates that need to be
checked can be computed explicitly [71].

6.2.1 Relation to an SIR Model

It is interesting to consider the connection between Greenberg-Hastings automata and the
ODE model of Kermack-McKendrick [100], namely,

where we use a general incidence function </>(£, /, R). In the classical Kermack-McKendrick
model, a mass action term <}>(S, /, /?) = fiSI is chosen. Further, a is the rate of immuniza-
tion, so 1 /a is the mean time an individual stays in the infectious compartment. Therefore,
I/a corresponds to the number of infectious states a of the Greenberg-Hastings automaton.
Likewise, l/y corresponds to the number of recovery states g.
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How is the incidence function related to the infection rule in the automaton? Here is
the fundamental difference between the Kermack-McKenrick model and the Greenberg-
Hastings automaton. The classical incidence function used in the Kermack-McKendrick
model describes mass action. The individuals are well mixed, and every susceptible has
the same chance to be infected by an infectious individual. Obviously this is not the
case in the Greenberg-Hastings automaton. In this automaton, infectious cells can only
infect neighboring susceptibles. This locality is the generator of the spatial patterns. The
difference in the infection process leads to different time courses (or trajectories) of the two
models. We can, however, approximate each model with the other. In particular, we can
introduce a spatial mixing rule in the Greenberg-Hastings automaton, where the states of
cells are exchanged at random. With increasing mixing rate, the automaton approximates
the differential equation model. On the other hand, various incidence functions have been
proposed for the ODE model to include the effect of local infection [84].

6.3 Generalized Cellular Automata
Classical cellular automata, as discussed so far, provide basic and very interesting mod-
els. However, sometimes they have to be adapted to fit a given biological process. The
Greenberg-Hastings automata, for example, have been modified in the context of ex-
citable media in many ways to get more realistic patterns. All four components of cellular
automata—the grid, the elementary states, the neighborhood, and the local function—can
be modified or generalized. Also, the synchronous updating method can be changed. There
is an overlap between modified cellular automata and models that have been introduced
in biology, physics, and chemistry under various names, such as individual-based models
[72], lattice gas models [61], or interacting particle systems [109]. It is beyond the scope
of this text to discuss which of these models may or may not be called cellular automata,
but instead we introduce the most common modifications with examples.

6.3.1 Automata with Stochastic Rules

Returning to our rule in the Greenberg-Hastings model, namely, "a susceptible cell is in-
fected if at least one of its neighbors is infectious," we note that infection is rare for a
real infectious disease. Most diseases have a weaker level of infectivity, and the chance
of becoming infected grows with the number of infected neighbors. Thus, a more realistic
local rule is "the more infectious neighbors I have, the higher the probability I become in-
fected." Since probabilities are involved, we obtain local functions with stochastic (random)
components. Consider, for example,

where s is the number of infectious neighbors. Let p be the probability that an individual
is infected by one of its neighbors. Then (1 — p)s is the probability that the individual is
not infected in spite of .v infectious neighbors. A good choice for the probability of becoming
infected by s infected neighbors is w(s) = I — (1 — pY•
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Figure 6.8. Two-dimensional spatial patterns of a stochastic automaton evolving
from an initial configuration of a square with nine infectious cells in the center (initial
condition not shown). The infectivity parameter varies from p — 0.5 to p = 1 (in steps of
0.1 from top left to right bottom). Shown are states after 30, 23, 22, 20, 18, or 18 iteration
steps, respectively.

Let us consider a cellular automaton (Z2, {0, 1,2}, von Neumann neighborhood, /)
with 0 = susceptible, 1 = infectious, 2 = immune stage, and

Figure 6.8 shows patterns evolving for different values of the parameter p. With p = 1, that
is, immediate infection, one of the deterministic Greenberg-Hastings automata is recovered.
With this particular initial configuration, the epidemic travels only once across the grid. The
behavior for p < 1 is different. The epidemic is persistent, even for p — 0.9. It is plausible
that the automata with p ^ 1 are more stable models; that is, the patterns produced are
at least qualitatively the same when adding some stochasticity like a stochastic component
in the local function, for example. This implies that models with stochastic components
are the more realistic models. We see in Figure 6.8 also that the epidemic spreads slower
with decreasing p and the epidemic will die out fast for very small p. To investigate the
probability that the epidemic persists up to time t for a given value of p, we would need
tools from stochastic theory, which exceed the scope of this book.
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6.3.2 Grid Modifications

There are various possible modifications to the grid of a cellular automaton. First, when
implementing automata models, often a finite grid G C Zrf is used. This is a serious change
from the theoretical point of view, but in many simulations this has no significant effect.
However, the "border" cells of finite grids have to be considered separately. The border
cells may be set to a fixed state (resembling Dirichlet conditions in PDE models (4.20)).
In this case the resting state 0 is often used. Also common is the use of a torus (periodic
boundary conditions in two dimensions) and periodic boundary condition in one dimension,
where the most left and right cells are identified. Reflection or flow conditions are possible
but are rarely used [ 161 ].

Other variants of the grid often used are motivated by pictures such as Figure 6.7.
The square structure of the grid is reflected in the patterns and results in diamond-shaped
spread. In a realistic model, we expect isotropic spread giving more or less round patterns.
This may be regarded more as a problem of visualization, but isotropic spread has attracted
quite some attention in the literature [141]. One common choice is the use of a hexagonal
grid which has more symmetries. Various other methods have been proposed, such as
introducing much additional structure into the automaton. The most satisfying method to
obtain symmetry-independent spread is the use of random grids. The cells are randomly
placed in the plane for d = 2, for example. In some applications, it may be reasonable to
enforce a certain minimal distance between cells. Of course, the definition of neighborhood
has to be modified for random grids. Reasonable methods are to define all cells within a
certain distance as neighboring cells [141].

Figure 6.9 shows examples of a cellular automaton on two different random grids.
We modified the Greenberg-Hastings automaton with one infectious and one immune stage
(a = 1, g = 1). Neighbors of a cell are defined to be all cells within a certain radius. We
start with nine infectious cells in the center and use the deterministic local function (6.1).

Figure 6.9. Two-dimensional random grids. On the left, cells are placed purely
at random; on the right, cells are placed with minimal distance between the cells. Shown
are states of an epidemic automaton after 20 iterations.

6.3. Generalized Cellular Automata
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We have the same number of cells as for the simulations in Figure 6.7. On a grid where the
cells are placed purely at random (Figure 6.9, left), the epidemic dies out in this particular
example (the radius was chosen such that every cell has, on average, four other neighbors).
But since the variance is large, the probability of reaching a state where no infected cell has
a susceptible neighbor is high. On the grid with minimal distance (Figure 6.9, right), the
epidemic persists. Here, the neighborhood radius around the cells is larger to ensure four
additional neighbors, on average. The smaller variance of the number of neighbors lowers
the probability of the epidemic dying out. We observe a more-or-less circular spread of the
epidemic.

6.3.3 Asynchronous Dynamics

Some classical cellular automata show very interesting patterns like the Wolfram automaton
with rule 90 (Figure 6.3). These are quite decorative but not necessarily realistic models.
Also, in the Greenberg-Hastings example, we have seen that some patterns are sensitive to
small perturbations (Figure 6.8). These issues might be the result of synchronous update.
Synchronous updating is appropriate if we have discrete time steps, for example, when
modeling genetics in nonoverlapping generations. But in many applications, events are not
separated by generations, or by fixed time periods. Think of the spread of an epidemic. If
we consider a very small time unit, then in every time step, at most one event will happen;
that is, only one cell will change its state. This is modeled by asynchronous dynamics, that
is, sequential update of the automaton. It approximates continuous time and is implemented
by working with one array only, where the local rule is applied to one cell after the other.
If we use asynchronous update, however, we have to select an algorithm that determines
which cell is to be updated next. Various methods have been proposed, but many introduce
undesired structure into the automaton.

An easy method is to choose the next cell randomly with uniform probability. More
convenient from the theoretical point of view is the use of exponentially distributed waiting
times, where every cell is assigned its own Poisson process (see Chapter 5). If there is
an event in a cell's process, we evaluate the local function at this cell. The waiting times
between two events are exponentially distributed. This method is implemented by choosing
a waiting time for the next evaluation for every cell according to the exponential distribution.
Once a cell is evaluated, we choose a new waiting time for it. It may happen that a cell is
updated twice before another cell is updated once. This method is computationally costly.
Either we have to search all waiting times for the next cell to be evaluated in every single
step, or we have to maintain the order and merge the new waiting time chosen in every
single step.

For a first example, we again consider the Greenberg-Hastings automaton with A =
(Z2, E = {0, 1, 2}, von Neumann neighborhood, /). As before, we apply the deterministic
rule that "a susceptible cell is infected if at least one of its neighbors is infectious." We use
asynchronous dynamics with exponentially distributed waiting times. Figure 6.10 shows
the states of three runs which differ only in the seed of the random number generator for
drawing the waiting times. In contrast to synchronous dynamics, different runs give different
patterns. From a given state of the automaton, we observe different states depending on
which cell is evaluated first. Note that this automaton with asynchronous update is related to
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Figure 6.10. Two-dimensional spatial patterns of three different runs of an epi-
demic automaton with asynchronous update. We started with nine infectious cells in the
center and show states after 4 x grid-size asynchronous evaluations.

Figure 6.11. Space-time patterns of one-dimensional nearest-neighbor automata
with asynchronous dynamics, using Wolfram rules 254, 50, and 90, respectively. Compare
to Figure 6.3 with synchronous dynamics. The first row of each square shows the initial con-
figuration, which is the same for all three simulations. The following rows show successive
iterates after 1 x grid-size single evaluations. The boundary cells are constant 0.

interacting particle systems for which a well-known theory exists [ 109]. A powerful tool for
analyzing asynchronous cellular automaton are Monte-Carlo methods. Several simulations
of a specific automaton are compared. In the epidemic automaton, for example, the number
of infectious, immune, and susceptible cells would be of interest and an average time course
could be investigated. In our example, the states with asynchronous updating (Figure 6.10)
all look quite similar, at least qualitatively.

For a second example, consider the Wolfram automata from above with asynchronous
dynamics (Figure 6.11). Rule 245 leads to extinction in the synchronous case (Figure 6.3,
left) and also in the asynchronous case (Figure 6.11, left); that is, after a few iterations no
infectious cells are left. Rule 50 showed a 2-periodic pattern under synchronous update
(Figure 6.3, middle). With asynchronous dynamics, the epidemic dies out fast (Figure 6.11,
middle). With rule 90, the density of cells in state 1 (black) is similar for synchronous update
(Figure 6.3, right) and asynchronous update (Figure 6.11, right), but with asynchronous
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dynamics the pattern no longer appears fractal-like as before. This example shows that
asynchronous dynamics can give the same patterns, qualitatively similar patterns, or totally
different patterns. One argument in favor of asynchronous dynamics is that the patterns are
generally less sensitive to small random perturbations. If one obtains highly symmetrical
patterns with a strong structure when using synchronous update, one should check whether
the model is realistic. For example, it should then be tested whether the patterns persist if
a little bit of random perturbation is introduced in the local function.

6.4 Related Models
The modeling of movement is difficult in classical cellular automata. A possibility is to
implement a left-shift rule, for example, where every cell takes the state of its left neighbor
in the next time step. However, this is not what we aim for when we are modeling biological
processes such as the movement of individuals. We will go one step further now, and
discuss Dimer automata [142], which are discrete spatial models which form a different
class of models. Dimer automata are appropriate when we wish to model the movement of
individuals.

Consider a one-dimensional square grid, elementary states zero and one, and a nearest
neighborhood. Our rules are as follows:

1. Choose a cell x at random (with uniform choice).

2. Choose a cell y at random out of the neighborhood of x.

3. Assign new states to both cells x and y.

The above rule acts on a pair of neighboring cells and as such it can be used in any dimension
and with any neighborhood, even on stochastic grids.

To model particle movement, the states of two adjacent cells are switched in one time
step, which can be seen as if we are looking at bonds instead of sites. Since we switch the
states of two cells in a Dimer automaton, we can ensure mass conservation. A possible rule
for modeling movement is 00 H-> 00, 01 i-> 10, 10 t-> 01, 11 H> 11. Please note that 01
means "first cell zero," "second cell one" (the first cell does not necessarily have to be to the
left). Figure 6.12 shows patterns of this automaton. A single cell performs a random walk
on the grid. If we start with more cells in state one, we see independent walks. Usually
not every single step is shown in these plots and the patterns may look quite different with
different internal steps (Figure 6.12, middle and right).

In our final example, we use the Dimer algorithm in a simple model of alignment.
Consider a two-dimensional square grid G e Z2 with Moore neighborhood. We use E =
(0, 1, 2, 3,4}, where 0 represents an empty cell and 1, 2, 3, and 4 represent particles with
orientation up, left, down, and right, respectively. Our rules are as follows:

1. Choose a cell ;c.

2. Choose a neighbor 3? of cell x.

3. If x is occupied and oriented towards y and y is empty, the particle moves from x
to y.

4. If x and y are occupied, then x takes the orientation of y.
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Figure 6.12. Space-time patterns of Dimer automata. On the left: Starting with
one cell in state one. In the middle and on the right: Starting with ten cells in state one.
The first row shows the initial configuration; following rows successive iterates after 1 x
grid-size single evaluations (left and middle), or 0.1 x grid-size (right). Note that the grid
is closed to form a ring.

Figure 6.13. Simple alignment model: Two-dimensional spatial patterns of a
random initial configuration (left) and after 400 x grid-size single steps (right).

Cells are chosen randomly with uniform choice on the grid, and the neighbor is also chosen
with uniform choice within the neighboring cells. A simulation is shown in Figure 6.13. We
observe that after some time, all particles are oriented left-right (or up-down). Particles are
traveling around the torus on "lanes" separated by empty rows (or columns). More realistic
models for alignment or even schooling may also be developed, but this is beyond the scope
of this introduction to cellular automata.

6.5 Further Reading
A common general reference to cellular automata is the classical book of Wolfram [165],
which is a collection of early articles. The recent book on cellular automata by Wolfram [ 166]
has initiated interesting discussions and provides a fine section on the development of the
theory of cellular automata. Toffoli and Margolus [157] and Weimar [161] both provide
a very good introduction to cellular automata with an emphasis on modeling of physical
phenomena. The application of cellular automata to biological pattern formation is presented
in Deutsch and Dormann [49].
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Due to the popularity of the Game of Life, much information can be found on the inter-
net, including nice applets and simulation programs. Information including the construction
of the proof on computational universality can be found in Poundstone's book [133].

For an example of a class of cellular automata which is well studied, consider the
book by Goles and Martinez [70]. They introduce models with E — {0, 1} where a cell
becomes one if the number of neighbors is above a threshold, but stays zero otherwise. Both
synchronous and asynchronous iterations are investigated. In these models, for example, in
neural networks, there is a weight a,-; for each pair of cells that describes the influence of
cell j on cell /. Cellular automata are then a special case with appropriate weights.

A summary of the classical work of people like von Neumann and Moore can be
found in the book edited by Burks [32]. The Garden-of-Eden theorem is presented along
with other results (published before massive simulations were possible).

For a review of cellular automata in biology, consider the article by Ermentrout and
Edelstein-Keshet [53]. Modeling a broad selection of cellular automata with Mathematica
is shown in [64].

In the field of excitable media, nice examples can be found on how cellular automata
have been modified to obtain more realistic patterns. Two references to begin with are [661
and [162].

Several issues ofPhysica D are devoted to applications on cellular automata. Finally,
we refer to the literature on interacting particle systems [109] and individual-based modeling
[72] for related models.

6.6 Exercises for Cellular Automata

Exercise 6.6.1: Wolfram rule 108. Consider the cellular automaton A = (Z, (0, 1},
(Xjt, Xj,Xi+\), /), where f is given by Wolfram rule 108.

(a) Iterate the following initial condition by hand (synchronous update):

To which group of the Wolfram classification does this automaton belong?

(b) Rule 108 can be interpreted as a very simple population dynamics model. Explain.

(c) If starting with an initial condition of randomly placed ones, what will happen?
Describe the state-time patterns.

(d) Let us start with an initial configuration of randomly placed ones with density p. Is
it possible to describe the average density p of ones finally reached? Hint: Estimate
pfor p = 0, p = 1, and p = 0.5.

Exercise 6.6.2: Monotonic automaton. We give an example of another automaton which
is quite well characterized. Investigate the cellular automaton A = (Z2, E — {0, 1}, von
Neumann neighborhood, f), where f is given by
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If the local function is such that for any two occupations of neighborhoods <j> and $ it
follows that

then the automaton is called monotonic.

(a) Randomly place 50 cells on a 10 x 10 grid and iterate synchronously (by hand).
Describe what happens.

(b) If we start with an initial configuration with finite support, then there is a finite set of
cells M CG such that sup(/'(z)) C M for all t = 0, 1, . . . .

Construct a rectangle of ones and show that this cannot expand.

(c) Iterate the shown configuration first with synchronous update,
then collect all states that are reachable with asynchronous it-
eration. What does this example show in terms of dynamical
behavior of synchronous/asynchronous automata?

Exercise 6.6.3: Greenberg-Hastings automata. The Greenberg-Hastings Theorem 6.5
states that persistence is only possible if and only if a continuous cycle with winding number
T^ 0 evolves. Consider the Greenberg-Hastings automaton A = (Z2, E = (0, 1, 2, 3}, von
Neumann neighborhood, /), where f is given by (6. 1 ). Stage 1 is considered infectious and
stages 2 and 3 are immune stages.

(a) Suppose we have an initial configuration where we can select the states of two neigh-
boring cells, all other cells are susceptible. There are 42 = 16 possible combinations
to choose the states for these two cells. Determine which of these initial configura-
tions will persist. In some cases, you may look for a continuous cycle with nonzero
winding number.

(b) Show that there is no continuous cycle in the following configuration:

As shown in Figure 6.7 (bottom row), a persisting pattern evolves from this configu-
ration. Show when a continuous cycle with nonzero winding number emerges.

(c) Try to find an algorithm to construct a continuous cycle with nonzero winding number
for arbitrary numbers of infectious stages a and immune stages g (respecting g > a).

Exercise 6.6.4: Game of Life. The fascination with the Game of Life begins when viewing
it animated on a computer simulation.
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(a) To get a feeling about what happens iterate the following configuration, called
"glider," by hand or on a computer:

(b) lfc=\ cell/iteration is the "speed of light" in the Game of Life universe, at which
speed does the glider travel?

(c) Let two gliders collide. What happens (there are several possibilities)?

Exercise 6.6.5: Boundaries of finite grids. Let us compare different boundary conditions
of finite grids.

(a) How would you realize Dirichlet boundary conditions in a cellular automaton ?

(b) How could a torus be programmed?

(c) Which of the cellular automata you know behave differently with infinite and finite
grids?

(d) Find an automaton that behaves differently with Dirichlet conditions and on a torus.

Exercise 6.6.6: Stochastic epidemic automaton. Consider the simple epidemic automaton
(Z2, E = {0, 1, 2}, von Neumann neighborhood, /) with stochastic local function

A necessary condition for persistence is that each infectious cell must be able to infect
at least one other cell, on average, before it becomes immune again. Think about the critical
probability p* such that the epidemic dies out for p < p* and persists for p > p*. Why is
p = 1/4 certainly too small? Look also for a proper definition of "persists" for stochastic
automata.



Chapter 7

Estimating Parameters

7.1 Introduction

After class, you and your friend are sitting leisurely in a cafe. Lost in thought, your friend
tosses a coin. Heads, tails, tails, heads, heads, ____ Since you have nothing else to do, you
think about how to measure the probability of tails. Stop! You are much too fast. Even if
you ask for something like a probability, it is necessary to set up a model; it will be a purely
statistical model in this case. Implicitly, we assume that every toss takes place in an identical
setting, such that the tosses are considered identical experiments. The second point — which
is rather philosophical and thus should be considered in a cafe — is the impossibility of
talking about things like probabilities, parameters, and so on without a model. Whenever
a scientist describes an experiment, measures parameters, and identifies indices, some sort
of model is used, even if, as in many cases, the model is not explicitly mentioned.

We now formulate the model for our tosses. We assume that there is for every toss
the same probability p for head:

The model is described by a Bernoulli random variable depicting the outcome of each toss
(Section 5.3.2).

In the next step, we determine the parameter p of the model. The only thing we know
is 0 < p < 1. We expect p = 0.5 (which is not true for some Euro coins; some coins are
so asymmetric that they are not used at the coin toss of a soccer game). Assume that we
tossed the coin n times, and found heads k times. Of course, the first idea is to estimate p
by the observation

We call p an estimator of the parameter /?, and it is given as the relative number of heads
among all tosses. How do we justify this estimator? If we choose some number p e [0, 1],
we want to know how suitable this number is as a parameter for our model, given the data.
Hence, we would like to have a quality measure,

/(/7|data),

175
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which is a measure of how well the model with parameter p fits the observed data. The
larger /, the better the model with p fits the data. Given the parameter p, we easily derive
the probability of observing the data from our model,

P (data\p) = P(k times heads in n trials\p)

If the data are typical, the "true" parameter should maximize the probability for these typical
data. Hence we define

/Oldata) = P(data|/?).

From "quality of a parameter value under given data" we move silently to "probability of
the data under given parameter," which is called the likelihood of the parameter. This is
the standard approach of parameter estimation. There is an alternative one, the Bayesian
approach (see section 7.6, "Further Reading").

Now we have our quality measure, and we want to find the best parameter, that is,
the parameter that maximizes this quality measure. You can easily verify that the function
/(/?|data) = P(k times head in n trials)/?) assumes the maximum at p = k/n, and thus
this is the best estimator (see the exercises in Section 7.7).

We will exploit this idea of maximum likelihood estimators and their application
to models in the following sections. To fit a model, there are basically two tasks: (1)
derive a likelihood function (which includes finding an appropriate model) and (2) find the
parameters that maximize the likelihood (mostly numerically). These tasks are covered in
Section 7.2. Section 7.3 uses the likelihood function to compare alternative models. The task
of maximizing a likelihood function can be challenging. Section 7.4 discusses optimization
algroithms that can be used to find the parameters that maximize the likelihood.

7.2 The Likelihood Function
We need to distinguish between deterministic and stochastic models. For stochastic models,
there may be cases where we do not have to incorporate measurement error (e.g., in the
case of the coin); in deterministic models, we almost always expect a measurement error
to occur. Hence, we find three situations: stochastic models without measurement error
(discussed in Section 7.2.1), stochastic models with measurement error (not covered here),
and deterministic models with measurement error (discussed in Section 7.2.2).

7.2.1 Stochastic Models without Measurement Error

Example 7.2.1: Time to Cell Death. Consider the cell death example from Section
5.3.1. There the length of time a for a cell to die is exponentially distributed with probability
mass function f ( a ) = //exp(—/z#), where JJL > 0 is the mortality rate (in units I/time).
Suppose we start our observation with n independent cells, and we observe ages at death
to be a i , . . . , a,,. How can we use these data to estimate /z? One possibility might be to
estimate IJL by the average of the rates a p 1 , . . . , a~l, namely,
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Another possibility would be to first find the average rate a and then use the inverse, that is,

Which is the better estimator, jl i or //2? As we will show, one of these estimators maximizes
the likelihood function.

For a general model that depends on a parameter vector p e E", we define a likelihood
function as follows.

Definition 7.1. Let p e R" be the parameter vector of a given model. The function

that maps a parameter set n € M" to the probability (or, in the case of continuous data,
the probability density) to find given data is called the likelihood. The log-likelihood is the
logarithm of this function,

In order to estimate parameters, we have to assume that the data are typical. Without
this assumption, nothing could be concluded from the data. However, with this assumption,
the data are likely; that is, the probability that the data determined by the model have the
"true" parameter value is large. Hence, a good estimation of the parameter vector p is
the maximum of the function C(n) or, equivalently, the maximum of the function ££(TT)
(because the logarithm In is a monotone increasing function). As a rule, it is much simpler
to maximize ££(JT) than £(jc). For example, one may use the hill-climbing algorithm for
maximization (see Section 7.4 below).

Definition 7.2. A parameter vector n that maximizes C is called a maximum likelihood
estimation of p. The function that maps the data to n is called a maximum likelihood
estimator.

Using Definition 7.1, the likelihood function associated with the cell death problem
from Example 7.2.1 is given by

and the log-likelihood is

Setting the first derivative of CC equal to zero, we have



178 Chapter 7. Estimating Parameters

Table 7.1. Outcome of a typical LD50 test (surviving beetles after 5h of carbon
disulphide exposure). Data from [23, 148].

Concentration
c

1.6907
1.7242
1.7552
1.7842
1.8113
1.8369
1.8610
1.8839

Number of beetles
«/
59
60
62
56
63
59
62
60

Killed beetles
*/
6
13
18
28
52
52
61
60

or equivalently

The second derivative of CC at this point, —«//z2 is negative, hence fa = a ' is the
maximum likelihood estimator for the mortality rate /z.

Example 7.2.2: LD50 Dose for Beetles. We want to describe toxicological properties
of a certain chemical substance. One of the most important measures is the LD50 dose (LD:
Lethal Dose), that is, the amount of substance where on average 50% of beetles die. The
standard experimental setup is to take different dosages of the chemical, apply each dose to
n beetles, and count the number of dead beetles. In Table 7.1, we show an example of the
outcome of an LD50 test from [23, 148].

Let p(c) be the probability of one beetle being killed, given the dose c. We assume a
logistic equation for p(c),

We will see that fixing p = 1 /2 at the concentration ft /a has the advantage that our solution
looks simple. This so-called logit model is not simple to justify but suitable for the given
situation [92]. The model is based on the similarity of individuals. If only a few individuals
respond (i.e., p is small), we expect only a few more individuals to respond if we increase
the dose slightly. If we are in the range of the critical concentration (p(c) ^ 0.5), a small
increase in c should have a larger effect (more dead beetles). A few beetles may be resistant
to the substance, such that we have to go to high concentrations in order to kill all beetles.
Accordingly, the right-hand side of the differential equation is small if p is small or close
to 1, and large if p is 0.5. The solution of the equation reads

If we do experiments with a very large number of beetles, we expect a fraction p (c) to survive
for a dose c. The function p(c) is a deterministic model for the fraction of survivors. This
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fraction depends on the independent variable c and the two-dimensional parameter vector
n = (a, ft)T. We interpret or as a measure of the steepness of the curve p(c} and ft as a
measure for the death rate at zero dose, p(ty = (1 + e@)~l % —ft.

However, since our sample is finite, we expect major stochastic effects. We have
to include a source of variance. Let K(c) be a random variable, representing the number
of killed beetles K(c) in a sample of size n. We assume that K(c) follows a binomial
distribution with parameter p(c) — p(c\ a, ft),

which is another model.
Given the parameter vector n and the concentration c, the likelihood of observing k

dead beetles in a population of n healthy beetles is

If we do experiments with / dosages c\,..., c/, number of animals n i , . . . ,n \ , and number
of survivors k\, ..., &/, we find

As before, the parameter that maximizes the likelihood also maximizes the logarithm of the
likelihood,

For the data from Table 7.1, we find that the maximum is assumed for

The corresponding fit is shown in Figure 7.1. The LD50 dose is the concentration at which
p(c} — 0.5, that is, exp(/? — etc) = 1. Thus,

If we have many data, there is a rule of thumb that yields confidence intervals for the
parameters. Confidence intervals are intervals for the location of the "true" parameter value
with a prescribed probability (usually 0.95 or 0.99).

Definition 73. An interval [TT/O, nup] that covers the true parameter n with probability y,
that is,

is called a confidence interval with probability y (Figure 1.2).
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Figure 7.1. Optimal fit for the LD50 experiment. The data points are £//«/ at
concentration c,, the continuous line the optimal fit for the logit model.

Figure 7.2. Asymptotic confidence interval [TT/O, nup]for y = 0.95.

Such confidence intervals suggest the precision of the estimate. The point estimation,
that is, the value that maximizes the likelihood, contains no such information. The confi-
dence interval is not unique, even if the probability y is fixed. Any interval with the property
that it covers the true parameter with given probability is a confidence interval. Usually,
researchers use the confidence interval that is centered around the maximum likelihood
estimator.

For simple situations, it is possible to obtain an explicit formula for these confidence
intervals. In general, the scientist must use asymptotic results, that is, results that are only
true if the number of data tends to infinity.

The method to obtain a confidence interval with asymptotic methods is explained in
Figure 7.2. First, the maximum likelihood estimation of the parameter is determined, that
is, the parameter set that maximizes the log-likelihood function. This maximum is assumed
at the parameter value ;r, say. Next, the x2 value for the given confidence level y and one
degree of freedom is determined; for example, for y = 0.95 and one degree of freedom,
we find xf,o.95 = 3-84 (Figure 7.3).

Why did we use the /2 distribution? The reason is the universality of the normal
distribution and the fact that, at a local extremum, a function can be approximated by a
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Figure 7.3. When a random variable with a standard normal distribution (zero
mean and variance one) is squared, it has a chi-square distribution with one degree of
freedom. The xjf probability density function is illustrated in this figure. Given a significance
level a = 0.05, the confidence interval y = 1 — or = 0.95 is shown as the area of the gray
region. The rightmost extent of this region is x?o95 = 3.84.

quadratic — and this is precisely the definition of the x2 distribution, which describes the
distribution of the sum of squared, normally distributed random variables (Figure 7.3).
However, the proof comes from asymptotic theory.

Next we determine the values of the log-likelihood function such that

The values TT/O and nup are uniquely determined if the number of data is high enough, and
then [TT/O, 7iup\ is the desired confidence interval for confidence level y.

7.2.2 Deterministic Models

We now consider deterministic models. There is no intrinsic source of stochasticity. With-
out measurement error, we might expect to be able to find model parameters so that our
model perfectly matches the data. However, this is not always the case. We begin this
section by discussing the identifiability of model parameters, and show that parameters
cannot always be identified, even without measurement error. We then discuss how to deal
with measurement errors and how to estimate model parameters. In particular, we explain
the least-squares method, as well as more general methods to obtain the parameters of ODEs.

(a) Identifiability of Parameter

In many cases, parameters cannot be identified, even though we do not have measurement
errors. This may seem surprising, but in practice it is quite common.
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A simple example is given by a population with per capita birth rate b and per capita
death rate d, whose dynamics are given by

where N ( t ) denotes the number of individuals in the population as a function of time. The
solution, N(t) = N(G)e^b~d)t, can be used to determine the intrinsic growth rate r = b — d,
but not both the per capita birth and death rates, b and d.

A more involved example arises in PET (positron emission tomography), taken
from [140]. PET is an imaging technique used for measuring blood flow and metabolism
within body tissues.

A person is injected with a substance (tracer) that is weakly radioactive. This injection
leads to a certain concentration of tracer in the blood that changes over time, that is, can
be described by a function B(t). Since we have control over the injection process, we can
safely assume that the function B(t) is known.

Blood delivers radioactivity to tissues. In particular, radioactivity is transferred be-
tween the blood and tissue via diffusion. That is, some time after tracer injection, tissues
are radioactive. It is this radioactivity that is measured with PET. The PET signal can then
be processed to infer blood flow in the tissue.

The details of measuring blood flow in homogeneous tissues have been worked out
and are now considered routine. Below, we will show that parameter identifiability becomes
an issue when PET measures a signal from a tissue that is not homogeneous, for example,
the brain, which consists of both gray and white matter.

Consider the radioactive signal from tissue in a so-called voxel (a voxel is the smallest
region of the body that can be resolved [163]), and assume that two different types of tissue
are located in this voxel, as shown in Figure 7.4, with relative tissue volumes r and 1 — r,
respectively. The value of r is not known.

If we let the radioactivity in the two tissues be given by C(t) and D(t), respectively,
then we can write down a simple compartmental model for the dynamics of C(t) and D(t),

where kc\ and kD\ denote the transition rates of the tracer from the blood into the tissues,
and kc2 and fc02 denote the transition rates of the tracer from the tissues into the blood. The
time scales of diffusion between blood and tissue may be different for the two tissue types.

The signal we measure is a combination of C(t) and D(t), namely,

Given that we know the signal S(t), our task is to determine r, kci, kcz, &r>i> and kp2, that
is, five parameters.
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Figure 7.4. Model assumption for inhomogeneous tissue. Within one voxel, we
find two tissue types, with relative volumes T and \ — T, respectively.

We now derive a differential equation (of higher order) for S(t) alone. Taking the first
and the second derivatives of S(t) with respect to t, we find

It is possible to write a second-order ODE for S(t) that does not include C(0 and D(t),
namely,

where
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Even if we have perfect knowledge of both S(t) and B(t), the differential equation
for S(t) tells us that we are able to determine only the parameters Oa,..., Od from the data.
However, from these four parameters we cannot infer the five parameters T, kc\, &C2> &t> i»
and km unless additional information is known (see [140] for physiological constraints
that can be specified to render the parameters identifiable from PET signals measured in
the brain). Of course, the reason for this is the fact that we cannot observe the complete
state of the system, that is, C(0 and D(t), but only the combined signal S(t). Too much
information gets lost by combining data.

The field of system theory is concerned with questions about identifiability of param-
eters and observability of states. In simple cases, like the case of linear models above, this
task can basically be reduced to problems of linear algebra and is quite well understood.
For nonlinear models, the problems become more involved [69].

(b) Least-Squares Method

We now consider a time series measurement which constitutes time points t\,...,?„ and
data points X [ , . . . , xn. We assume a model predicts these data via a function / that depends
on time and on a parameter vector p, that is, that jc/ should resemble /(?,; p). We further
assume that there are no problems with the identifiability of the parameter. For example, if
we have an exponential decay process, we expect jc, ^ c exp(—y?/); hence, the parameter
vector is p = (c, y) and f ( t ; p) = ce\p(—y t).

In general we will not observe the exact values, but we expect a measurement error
to occur. Due to the universality of the normal distribution, the canonical assumption is
that the data are normally distributed with expectation JJL = /(/,; p) and some (unknown)
variance a2. Then the data xt are realizations of random variables Xt that are distributed
according to

Furthermore, we assume that the Xj are independent. We often deal with a time series from
a single experiment and the assumption of uncorrelated data points is questionable. In those
cases, we would have to use the tools of time series analysis, a quite advanced theory [30].
However, here we assume that the data are uncorrelated. Then the likelihood for the data
reads

and the log-likelihood becomes

For any given a, maximizing CC is equivalent to minimizing

least-squares error
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Many software packages have least-squares estimators. For an example of how the least-
squares method can be used in Maple, see Section 8.1.3; another example is given for the
cell competition model in Section 10.1. See also Section 7.4. The least-squares error (7.10)
remaining when p is chosen to minimize (7.10) is called the residual sum of squares (RSS).

The background of the usual least-squares error minimization is the assumption of
normally distributed errors with a given, constant variance. If the variance is not constant
but known, that is, Xf ~ N ( f ( t i ; p}, af), we find with a similar argument that we should
minimize the

In this case, we have to weight every term with the inverse of the variance. Data with a small
variance (that are thus more precise) gain a larger influence on the parameter estimation than
terms with a large variance, where the measured data may be far away from the deterministic
value. One way to choose the variance structure a, is to assume that the <r, may depend on
the expectation such that the variance is higher if the expected value is high, and vice versa.
In this case,

where a is a positive proportionality constant,

(c) ODEs

Many biological models are described by ODEs. These models incorporate parameters.
We expect the data to be close to a trajectory and we expect that stochastic effects lead to
deviations from a single trajectory.

Suppose that the biological system is described by the ODE

where p denotes the parameter vector. The solution is denoted by

We have data y{ at time points //, / = 1, . . . , n. Since there are stochastic effects, we usually
assume that y, are realizations of random variables F,,

where e, ~ N(0, a2) denote the error variables, which are independent normally distributed
random variables with constant variance. The model we use is a combination of differential
equation and error structure. We are now in the situation described above. The maximum
likelihood estimator corresponds to a minimization of the least-squares error; that is, we
should minimize
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Table 7.2. Data of the experiment of Pearson, Van Delden, and Iglewski [131];
see text for explanation.

Time [min]
Ratio

0.5
0.5

1
1.2

5
2.5

30
2.7

Example 7.2.3: AHL-Diffusion. Consider the bacterium Pseudonomas aeruginosa,
which is a pathogen in human lungs. The bacteria communicate by excreting certain sub-
stances, so-called AHLs (N-Acyl-L-Homoserinlacton). Each cell produces AHL at a low
rate. If a cell recognizes that the AHL concentration in its environment exceeds a certain
threshold, it changes its behavior. This communication process is called "quorum sens-
ing." A goal of modeling is to understand the quorum sensing process. An introduction to
modeling of quorum sensing can be found in the article of Dockery and Keener [47]. One
aspect of the model is concerned with the question of how the substance diffuses through
the cell walls. Are there active pumps and, if so, how strong are these pumps? In an
experiment, Pearson, Van Delden, and Iglewski [131] added a certain dose of AHL to a
culture of Pseudonomas aeruginosa and measured the ratio of AHL concentration in cells
and in the surrounding medium over time in order to investigate this question (data shown
in Table 7.2).

We use a linear model to describe this experiment. Let uc denote the concentration of
AHL within the cells and ue the concentration in the medium. The dynamics is described
by

where d\ is the rate of influx into the cells and d2 the rate of efflux. We assume that AHL is
added to the medium at time zero and that ue is approximately constant (e.g., the amount of
AHL degraded during the experiment is negligible and the volume of the medium is much
larger than the volume of all cells). We recognize (7.16) as a first-order ODE, with solution

We have data about the ratio of interior and exterior AHL concentrations; that is, we consider

Since the dose added was quite high, we may assume that uc(0)/ue & 0 and end up with

Using least squares to minimize the error £](r» — r(tt, d\, di)}2 (see (7.15)), we fit r(t) from
(7.18) to the data (see Figure 7.5) and obtain

d\ = 1.34/minute, d2 = 0.5/minute.

Thus, the influx rate is about 2.5 times higher than the efflux rate, which allows the cells to
accumulate the signaling substance. This is one of the mechanisms that allow the cells to
respond to relatively low levels.
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Figure 7.5. Fit of model and data for active pumps (data taken from [131]).

7.3 Model Comparison

In real world applications, there is not just one model that effectively describes a process,
but many possible models. Some are simple and only account for the most basic effects;
other models are quite complex, addressing many subprocesses. Which model should we
choose in a certain situation? At this point, we need to compare the performance of models.
Section 7.3.1 provides a common measure of model performance based on information
theory. Section 7.3.2 shows how hypothesis testing methods can be used to choose between
a complex model or a simpler, nested, submodel. Section 7.3.3 discusses methods of cross
validation.

7.3.1 Akaike Information Criterion

Assume that we derived two alternative models to explain a given data set. If the number
of parameters is the same for both models, it is fair to compare the likelihoods directly: the
model with the higher likelihood is better suited to describe the process. If one of the two
models has more parameters, direct comparison is not appropriate anymore. In general it is
easier to fit a model with more parameters to given data than a model with fewer parameters.
On the other hand, a model with more parameters might only address random features of the
data. As J. von Neumann used to say, "with four parameters I can fit an elephant and with
five I can make him wiggle his trunk" [50]. Thus, we need to use a criterion that is suited
to compare models with different number of parameters. Information theory (see Burnham
and Anderson [34]) provides a formula for the distance (Kullback Liebler distance) from
a candidate model to a "true" model. Akaike extended this idea to provide an unbiased
approximation to the distance, which can be applied to experimental data.

The AIC (Akaike information criterion; the abbreviation was introduced by Akaike
himself and originally meant "an information criterion" [2]) is the most frequently used
comparison criterion. The AIC is defined as

where CC,(p) is the maximum log-likelihood and np is the number of parameters for a
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given model. The larger the AIC, the better the model. It is based on asymptotic arguments
(like the algorithm to obtain approximative confidence intervals from the log-likelihood)
and thus has to be handled with care and interpreted carefully. If the number of data points,
N, is small (rule of thumb TV < 40), then the following corrected AIC should be used:

However, the idea of the AIC may be easily understood: Asymptotically, in a perfect
fit, each data point adds to the log-likelihood on average one unit. On the other hand,
generically, we are able to explain one data point per parameter, even if the model has
nothing to do with the data. Thus, we should subtract the number of parameters from the
optimal log-likelihood. The factor 2 comes from asymptotic expansions [2]. To a certain
degree, the AIC measures the performance of a model independently of the number of
its parameters. If we compare models with the same number of parameters, the advice
of the AIC and that of the likelihood coincide. If the number of parameters is different,
the comparison of the AICs may give a different result than a direct comparison of the
likelihoods.

Example 7.3.1: Salmonella. The mutagenic effect of quinoline on Salmonella TA9S
is investigated in [27, 147]. (See Table 7.3.) For each dose of quinoline, three independent
experiments are performed. A population of Salmonella is exposed to the substance, and the
number of mutated colonies is determined. We use count data. The appropriate stochastic
model for counts is the Poisson distribution. We need to connect the expected value IJL of
this Poisson distribution, that is, the expected number of mutated colonies, with the dose
c of quinoline. Without further theoretical considerations, it is possible to write down two
plausible models.

The first model (called model 1 hereafter) is based on the fact that any effect is, at
first approximation, a linear effect,

with two constant parameters /XQ and ̂ \. The second one (model 2) takes into account that
the effect of the substance will change logarithmically with the dose; that is, /u(c) is more
or less a function of ln(c). Since the logarithm is not defined for c — 0, we take for the
second model

with three parameters VQ, v\, and v2. The likelihood of finding the natural number x, if
x is a realization of a Poisson distribution with expectation /u, reads iixe~11 /x\. The joint

Table 7.3. Number of mutated colonies in response to the mutagenic substance
quinoline. For each dose, this number is determined for three independent plates (data
from [27, 147]).

Dose (/jig per plate)
Plate 1
Plate 2
Plate 3

0
15
21
29

10
16
18
21

33
16
26
33

100
27
41
60

333
33
38
41

1000
20
27
42
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Figure 7.6. Fit of model and data for the salmonella experiment. The solid line
corresponds to the fit of model 1; the dashed line corresponds to model 2.

likelihood for all data y/,7 (/ = 1 , . . . , 3 denotes the plate, and j = 1 , . . . , 6 the dose c/)
reads

where * € {1,2} for model 1 or model 2; the log-likelihood is

Fitting the two models by maximizing ££(*) yields

Model
Model 1
Model 2

Parameter

0*o, Mi )
0>o» i > i , U 2 )

= (27.473
= (16.12,

, 0.00666)
3.12,3.9)

Log-likelihood
-24.7
-16.05

The corresponding fits are shown in Figure 7.6. This table shows that model 2 fits the data
better (log-likelihood —16.05) than model 1 (log-likelihood —24.7). However, the second
model has one parameter more than the first one, and thus it is not appropriate to compare
the likelihood functions directly. We compute the AIC,

The AIC values suggest that model 2 is superior to model 1 . In other words, it is worth the
effort to use the additional parameter in the second model.

7.3.2 Likelihood Ratio Test for Nested Models

The AIC can only suggest which model to use. A statistical test is better to interpret. In
the classical setting, we derive a general model, where our model candidates are special
cases of this general model for certain parameter choices. Typically, we want to distinguish
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between a simple model and an extended model; we may introduce a parameter PQ that
becomes zero for the small model and nonzero for the extended one. Specifically, let the
model with parameter p0 = 0 be denoted by M(0), and the extended model by M(/?0). To
compare models M(0) and M(po), we use a statistical test with the null-hypothesis

against the hypothesis

To apply the likelihood ratio test (LRT), we have to assume that

• the sample size is large enough (rule of thumb N > 25), and

• if model M(po) is fitted to the data, then the parameter PQ is normally distributed.

Under these assumptions, the test may be constructed as follows: Given the data, for
each of the models M(0) and M(PQ) we calculate the likelihood and the log-likelihood.
It turns out (see, e.g., Berger, Casella, and Berger [19]) that the ratio of the likelihoods
C(M(PQ))IC(M(0)) is x2-distributed. Even more, the value for A,, defined as

is x2 distributed. Hence we use the x2-distribution for our test. Given significance level
a (typically 0.01 or 0.05), we check if PQ = 0 is in the confidence interval, by comparing
A, to the Xiy-value, where the confidence level is y = 1 — oe and the degree of freedom
corresponds to the difference in the number of parameters of the models M(0) and M(PQ).
For calculation of a confidence interval we use equation (7.6) with ££(TT). If this confidence
interval includes 0, we cannot reject the null-hypothesis and thus we keep the simple model
A/(0). If the confidence interval does not contain zero, we find that we need the extended
model M(po). In that case, we can use the value A. from (7.27) and compare it to the x 2

y ~
distribution. If A. falls to the right of x,2 , then the null-hypothesis is rejected. For A. = 6.76
(Table 7.4), the null-hypothesis is rejected at significance level a — 0.05. The P-value, or
probability that the null-hypothesis is rejected erroneously, is given by the area under the
X2 curve to the right of A. (Figure 7.4). For A. = 6.76, P < 0.01 (Table 7.4). The P-value
gives the probability that the simpler model M(0) is erroneously discarded.

We study this method in the following example.
Example 7.3.2: Cell Growth. To illustrate the use of AIC, AICc, and LRT, we will fit

three models to the cell growth data of Gause [63], using least squares (7.10). The data are
given in Project 10 in Chapter 9 and are more fully discussed in Section 10.1. For now we
do not worry about where the models are from or how they are derived. We just postulate
that each of the following models might be appropriate to describe the observed data. Let
f ( t ) denote the population size of Paramecium caudatum. The logistic equation is

the Gompertz model reads
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Table 7.4. Analysis of the fits of logistic (dashed), Gompertz(dotted), and Bernoulli
(solid) models to Cause's Paramecium caudatumpopulation growth data, using the method
of least squares. The fits are shown graphically in Figure 7.7.

Model
Logistic

Gompertz
Bernoulli

RSS
4838
11837
3650

a2

201.6
493.2
152.1

££
-63.7
-74.4
-60.3

AICc
-131.9
-153.4
-127.8

k P
6.76 0.01

Figure 7.7. Least-squares fit of logistic (dashed), Gompertz (dotted), and Bernoulli
(solid) models to Cause's Paramecium caudatum data (see Project 10 in Chapter 9), using
least squares. The fits are analyzed in Table 7.4. The best fit comes from the three-parameter
Bernoulli model, the second best from the two-parameter logistic model (which is equivalent
to the Bernoulli model with 0 = 1), and the worst from the Gompertz model.

and the Bernoulli equation reads

The logistic and the Gompertzian model have two parameters each, r and K, whereas the
Bernoulli model has three parameters, r, K, and 9. If we set 9 = 1 the Bernoulli model,
then the logistic model follows. Hence the logistic model is a special case of the Bernoulli
model, which means that we can use the LRT to compare the logistic and the Bernoulli
models. In Figure 7.7, we show the best fit to the data of Gause for each of the models.

The residual sum of squares (RSS) is used to estimate the variance of the error cr2 =
RSS/N, where N is the number of data points. From this, the log-likelihood is calculated
using CC — —Na2/2.

In Table 7.4, we show for each model the RSS, the estimated variance (a2), the
log-likelihood, and the corrected AICc. The AIC, corrected for the small number of points
(7.20), indicates that the Bernoulli model is the best from an information theory perspective.
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Because the logistic model is nested within the Bernoulli model by choosing 9 = 1, the
LRT can be used to test whether the logistic equation should be rejected in favor of the
more complex Bernoulli model. The value \ = 6.76 (equation (7.27)) indicates that t
probability of erroneously rejecting the simpler logistic model in favor of the more complex
Bernoulli model is approximately one in a hundred (P — 0.01). (See also Figure 7.3.) In
other words, the Bernoulli model is strongly supported through the LRT as well as using
the AICc.

The logistic equation has an analytical solution as given in Exercise 3.9.18. The
Gompertz and Bernoulli equations can also be solved analytically. You may want to try this
or, alternatively, refer to Thieme [156].

7.3.3 Cross Validation

An appealing method for comparing models is based on their ability to predict data that
have not been used to fit the parameters. If we consider two models and compare their
likelihood function directly, we may incorrectly prefer one model over another, because one
of the models may fit random structures in the data (that vanish if we repeat the experiment).
This is especially true if we compare models with a different number of parameters. This
so-called overfilling (which is one of the dangers in highly structured models) cannot be
recognized on the basis of the likelihood only. Cross validation avoids this problem by
splitting the dala set into a training set and a test set. Using the training dala, Ihe model
parameters are fit (e.g., by means of a maximum likelihood procedure). These parameters
are then used to predict the data of the test set. The likelihood for the two models under
consideration can then be compared directly. A given set of data is often split several times
in different ways. For example, we define the first data point as a test set, and predict this
data point by using all other data for fitting. Then we leave out the second data point, the
third data point, etc. In this way, we do not bias our data selection for fitting or for testing,
since all are used for fitting and all are used for testing. We obtain n likelihood values for n
data points. We are even able to determine which data points support which of the models,
a fact that may lead to further insight. For further discussion of cross validation, we refer
the reader to Haefner [77].

Example (salmonella, continued). In order to evaluate the two salmonella models,
we perform cross validation. As discussed, there are several designs possible for choosing
training and test data sets. In the present case, we decide to use the data for a certain dose
(three data points) as the test set, and the remaining data as the training set. Hence, we
perform six maximum likelihood estimations and evaluations for the test data points. The
result is shown in Figure 7.8. We find that model 2 is not able to predict the data for zero
dose at all, since the prediction of the mean value at a dose of zero is negative. For all other
dosages, both models perform quite similarly; the second model is slightly better, especially
at high dosages because it yields larger likelihood values. The sum of the log-likelihoods
for the test data (for dosages > 10/ug) is -95.3 for model 1 and —39.7 for model 2. Also,
the cross validation tells us that the second model is superior to the first model. However,
inspection of Figure 7.8 shows that the difference is not always large. If we find additional
criteria (expert opinions, theoretical foundations of models), we should give these criteria
a stronger weight than the results of AIC and cross validation.
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Figure 7.8. Cross validation for the Salmonella example, log-likelihood of test data
points. For any given dose there are three replicate plates (Table 7.3). Circles correspond
to model 1 and crosses to model 2. Note that model 2 cannot predict the test points where
there is no quinoline added.

7.4 Optimization Algorithms

We have seen before that parameter estimation is simply an optimization problem once
the likelihood has been determined. It is often impossible to derive the solution for these
optimization problems analytically. We will not consider the optimization method explicitly
in this text, since it forms a field of research on its own. We refer the interested reader to
[58, 59].

If the function that is to be maximized is smooth, one may use the gradient in order to
determine the direction of the steepest descent/ascent. The two most popular algorithms that
are based on this concept are the Newton method and the hill-climbing algorithm [58, 59].
If the function is not smooth or there are a lot of local maxima, then stochastic algorithms
may perform better than deterministic ones. Here, simulated annealing [163], the genetic
algorithm [88], and the generic algorithm [163] are the best known examples.

We consider a simple form of the hill-climbing algorithm and of the generic algorithm
in order to understand the constructions as well as gain valuable practical tools for our
optimization. However, parameter estimation is an art, and there are no general concepts
that always work. You will find that you learn a lot about your data as well as about your
model if you try to fit parameters.

7.4.1 Algorithms

(a) Hill-Climbing Algorithm

Consider a function / : R" -» R that is to be maximized. At any location p € R", the vector
V/(/?) points in the direction of increasing values of /. If we are at a local maximum, then
V/(/?) = 0. Thus, if we constantly change p in the direction of V/(p), we expect to find
a maximum at V/(/>) = 0. Hence we solve
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until we reach a stationary point in order to obtain local maxima. The ODE will quickly find
reliable solutions of the maximization problem if there is only one global maximum (best
case) or only a few maxima that are all acceptable. However, if there are many (low) local
maxima, the algorithm is likely to fail. In this case, we may use a lot of randomly chosen
initial values and take the best local maximum determined. This latter variant is quite close
to the stochastic generic algorithm considered below.

(b) Generic Stochastic Algorithm

The idea of the generic algorithm is almost trivial. As before, we start at a certain location
p and go into the direction that increases /. The hill-climbing algorithm suggests using the
gradient of / in order to obtain this direction. Instead, the generic stochastic algorithm tests
randomly chosen values q in the neighborhood of p until a better point has been determined,
that is, until /(#) > /(/>)• In the first steps of this algorithm, the initial phase, we allow
for a large diameter of the neighborhood in order to avoid local maxima. We then slowly
decrease the diameter of the neighborhood in order to force convergence.

This algorithm is an example of an inhomogeneous Markov chain (see Section 5.2.2)
that — hopefully — converges in a probabilistic sense to the global maximum of the func-
tion. This algorithm only needs a function / that is pointwise defined, while the hill-
climbing algorithm needs differentiability of /. Furthermore, it has fewer problems with
local maxima since there is the possibility of jumping from one local maximum to another
one. However, once we are close to the global maximum (and consider a smooth function
/), the hill-climbing algorithm is preferable since the convergence is faster.

7.4.2 Positivity

Very often the relevant parameters in a model represent rates. Therefore, we may re-
quire positivity for some components of our parameter vector p, that is, p^ > 0 for
k € K C {!,...,«}. If the function / assumes its maximum for large, positive values
p, this constraint is easily satisfied. This may be not the case if pk is quite small, or if
the "true" parameter is even zero. Random structures of the data may yield a negative
optimum that is not acceptable anymore (perhaps the model cannot be evaluated anymore
if, for example, a function log(p) is involved, etc.). We need to prevent the optimum from
becoming negative.

For the hill-climbing algorithm, the remedy is as follows. In order to prevent the
trajectory of the ODE p = Vf(p) from leaving the positive cone of E", the vector Vf(p)
needs to point inward if a component of p becomes negative. We may ensure this by using
the penalized function

where

is the penalty term that becomes large if p tries to leave the positive cone. If pk » 0,
k 6 K, then g(p} and its derivatives are almost zero, || Vg(p)\\ ^ 0. Only if a component
Pk,k e K , tends to zero does || Vg(/?)|| ~ 1/e become large.
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For the generic algorithm, it is quite straightforward to prevent negativity of the
solution. We discard all test points that do not fulfill the positivity condition. Then our
optimum will have the required properties.

7.5 What Did We Learn?
First, we need to specify a model. How to perform this task is the main theme of the
present book. Once we do have the model, we are interested in rigorous analysis in order
to obtain an idea about the behavior we may expect. Often, this task cannot be performed
completely; however, simulations and numerical analysis will guide us to a certain degree.
These results may lead to an initial, qualitative bridge between experiment and model. We
may, for example, check if periodic behavior that was observed in nature can be explained
by the model. A stronger bridge is a (semi)quantitative analysis of data. In this case, we fit
parameters of a model in order to recover and predict experimental results in a quantitative
way.

At the center of all parameter fitting is a quality measure for a parameter set with
respect to experimental data. The better a given parameter set fits the data, the larger this
quality measure. To derive this quality measure, we assume that the data are typical, that
is, the probability of finding these data is large. In general, a model predicts the probability
of given data as a function of parameters. The function that maps parameters into the
probability of data is called the likelihood function. The idea is to find the parameter set
that maximizes the likelihood function, the so-called maximum likelihood estimation.

First we need to know the likelihood function. In stochastic models, the likelihood
is a canonical outcome of the model; for deterministic models (where no stochasticity is
involved), we have to add a stochastic component, which is mostly the measurement error.
The deterministic model predicts the expected values for a measurement; the actual data
point is distributed according to a normal distribution with a certain variance around this
expected value. If the measurement errors are independent for all data points with constant
variance, this approach leads to the usual least-squares method.

Next we maximize the likelihood. In almost all cases, this task can only be performed
numerically. Optimization algorithms that are able to deal with high dimensions (a lot
of parameters) and a rough fitness landscape (a lot of nonlinearity in the models leading
to many local maxima) are required. It seems that stochastic algorithms, like the generic
algorithm, are well suited to performing this task.

Once we know the likelihood function and the maximum likelihood estimator, some
diagnostic tools are provided by the asymptotic theory (large number of data). One may
derive confidence intervals, which tell us something about the uncertainty of our estimation.
These confidence intervals are closely related to tests, so that we are able to ask whether the
data support the hypothesis that a parameter of the model is nonzero (this is the most common
question in practical applications). The answer is "yes" if the confidence interval does not
include zero. We may also compare models either by testing, in case they are nested, or by
the more heuristical approaches like AIC or cross validation. Model comparison is of special
interest if one extends simple toy models to complex and more realistic quantitative models.
In a toy model, many effects are neglected. One may add one effect after the other, always
ensuring by model comparison tools that the extension of the model is supported by the data.
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However, as a rule, in case of doubt, we should trust our intuition instead of formal model
comparison tools, especially if we have experience with experiments, models, and data.

7.6 Further Reading

A nice, basic introduction to the ideas of likelihood, maximum likelihood estimators, and
confidence intervals can be found in the book by Adler [1]. An introduction to the Bayesian
approach is given in the book by Gilks, Richardson, and Spiegelhalter [67]. In several
short articles, the idea of Bayes statistics, related numerical algorithms, problems of model
comparison, and applications are described. It is a pleasure to browse through this book. A
source of interesting examples for statistical tests and parameter estimation are the collec-
tions [147, 148].

A general introduction to identifiability of parameters and observability of the state
for compartmental models, with an emphasis on linear models, is the book by Godfrey [69].
In this book, applications from biology (metabolism, pharmakocinetics, and ecology) are
also outlined. Especially for PET, these aspects are addressed in [74].

The background of the AIC (historical as well as mathematical) is described in the
article of Akaike [2]. Two articles in [67] are also concerned with model comparison and
describe several methods (with practical applications). The book by Burnham and Anderson
[34] provides a comprehensive introduction to information theory, with many examples.

There are a lot of books concerned with optimization theory. An informal introduc-
tion for the deterministic algorithms can be found in the books of Fletcher [58, 59]. A
more mathematically rigorous exposition is given in Hiriat-Urruty [85]. Both books also
address several methods for incorporating constraints like positivity. The classical book for
genetic algorithms is Holland [88]. This book is a rather intuitive introduction to stochastic
optimization algorithms and emphasizes looking at a problem that parallels the theory for
biological evolution. For algorithms like the generic algorithm and simulated annealing one
may consider the book [163], which also includes many more references.

7.7 Exercises for Parameter Estimation

Exercise 7.7.1: Maximum likelihood estimation for binomial distribution. Consider
the classical experiment of tossing a coin. We toss a coin n times and obtain tails k times.
Determine the maximum likelihood estimator for the model, that is, the maximum of the
function

Exercise 7.7.2: Maximum likelihood estimation for exponential distribution.

(a) Consider data points x\,... ,xn, which are n independent realizations of an expo-
nentially distributed random variable X; that is, for any 0 < a < b we find
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Derive the likelihood for the data points xi, the log-likelihood, and the maximum
likelihood estimator for the parameter A,.

(b) What is the interpretation of A, ? How can we interpret the maximum likelihood
estimator?

(c) Assume that you know the infectious period for four cases of measles (dummy data):

3 Days, 5 Days, 4 Days, 1 Days.

Compute the recovery rate, assuming an exponential distribution of the infectious
period. Is this assumption appropriate? If we compute this rate in order to use it in
an ODE describing the dynamics of measles, is this assumption crucial?

Exercise 7.7.3: Hill-climbing algorithm.

(a) Consider a function f e C*(R, R) that has a unique maximum. Find an example
where the hill-climbing algorithm fails to determine this maximum.

(b) Consider a function f e CJ(R", R) that has a unique maximum and V/ = 0 only
at the location of this maximum. Show that the hill-climbing algorithm never fails in
this situation.
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Chapter 8

Maple Course

8.1 First Steps in Maple

In this part of the book we show how to use a computer software package (such as Maple)
to simulate the various model types that were introduced in Part I, on theory. Moreover, we
show how to use the models for data fitting and parameter estimation. The computer course
is designed so that it can be used by students who have no computational experience at all,
as well as by students who are already familiar with a computer software package (such as
Maple, Mathematica, MATLAB, C++, or similar).

On Unix machines, Maple is started with the command:

xmaple

In Windows, Maple is started by clicking the following menu items:

Start
Programs
Maple 9
Maple 9

(note that you may have a different version of Maple, such as Release 8). A large Maple win-
dow will appear. Inside this window is another, smaller window, called a Maple worksheet.
All Maple commands are entered in the worksheet.

8.1.1 Constants and Functions

Constants

Try the first example:

You should see

201
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35

The meaning of these lines should be apparent. The first command gives the value 5 to
the constant named a and the second line gives the value 7 to the constant named b. The
third line multiplies the two constants. Each command is followed by a semicolon. If
the semicolon is missing, then the program expects more input, since it assumes that the
command is not complete.

The ": =" command assigns a value permanently, whereas the "=" command assigns
a value temporarily. Try the following:

You will get:

Although we set c to be 3.2, it appears that Maple forgot about it and just used the symbol
c. Here we encounter the fact that Maple is a computer-algebra package, which calculates
with both numbers and symbols.

Functions

We will now define our first function (note that Maple is very particular about the syntax
of its commands and the punctuation; however, it is not very particular about spacing
within commands, and you may find it helpful to insert spaces to make the commands more
readable, or you may eliminate spaces for more efficient typing):

We defined a function f(x), where the argument x has been omitted on the left-hand side.
We use "- >" to indicate that x is mapped to a exp(fejt). Note that it is important to include
the multiplication signs in the Maple commands. What happens when you omit them?

Now we evaluate / at x = 3:

Note that a and b have been replaced by the corresponding values defined above.
Maple will recognize an expression as a function only if you specify the independent

variable. Thus, if you simply enter into Maple
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then you cannot evaluate f\ at any point, say x = 3, by entering

A way you could still get a value for /[ at jc = 3 is to use the subs command:

This is a little tedious, and it is better to use the first method described above.
Functions of more than one variable are defined similarly. For example, g(x, a, b) =

aebx is entered into Maple as

The evalf Command

Certainly, /(3) = 5e2[ is correct, but we would also like to have a decimal. We force Maple
to evaluate a floating point number with the evalf command:

0.6594078670 1010

Plotting Functions

We would like to plot the function / defined above:

The first argument of the plot command is the function to be plotted, and the second
argument specifies the domain.
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Exercise 8.1.1.

(a) Define a function h(t) = 5 sin(cO- Don't forget about the implied multiplications!

(b) Choose c — 1.3 and evaluate h att — 0.0, t = 1.0, and t = 3.2.

(c) Plot the function hfort e [0, 5].

Getting Help

For any command, you can use the help manual, included with the Maple program, to get
additional information. For example, to find out more about the plot command, type

> ? plot

Of course, the "?" command is of little use when you don't know the name of the command
for which you need help. At this time, you should explore the general help menu, obtained
by clicking on the help button in the top right corner of the main Maple window. Perhaps
one of the most useful menu items is "Topic Search". Select it, and type plot, and see
what comes up. Also note the topic index at the top of any Maple help window. If you have
trouble finding what you're looking for via the "Topic Search", try navigating the help index

Saving Your Worksheet

To save the worksheet you are working in, click on "File", and then on "Save". Once you
have saved your worksheet, a more convenient way of saving it at any later time is by
holding the "Control" key and typing "s" on the keyboard.

Executing the Whole Worksheet

If, in your worksheet, you had defined a :— 5, and then at the bottom of your worksheet
after reopening Maple you enter a, you will get

> a;

a

Maple clears its internal memory after closing the worksheet, so you would have to either
re-execute the command where you had defined a to be 5, or (a more practical thing to do)
you could execute the whole worksheet by clicking on "Edit", "Execute", then "Worksheet".
Now everything is as it was before you closed the worksheet.

Clearing Maple Memory

It will be helpful to know that there are several commands that can be used to clear
Maple's internal memory, either partially or completely. To clear a specific variable, use
the unassign command (the quotes around the variable name are important):

> d := 1;

d:= 1
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> d;

1

> unassign( 'd' ) ;
> d;

d

You can also use the unassign command to clear several variables at once (for example,
unassign ( ' a ' , 'b' )). To clear Maple's entire internal memory, use the restart
command. After entering this command, Maple acts as if you had just started. It is good
practice to start each new worksheet with the restart command. That way, when you
re-execute the entire worksheet at a later time, Maple's memory will be cleared first, and
Maple won't be confused by previous definitions and declarations.

8.1.2 Working with Data Sets

In most applications, it is necessary to work with experimental data. Moreover, data can
be analyzed using mathematical models. To illustrate this procedure, we use the following
example, listing the mass and size of 10 brown trout (Salmo trutta forma fario) in Table 8.1.

Lists and the seq Command

Each experimental measurement consists of two numbers, mass and size. We will define
two lists to save these measurements, one for the mass and one for size. A list in Maple is
an ordered set of elements enclosed in square brackets, and the elements in the list can be
numbers, lists themselves, and so on. We begin by defining the list of masses:

> mass := [31 ,45 ,52 ,79 ,122 ,154 ,184 ,210 ,263 ,360] ;

mass := [31,45, 52,79, 122, 154, 184, 210, 263, 360]

Table 8.1. Brown trout data.

Mass (in grams)
31
45
52
79
122
154
184
210
263
360

Size (in mm)
140
160
180
200
220
240
260
280
300
320



206 Chapter 8. Maple Course

We can extract specific elements from the list by specifying their position in the list. For
example:

> mass[5] ;

122

We continue by defining the list of sizes. Of course, we could use a command similar to
the one above. But it should be obvious that the size of the fish increases by 20 from fish
to fish, with the size of the /th fish given by 120 + i * 20. We can take advantage of this
observation, and use the seq command to assign the list of sizes in a clever way, as follows:

> size := [ seq( 120+1*20, i=1..10 ) ] ;

[140, 160, 180, 200, 220, 240, 260, 280, 300, 320]

The seq command is used to construct a sequence of values according to some given rule,
specified in the first argument, here the formula for the size of the /th fish. The second
argument specifies that only 10 values are needed, obtained by letting / be the integers from
1 to 10 in turn. Since the seq command is surrounded by square brackets, the sequence is
placed in a list, which is the data structure we need for the remainder of the data analysis.

Plotting with Lists

We now use the lists we have just defined to show the brown trout data graphically. We
begin by creating a new list containing the coordinates of the points to be plotted, with each
coordinate in the form [mass [i] , size [i] ]:

> L := [ seq( [mass[i] ,size [ i ] ] , i = 1..10 ) ] ;

L := [[31, 140], [45, 160], [52, 180], [79, 200], [122, 220],..., [360, 320]]

To show the data graphically, we again use the plot command, but now with a different
set of arguments than before:

> plot( L, style=point, symbol=circle );
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Exercise 8.1.2. Research the plot command and remake the plot, this time labeling the
axes and adding a title. Note that if you label your axes mass and size, you will run
into trouble, because these words have already been defined as arrays. It is always good
practice to enclose your labels in double quotes; that is, use ' ' mass' ' and x 'size' '.

Data Transformations

The above plot supports the idea of a power law of the form

size = a mass''

to describe the brown trout data. We would like to find a and b (the fitting parameters). If
we take the logarithm of the above formula,

In(size) = In (a) + b * In (mass),

then In(size) is a linear function of In(mass), and a and b can be found easily from the
y-intercept and the slope of the function. We first transform the brown trout data to a
logarithmic scale:

> log_m := [ seq( eval f ( log(mass[ i ] ) ) , i=1..10 )
] ;

log_m := [3.433987204, 3.806662490, 3.951243719,..., 5.886104031]

> log_s := [ seq( e v a l f ( l o g ( s i z e [ i ] ) ) , i=1..10 )
] :

Here, we used a colon (":") to finish the last command instead of a semicolon (";"). The
colon means that the result of this command will not be printed on the screen. If at a
later time we are interested in seeing the value of the list log_s, we can use the print
command:

> print( log_s ) ;

[4.941642423, 5.075173815, 5.192956851,..., 5.768320996]

In the next section, we use the lists containing the transformed data to determine the values
of the fitting parameters a and b by linear regression.

8.1.3 Linear Regression

We expect the transformed data to have a linear relationship. Let's have a look:
> log_L := [ seq( [log_m[i],log_s[i]], i=1..10 )

3 :
> plot( log_L, style=point, symbol=circle );
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From the graph, it appears that indeed there is a linear relationship between the mass and
the size of the fish. We now try to find the regression line, which is the straight line that
best fits the data. To learn more about regression, see Devore and Peck [44].

Loading Maple Library Packages

Statistical functions are available in Maple. However, they are not activated right away. We
have to include the appropriate library package:

> with( stats ) ;

[anova, describe, fit, importdata, random, statevalf, ...]

When we activate the statistics package, Maple shows which additional functions are avail-
able. Other useful packages are

• linalg: contains linear algebra functions

• plots and plottool s: these packages contain a variety of plotting functions and
tools

• DEtools: contains functions that help you work with differential equations

To learn more about these packages, click on the Help button in your Maple window,
select the "Using Help" menu item, and navigate to "Mathematics... /Packages..." in the
resulting help window.
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Fitting with the Least-Squares Method

We use the fi t command to find the regression line:
> f i t [ leastsquare[ [x,y], y=al*x+bl,

{al,bl} ] ] ( [log_m,log_s] ) ;

y = 0.3350651881 x + 3.816026381

The fit command performs some sort of linear or nonlinear regression. The argument
leastsquare means that the sum of the squares of the pointwise distance between the
curve and the data should be minimized. The argument [x,y] specifies the variables of the
fitting function. We expect a linear relationship. Hence, we use a general linear hfunction
y — a\x + b\, where a\ and b\ have to be determined by the fit. The argument {al, bl}
specifies the unknown parameters. Finally, in the parentheses at the end of the command,
we specify the two data sets which have to be fitted. Maple finds that the best fit is achieved
whena! = 0.3350651881 and b\ = 3.816026381.

We could also try a quadratic fit. If we assume that there is a quadratic relation, then
we write:

> f i t [ leastsquare[ [x ,y] , y=al*x*x+bl*x+cl,
{al,bl,cl} ] ] ( [log_m,log_s] ) ;

y = -0.009928883861 x2 +0.4272857455 x + 3.607969257

As you can see, the coefficient of x2 is very small compared to the other coefficients. This
indicates that a linear fit is better.

Checking the Fit

Now we would like to plot the regression line. We need to convert the results of the fit to a
function. We do this in two steps. First, we assign the result of the fit to f it re suit:

> fitresult := fit[ leastsquare[ [x,y],
y=al*x+bl,

{al,bl} ] ]( [log_m,log_s] );

fitresult :=y = 0.3350651881 x + 3.816026381

Next, we assign a function linf it with the rhs command:
> linfit := rhs( fitresult ) ;

Unfit := 0.3350651881 x + 3.816026381

Note that Maple understands linf it to be a function, but not fitresult. Now let's
plot the fitted function together with the brown trout data:

> plot( [log_L,linfit], x=3 .2 . .6 ,
style=[point,line],
symbol=circle ) ;
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That's looking very good! Finally, we will check the fit with the original data set on the
nonlogarithmic scale. To do so, we need to transform 1 inf it to the nonlogarithmic scale,
which we accomplish with the following three steps:

> gl : = exp ( Unfit ) ;

> g2 := subs( x=log(m) , gl ) ;

> s := simplify! g2 ) ;

We used the subs command to replace x with log (ra) in the function gl, where m
represents the mass of the trout, and we used the simplify command to find an easier
way of presenting the solution. Sometimes the simplify command produces an easier
expression, so it is a useful tool to have available (however, in some cases the command
may not help much).

Now let's see how our function for the size as a function of mass, s ( m ) , fits the
original brown trout data (contained in the list L) on the nonlogarithmic scale:

> plot( [L,s] , m = 3 0 . . 3 6 0 , style=[point,line],

symbol=circle ) ;
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This also is looking very good!

Exercise 8.1.3: World population 1850-1997. The world population from 1850 to 1997
15 given in Table 8.2.

(a) Define lists containing the data.

(b) Plot the data (world population versus year).

(c) Transform the data set for the world population to a logarithmic scale, and show your
results in a graph.

(d) Fit the data of the world population. Show the fit on both the logarithmic and the
nonlogarithmic scale. What type of function did you use to fit the data?

(e) Try fitting the data directly with a quadratic and a cubic function. Which fit do you
think is best? If the simplified version of the cubic function does not plot, then try it
without the simplify command.

Table 8.2. World population data.

Year
1850
1940
1950
1960
1970
1985
1997

Size of population (in millions)
1200
2249
2509
3010
3700
4800

5848.7
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8.2 Discrete Dynamical Systems: The Ricker Model

We briefly discussed the Ricker model in Section 2.2.4 and saw that use of the model is
appropriate for describing populations with nonoverlapping generations. We determined
the fixed points of the model, as well as their stability, and alluded to the fact that the
Ricker model can exhibit complex dynamics, such as cycles and chaos, for certain choices
of the model parameters. We will now use Maple to conduct a thorough investigation of
the dynamics of this model.

We begin with simplifying (2.24) by letting a — er, b = r/k, and . After
dropping the overbars, we obtain the simplified Ricker model,

Of interest for the remainder of this section is the behavior of (8.1) and its dependence on
the value of the model parameter a. Although the restriction r > 0 for the original Ricker
model implies a > 1, we will study (8.1) in more generality, and allow a > 0.

Let x* be a fixed point of (8.1); that is, x* satisfies

Although it is easy to solve this equation for x* by hand, we will use Maple so that we can
learn the solve command:

The arguments of the solve command are, first, the equation and, second, the quantity we
want to find. In this case, we obtain two fixed points: jc* = 0 and x% = ln(a). The trivial
fixed point x* = 0 describes a population which is extinct. Note that this fixed point exists
for all values of the model parameter a. The nontrivial fixed point, x% = In (a), exists only
for a > 1 (this is consistent with our earlier observation that r > 0 implied a > 1).

To determine the stability of the fixed points, we need

so that

Exercise 8.2.1.

(a) At what value of a does the stability of the trivial fixed point, Jt* = 0, change?

(b) Plot thefunction g(a) = 1—ln(fl). For which values of a is \g(a)\ < i(\g(a)\ > I)?
That is, when is the nontrivial fixed point stable (unstable)?
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(c) Sketch (by hand) a partial bifurcation diagram for the simplified Ricker model, (8.1),
as we did in Section 2.2.3 for the resettled logistic map (see Figure 2.1).

In terms of the simplified Ricker model, we say that there are bifurcations at a = 1 and
a = e2. The bifurcation at a = 1 is called a transcritical bifurcation. We defer discussion
of the bifurcation at a = e2 to later.

We are interested in plotting solution trajectories for various values of the model
parameter a. For a given value of a, suppose that we wish to iterate the map 20 times and
plot the iterates as a function of the iteration number. This means that we need to create a
list with 21 coordinates of the form [/, xt \ (the 20 iterates plus the initial condition). Since
we need to keep track of the current iterate to create the next, writing an appropriate seq
command is a bit tricky. Perhaps an easier way to create the list of coordinates is to use
a for statement and build up the list recursively with the op command. We take a small
detour now to learn about these two commands separately.

The for Statement

The for statement is a type of repetition statement. It provides the ability to execute a
command or a sequence of commands repeatedly. The sequence of the commands to be
executed repeatedly is listed between a do command and an od command (od is do spelled
backwards). The remainder of the statement specifies the number of times that the sequence
of commands needs to be executed. Before executing the command below, note that we
have stretched the statement over four lines and added indentation for readability. If you
would like to do the same (without getting warning messages), you can press the "Shift"
and "Enter" keys. Maple will give a new line to type on, but it will treat it as the same line
of input. The "Shift + Enter" trick is very useful when editing procedures, for example, to
insert new lines. You do not need to stretch the statement over four lines (you can write the
entire statement on one line if you wish). Try the following now:

> for i from 0 by 2 to 20 do
> print(i);
> print(i+1);
> od;

The variable i counts the number of times the sequence of commands is executed. Here,
Maple is instructed to start with / = 0 (from 0), increase i by 2 (by 2) at the end of each
repetition, and terminate the repetition as soon as i > 20 (to 20). Did the command give
the result you expected?

The op Command and Recursive Definition of Lists

The op command removes the outer square brackets of a list:

> LI := [ 1, [1,2] , [1 ,2,3] , 2 ] ;

LI :=[!,[!, 2], [1,2, 3], 2]

> op (LI) ;

1,[1,2J,[1,2, 3], 2
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We use this to our advantage to insert elements in a list. For example, the following inserts
[3 3 ,12 , - 3 ] into LI (at the end) to create a new list L2:

> L2 := [ op(Ll) , [33,12,-3] ] ;

L2 := [1, [1, 2], [1, 2, 3], 2, [33, 12, -3]]

To create a list recursively, we start with an empty list (L :=[]) , and use a for command
to insert elements into the list one at a time. For example,

> L : = [] :

> for i from 1 to 5 do

> L := [ O p ( L ) , [i,i*i] ] ;

> Od;

L := [[1, 1]]

L :=[[!,!], [2, 4]]

L :=[[!,!], [2, 4], [3, 9]]

L:=[[l,l],[2,4],[3,9],[4,16]]

L:= [[1,1], [2, 4], [3, 9], [4, 16], [5, 25]]

Note that our for loop repeatedly redefines the same variable, L, recursively. In detail,
here's what happened. Initially, Maple has the information that L is the empty list, L =
[ ] . The command op ( L ) returns the empty list with the brackets removed. Hence, when
Maple starts the for loop, at / = 1, it uses this information, and

L=[op(L) , [1,1*1]] = [[1, 1]]

Thus, after the first iteration of the for loop, Maple is at the stage where L= [ [ 1 , 1 ] ] , and
op ( L) returns [1,1]. That is, the second time through the loop, we get

L=[op(L) , [ 2 , 2 * 2 ] ]

= [[1,1] , [ 2 , 4 ] ]

Maple continues in this fashion until it reaches the final iterate (/ = 5 in this case), and then
the final list, [ [1, 1] , [2 ,4] , [3 , 9] , [4,16] , [5,25] ], is our list L.

Plotting a Trajectory

We now return to the Ricker model and use the new Maple commands to create a list of
coordinates of a trajectory, let's say for a — 0.8. (From the linear stability analysis, we
know that the trivial fixed point jc* = 0 is stable in this case, and the nontrivial fixed point
jc* = ln(a) does not exist yet.) We begin by specifying the value of the model parameter a
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and setting the initial condition XQ (the zeroth iterate):

> a := 0 .8 : iter := 1.0:

Next, we create a list of coordinate points, using the iteration number i as the x -coordinate
in [i, jc/], and the corresponding iterate iter as the y-coordinate in [/, x, j:

> L := [ [0,iter] ] :

> for i from 1 to 20 do

> iter := evalf( f ( i t e r ) ) ;

> L := [ o p ( L ) , [i,iter] ] ;

> od:

Note that we have used the eval f command to force a numerical evaluation of the iterates
instead of a symbolic evaluation (this speeds up the calculation significantly).

Finally, we plot the list of coordinates:

> plot( L, style=point, symbol=box );

As you can see, with a = 0.8, the population dies out, at least with the initial conditio
XQ = 1.0. The numerical result is consistent with the results of our linear stability analysis.
You can check that the population dies out with other initial conditions as well by making
an appropriate change on the line specifying the initial condition and pressing the return
key a few times to re-execute that line and the following lines.

8.2.1 Procedures in Maple

We're interested in seeing the behavior of the model for different values of the parameter
a. We can continue making appropriate changes in the lines we already have on the screen.
Instead of changing the value of a over and over, it is more elegant to define a procedure
which plots the trajectory for a given value of a. Here's how we define such a procedure
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(note that Maple ignores lines that begin with "#", so we can use these to include comments
in our Maple program):

> # define a procedure
> plot_trajectory := proc( a )
> # definition of local variables
> # (valid only in this procedure)
> local iter, i, L;
> # initialize the first iterate
> iter := 1;
> # initialize the list where we
> # collect coordinate points
> L := [ [0,iter] ];
> # algorithm to calculate the trajectory
> # for the given value of a
> for i from 1 to 30 do
> iter := evalf( a * iter * exp(-iter) ) ;
> L := [ o p ( L ) , [i,iter] ] ;
> od:
> # plot the trajectory
> plot( L, style=point, symbol=box );
> end ;

We can now easily plot trajectories for different values of the parameters a:

> plot_trajectory(0.8);
> plot_trajectory(1.0);
> plot_trajectory(5.0);
> plot_trajectory(8.0) ;
> plot_trajectory(13.0);
> plot_trajectory(14.5);
> plot_trajectory(20.0);

You should observe that the qualitative behavior of the Ricker model changes drastically
when the value of the parameter a is changed, as should be expected from the results of the
linear stability analysis. Before we investigate interesting types of behavior, we will dissect
the above Maple code.

1. First, we give the name of the procedure, which is followed by ": =".

2. The keyword proc indicates that we are going to define a procedure. In parentheses,
we give a list of input parameters, which are separated by commas.

3. Next, we define local variables. The values for these variables are only known to this
particular procedure and they cannot be used outside of this procedure.

4. Then the Maple commands follow, and define the action of the procedure.

5. The end command ends the definition of a procedure.
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Exercise 8.2.2. As our procedure stands right now, the initial condition of the iteration is
set by the programmer (you) within the procedure. Modify the procedure so that the initial
condition for the iteration also can be specified by the user. You should test your procedure
with a variety of initial conditions.

Maple has many other commands to help with programming. Go to the help menu,
then click on "Programming" and "Flow Control" to find out about some more of them.
Exercise 8.2.3 introduces you to if statements.

Exercise 8.2.3. The "signum" function, which is thought of the "sign" of a number, can be
defined as

Write a Maple procedure to define the signum function in this way. Note that Maple's own
name for the signum function is signum so you must give it a different name.

8.2.2 Feigenbaum Diagram and Bifurcation Analysis

We would like to understand the changes in the qualitative behavior of the Ricker model.
We will focus on the steady-state behavior of the model. We ask the following question.
For a given value of the model parameter a, what is the steady-state behavior of the model?
We use the numerical capabilities of Maple to help us answer this question and create a
Feigenbaum diagram (also known as an orbital bifurcation diagram), as we did for the
rescaled logistic equation in Section 2.2.3 (see Figure 2.13).

To accomplish this, we do the following. For each value of a of interest, we ask Maple
to iterate the model a large number of times so that we can be sure that we have reached
steady state. Then we throw out most of the iterations and save only the last few. Finally,
we plot the iterations that we kept (a is on the jc-axis, and the value of the population at
steady state is on the y-axis). If the model converges to a fixed point for a particular value
of a, then the points for that value of a will all be plotted on top of each other. If the model
converges to an orbit of period 2, then there will be two distinct points for that value of a,
and so on. You will create the Feigenbaum diagram for the Ricker model in two steps via
the following two exercises.

Exercise 8.2.4. Define a procedure which iterates the Ricker model a total of 600 times
for a particular value of a. The arguments of the procedure should be the parameter a and
the initial condition XQ. Your procedure should return a list (e.g., mylist) that contains
the coordinates for the points that will appear in the Feigenbaum diagram. Note that you
do not need to create coordinates for the first 500 iterates, only for the last 100 iterates.
Hint: Each coordinate in the list should be of the form [a, iter], not [i , iter]. To
return the list, the last command in your procedure before the end command should be
mylist;.
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Exercise 8.2.5.

(a) Define a big list, say biglist, which collects all coordinates for the Feigenbaum
diagram for values of a from 0 to 10 in steps of 1. For each value of a, use the
procedure from the previous exercise.

(b) Plot biglist to view the Feigenbaum diagram. If you're confident of your results,
repeat the exercise with smaller steps of a to obtain more details in the diagram (be
careful not to make the steps too small, though, or you will have to wait a long time
to view the result).

(c) Recall that the linear stability analysis of Exercise 8.2.1 predicted a transcritical
bifurcation at a = 1 and another bifurcation at a = e2. How are the bifurcations
manifested in the Feigenbaum diagram(s) you produced? What kind of bifurcation
occurs at a = e2 ?

The diagram you produced in the previous exercise shows a typical route to chaos,
namely, the period-doubling route. For small values of a, we find one stable fixed point.
As a increases, the fixed point loses its stability at a period-doubling bifurcation, and we
obtain a stable orbit of period 2 instead. As a increases further, the period is doubled again
to 4 and further to 8 and so on. We will analyze this process in more detail below.

Recall that a 2-cycle is defined by the values u and i; with

If we apply / twice, we get

This suggests that we should consider the second-iterate function /(/(.)) instead of
/(.), since fixed points of this function correspond to a 2-cycle.

We will find the iterates visited during the 2-cycle for a = 8 and verify that they
correspond to the fixed points of the second-iterate function, which we define as follows:

Exercise 8.2.6.

(a) Estimate the values of the iterates visited during the 2-cycle observed for a = Sfrom
the bifurcation diagram.

(b) Obtain accurate values of these iterates by using your plot_tra j ectory proce-
dure.

(c) Plot f ( f ( x } } for a = 8, together with the diagonal line y = x, and verify that two
of the fixed points of the second-iterate function correspond to this same 2-cycle.

In the above exercise, you should have found that the higher iterate of the 2-cycle
lies between 2.6 and 3. We can solve for this iterate, which is one of the fixed points of the
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second-iterate map, as follows:

> solution := fsolve( subs(a=8, f 2 (x) =x) , x,
2 . 6 . . 3 ) ;

solution := 2.772588722

Note that f solve finds only one solution at a time.

Exercise 8.2.7. Find the other nonzero solution we expected, and verify that these two
nonzero solutions together correspond to the 2-cycle at a = 8 (verify that f ( u ) = v and
f ( v ) = u, where u and v are the solutions found).

Note that you can find the two iterates of the 2-cycle analytically, by using the solve
command instead of the f sol ve command, but Maple gives a result in terms of the RootOf
command. In this case, you must use the evalf command to get the numerical answer.

8.2.3 Application of the Ricker Model to Vespula vulgaris

The common wasp (Vespula vulgaris) was introduced into New Zealand sometime in the
1980s. They are aggressive to native insects and compete for resources with native birds.
Barlow, Moller, and Beggs [13] observed the insect population over five years in seven
locations. They counted the nests per hectare (1 hectare = 2.47 acres) each spring from
1988 to 1992. The data is shown in Table 8.3.

Exercise 8.2.8. In this exercise, we use the Ricker model, (2.24), written in the following
form:

(a) Fit the Ricker model to the data from Site 1. That is, find the values of the parameters
a and b that best fit the data set. Hint: Show that the Ricker model can be transformed
so that there is a linear relationship between the quantities In (xn+\/xn) and xn, as
follows:

Table 8.3. Data for the common wasp Vespula vulgaris, from [13].

Sitel
Site 2
Site 3
Site 4
Site 5
Site 6
Site 7

1988
8.6
2.7
10.5
1.0
16.0
18.5
20.5

1989
31.1
6.9
15.8
1.9
11.8
32.9
19.8

1990
7.0
3.3
8.2
6.0
10.0
17.1
12.9

1991
11.7
4.4
11.6
1.0
15.7
13.6
15.7

1992
10.2
3.1
12.1
1.0

19.9
13.0
10.6
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Hence, you can find values for a and bfrom a regression line for

(b) Check the fit for the data two ways: (1) inaplotofln versus        and(2)in
aplotofx versus

(c) What behavior is predicted for the wasp population at Site 1, based on the results of
Exercise 8.2.5?

8.3 Stochastic Models with Maple
Maple has several features for simulating stochastic processes. In particular, it has random
number generators. To get Maple to pick a random integer between 1 and 6 inclusive, use
the rand command:

> die := rand(l . .6 ) ;

Maple responds with a bunch of computerspeak that defines die to be a function with no
arguments. To get a random number, or roll the die, type

> die() ;

Exercise 8.3.1. Roll your computer die several times. What would constitute a fair die?

To get Maple to pick a random number between 0 and 1, we need the random
command in the statistics package. We define a function named number that generates the
random numbers:

> with(stats) :
> number := x -> random [ uniform [0,1] ] (1) ;

As before, number is a function that requires no arguments (x can be considered to be a
dummy variable). To get a random number, type

> number ( ) ;

Exercise 8.3.2. Generate several of these random numbers. Why do you think the word
uniform appears as one of the arguments in the definition of the number function?

Let's try something a little more complicated. We consider an individual jumping
equal-sized distances along a horizontal line. At each time step, the individual must make
a decision to jump to the right or the left. Suppose that, at each time step, the probability
an individual jumps to the right is R and the probability the individual jumps to the left is
L = 1 — R. Furthermore, we assume that the event of jumping to the right is given by a
Bernoulli random variable with probability p = R. Recall that a Bernoulli random variable
is a discrete random variable that takes on the value I with probability p and the value 0
with probability 1 — p.
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Exercise 8.3.3. To make life more interesting, Maple prefers to consider the Bernoulli ran-
dom variable to be a special case of the binomial random variable. What is the special
case, and why does this work?

Try the following:

> R := 0 .5 :
> rnum := x -> random[ binomiald[l,R] ] ( 1 ) ;
> [ seq( r n u m ( ) , i=1. .20 ) ] ;

As you can see, our function rnum randomly returns a 1 with probability R and a 0 otherwise,
as desired. If we can make a transformation so that we either obtain a 1 with probability R
and a — 1 otherwise, then we can use the result to keep track of the location of the individual.
We will call the transformed function jump. It is defined as follows:

> jump := x -> 2*random[ binomiald[1,R] ] ( 1 ) - 1;

Exercise 8.3.4. Explain the transformation, and evaluate the j ump function a few times.
Did it work?

One way to simulate a sequence of jumps at successive time steps is to first create a
function, say newloc, whose argument is the location of the individual before a jump and
whose value is the location of the individual after a jump, as follows:

> newloc := x -> x + jump() ;

By recursive evaluation of newloc, we simulate the random walk made by the individual.
We let the individual begin at location 5, and then we let the individual make 10 jumps, as
follows:

> loc := 5;
> for i from 1 to 10 do
> loc := newloc( loc );
> od;

Exercise 8.3.5. Let's visualize the random walk:

(a) Create a procedure called plot_sim that plots location versus time for an individ-
ual who makes successive random jumps. Each jump is one unit to the right with
probability R, and otherwise one unit to the left. The arguments of plot_sim
should be R, the probability of jumping one unit to the right, a, the initial location
of the individual, and num jumps, the number of jumps the individual makes. Of
course, you should incorporate the idea behind the function newloc defined above.

(b) Determine the effect of varying the value of R. Run your procedure several times,
keeping the number of jumps at num jumps=2 5, and the initial location constant
at a=0, but varying the value of R. Explain the results (it is a good idea to run the
simulation several times for each value of R).

We won't always need to generate a graph of the random walk. We will define a
function that returns the location of the individual after numj umps steps directly, and try
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it out for numjumps=25, as follows:
> finalloc : = (x,numjumps) ->
> (newloc@@numjumps)(x) ;
> f ina l loc(0 ,25) ;

Here "@@" describes functional composition (to find out more about this, use the Maple
help feature (?@@)).

We can now evaluate the function f inal 1 oc many times so as to empirically deduc
the probabilities associated with different endpoints after a fixed number of jumps (25 is a
nice number to start with), always starting at the same location. We evaluate the function
finalloc ( 0 , 2 5 ) 500 times, and save the results in a list using the seq command (this
will take Maple a while, so be prepared to be patient):

> M : = 500:
> loclist := [ seq( f ina l loc (0 ,25) , i = l . . M ) ] :

To generate ahistogram of the results, weuse the histogram command in the statplots
package (note that we assign the plot to graphl, and then use the display command to
view the plot; this may seem inefficient, but this allows us to use the plot again later, as you
will see soon):

> with( statplots ) ;
> graphl := histogram( loclist ):
> with( plots ):
> display( graphl );

Exercise 8.3.6. In Chapter 5, we learned that if the random walk is unbiased (R = 0.5),
the distribution of individuals after a large number of time steps should be approximated
by a Gaussian distribution with mean \JL = 0 and variance a2 equal to the number of time
steps (or the number of jumps, num j umps). We will test the theory here.

(a) Use appropriate Maple commands to evaluate the mean and variance qfloclist
and compare the results with theory.

(b) Create a new plot of the appropriate Gaussian (using the theoretical values for the
mean and variance) and assign this plot to the variable graph2.

(c) Plot graphl and graph2 on the same set of axes with the following command:

> display( graphl, graph2 ) ;

How good is the approximation ?

(d) Repeat the above with values of num j ump s larger and smaller than 25, and compare.

Exercise 8.3.7. Theory also tells us that the mean-squared displacement of individuals
undergoing the random walk processes should increase linearly with time if the walk is
unbiased (R = 0.5). Let jc,-(0 be the location of individual i at time t. Then test the
theoretical'prediction by using Maple to plot versusus t fort = 1, 2, 3, 4

Test your code with a small value for M. When your code works, you will want to use a
relatively large value for M (and be patient!). What is the slope of the line? Explain the
value of the slope using the theory discussed in Chapter 5.
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8.4 ODEs: Applications to an Epidemic Model and a
Predator-Prey Model

In a previous section, we studied a model that describes population growth in terms of
discrete-time intervals. However, in some cases it is important to know the state of the
system at any time. This can be achieved using differential equations. In this section, we
focus on ODEs. Recall that an autonomous ODE can be written as

where t € R, jc € R", and / : R" -> R". The left-hand side, dx(t)/dt, is the rate of
change of the state variable x(t), and the right-hand side, /(jc(0), summarizes all factors
which cause a change in x(t) (e.g., birth, death, creation, removal, etc.). We will investigate
two specific models, one describing the time course of an infection in a population, and the
second describing a simple predator-prey system.

8.4.1 The SIR Model of Kermack and McKendrick

To obtain the basic epidemic model of Kermack and McKendrick, we split the population
into a class S of susceptible individuals, a class / of infective individuals, and a class R of
recovered or deceased individuals. First, we consider the transition from class 5 to class 7.
Not every encounter between a susceptible and an infective individual leads to infection of
the susceptible. We consider a small time step Af , and we introduce the parameter ft, which
measures the average number of effective contacts per unit time per infective individual
(an effective contact is one in which the infection is transmitted from an infective to a
susceptible individual). When an infection is successful, the newly infected individual is
removed from the class of susceptibles and added to the class of infectives. Thus, in the
small time step A?, the change in the number of susceptible individuals, AS, is

and the change in the number of infective individuals, A/, is

Dividing both sides of the equations by Af and taking the limit as A? -> 0 gives

Next, we consider the transition from class / to class R. Depending on the disease, infectives
either recover (here, we assume that individuals recover with permanent immunity to the
disease) or they die. Both cases lead to the same model. We assume that the rate of recovery
is a. That is, in a time step of Af, the number of individuals that undergo the transition
from class / to class R is oe A?/. After the limiting process, the full model then reads
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Note that R is decoupled from the rest of the system (once a solution for / is known,
R is known as well, and R does not feed back onto the equations for S and /). So it is
sufficient to study the first two equations of the model. We won't be able to find an explicit
solution, giving 51, /, and R as functions of time t. A little later, we will learn how to find
solutions numerically. Before we do that, we will look for solutions in the form 7(5), that
is, / as a function of S. We have

We can solve this equation by hand, but we choose here to use Maple. First, we tell
Maple about the differential equation. We begin by defining / as the right-hand side of the
differential equation:

Then we set up the differential equation (we will use small letters instead of capital letters
for 5 and / in our Maple commands, since Maple interprets I as the imaginary unit /, where
i2 = -1):

> eqn := d i f f ( i ( s ) , s) = f ( s ) ;

Note that the dif f command has been used to specify the derivative.
We solve our equation for / as a function of S with the dsolve command:

> dsolve( eqn, i ( s ) ) ;

Since we did not specify any initial conditions, the solution includes a constant of integra-
tion, here called "_C1" by Maple.

Exercise 8.4.1. Let IQ denote a number of newly infected individuals in an otherwise
susceptible population SQ.

(a) Determine the constant C1 such that I (So) = A)-

(b) Create a Maple function for I(S) with the appropriate constant of integration.

(c) Choose some values for the parameters a, ft, IQ, and SQ, and plot the function I(S)
(e.g., choose a = 0.04, ft = 0.0002, 70 = 10, 50 = 990). What is an appropriate
domain for your graph (think about the maximum and minimum number of susceptible
individuals during the infection)? Does the infection progress as you expected?
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We would really like to find solutions of the model as a function of time. As mentioned
before, we won't be able to do so explicitly. However, we can solve the system numerically.
We assign some values for a and ft and define the system of differential equations:

> alpha := 0 . 04 : beta := 0 . 0 0 0 2 :
> eql := d i f f ( s ( t ) , t) = -be ta*s( t )* i ( t ) :
> eq2 := d i f f ( i ( t ) , t ) = be ta*s ( t )* i ( t ) -

alpha*!(t):

We solve the system with the dsolve command:

> numsol := dsolve( {eql, eq2, s ( 0 ) = 9 9 0 . 0 ,
i ( 0 ) = ! 0 } ,
( s ( t ) , i ( t ) } , type=numeric, output=1istprocedure
) :

Finally, we plot the solution with the odeplot command, found in the plots package. We
show the solution two different ways (you should recognize the graph obtained the second
way):

> with(plots) ;
> odeplot( numsol, [ [t,s (t)], [t,i (t)]], 0..100 );
> odeplot( numsol, [s(t),i(t)], 0..100 );

Exercise 8.4.2. Experiment with different values of the model parameters and initial condi-
tions. Try several cases, and verify that there is an epidemic outbreak when RQ = Soft/a > 1
and no outbreak when RQ < 1.

8.4.2 A Predator-Prey Model

We denote the size of the prey population at time t by x(t) and the size of the predator
population by y(t). We assume that in the absence of a predator the prey population
approaches its carrying capacity as modeled by the logistic law (Verhulst's growth model),

where a > 0 is the per capita growth rate and K > 0 is the carrying capacity. We also
assume that the predator population cannot survive without prey, and model this with an
exponential decay equation,

For each encounter of a predator with a prey there is a certain probability that the prey will
be eaten. We apply the Law of Mass Action and represent removal of prey by predators as
—bxy , where b > 0 is a rate constant. Several successful hunts by the predator will result in
the production of offspring. This is modeled with a term cxy, where c > 0 is a reproduction
rate. In general, b ̂  c (why?). We obtain the following predator-prey model:
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We nondimensionalize this model by letting
and to get

The steady states of the system satisfy the following algebraic system:

We solve for the steady states with the solve command, for the specific case K = 2
andg = 1:

> kappa := 2: g := 1:
> solve( {u*(1-u/kappa)-u*v=0, g*(u-1)*v=o},

{ U , V } ) ;

Maple finds three steady states. We wish to determine the stability of each of the steady
states. For this, we need the Jacobian matrix of the right-hand side of the system of equations,
and it is

We need to evaluate the Jacobian matrix at each of the three steady states and then
determine its eigenvalues to deduce their stability. We will use Maple to do this as well.
We need to use the package linalg:

> with(linalg):

The j a c obi an command gives us exactly what we are looking for (only now the actual
values of K and g are included):

> desys := vector( [u*(1-u/kappa)-u*v, g*(u-l)*v]

) :
> jacobian( desys, [u,v] );
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Unfortunately, we have to jump through some hoops to get Maple to understand the above
as a function of u and v, as follows:

> temp := (u,v) -> jacobian ( desys, [u,v] ) :
> Df := (s,t) -> subs ( u=s, v=t, temp(u,v) ) :
> Df (u,v) ;

We define the three matrices ml, m2, and m3 to be the Jacobian matrix evaluated at the three
steady states, respectively:

> ml := D f ( 0 , 0 ) ;

> m2 := D f ( 2 , 0 ) ;

> m3 := D f ( 1 , 0 . 5 ) ;

We proceed to find the eigenvalues with the eigenvals command:

> evl := eigenvals(ml);
> ev2 := eigenvals(m2);
> ev3 := eigenvals(m3);

Exercise 8.4.3. Verify that the steady states (0,0) and (2, 0) are saddles, and that (I , 0.5)
is a stable spiral.

Note that if you also are interested in eigenvectors for each eigenvalue, then the
eigenvects command will be useful.

We can go further and visualize the complete phase portrait. For this, we need the
DEtools package for differential equations:

> with(DEtools);

First, we define the differential equations:

> del := d i f f ( u ( t ) , t ) = u ( t ) * ( l - u ( t ) / k a p p a ) - u ( t ) * v ( t ) ;
> de2 := d i f f ( v ( t ) , t ) = g * ( u ( t ) - l ) * v ( t ) ;
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We now can graph the vector field defined by the above differential equations using the
df ieldplot command:

> dfieldplot( [del,de2], [ u ( t ) , v ( t ) ] ,
t = 0 . . 1 , u = 0 . . 2 , v = 0 . . 0 . 8 ) ;

Finally, we specify a list of initial conditions with the seq command. Each initial condition
is in the form [to, U(IQ), i>(?o)L The corresponding trajectories can then be drawn in the
phase plane with the phaseportrait command:

> initcond := seq( [0,2,1*0.1], i=1..5);
> phaseportrait( [del,de2], [u(t),v(t)], t=0..10,
{initcond}, stepsize=0.1, linecolor=black );

8.5 PDEs: An Age-Structured Model

In this section, we consider the age-structured model developed in Section 4.2.

Exercise 8.5.1. For most populations, newborn individuals are not immediately capable of
reproduction. So it is natural to expect the lower limit of integration in (4.4) to be a number
bigger than 0. Similarly, for some species, the female population stops reproduction after
a certain age. Discuss the limits of integration in this context. Why can we integrate from
Otooo?

Maple is not capable of handling PDEs, except the most basic ones. However, this
need not deter us, as we can discretize our model and use Maple to help out with a numerical
approximation to the solution.

For ease of discussion, assume discrete time steps of one year and let

u\ := number of individuals with age / at the beginning of year j.

Figure 8.1. Schematic for the discrete approximations of the time and age partial
derivatives.
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We choose the discrete versions of the two derivatives in our model according to the
schematic shown in Figure 8.1:

so that the discrete version of our model becomes

Note that we have accounted for a maximum age of n (for human populations, we can safely
take n = 100).

Arrays versus Lists

We are going to develop a numerical simulation of the discrete model. For programming
purposes, it will be convenient to use arrays instead of lists to keep track of the population
in each of the age classes, as well as the death rates, etc. Arrays are similar to lists, in that
they are an ordered set of elements. However, indexing for arrays is more flexible than for
lists. To illustrate the difference, we first create both a list and an array with the same six
elements. Here's the list:

> L := [ seq( i*i, i = 0 . . 5 ) ] ;

L :=[0, 1,4,9, 16,25]

And here's the array:
> A := ar ray(0 . .5 , [] ) :
> for i from 0 to 5 do
> A[i ] := i*i:
> od;

Now compare L [ 0 ] and A [ 0 ]:
> MO] ;
Error, invalid subscript selector

> A[0] ;

0

The latter is as expected, and as we wish, since the array is indexed from 0 to 5. If we had
wanted to, we could have indexed the array from 10 to 15 (in this case, to extract the first
element of the array, we would need to use A [ 10 ]). Try it! In the case of the list, the first
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element of the list must be extracted with L [ 1 ], even though we created the elements in
the list by letting i run from 0 to 5.

For the discrete age-structured model, the age classes run from 0 to n, and so arrays
with indices that run from 0 to n will be most convenient.

Creating the Simulation for the Age-Structured Model

For our numerical simulation, we begin with a population that is equally distributed over
all age classes. We set up an array for u\ and assign a population of 1 to each age class.
(Obviously, we cannot have a fractional number of individuals, so you should scale these
numbers; i.e., u\ — 1 means 1 million individuals in the corresponding age class, for
example.)

> pop := array(0..100, [] ) :
> for i from 0 to 100 do pop[i] := 1.0; od:

Next, we set up an array containing the birth rate for each of the age classes. For the time
being, we assume a birth rate of 7% between the ages of 20 and 35:

> birth := array(0..100,[]):
> for i from 0 to 100 do birth[i] := 0.0; od:
> for i from 20 to 35 do birth[i] := 0 .07 ; od:

Similarly, we set up an array containing the survival rate for each of the age classes. We
assume a death rate of 1% for each age class, equivalent to a survival rate of 99%:

> survival := array(0. .100, [] ) :
> for i from 0 to 100 do survival[i] := 0 .99 ; od:

To let our population evolve over time, we define a procedure that calculates the population
in year j + 1 (new_pop) from a population in year j (last_pop). We will make use of
the sum command. The syntax of this command is straightforward, but you should note the
quotation marks:

> evolve := proc( last_pop )
> # local variables
> local new_pop, i;
> # define new_pop
> new_pop := array(0..100, []);
> # determine the fraction of the population
> # that survives
> for i from 1 to 100 do
> new_pop[i] := survival [i] *last_jpop [i-1] ;
> od:
> # determine the newborns (age class 0)
> new_pop[0] := sum( 'birth[i]*last_pop[i] ' ,

' i ' =0 . . 100 ) ;
> # return the new population
> RETURN( new_pop );
> end;
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Finally, we define a procedure which lets us plot the number of individuals in each age class
of a population:

> with( plots ) :
> plotpop := proc( some_pop )
> # local variables
> local pop__list, i;
> # create the list of coordinates to be
plotted from some_pop

> pop_list := [ seq( [i,some_pop[i]], i=0..100

) 1;
> # and create the plot
> plot ( pop_list, view=[0..100,0. .2] ,
style=point,
symbol=circle );

> end ;

Running the Simulation

Now we have defined all that we need: an array to contain the number of individuals in
each age class in a population, arrays for the birth and survival rates, a numerical algorithm
that updates the number of individuals in each age class, and a procedure to plot the result.
Let's start the simulation.

First, we plot the initial population:

> plotpop( pop ) ;

Now we calculate the population after one year:

> pop := evolve( pop ) ;

Let's see what happened:

> plotpop ( pop ) ;

We can let the population progress several years with the following recursion:

> for i from 1 to 10 do
> pop := evolve( pop );
> od:
> plotpop( pop );

Exercise 8.5.2. What do you observe ? Describe what happens to the population as time
progresses.

Exercise 8.5.3. Modify the birth and death rates and study the behavior of the population
over time (you will need to re-initialize the population each time you specify new birth and
death rates).
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8.6 Stochastic Models: Common Colds in Households
In Section 5.7.1, we developed a discrete Markov chain model for the outbreak and trans-
mission of a cold in a household. In this section, we show how to implement the model
developed so far. First we define the transition matrix P. We translate the formulas from
above into a program. Let N be the family size, and the matrix P(.,.>,(..) will be called
transition.

> # Family size
> N := 5;
> # Transition array, P(i,j)(k,l) =
transition[i,j,k,1]

> transition := array(0..N,0..N,0..N,0..N);

We first initialize the matrix transition with 0 and then we use formulas (5.66) and
(5.67).

> # Initialize everything with zero
> for nl from 0 by 1 to N do
> for n2 from 0 by 1 to N do
> for n3 from 0 by 1 to N do
> for n4 from 0 by 1 to N do
> transition[nl,n2,n3,n4] := 0;
> od:
> od:
> od:
> od:
> # First type of transition: infections.
> for i from 1 by 1 to N-l do
> for j from 0 by 1 to N-i-1 do
> transition[i,j,i + 1,j ] : =
RO*(N-i-j)/(RO*(N-i-j)+l);

> od:
> od:
> # Second type of transition: recovery.
> for i from 1 by 1 to N do
> for j from 0 by 1 to N-i do
> transition[i,j,i-l,j+1] := I/(RO*(N-i-j)+1);
> od:
> od:
> # Third type of transition: absorbing states.
> for j from 0 by 1 to N do
> transition[0,j,0,j] := 1;
> od:

Next, we choose the parameter RQ and define the state variable qij («), that is, the probability
distribution over the states. For the Maple code we call it probs and start in the state (1,0).
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> RO := 0.154;

> probs := array(0..N,0..N);
> for nl from 0 by 1 to N do
> for n.2 from 0 by 1 to N do
> probs[nl,n2] := 0;
> od:

> od:

> probs[1,0] := 1;

The last step is to define a procedure that iterates our state from one event to the next event.

> iter := proc ( probs_in )

> # define local state variable
> local probs_new, nl, n2, n3, n4;
>
> # initialize the local state
> probs_new := array(0..N,0..N);

> for nl from 0 by 1 to N do
> for n2 from 0 by 1 to N do
> probs_new[nl,n2 ] := 0 ;

> od;
> od:
>
> # now, iterate once
> for nl from 0 by 1 to N do

> for n2 from 0 by 1 to N do
> for n3 from 0 by 1 to N do
> for n4 from 0 by 1 to N do
> probs_new[n3,n4] := probs_new[n3,n4]

+ probs_in[nl,n2]*transition [nl,n2,n3,n4] ;
> od:
> od:
> od:
> od:

>

> # return the new state
> RETURN( probs_new );
> end ;

Finally, we have to iterate over many events until all probability mass is contained in the
absorbing states (in other words, the sum over the probabilities of the absorbing states equals
1). How often do we have to iterate? This is just the length of the longest path from state
(1,0) into the states (0, j ) along the arrows of Figure 5.10. The longest path ends up in
(N, 0), and all paths connecting (0, 1) with (0, N) have length 2N — 1 (check!).
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# now iterate 2*N-1 times:
for k from 1 by 1 to (2*N-1) do
probs := iter(probs);

od:
# Plot the final size distribution
L := [] ;
for nl from 1 by 1 to N do

L := [ o p ( L ) , [ n l , p r o b s [ 0 , n l ] ] ] ;
od:
with(plots) ;
myplotl := plot(L, style=point, symbol =
circle):
display(myplotl);

Given the parameter R0, we are able to obtain the picture of the final size epidemics.

Exercise 8.6.1.

(a) Vary RQ. How does the picture change? Can you explain the changes?

(b) Vary the household size N. What happens?

8.6.1 Application to Data

We now apply our theory to data that are given in Table 5.3. We have to come up with an
estimate for R0. One possibility would be to do a least-squares fit: vary RQ until the error
between data and theoretical prediction is minimal. Using statistical tools, one may refine
this approach, taking an appropriate variance structure into account. However, we use a
shortcut. Let us consider the probability of finding exactly one infected person during the
epidemic within our family. Since there is exactly one path from state (1,0) to state (0, 1),
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the probability for this absorbing state is already given after one iteration, that is, by the
element P(i.0),(o.i)- Since P(i,o).(o.i) = l/(#o (W - 1) 4- 1),

Furthermore, we have a simple estimate for the probability of finding exactly one
infected person during the epidemic. If we let F, be the number of families with / infected
persons, then this probability is approximately F\/F with F — Y^L\ Ft- Hence, RQ may
be estimated by RQ,

For our data we obtain RQ = 0.154, the numerical value we used in our program
in order to calculate the final size distribution. The plot myplotl already contains the
distribution for the appropriate parameter. We add the empirical distribution to this plot.

> # Data
> final := [112,35,17,11,6];
> total := final[1]+final[2]+final[3]+final[4]+final[5];
>
> # empirical final size distribution
> efsd := [] ;
> for nl from 1 by 1 to 5 do
> efsd := [ op(efsd), [nl,evalf(final[nl]/total)]];
> od:

> myplot2 := plot(efsd, style=point, symbol=crossi

> display(myplotl, myplot2);
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We find that data and theoretical prediction agree surprisingly well. In order to judge the
agreement in more detail one has to use statistical methods (see, e.g., [1, 15]), and this is
beyond of the scope of this book.

Exercise 8.6.2. Heasman and Reid [83] divided all households (with five members) into
three classes: overcrowded, crowded, and uncrowded. The data of Table 5.3 represents
overcrowded households. In Table 8.4 the data for crowded and uncrowded households
are given. Estimate RQ and plot the theoretical and empirical final size distribution. Is /?,>
different for the three types of households? Can you explain the results?

Table 8.4. Frequencies for the size of outbreaks for crowded and uncrowded
households. Data are taken from [15].

Final infected

1
2
3
4
5

Number of families
(crowded)

155
41
24
15
6

Number of families
(uncrowded)

156
55
19
10
2
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Chapter 9

Project Descriptions

In this chapter we present a collection of open-ended problems in mathematical biology.
Many of these problems have not previously been studied with a mathematical model.

9.1 Epidemic Models

Project!: HIV

Table 9.1 shows data, taken from [42], on the HIV epidemic in Cuba from 1986 until 2000.
Design a model which describes the epidemic spread of HIV in Cuba, and fit the data in
Table 9.1. Which are the relevant parameters of your model? Try to introduce control
mechanisms to lower the number of AIDS cases. Compare your control mechanism with
the data of the given time period. You need to look into facts about HIV transmission and
Cuba's control strategy via the Internet or in appropriate textbooks.

Project 2: Smallpox

An outbreak of smallpox in Abakaliki in southeastern Nigeria in 1967 was reported by Bailey
and Thomas [11]. People living there belong to a religious group that is quite isolated and
declines vaccination. Overall, there were 30 cases of infection in a population of 120
individuals. The time (in days) between newly reported pox cases is given in the following
sequence:

13, 7, 2, 3,0,0, 1, 4, 5, 3, 2,0, 2,0, 5, 3, 1,4,0, 1, 1, 1, 2,0, 1, 5, 0, 5,5.

Develop a model which describes these data and analyze the epidemic outbreak.

239
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Table 9.1. HIV data from Cuba 1986-2000 (data from [42]).

Year
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000

HIV cases
99
75
93
121
140
183
175
102
122
124
234
364
362
493
545

AIDS cases
5
11
14
13
28
37
71
82
102
116
99
121
150
176
251

Death from AIDS
2
4
6
5
23
17
32
59
62
80
92
99
98
122
142

Project 3: Influenza

In the British Medical Journal in 1978, a report was published with detailed statistics of a
flu epidemic in a British boarding school [5]. The school had 733 pupils [6], all but 30 of
whom were boarders, and all boys. Of these, 512 were confined to bed during the epidemic,
which lasted from January 22nd to February 4th, 1978. It seems that one infected boy
initiated the epidemic. The school dealt with the epidemic by putting a boy to bed as soon
as it was discovered that he was infected. Detailed data are shown in Table 9.2. Model the
epidemic outbreak.

Project 4: Yellow Fever in Senegal in 2002

Yellow fever (YF) is a viral hemorrhagic fever transmitted by infected mosquitoes. YF is
spread into human populations in three stages:

1. Sylvatic (or jungle). YF occurs in tropical rain forests where mosquitoes, which feed
on infected monkeys, pass the virus to humans who work in the forest.

2. Intermediate. YF occurs as infected individuals bring the disease into rural villages,
where it is spread by mosquitoes among humans (and also monkeys).

3. Urban. YF occurs as soon as an infected individual enters urban areas. This can lead
to an explosive epidemic in densely inhabited regions. Domestic mosquitoes carry
the virus from person to person.
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Table 9.2. Influenza in a boarding school (data from [6]).

Date
Jan. 22nd
Jan. 23rd
Jan. 24th
Jan. 25th
Jan. 26th
Jan. 27th
Jan. 28th
Jan. 29th
Jan. 30th
Jan. 31st
Feb. 1st
Feb. 2nd
Feb. 3rd
Feb. 4th

In bed
3
8

26
76

225
298
258
233
189
128
68
29
14
4

Convalescent
0
0
0
0
9

17
105
162
176
166
150
85
47
20

Table 9.3. Yellow Fever in Senegal, 2002 (data from the disease outbreak news
archives of the WHO [161]).

Report date
Jan. 18th
Oct. 4th
Oct. llth
Oct. 17th
Oct. 24th
Oct. 31st
Nov. 20th
Nov. 28th

Cases (total)
18
12
15
18
41
45
57
60

Deaths (total)
0
0
2
2
4
4
10
11

The epidemic can be controlled by vaccination. The YF vaccine is safe and effective, and
provides immunity within one week in 95% of those vaccinated.

Table 9.3 shows a data set of YF cases and YF deaths during an outbreak in Senegal
in 2002, collected from the Internet archives of the World Health Organization (WHO)
[167]. As soon as the virus was identified, a vaccination program was started (Oct. 1,2002).
On Oct. 11, 2002, the disease was reported in Touba, a city of 800,000 residents. More
information can be found on the WHO website [167].

1. Develop a model for the three stages of YF as outlined above.

2. Include a fourth stage which describes vaccination in urban areas.

3. Fit your model to the data.
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4. What would have happened without vaccination?

5. Would you expect the disease to die out, or to become persistent?

Project 5: Cholera in South Africa 2000-2001

The seventh cholera pandemic began in Indonesia in 1961. Over the following 40 years, the
virus Vibric choleras Ol spread around the world, mainly into underdeveloped countries.
In South Africa, the cholera epidemic arrived in mid-August 2000. In Table 9.4, we show
data on the number of cholera cases and cholera-related death cases, taken from the disease
outbreak news archives of the WHO [167].

Large cholera outbreaks are usually related to contaminated water. The cholera virus
is present in brackish water through algae blossom and through human feces. Only 10-20%
of infected individuals suffer from severe symptoms. Many individuals do not show symp-
toms at all, but their feces are infectious. Cholera is a serious disease since the progress of
symptoms can be very fast if not treated.

Table 9.4. Cholera outbreak in South Africa 2000-2001 (data from the WHO
archives [167]). The number highlighted with an asterisk was later corrected by the WHO
to 31; to show that data can be inconsistent, the original number is given here.

Date
Oct. 13, 2000
Oct. 18, 2000
Oct. 19, 2000
Oct. 26, 2000
Nov. 02, 2000
Nov. 09, 2000
Nov. 19, 2000
Nov. 27, 2000
Dec. 05, 2000
Dec. 19, 2000
Dec. 29, 2000
Jan. 09, 2001
Jan. 14, 2001
Jan. 25, 2001
Feb. 04, 2001
Feb. 14, 2001
Feb. 22, 2001
Mar. 03, 2001
Mar. 14, 2001
Mar. 28, 2001
Apr. 16, 2001

Cases (total)
2175
3075
3279
3806
4270
4583
5285
5876
6548
8137
11183
15983
19499
27431
37204
48647
56092
62607
69761
78140
86107

Deaths (total)
22
26
27
33*
32
33
35
35
35
41
51
60
66
74
85
108
120
131
139
163
181
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The WHO recommends four major control mechanisms, namely,

1. hygienic disposal of human feces,

2. adequate supply of safe drinking water,

3. good food hygiene and cooking, and

4. washing hands after defecation and before meals.

More information about this disease, control mechanisms, and vaccination can be found at
the website of the WHO [167].

Develop a model for the outbreak of cholera in South Africa.

1. First, model the epidemic without any control mechanism.

2. Then include the recommended control mechanisms in the model and see if you can
obtain a better fit to the data.

3. Use your model to determine which of the above control mechanisms i s most effective.

4. Can you predict the further development of the disease, provided that all control
measures are in place?

Project 6: SARS Outbreak

Detailed data on confirmed SARS (Severe Acute Respiratory Syndrome) cases in Canada
in 2003 are given in Table 9.5.

Construct a model that can be used to determine the number of current new SARS
cases, deaths, and recoveries each day. Start by assuming a "closed" population with an
initial infection of one person. Further assume that there is no quarantining of SARS patients,
and that no measures are taken to reduce the likelihood of infection from one individual to
another.

Consider deterministic and stochastic versions of this model. Try running the stochas-
tic models on the computer. What level of variability is associated with the predictions?

Can the data be used to estimate parameters in the model? If so, use the data to do
this.

One key disease control goal is to eradicate the outbreak of SARS through quarantining
and preventative measures. Assess the effectiveness of these control measures on the disease
dynamics. If you have time, consider the case where the population is no longer "closed,"
but where new infections can be imported and exported.

Project 7: Paths of an Epidemic

In Section 5.7.1, we considered a model for the final size of an epidemic of the common cold
in a household. The data collected by Heasman and Reid in [83] are even more detailed.
We call the person who got the disease first (i.e., from someone outside of the family) the
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Table 9.5. SARS outbreak in Canada, 2003. Every case is listed on the date the
patient showed the first symptoms, and classified by probable way of infection: T = travel,
F = household, H = health care setting, O = others. Data from a graphic from the Health
Canada webpages [82].

Date

Feb. 23
Feb. 26
Feb. 28
Mar. 3
Mar. 5
Mar. 7
Mar. 9
Mar. 10
Mar. 12
Mar. 13
Mar. 15
Mar. 16
Mar. 17
Mar. 18
Mar. 19
Mar. 20
Mar. 21
Mar. 22
Mar. 23
Mar. 24
Mar. 25
Mar. 26
Mar. 27
Mar. 28
Mar. 29
Mar. 30

New cases
T F H O
1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 2 0
1 0 2 0
0 0 2 0
0 1 1 0
0 0 5 0
0 0 7 0
0 0 9 0
0 0 7 0
0 0 3 0
0 0 4 0
0 0 1 0
1 0 3 0
0 1 4 0
0 4 3 0
0 3 4 0
0 2 5 0
0 4 3 0
0 2 1 0

Date

Mar. 31
Apr. 1
Apr. 2
Apr. 3
Apr. 4
Apr. 5
Apr. 6
Apr. 7
Apr. 8
Apr. 9
Apr. 10
Apr. 11
Apr. 14
Apr. 15
Apr. 16
Apr. 17
Apr. 19
Apr. 22
Apr. 25
Apr. 29
Apr. 30
May 1
May 3
May 7
May 9
May 11

New cases
T F H O
0 0 2 1
1 3 1 0
0 2 1 0
0 2 1 2
0 1 6 0
0 3 0 1
0 2 1 1
0 1 0 1
0 1 2 0
0 1 0 0
0 0 1 0
0 1 0 0
0 1 1 0
0 0 1 0
0 0 3 0
0 0 2 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 2 0
0 0 3 0

Date

May 12
May 13
May 14
May 15
May 16
May 17
May 18
May 19
May 20
May 21
May 22
May 23
May 24
May 25
May 26
May 27
May 28
May 29
May 30
May 31
Jun. 1
Jun. 2
Jun. 3
Jun. 4
Jun. 8
Jun. 12

New cases
T F H O
0 0 2 0
0 0 2 0
0 0 1 0
0 0 2 0
0 0 3 0
0 0 4 0
0 0 5 0
0 0 5 0
0 0 4 0
0 1 5 0
0 0 6 0
0 0 4 0
0 0 8 0
0 0 5 0
0 0 6 0
0 0 7 0
0 0 5 0
0 1 8 0
0 0 1 0
0 1 1 0
0 1 2 0
0 0 1 0
0 0 1 0
0 0 2 0
0 2 0 0
0 1 0 0

first generation. The persons who got the disease directly from this primary infected are
called the second generation. The second generation infects the third generation and so on.
It is very difficult to identify explicitly the members of each infected generation (see, e.g..
[15, 83]). However, it is possible to estimate the number of infected individuals in each
generation. The data shown in Table 9.6 list the number of infecteds in each generation for
181 families. The table shows all possible ways in which the epidemic can spread through a
household of five members. For each possible path, the number of families is given where
this path has been identified. Find a model that can describe these numbers and fit the model
parameters.
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Table 9.6. Data for paths of an epidemic. Shown are all possible infection paths
for households of five members, and the corresponding number of households where this
particular path has been identified. (Data from [15].)

1st Gen.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

2nd Gen.

1
1
2
1
1
2
3
1
1
1
1
2
2
3
4

3rd Gen.

1

1
2
1

1
I
2
3
1
2
1

4th Gen.

1

1
2
1

1

5th Gen.

1

Number of families
413
131
36
24
14
8
11
3
4
2
2
2
3
1
0
0

9.2 Population Dynamics

Project 8: Models for Extinction

Many populations are endangered and are on the verge of extinction. While some go extinct,
others recover. The goal in this project is to apply stochastic birth-death models to modeling
populations on the verge of extinction. These models are described in Section 5.6.2.

In this project, we ask you to analyze some brand new data on Swedish wolf pop-
ulations. Table 9.7 shows wolf population data in Sweden from 1980 to 2001 (data from
Liberg [108]). Prior to 1991, the Swedish wolf population was small and remained steady.
Since 1991, a significant increase in the population has been observed.

Here is some basic wolf biology: reproductive units are packs; one reproduction event
typically results in a litter of pups; there is rarely more than one reproduction event per pack;
and not all wolves are within packs (some may be "lone").

One theory is that this isolated Swedish wolf population suffered from "inbreeding
depression" due to genetic similarity of individuals in the population, and that this ended
with the emigration of a single Russian wolf to the Swedish population in about 1991.
Assume that this is the case. Use the data to calculate the birth and death rates prior to
1991 and after 1991. Based on these, calculate the mean time to extinction, and mean and
variance in population size as a function of time before and after 1991.
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Table 9.7. The number of wolves in the Scandinavian wolf population 1980-1981
to 2000-2001 (data from [108]). The table shows the minimum, maximum, and mean total
number of wolves during each winter.

Year winter
1980-1981
1981-1982
1982-1983
1983-1984
1984-1985
1985-1986
1986-1987
1987-1988
1988-1989
1989-1990
1990-1991
1991-1992
1992-1993
1993-1994
1994-1995
1995-1996
1996-1997
1997-1998
1998-1999
1999-2000
2000-2001

Total (min)
2
3
3
8
6
7
5
6
10
8
8
16
19
16
29
34
41
50
62
67
87

Total (max)
6
3
3
8
6
7
5
6
10
8
8
18
22
30
39
45
57
72
78
81
97

Total (mean)
4
3
3
8
6
7
5
6
10
8
8
17
20
28
34
39
49
61
70
74
92

Detailed analyses of populations at risk can be quite complex and involve detailed
mathematical models. For an example applied to grizzly bears, see the article by Boyce et
al. [24].

Project 9: Growth of Cell Populations

In an article by Baker et al. [12], the growth of yeast cells is reported. The authors consider an
experiment with Schizosaccharomycespombe, where over a period of 8 hours the population
size is measured in cells/mL every half hour. The experimental data are shown in Table 9.8.

Plot the data, and show that they cannot be explained reasonably with an exponential
growth model.

The reason is as follows. Initially, the cells are synchronized, that is, they are at
the same stage in their cell cycle, and the cells divide at approximately the same time.
However, there are some variations in the time of cell division. Some cells divide a little bit
earlier or later than others. Eventually, this destroys the synchronization and cells proliferate
randomly.
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Table 9.8. Experimental data for Schizosaccharomyces pombe taken from [12].

Time (hrs)
Cells/mL

Time (hrs)
Cells/mL

0.0
114

4.5
201

0.5
116

5.0
212

1.0
114

5.5
214

1.5
108

6.0
245

2.0
112

6.5
262

2.5
107

7.0
297

3.0
108

7.5
314

3.5
128

8.0
340

4.0
169

Develop a model which accounts for these effects and which reproduces and explains
the data.

Project 10: Cell Competition

A possible solution of this project is discussed in detail in Section 10.1.
In [63], Gause reported data for the following experiment. In two containers con-

taining the same growth medium, populations of Paramecium caudatum and Paramecium
aurelia are grown. The two populations are measured once per day. Also, in a larger
container, the two populations are mixed and grown together. In this situation, the two
populations compete for the same resources. Again, the populations are measured once per
day. Cause's data are shown in Table 9.9.

Develop a model of the competition, and fit it to the given data. What does your model
predict about the long-term viability of the populations (will both populations survive, or
will one population become extinct)?

Project 11: Fairy Rings

On many lawns in Alberta (and elsewhere), one can observe fairy rings. These are concentric
rings (or parts of rings) of dead grass, or grass of a different color. For many residents as
well as for golf-course owners, fairy rings are considered to be a lawn disease. Fairy rings
are caused by a fungus which lives in the soil and spreads radially. As it grows and branches,
the fungus forms a dense mesh of hyphae, so that water can no longer penetrate to the roots
of the grass. Hence the good grass dies, and other wild grass types dominate. In a famous
paper by Schantz and Peimeisel [139], detailed observations on fairy rings can be found. If
the paper by Schantz and Peimeisel is not available at your institution, you may want to use
Internet resources to learn more about basic features of fairy rings.

In this project, we would like to design a simple model that can describe the growth and
branching of the fungus. It is recommended to study the situation in one spatial dimension
first.

Once your model fungus grows well, you could either (i) generalize the model to
two-dimensional spread, or (ii) include a grass population which competes for resources
with the fairy ring fungus, or several grass species that compete with each other. If time
allows, think of control mechanisms which might slow down or stop the fungus growth.
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Table 9.9. Paramecium competition data (from Cause [63]). Mean density is
measured in individuals per 0.5 cm\

Day#

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Mean density
In isolation

P. aurelia
2
—
14
34
56
94
189
266
330
416
507
580
610
513
593
557
560
522
565
517
500
585
500
495
525
510

P. caudatum
2
—
10
10
11
21
56
104
137
165
194
217
199
201
182
192
179
190
206
209
196
195
234
210
210
180

In competition
P. aurelia

2
—
10
21
58
92
202
163
221
L 293

236
303
302
340
387
335
363
323
358
308
350
330
350
350
330
350

P. caudatum
2
—
10
11
29
50
88
102
124
93
80
66
83
55
67
52
55
40
48
47
50
40
20
20
35
20

Project 12: Optimal Spatial Foraging

Individuals tend to move so as to optimize resource intake. The study of this process is
generally called optimal foraging theory. In this problem, we would like you to investigate
a simple theoretical model for foraging.

Consider a pond surrounded by a ring of moisture-loving plants. The plants have
varying quality. In a given time step, flightless insects living on a given plant have the
opportunity to remain on the same plant, move to the plant to the right, or move to the
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plant to the left. The pond stops insects from jumping to plants other than their immediate
neighbors. Assume that each plant has a fixed quality, but that the quality varies from plant
to plant.

Consider the case where each insect bases its movement decision only upon the quality
of the current plant from which it may move. Write a master equation describing the possible
ways to get to plant / in one time step. Note that the probabilities of not moving, jumping
to the right, or jumping to the left will depend upon the fixed local plant quality levels.

Simulate this model. What is the outcome? Do the insects congregate on high-quality
plants? Now try the model with different behavioral rules (you choose the rules). What is
the outcome?

As a challenge, you may want to extend this model in any number of possible ways.
Three possibilities are given here:

1. Consider the model with plant dynamics included. Assume that herbi vory by an insect
on the plant will reduce the plant quality. What does your model show?

2. Consider the effect of bird predation on the insect populations.

3. Analyze the random walk process by taking the limit where the space and time steps
become small, converting the random walk to a PDE model. This will involve some
adeptness with Taylor series. If you choose to do this, analyze the steady-state (time-
independent) solutions to the PDE model. What do they look like?

Project 13: Mass March of Termites into the Deadly Trap

Typical carnivore pitcher plants feed on any insect which happens to slip into the pitcher.
This catching strategy leads to a relatively constant supply of nutrients. As reported by
Merbach et al. [118], the pitcher plant Nepenthes albomarginata has developed a different,
unique strategy to catch certain termites in huge amounts. On the outside of the pitcher, just
below the peristome, N. albomarginata has a rim of white hairs. These hairs can be eaten
by termites (e.g., Hospitalitermes bicolor). If an individual termite encounters this hairy
rim, it will feed on it happily, but it will not slip into the pitcher. The termite gets away
with it just to inform other termites about its find. Subsequently, termites will return by the
thousands to benefit from the hairy meal on the outside rim of the pitcher. The masses of
termites still arriving push the first individuals into the pitcher. This way, a single pitcher
can catch 100 to 1000 termites per meal.

Model this particular catching strategy. When the model runs successfully, modify
the trapping strategy of your model plant, and see if you can increase the rate of capturing
termites by the plant. Compare the strategy of N. albomarginata with other strategies, such
as an olfactory attractor with a slippery rim and no hairs.

9.3 Models for Spatial Spread

Project 14: The Chemotactic Paradox

A possible solution of this project is discussed in detail in Section 10.2.



250 Chapter 9. Project Descriptions

Figure 9.1. Sketch of the chemotactic paradox.

A variety of mechanisms have evolved by which living systems sense the environment
in which they reside and respond to signals they detect, often by changing their patterns
of movement. The movement response can entail changing the speed of movement and
the frequency of turning, which is called kinesis, it may involve direct movement, which
is called taxis, or it may involve a combination of these. Taxis and kinesis may be charac-
terized as positive or negative, depending on whether they lead to accumulation at high or
low concentrations of an external stimulus. Typical stimuli for microorganisms are light,
gravitation, pressure, or chemical signals. Tactic and kinetic responses both involve the
detection of the external signal and transduction of this signal into an internal signal that
triggers the response.

An example of chemotaxis occurs in Dictyostelium discoideum, where individuals
aggregate in response to a signal from "organizer" cells. Individual cells relay the signal to
their neighbors, thereby causing an outward moving traveling wave of the chemical through
a Dictyostelium population. We are interested in the movement of a single cell as it responds
to the moving signal pulse.

As a model case, we assume that the wave is moving in one spatial dimension from
right to left, as shown in Figure 9.1. A cell at the wave front senses an increasing signal
concentration and moves forward (to the right), opposite to the direction of the wave. As
soon as the wave back passes the cell, the cell senses a negative gradient of the signal
concentration. Hence it should move backwards (to the left), which is in the direction of
the wave. Overall, the cell would spend more time in the wave back than in the wave front,
which should give a net displacement to the left. In experiments, however, cells move to
the right only. This is called the chemotactic paradox. Formulate a hypothesis to resolve
the paradox and investigate your hypothesis with the use of a mathematical model. Can you
resolve the paradox?

Project 15: Movement of Flagellated Bacteria

Flagellated bacteria swim in a manner that depends on the size and shape of the body of the
cell and the number and distribution of the flagella. The common intestinal organism Es-
cherichia coli looks like a small cocktail sausage. It has a rod-shaped body about 10~4 cm in
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Figure 9.2. Schematic of the random walk o/Escherichia coli.

diameter and 2 x 10 4 cm in length. Approximately six flagellar filaments emerge at random
points on the sides of the body and extend about three body lengths into the surrounding
medium. When these flagella turn counterclockwise, they form a synchronous bundle that
pushes the body steadily forward; the cell is said to "run." When they turn clockwise, the
bundle comes apart and the flagella turns independently, moving the cell body this way and
that in a highly erratic manner; the cell is said to "tumble." These modes alternate, and the
cell executes a three-dimensional random walk, as illustrated in Figure 9.2. An impressive
collection of movies of moving cells can be found on the webpages of Howard Berg of the
Rowland Institute at Harvard. The motor mechanisms are described in Armitage [7].

Design a model to describe the movement of an individual bacterium. Once your
simulated bacterium runs well, study a whole population of bacteria. Plot the mean-squared
displacement as a function of time. In Section 5.4.2 on random walks, we found that for a
diffusion process, the mean-squared displacement grows linearly with time. What do you
find with the random walk of the bacteria, especially for small time intervals?

Put a source of a chemical signal at the origin, for example, by setting a signal
concentration

Project 16: Movement of Amoebae

In [146], Soil describes the orientation of a slime amoeba (DictyosteUum discoideum) in
response to an external chemical signal. In Figure 9.3, reproduced from the paper, it is shown
how a cell rotates its body axis in the direction of a chemical gradient which is pointing
upwards. The individual cell measures the signal concentration along its body surface. It
elongates its surface along one side and contracts it along the other sides. This eventually
leads to polarization along the chemical gradient. Develop a model that reproduces this
polarization behavior.

with appropriate parameters a and ft. Bias your random walk such that the bacterium
chooses directions toward (0, 0) more often.

If time allows, let your source do a random walk too and let it be chased by a bacterium.
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Figure 9.3. Illustration of the movement of amoebae. Black regions indicate
areas of extension, striped regions indicate areas of retraction, and the arrow indicates
the orientation of the cell. (Figure 4 of Soil [146], reprinted with permission from Kluwer
Academic/Plenum Publishers.)
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Project 17: Home Ranges

For this project, Sections 8.1-8.3 ofOkubo and Levin [127] are needed.
Many animals have home ranges or territories. These include wolves, coyotes, bad-

gers, squirrels, birds, and lizards. The goal of this project is to develop a spatially explicit
model for home-range movements of an animal. Individuals typically cue their movement
behavior based on sound, familiar and foreign scent marks, prey density, and familiarity with
a particular region. Some animals use one cue over another. For example, birds primarily
use sound (bird calls), while wolves primarily use scent marks.

Read Sections 8.1-8.3 from the book by Okubo and Levin [127]. Simulate the Holgate
model (cases 1 and 2) for an individual's movement. Repeat this for a large number of
individuals (realizations of the stochastic process). What do the spatial distributions of
large numbers of individuals look like in each of the two cases? Formulate a third case
where the bias does not vary with distance. Simulate this case. Now let e = fcAjc, where
A* is the spacing between grid points. Derive a PDE model for this third case by taking
the "diffusion limit" discussed in chapter 5. Calculate the steady-state distribution for this
PDE model, compare with simulation results, and plot the results.

Develop more realistic models for animal movement. You may want to start by reading
"An Olfactory Orientation Model for Mammals' Movements in Their Home Ranges" by
Benhamou [18]. Simulate the animal movement using random numbers drawn from a
Gaussian and the algorithm given on page 382 of [18]. Print out a movement path similar
to Figure 1, page 382. Modify the animal movement simulator as described on the top of
page 383. Print out a space-use pattern for a 10,000-step path as shown in Figure 2, page
383. Discuss the algorithm and output.

Design your own model for home-range or territorial movement behavior. Territories
involve interactions between adjacent home-range holders through signaling (e.g., scent-
marking), and thus require two or more individuals interacting in space. Choose an animal,
and tailor a territorial model to fit the biology. Simulate the model. Which rules give rise
to stable territories?

Project 18: Re-invasion of Otters to California's Coast

One example of a biological invasion is the spread of a re-invading sea otter species off the
coast of California. It was thought to be extinct until a relict population was found off Point
Sur in 1914. Under protection from hunting, it grew and spread spatially, and now it calls
much of the west coast of North America its home. Details on the early spatial spread are
given in Figure 9.4 and Table 9.10 (from [110]). Most of the sea otter activity occurs within
1 km of the coast, and so the spread can be thought to be linear (up and down the coast).

Plot the distance spread versus time in northward and southward directions. Also
plot the total range radius versus time. Discuss why spread may be different in north and
southward directions. Derive a mathematical model for the spread process. You may want
to research the life history of sea otters so as to make your model realistic.
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Figure 9.4. Graphical illustration of the range expansion of sea otters. (Figure \
ofLubina and Levin [110], reprinted with permission from Chicago University Press.)

9.4 Physiology

Project 19: Pupil Control System

The pupil is the opening in the middle of the eye through which light enters the eye. In
many animals, including humans, involuntary contraction and dilation of the pupil regulates
the intensity of light entering the eye. The pupil will contract under bright light conditions,
while it will dilate under low light conditions.

Now suppose that you shine a tiny spot of light onto the eye, always in the same
location, and that the spot initially is on the edge of the pupil. At first, the pupil will contract
in response to the spot of light. After the contraction, the light no longer enters the pupil,
so it will dilate. After the dilation, the light again enters the pupil, so it will contract again,
and so forth. An oscillation has been generated, for example, as shown in Figure 9.5.

Develop a model to reproduce the phenomenon. Begin by developing a model of the
light intensity as a function of the pupil radius. Then add in negative feedback. Can you
obtain oscillations? Investigate the incorporation of a delay representing the time it takes
for the eye to respond to a change in light intensity.
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Table 9.10. Experimental data on the range expansion of sea otters. (Table 1 of
Lubina and Levin [110], reprinted with permission from Chicago University Press.)

RANGE EXPANSION AND POPULATION SIZE OF THE CALIFORNIA SEA OTTER
ALONG THE CALIFORNIA COAST (IN km)

EXTENT OF
RANGE INCREASE

YEAR
1914
1938
1947
1950
1955
1957
1959
1963
1966
1969
1972
1973
1974
1975
1976
1977
1978
1979
1980
1982
1983
1984
1986

North
?
11
8
2
3
11
6
5
0
6
0
23
6
8
10
8
0
0
0
0
26
0
7

South
?

(21)
23
13
16
6
6
10
6
13
15
29
5
0
6
6
0
6
13
0
15
0
7

ESTIMATED
TOTAL RANGE

(11)
43
74
89
108
125
137
152
158
177
192
244
255
263
279
293
293
299
312
312
353
353
7

POPULATION
SIZE
(50)
310
530
660
800
880
1050
1190
1260
1390
1530
1720
1730
?

1789
?
7

(1443)
7

1338
1226
1203
1400

NOTE.—The extent of the range is determined by the linear distance along the coastline between the
outermost main raft of otters at the population boundaries. Point Sur was used as the location of the division
between the northern and southern populations. The total estimated population size was based on aerial and
shore counts. Parentheses indicate that the estimate was considered unreliable; a question mark means that no
estimate was made.

SOURCES.—E. Ebert, pers. comm.; Riedman and Estes, MS; Estes, unpubl. data.

Project 20: Modeling of Heart Beats

In this project (inspired by Chapter 1.1.3 in [1]), you are asked to investigate the production
of heart beats.

A mathematician's view of the apparatus for beating of the heart is shown in Figure 9.6.
The sinoatrial (S A) node is the pacemaker. Its function is to send signals at regular intervals
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Figure 9.5. (a) Technique used for pupil stimulation. Light here is focused on the
border of iris and pupil. Small movements of the iris result in large changes in light intensity
of the retina, (b) Example of spontaneous high gain oscillations in pupil area obtained with
constant light stimulus using high gain operating condition illustrated in (a). (Figures 1J
and 12 in Section II of Stark [149], reprinted with permission from Kluwer/Plenum Press.)

to the atrioventrical (AV) node. Upon receipt of a signal from the SA node, the AV node
checks the condition of the heart and decides whether to tell the heart to contract or not.

For a simple model of the heart, it is sufficient to describe the behavior of the AV
node. The AV node uses an electrical potential to keep track of the condition of the heart.
In particular, this potential decreases exponentially during the time between signals from
the SA node. When the AV node receives a signal from the SA node, one of two things
happens. If the potential is too high, it means that the heart is not yet ready to contract again,
and the AV node ignores the signal. Otherwise, the AV node tells the heart to contract. The
contraction of the heart causes the potential of the AV node to increase (for simplicity, you
may assume that the increase is a constant).

Develop a model describing the electrical potential of the AV node. Under what
conditions does your model produce regular heart beats?

Investigate the production of irregular beating patterns by modifying parameters in
your model. Two patterns of clinical interest are second-degree block and the Wenckebach
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Figure 9.6. A schematic of the heart beat control mechanism. Figure adapted
from Adler [ 1 ].

phenomenon. Second-degree block refers to the situation in which the heart skips every
other beat (i.e., the AV node blocks every other signal from the SA node). The Wenckebach
phenomenon refers to the situation in which the heart skips a beat every now and then, while
it beats normally most of the time. Can your model produce other beating patterns?

Project 21: Ocular Dominance Columns

Visual information is transmitted via the optic nerve to the visual cortex. Scientists studying
the visual cortex of cats and monkeys discovered columns (bands or stripes) of neurons that
selectively respond to visual information from one eye or the other. The bands are interlaced,
as shown in Figure 9.7.

Hubel et al. [94] suggested that the columns are formed through a competition process
during the first several months after birth. Neurons in the visual cortex have a number of
synapses receiving inputs from the eyes. A synapse is associated either with the right
eye or the left eye. Initially, all neurons are binocular, that is, it has both right- and left-
eye synapses, and the synapses are intermixed randomly. During development, synapses
can switch allegiance from one eye to the other, as a result of competition. Swindale [153]
demonstrated that ocular dominance patterns can be generated by assuming that interactions
between right- and left-eye synapses follow two simple rules:

(1) Local interactions (within a region 200 /am in diameter) are stimulatory (for example,
in a region where right-eye synapses dominate, there will be an increase in the number
of right-eye synapses at the expense of left-eye synapses);

(2) Interactions over larger distances (200-600 ^im) between opposite-eye synapses are
inhibitory (for example, in an annular ring surrounding a region where right-eye
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Figure 9.7. Ocular dominance stripes in an area of the visual cortex of a macaque
monkey. Black represents neurons receiving input from one eye; white represents neurons
receiving input from the other eye. (Figure 24 (a) from Hubel and Wiesel [93], reprinted
with permission by the Royal Society of London.)

synapses dominate, there will be an increase in the number of left-eye synapses at the
expense of right-eye synapses).

Develop a cellular automaton simulation that implements the assumptions mentioned
above. Initially, you may assume that the number of synapses remains fixed.

Investigate the effect of growth of the visual cortex during development of the ocular
dominance stripes. How does this affect the pattern produced?

Investigate the effect of monocular deprivation (restricting the input from one eye
for a period of time during development). Are there times at which monocular deprivation
causes a change in the eventual pattern?

Project 22: The Sound of Many Hands Clapping

A popular topic in mathematical biology is the self-organization of many individual units,
whether they be cells or people, to produce patterns in space and/or time.

An interesting example of self-organization is rhythmic applause produced by audi-
ences in concert halls. An audience indicates its appreciation for a performance by the
strength and nature of its applause. In [124], Neda et al. note that several transitions be-
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tween fast, incoherent clapping and slower, synchronized clapping may occur. Apparently,
an audience has a desire for both synchronization and high noise intensity. However, syn-
chronization can only occur with a low clapping frequency, corresponding to a low noise
intensity. When members of the audience increase their clapping frequency to increase the
noise intensity, synchronization is lost.

Develop a model that reproduces the phenomenon of self-organization by clapping
audiences.

Experimental findings on the clapping phenomenon can be found in Neda et al. [ 124].
For some modeling ideas, the work by Strogatz on the synchronization of male fireflies may
be helpful (see [152] for an introduction).

Project 23: Tumor Growth and Radiotherapy

The development of cancer is a multistage process involving multiple genetic events. Dam-
age to DNA can cause mutations. Some mutations alter the function of tumor suppressor
genes, such as P53, which controls cell growth. Such mutated cells grow faster than normal
cells.

Develop a model that describes cancer growth in an environment with limited re-
sources (such as oxygen). Start with one cell which has undergone a mutation for faster
growth (initiated cell). The initiated cell grows and proliferates. In successive generations,
more and more mutations occur and some cells become more and more aggressive. The
aggressive cells grow faster, but they need more resources. Assume that all cells, cancerous
and healthy, compete for the same resources.

Model the different mutation stages. Does your model show that the tumor grows
unlimited, or will the growth come to a halt due to limited resources?

If time allows, add radiotherapy to your model (see Figure 9.8). Assume that an
ionizing beam is used periodically, which (i) kills cells and (ii) enhances mutations. Un-
fortunately, radiation also affects normal cells. What happens? Can you design a good
treatment plan? According to your model, how often would you radiate and in which time
periods to optimize treatment and to minimize side effects on normal tissue? For further
reading on cancer in general, we recommend the "World Cancer Report" by Stewart and
Kleihues [150].

Figure 9.8. Schematic of tumor progression and radiation treatment.
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Figure 9.9. Shells of Olivia and Conus species.

Project 24: Mollusk Patterns

Many mollusks show very interesting patterns on their shells. Figure 9.9 shows examples of
Olivia spec, and Conus spec. Since these shells grow gradually on the outer edge only and
since the patterns do not change later, it can be seen as the time record of a one-dimensional
pattern-producing system.

These shell patterns are very similar to some patterns produced by some simple Wol-
fram automata (discussed in Section 6.1.1). Therefore, they might be modeled with cellular
automata as done by Kusch and Markus [103].

Find rules for a one-dimensional cellular automaton that produces patterns as shown in
Figure 9.9. You may also look for pictures of other Olivia and Conus species and reproduce
their patterns. If you look closely at these pictures, you see that real shell patterns are never
as perfect as patterns produced by simulations. Introduce stochasticity in your automaton
to generate more realistic patterns.

Please note that if two patterns look alike, it does not necessarily mean that they are
produced by the same mechanism. You may compare your model with the reaction-diffusion
models in [117].

Project 25: Run-Bike-Fun

A "Run-Bike-Fun" sports event takes place every year in a small university town in Germany.
Each participating team consists of two people. Both people have to complete a 15 km course
through a combination of running and cycling. Each team has one bicycle. Only one person
is allowed to ride the bicycle at any one time, but team members can switch between running
and cycling as often as they wish. The first team with both partners at the finish line wins.
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At the beginning of the race, one person starts riding the bicycle, and the other starts
running. After some time, the cyclist gets off the bicycle, puts it down, and starts running.
When the other runner reaches the bicycle, he/she picks it up and starts cycling.

What is the optimal switching strategy? At which locations along the course should
the switch(es) occur?

You may wish to begin by assuming that it takes no time to get on/off the bicycle,
that both team members are x times faster at cycling compared to running, and that people
run/cycle with constant velocity. Based on your own experience, estimate the value of jc.
When/where should you switch?

In reality, people get tired. How might you describe that? Would you use the same
description for running and cycling? How does this affect the optimal strategy? Also,
switching between cycling and running takes time. How does this affect the optimal strat-
egy? What if two people with different abilities form a team?
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Chapter 10

Solved Projects

10.1 Cell Competition
In this section we present and discuss a solution for the cell competition project (Project 10
in Chapter 9). The model is based on the work of Renouf and Choczynska [136].

We analyze the data gathered by Cause [63] and summarized in Table 9.9. Popula-
tions of Paramecium aurelia and Paramecium caudatum were grown in isolation and in
competition over a period of 25 days. Nutrient levels were kept constant, resulting in both
intra- and interspecific competition. The data from Table 9.9 are plotted in Figure 10.1.

When P. aurelia and P. caudatum are grown in isolation, it appears that both popula-
tions reach a steady state over the course of the experiment. When the two populations are
grown in competition, the data suggests that P. aurelia reach a steady state, albeit at a lower
level than in isolation. P. caudatum seem to head either towards extinction or towards a
steady state as well, also at a lower level than in isolation. A question of interest for this
project is to find out which of these situations is most likely for the given data.

10.1.1 Paramecium caudatum in Isolation

We model the growth of an isolated population with the logistic equation (encountered in
Section 3.1 as (3.6))

where x(t) is the mean density (in individuals per 0.5 cm3) at time t (in days), r is the
instantaneous rate of increase (births/deaths), and K is the carrying capacity per 0.5 cm3.
We assume constant K and r, linear density dependence, no time lags, no migration, no age
structure, and limited resources.

We define and solve (10.1) in Maple, as shown in Section 8.4.1. Note that we have
taken the initial condition to be jc(0) = 2, in accordance with the data from Table 9.9.

263
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Figure 10.1. Growth of P. aurelia and P. caudatum. Data taken from Table 9.9.

We are interested in the values of r and K so that the solution x(t) of (10.1) best fits the
experimental data. We show how to determine r and K with a simple iterative process for
P. caudatum, and leave the determination of r and K for P. aurelia as an exercise to the
reader.

First, we obtain a good fit visually by trial and error. With r = 0.65 and K = 200,
the fit is reasonable, as can be seen by executing the following set of Maple commands:

> r :=0.65: K:=200:

> cauda tum:=[ [0 ,2 ] , [2 ,10] , [ 3 , 1 0 ] , . . . , [25 ,180]] :
> data:=plot(caudatum, style=point):
> theory:=plot(sol, t = 0 . . 2 5 ) :
> with(plots) :
> display(data, theory, labels=["time steps",

pop] ) ;
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Figure 10.2. The plot of population versus time steps. The model solution, sol,
is shown as a solid curve; the experimental data points are shown as dots.

The list, caudatum, is the list of data points for P. caudatum in isolation from Table 9.9.
Defining E, to be the mean density of population at time t = /, for i = 0, 1,. . . , 25, the
entries in this list are then of the form [/, £,•]. Note that we have created two plots, but
assigned the results to the data and theory variables, and superimposed these two plots
with the display command. The result is shown in Figure 10.2. As can be seen, the fit is
quite reasonable, but we can do better. To obtain the best fit, we use the least-squares method
(see p. 209), in which we minimize the sum of the squares of the differences between the
theoretical and experimental values at each point. The theoretical value equivalent to E, is
jc(i; r, K), the expected mean density of individuals on day i for specified values of r and
K. Let the sum of squares be

Our task is to find values of r and K so that the sum D(r, K) is minimized.
The following Maple procedure, sum_sq, will be used to determine the sum of

squares. The list referred to, caudatum, is the same list as above.

> sum_sq:=proc(r,K)
> local D, d, a, i, p, fa, sola, eqa;
> eqa:=diff(x(p),p)=r*x(p)*(1-(x(p)/K));
> sola:=dsolve({eqa, x(0)=2}, (x(p)});
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> # solves the differential equation
> fa:=rhs(sola);
> # initial D with term corresponding to i = 0
> D:=(evalf(subs(p=0,fa))-2)~2;
> # update D
> for i from 2 to 25 do
> a:=evalf(subs(p=i,fa));
> d:=evalf((a-(caudatum[i][2]))"2);
> D:=D+d;

> od:
> D;

> end ;

We proceed by computing the sum of squares over a range of K values, from K\ to KI in
steps of 0.1, for a fixed value of r. The following procedure, range, outputs a list of the
form [K, D(r, K)], for K = KI ,..., K2:

> range:=proc(r,Kl,K2)
> local L, i, s;
> L:=[];
> for i from Kl by 0.1 to K2 do
> s:=sum_sq(r,i);
> L: = [op(L) , [i,s]] ;
> od;
> L;
> end ;

We now use the range procedure to compute the sum of squares for r = 0.65 and value
of K between KI = 190 and KI = 210, and plot the resulting sum of squares as a function
of AT.

> q:=range(0.65, 190, 210) ;
> plot(q, labels=[K, sum_sq]);

The result is shown in Figure 10.3. We can see that the minimum occurs at approximately
K = 203. By examining the entries in list q, we find that the K value for which D(r, K)
is a minimum is K = 203.2 (with error less than 0.1). We now fix K = 203.2 and use a
similar procedure to find the best r value. We find r = 0.66. We repeat these two steps
to improve r and K. The process converges, and we find that the values of r and K that
produce the best fit of the model solution to the data are r = 0.66 and K = 202.6. Th
reader is encouraged to use the above approach to find the best fit parameters for the data
of P. aurelia. We find r = 0.79 and K = 543.1. In Figure 10.4, the best fit solutions are
shown with the experimental data.

10.1.2 The Two Populations in Competition

Now that we know the growth dynamics of the two species in isolation, we will investigate
the growth dynamics in competition. We assume the Lotka-Vblterra competition model,
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Figure 10.3. The sum of squares, D(r, K),for r — 0.65, as a function of K. The
minimum is attained at K = 203.2 (with an error less than 0.1 j.

Figure 10.4. Comparison of the best fit solutions of the logistic model, (10.1), and
Cause's experimental data for growth of P. caudatum and P. aurelia in isolation.
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discussed briefly in Section 3.3.2:

Here, Nf represents the population density (in individuals per 0.5 cm3) of species /, for
i = 1,2. Species 1 is P. aurelia, and species 2 is P. caudatum. The term r, represents the
instantaneous rate of increase of species /, and Kj represents the carrying capacity of species
i. The parameter p\-> represents the per capita effect of P. caudatum on the population growth
of P. aurelia, and /^i represents the per capita effect of P. aurelia on the population growth
of P. caudatum. Notice that if the second species is absent, that is, A^CO = 0, then (10.2)
reduces to the logistic equation. This is expected, since the first species will then not be
affected by the second species. We already know the values of n, r^, K\, and K2: they are
the values we determined in the previous section. Now we are interested in finding best fit
values for $12 and /^i-

We define system (10.2)-(10.3) with Maple:

> e q N l : = d i f f ( N l ( t ) , t )
= r l *Nl ( t )* (Kl - N l ( t ) - be ta !2*N2( t ) ) /Kl ;

> e q N 2 : = d i f f ( N 2 ( t ) , t )
= r 2 * N 2 ( t ) * ( K 2 - N 2 ( t ) - be ta21*Nl( t ) ) /K2;

To obtain the solution, we specify the values of the model parameters and solve the system
numerically. As we did in the previous section for r and K, we start with guesses for the
values of fti2 and fa[ and modify them until we get a good visual fit of the model to the
experimental data. Once we have a good visual fit, we improve upon the values of f$\ 2 and
$21 using the same iterative approach as above (the details are left to the reader). We find
that the best fit values are ($12 = 2.17 and $21 = 0.36:

> r l :=0.79; Kl:=543.1; r 2 : = 0 . 6 6 ; K 2 : = 2 0 2 . 6 ;
beta!2:=2.17; beta21:=0.36;

> sol:=dsolve({eqNl,eqN2,Nl(0)=2,N2(0)=2},
{Nl(t),N2(t)}, type=numeric,
method=classical[rk4], output=listprocedure):

Superimposing plots of the experimental data and the best fit solution as before, we obtain
the graph shown in Figure 10.5. Agreement between the data and the model is good. From
Figure 10.5, it appears that P. caudatum is heading towards either extinction or a small
steady-state population. Consequently, P. aurelia would experience no or less interspecific
competition, and it would grow towards its carrying capacity in isolation or close to it. To
determine which of these situations is predicted by the model, we can run the simulation
beyond 25 days. We will do so in Section 10.1.4. In the meantime, we will proceed with
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Figure 10.5. Comparison of the best fit solution to the competition model and
Cause's experimental data for growth of P. caudatum and P. aurelia in competition.

a detailed phase-plane analysis of the competition model in the next section. The analysis
will lead to a valuable insight about the strength of our conclusions.

10.1.3 Phase-Plane Analysis of the Competition Model

Nuliclines and Steady States

We begin by finding the nullclines of the model, (10.2)-(10.3). The nullclines for P. aurelia
are obtained by setting (10.2) to zero, yielding two straight lines, namely, the trivial nullcline

and the nontrivial nullcline

When plotted in the (N\, N2) phase plane, the trivial nullcline lies along the A^-axis.
The nontrivial nullcline has slope —l/fii2 and the intercepts are located at (Ki,Q) and
(0, Ki/fin)- Similarly, the nullclines for P. caudatum are obtained by setting (10.3) to zero,
yielding the trivial nullcline

and the nontrivial nullcline

The trivial nullcline lies along the N[ axis. The nontrivial nullcline has slope —$>i and the
intercepts are located at (K2/^21^ 0) and (0, ^2).
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Figure 10.6. Four essentially different cases for the cell competition model, (10.2)-
(10.3), based on the relative positions of the N\- and A^-intercepts of the nontrivial null-
dines. Solid lines represent the N\ nullclines given in (10.4) and (10.5); dashed lines
represent the N2 nullclines given in (10.6) and (10.7). (a) Case I: K2/f$2i < K\ and
Ki/Pn > K2; (b) case II: K2/p2l > #1 andKi/pn < K2; (c) caw? HI: #2/A>i < KI and
Ki/fin < K2; (d) case IV: #2/#>i > KI and K{/fil2 > K2.

Table 10.1. Summary of the cases shown in Figure 10.6.

faiKi — K2

P\2K2 — KI
Pnfai — 1

Case I
> 0
<0
> 0

Case II
<0
>0
< 0

Case III
> 0
>0
> 0

Case IV
<0
<0
< 0

Based on the relative positions of the A^i - and ̂ -intercepts of the nontrivial nullclines,
we distinguish four different cases, as shown in Figure 10.6 and summarized in Table 10.1.

Steady states occur at the intersection of a nullcline for NI and a nullcline for A^- In
Figure 10.6, we look for intersections of a solid curve and a dashed curve. We see that the
following three steady states always exist, independent of the choice of model parameters:

5i:(^,,JV2) = (0,0),

S 2 : ( N l , N 2 ) = (Kl,0),
S 3 : ( N l , N 2 ) = (0,K2).
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Steady state Si is not so interesting, since it represents the situation in which both
populations have gone extinct. Steady state S2 represents the situation in which species 2
has gone extinct, and species I has reached its carrying capacity, K{. Similarly, steady state
•$3 represents the situation in which species 1 has gone extinct, and species 2 has reached
its carrying capacity, KI. Note that 82 and 53 represent the steady states of the populations
in isolation.

A fourth steady state may or may not exist, depending on whether (10.5) and (10.7)
intersect in the first quadrant or not. When it exists, as in cases HI and IV, it is given by

Steady state £4 is of particular interest. If it exists and is stable, it represents coexistence of
the two populations.

Linear Stability Analysis

As shown in Section 3.4.2, we can determine the stability of a steady state by using the
Jacobian matrix. For our system, (10.2)-(10.3), the Jacobian matrix is

Evaluating Df(N\, N^} at steady state Si gives

The eigenvalues of this matrix are X\ = r\ > 0 and A,2 = r2 > 0, indicating that steady
state Si always is an unstable node.

Evaluating Df(N[, N2) at steady state S2 gives

The eigenvalues of this matrix are A| = —r\ < 0 and

Note that the sign of A.2 can be determined easily from the information summarized in
Table 10.1. Thus, steady state S2 is a stable node in cases I and III, and a saddle in cases II
and IV. Similarly, it can be shown that steady state S-? is a stable node in cases II and III,
and a saddle in cases I and IV.
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Figure 10.7. Expanded phase plane diagrams, corresponding to Figure 10.6.
Filled circles indicate stable steady states; open circles indicate unstable steady states, (a)
Case I; (b) Case II; (c) Case III; (d) Case IV.

Lastly, evaluating Df(N\, N2) at steady state .$4 gives

Instead of calculating the eigenvalues of this matrix explicitly, it is more convenient to
determine the stability via the determinant and trace (equation (3.22) in Section 3.4.1). We
have

Using the information summarized in Table 10.1, we find that in case III, det Df < 0. Thus,
steady state 54 is unstable in this case. In particular, it is a saddle (recall Figure 3.10 from
Section 3.4.1). In case IV, steady state 54 is stable, since det Df > 0 and tr Df < 0.

Phase planes for the four different cases are shown again in Figure 10.7, this time
with the steady states and their stability superimposed. Typical solution trajectories are
shown as well. Note that there is bistability between steady states 82 and 83 in case III
(Figure 10.7 (c)), and the final outcome of the competition depends on the initial condition.
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Figure 10.8. (a) Long-term behavior of the best fit solution for the competition
model; (b) solution trajectory shown in the phase plane.

10.1.4 Model Prediction

We now return to the experimental data of Cause and the best fit solution of the competition
model that we found in Section 10.1.2. We determined that the best fit parameters for our
model, (10.2)-(10.3), are n = 0.79, K{ = 543.1, r2 = 0.66, K2 = 202.6, ftn = 2.17, and
^21 = 0.36. From Table 10.1, we can see that case IV holds with these parameter values.
That is, the model predicts that the two species can coexist. Indeed, numerical simulation of
the model beyond 25 days shows that both populations are predicted to reach a steady state,
as shown in Figure 10.8 (a). The solution in the phase plane is shown in Figure 10.8 (b), as
well as the nullclines. Note that species 1 approaches a steady state just below its carrying
capacity of K\ = 543.1, and species 2 barely survives, approaching a steady state much
smaller than its carrying capacity of £2 = 202.6.

In Figure 10.8 (b), we see that the two nontrivial nullclines have very similar slope.
This indicates that case IV holds, but just barely. It is not hard to imagine that a slight change
in the parameter values will shift and/or tilt the nullclines so that case I holds instead of case
IV. In that case, the model predicts that species 1 will drive species 2 to extinction. Thus,
although Cause's data set suggests that the two populations in his experiment are able to
coexist in competition, there is room to argue this conclusion. This insight follows directly
from our detailed analysis of the model in the previous section.

10.1.5 An Alternative Hypothesis

In this project, we were able to explain the experiment of Cause successfully by a model that
assumed interspecific competition for resources such as nutrients and space. As in every
model, we neglected a number of facts, important or not. Therefore, it is necessary to think
about alternative hypotheses and to compare different models. Instead of competition for
resources, are there other reasons that could underlie limitations in growth?
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Consider the production of beer or wine by yeast cells. In these situations, the medium
in which the yeast population grows is not renewed, and toxic waste (alcohol) produced
by the yeast builds up in the medium. The more sensitive the yeast cells are to alcohol,
the sooner they will die, and the less alcohol will be present in the medium after all yeast
cells have died (the reason why wine has a higher alcohol content than beer is that the yeast
species used to produce wine is less sensitive to alcohol than the species used to produce
beer).

The above example leads to the following alternative hypothesis. Suppose that pop-
ulations of two species are grown in the same medium which is not renewed through the
course of the experiment. Consequently, nutrient levels decline, and waste products build
up. What happens if the two species have different intrinsic growth rates and different sen-
sitivities to the waste products? Can a model based on this alternative hypothesis explain
Cause's experiment?

10.2 The Chemotactic Paradox

In this section, we treat the chemotactic paradox (Project 14 in Chapter 9). The model of
Section 10.2.1 was derived by Cubbon and Gutermuth [40]. The chemotactic paradox is
a classical problem in cell movement and has been studied by a number of researchers. In
Section 10.2.2, we relate our model to the literature.

10.2.1 A Resolution of the Chemotactic Paradox

Chemotaxis is the response of motile cells in which the direction of movement is affected
by the gradient of a diffusible substance. For example, individual cells of the species
Dictyostelium discoideum aggregate in response to a signal from so-called organizer cells
(also called "pacemaker" cells). The chemical signal initially is released by the organizer
cells. The signal binds to cell surface receptors on neighboring cells. As a result, neighboring
cells change their orientation and move towards the aggregation center. In addition, the
neighboring cells are stimulated to release the signal as well. On the level of the entire
population of cells, this process causes a signal wave moving outward.

We consider one motile cell and its response to a single-peaked signal wave that is
approaching the cell from the right (thus, the signal wave is moving from right to left). If
we assume that the cell can sense the local chemical gradient and moves in the direction of
a positive gradient, then the cell would move to the right initially as the wave approaches.
As soon as the peak of the wave has traveled past the cell, the cell experiences a negative
gradient. One would expect the cell to reverse its direction and move to the left. Overall,
the cell would show a net displacement to the left. However, it is found experimentally that
cells only move to the right or they stop; they do not reverse during aggregation. This is the
chemotactic paradox which we will resolve with a mathematical model.

To study this phenomenon, we consider the apparatus which is used by the cell to
measure the chemical gradient. Across the cell surface, there are receptor proteins which
are able to bind certain chemicals. In the case of Dictyostelium discoideum, the chemical
signal is cAMP (cyclic adenosine monophosphate). We assume that as soon as the receptors
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Figure 10.9. Sketch of a cell with receptors on both ends and an incoming traveling
signal wave.

at the front of the cell are occupied, a messenger signal is sent through the cell body which
inhibits (closes) the remaining receptors. Thus, the remaining receptors are desensitized,
resulting in the cell possessing directional information. We assume that the cell moves in
the direction of the occupied receptors.

We begin the model by considering an observer cell located at x =0. Assume that the
cell has length L > 0. We choose the coordinate system so that the front of the cell always
is located at x = 0, as shown in Figure 10.9. We use a wave of the chemical signal which
has the form of a Gaussian distribution and is moving to the left with unit speed without
changing its shape. Let s(t) be the signal concentration at x = 0. We model s(t) by

where a is the standard deviation and to is the time at which the peak of the wave reaches
the front of the cell. Further, we assume that the cell has an equal number of receptors at the
front and back. We ignore any receptors on the sides of the cell, since we consider movement
in one dimension only. Last but not least, we assume that the number of receptors, p, is
large, so that the use of a model of ODEs is justified.

To model the binding to the receptors, we use a simple reaction as introduced in
Section 3.3.1. If we let r/ denote the number of empty front receptors, and /?/ the number
of occupied front receptors, then

with positive binding and dissociation rates, or and ft. Using the Law of Mass Action, we
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obtain the following model for the front receptors:

As mentioned earlier, the total number of front receptors is constant. This fact is reflected
in the above equations since ^7(77 + Rf) = 0. Below, we use this fact to reduce this set of
two equations to a single equation.

We have a similar reaction for the receptors rb and Rb at the back of the cell, namely.

Here, we must account for our assumption that occupied front receptors inhibit the back
receptors. We do this by assuming that the reaction rate a is a decreasing function of Rf.
Specifically, we assume a = a(R/) = aoe~cRf, with ao and c being positive constants.
Since the wave signal s(t) moves with unit speed and the cell has length L, the back
receptors encounter the same wave profile as the front receptors, but at a later time, t — r,
where r = L. For dissociation, we choose b = ft. Then the model equations for the
receptors at the back of the cell are

As before, r& 4- Rb is constant.
The system of equations (10.9) and (10.10) forms our basic model. We now use

the property of conservation of receptor number to reduce the system of four equations
to a system of two equations, tracking only the number of occupied receptors. Since
rf -\- Rf = p — rb + Rb, we can write r/ = p — Rf and rb = p — Rh. Then (10.9)
and (10.10) reduce to

We use the initial conditions r/(0) = r&(0) = p, and will simulate the model up to
t = 20. We take a = 1, OQ — 1, ft — 10, t0 = 5, a = 1, and r = L = 1. We further
assume that the total number of receptors on each side is p = 10. Then we have

for all times t.
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We solve this system of two equations with Maple. In the Maple code, we use the
symbols F and B for the occupied front and back receptors, respectively.

> n:=20: tO:=5: alpha:=l: beta:=10: sigma:=l:
aO:=l: tau:=l: k:=20: C:=100:

> eql := diff(F(t),t)=alpha*(I/(sqrt(2*Pi*sigma*sigma))
*exp((-(t-tO)*(t-tO))/(2*sigma*sigma)))*(k-F(t))-beta*F(t);

> eq2 := diff(B(t),t)=aO*exp(-c*F(t))*(I/(sqrt(2*Pi*sigma
*sigma))*exp((-(t-tO-tau)*(t-tO-tau))/(2*sigma*sigma)))
*(k-B(t))-beta*B(t);

numsoll := dsolve({eql, eq2, F(0) = 0, B(0) = 0},
JF(t), B(t)}, type=numeric, output=listprocedure):
with(plots): with(DEtools):
odeplot(numsoll, [[t,F(t)] , [t,B(t)]] ,0..20) ;

The thin solid curve represents the number of occupied front receptors, and the bold solid
curve represents the number of occupied back receptors. Notice that the number of occupied
front receptors reflects the shape of the incoming signal wave, while the back receptors are
strongly inhibited.

Let the difference in the number of occupied front and back receptors be denoted by

MO,

We hypothesize that h(t) is the guiding factor for the cell to decide in which direction
to move, with the cell moving to the right (left) whenever h(t) > 0(h(t) < 0). Since
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fQ h(t)dt > 0, there are more occupied front receptors than occupied back receptors
over the time interval. The following plot of h(t} demonstrates quite clearly that the cell
primarily moves to the right, as observed experimentally. Thus, our model reflects a possible
resolution of the chemotactic paradox.

> odeplot(numsoll, [ t , F ( t ) - B ( t ) ] , O . . n ) ;

10.2.2 Discussion

In 1990, Soil [146] described the chemotactic paradox in some detail. He proposed four
mechanisms which may play a role in inhibiting turning by a cell, as follows:

1. an internal excitation-adaptation mechanism could desensitize the cell as a whole;

2. the increasing signal concentration at the wave front decreases the turning rate of a
moving cell, while the decreasing signal concentration at the wave back causes the
cell to become unresponsive;

3. a decreasing signal concentration may directly inhibit turning;

4. the establishment of cell polarity.

The model presented above falls into the last category. As soon as some receptors are
occupied and others are inhibited, the cell is polarized in the direction of the occupied
receptors. Another mechanism by which the cell may sense a spatial gradient would be to
measure the chemotactic signal concentration along the entire cell surface and somehow
compare the concentrations at different locations on its surface. In a recent study by Rappel
et al. [134], a simple inhibition mechanism has been introduced which also is able to explain
cell polarization. Rappel et al. propose a simple mechanism in which local activation of
receptors at the front of the cell generates a second messenger in the interior of the cell.
This second messenger diffuses through the interior of the cell and suppresses the activation
of the receptors at the back of the cell. Thus, the cell converts the temporal gradient into
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an initial cellular asymmetry. Rappel et al. suggest that for Dictyostelium discoideum, the
internal inhibitor might be cGMP.

A model that fits into Soil's first category, the excitation-adaption mechanism, has
been proposed by Hofer et al. [87]. The excitation-adaptation mechanism is important in
particular for bacterial chemotaxis, since bacteria are too small to measure spatial concen-
tration differences. They also are too small to polarize. We briefly review the work by
Hofer et al. here. It is assumed that active proteins inside the cell can be deactivated during
the encounter of the extracellular chemical signal. Hofer et al. propose a simple chemical
pathway between an active phase A and a deactivated phase D, where the deactivation and
the activation rates, f+(s) and /-(.$), depend on the signal concentration:

Using the Law of Mass Action, one finds

Let a = j^ denote the fraction of activated proteins, where A + D is constant. From
(10.12), the equation for a is

A time constant T > 0 is introduced to indicate that the internal dynamics operate on a
different time scale than cell movement, that is,

where s(t) is the signal wave as used in the previous section.
To understand the role of T, we consider the transformation of time. Let # = ^ and

Thus, on the modified time scale £, we have the original equation (10.14).
Hofer et al. use the following functional forms of /+, /_:

The behavior of (10.15) now can be studied for different values of the adaptation time, r.
The adaptation for different values of T is shown in Figure 10.10. In each of the figures (a),
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Figure 10.10. Comparison of the cell's sensitivity to a chemical signal ct(t) (bold
lines) and the incoming signal wave s(t) (thin line) for different values of the adaptation

(b), and (c), the fraction of activated proteins, a(t), is shown (bold curves) and compared
to the incoming signal (thin curves). To facilitate the comparison, the transformation

is shown instead of s(t). In Figure 10.10 (a), T is very small, and we see that a(t) simply
follows s(t). Hence the cell is insensitive at the peak of the wave, but becomes sensitive
again in the back of the wave. That is, the cell will move to the right in the wave front, and
to the left in the wave back. No adaptation occurs that can explain the chemotactic paradox;
instead, there is instantaneous adaptation to the local quasi-equilibrium

In Figure 10.10 (b), T has an intermediate value, and we see that the sensitivity is minimal
in the wave back. Thus, an intermediate adaptation time leads to a significant asymmetry
between response to wave front and wave back, which leads to positively oriented move-
ment. In Figure 10.10 (c), T is very large, hence a(t) shows almost no response to the
signal, and the cell does not move at all. In conclusion, an intermediate adaptation response
is necessary to obtain oriented movement.

Othmer and Schaap [129] also studied an excitation-adaptation mechanism. Although
in real cells many proteins are involved in the internal translation of the external signal, the
mechanism can be captured by assuming that two factors are most important, namely, a
response factor, M I , and an inhibitor, «2. If 5(0 again denotes the chemical signal, then one
studies

where the function h (s) describes excitation of both u\ and 1/2, and the factors re and ra

indicate the typical time scales of the excitatory pathway (for u i) and the inhibitory pathway
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(for U2\ As in the model by Hofer et al., the relative size of ra and re is important for the
adaptation effect. The reader is invited to study the model of Othmer and Schaap with
h(s(t)) = H = constant and initial data wi(0) = u2(Q) = 0, for the following three cases:

Soil's third mechanism underlying the chemotactic paradox, namely, the dependence
on temporal gradients, has recently been considered theoretically by Dolak and Schmeiser
[48]. The reader is invited to develop an appropriate model reflecting Soil's second mech-
anism.

and
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Appendix

Further Reading

The field of mathematical biology and mathematical modeling of biological systems is
growing rapidly. In the mid-1990s, we were looking at a handful of classical texts in
mathematical biology. Since then, a plenitude of other excellent textbooks has appeared.
Each of them has a different strength and slightly different emphasis. We use this appendix to
give a rough overview of those textbooks related to the one you are reading now. Naturally,
this overview expresses the personal points of view of the authors.

Classical Texts

• L. Edelstein-Keshet, Mathematical Models in Biology [51].
This text has become a standard introductory text for beginning graduate students.

• R.M. May, Theoretical Ecology [114].

• J. Murray, Mathematical Biology I: An Introduction [121].

• J. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications [122].
The original text by Murray recently has appeared as a 3rd edition, and split into these two
volumes. They give an ample and detailed overview of mathematical models for biological
systems. The level of exposition is aimed at higher-level graduate students and researchers.

• S.I. Rubinow, Introduction to Mathematical Biology [138].
This text is suitable for an introductory graduate-level course.

Elementary Texts

• F.R. Adler, Modeling the Dynamics of Life: Calculus and Probability for Life Scientists [1].
This text is a suitable choice for an introductory calculus course aimed at students in the life
sciences.

• B. Hannon and M. Ruth, Modeling Dynamic Biological Systems [78].
This book is based on the computer language "Stella."

• C. Neuhauser, Calculus for Biology and Medicine [125].
This text is a suitable choice for an introductory calculus course aimed at students in the life
sciences.

283
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Texts That Can Be Read in Parallel to This Book

During the last several years, textbooks have appeared which are aimed at upper-level
undergraduate students. Some are oriented towards biology, other are more mathematical.

For the biologically-oriented books, we like to draw attention to the following:

• R.F. Burton, Biology by Numbers: An Encouragement to Quantitative Thinking [35].

• R.F. Burton, Physiology by Numbers: An Encouragement to Quantitative Thinking [36].

• J.W. Haefner, Modeling Biological Systems: Principles and Applications [77].

This text forms an excellent introduction aimed at biology students.

• A. Hastings, Population Biology: Concepts and Models [81].

This text focuses on population biology and ecology.

• C.H. Taubes, Modeling Differential Equations in Biology [155].

This text features a gentle introduction to ODEs and modeling, complemented by a reprinting
of numerous original scientific papers.

For students with elementary mathematical knowledge, the following books are well suited:

• E. Batschelet, Introduction to Mathematics for Life Scientists [14].

• N. Britton, Essential Mathematical Biology [29].

• M. Farkas, Dynamical Models in Biology [55].

• J. Mazumdar, An Introduction to Mathematical Physiology and Biology [115].

• L.A. Segel, Modeling Dynamic Phenomena in Molecular and Cellular Biology [143].

• W. Simon, Mathematical Techniques for Biology and Medicine [144].

Specialized Texts That Can Be Used after an Introductory Course

Some of the textbooks mentioned here also start on an elementary level, but they soon
proceed beyond introductory material and into specialized territory.

• F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemi-
ology [26].

• N.G Becker, Analysis of Infectious Disease Data [15].

• E. Beltrami, Mathematical Models for Society and Biology [17].

• A. Beuter, L. Glass, M.C. Mackey, and M.S. Titcombe, Eds., Nonlinear Dynamics in Physiology
and Medicine [21].

• O. Diekmann, R. Durret, K.P. Hadeler, H. Smith, and V. Capasso, Mathematics Inspired by
Biology [45].

• O. Diekmann and J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases,
Model Building, Analysis and Interpretation [46].

• D.S. Jones and B.D. Sleeman, Differential Equations and Mathematical Biology [95].

• M. Kot, Elements of Mathematical Ecology [102].

• J. Keener and J. Sneyd, Mathematical Physiology [99].
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• H.G. Othmer, F. Adler, M.A. Lewis, and J. Dallon, Case Studies in Mathematical Modeling
[128].

• J.T. Ottesen, M.S. Olufsen, and J.K. Larsen, Applied Mathematical Models in Human Physi-
ology, SI AM [130].

• A. Okubo and S.A. Levin, Diffusion and Ecological Problems: Modern Perspectives [127].

• J. Sneyd, Ed., An Introduction to Mathematical Modeling in Physiology, Cell Biology and
Immunology [145].

• E.K. Yeargers, R.W. Shonkwiler, and J.V. Herod, An Introduction to the Mathematics of Biology
[168].
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