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Preface

In many fields of scientific computing and data science, we frequently face the
problem of solving large and sparse linear systems of the form Ax = b, which is
one of the most time-consuming parts of all computations. From this fact, many
researchers have devoted themselves to developing efficient numerical algorithms
for solving the linear systems, and Krylov subspace methods are nowadays popular
numerical algorithms and are known as one of the top ten algorithms of the twentieth
century, others including fast Fourier transformandQuickSort [39]. Though the basic
theory was established in the twentieth century, Krylov subspace methods have been
developed by mathematicians, engineers, physicists, and many others.

There are many excellent books on Krylov subspace methods, including those by:

• Owe Axelsson, 1994 [10],
• Richard Barrett et al., 1994 [18],
• Wolfgang Hackbusch, 1994 [92],
• Are Magnus Bruaset, 1995 [29],
• Rüdiger Weiss, 1996 [203],
• Anne Greenbaum, 1997 [81],
• Yousef Saad, 2003 [151],
• Henk A. van der Vorst, 2003 [196],
• Jörg Liesen and Zdeněk Strakoš, 2012 [122],
• Gérard Meurant and Jurjen Duintjer Tebbens, 2020 [129].

In [129], detailed historical notes of Krylov subspace methods are described,
which form a masterpiece (around 700 pages) of Krylov subspace methods for non-
Hermitian linear systems. The features of this book are listed as follows:

(1) Many applications of linear systems from computational science and data
science;

(2) Krylov subspace methods for complex symmetric linear systems such as the
COCG method and the COCR method;

(3) Krylov subspace methods for non-Hermitian linear systems such as the BiCR
method, the GPBiCG method, and the (block) IDR(s) method;

v
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(4) Krylov subspace methods for shifted linear systems such as the shifted IDR(s)
method;

(5) Matrix functions as applications of shifted linear systems.

Feature (1) corresponds to Chap. 2, and linear systems are derived from
various applications: partial differential equations (finite difference discretization
methods and the finite element method); computational physics: condensed matter
physics (computation of Green’s function) and lattice quantum chromodynamics
(Wilson fermion matrix); machine learning (least-squares problems); matrix equa-
tions (Sylvester-typematrix equations); optimization (Hessianmatrix over Euclidean
space and Riemannian manifold using tensor computation notations).

Features (2) and (3) correspond to Chap. 3. In this chapter, Krylov subspace
methods are classified into three groups: Hermitian linear systems, complex
symmetric linear systems, and non-Hermitian linear systems. For Hermitian linear
systems, the CG method is derived from the matrix form of the Lanczos process, the
CRmethod is derived from the CGmethod, and theMINRESmethod is derived from
the Lanczos process. For complex symmetric linear systems, the COCGmethod, the
COCR method, and the QMR_SYM method are described as extensions of the CG
method, the CR method, and the MINRES method, respectively. For non-Hermitian
linear systems, the BiCG method, the BiCR method, and the QMR method are
described as extensions of the CGmethod, the CRmethod, and theMINRESmethod,
respectively. The detailed derivations of the GPBiCGmethod and the (block) IDR(s)
method, one of the features of this book, are described in this chapter. In addition,
some preconditioning techniques are briefly described.

Feature (4) corresponds to Chap. 4. In this chapter, Krylov subspace methods for
shifted linear systems are classified into three groups:Hermitian, complex symmetric,
and non-Hermitian linear systems. The detailed derivations of these algorithms are
described systematically.

Feature (5) corresponds to Chap. 5. If one needs a large matrix function, then
Krylov subspace methods and Krylov subspace methods for shifted linear systems
are methods of choice since these algorithms can produce any element of the matrix
function. The definitions of matrix functions and well-known algorithms for matrix
functions are also described.

An additional feature of this book is that there are no numerical experiments except
some typical numerical examples for further understanding the convergence behavior
of Krylov subspace methods. The convergence of Krylov subspace methods depends
highly on the coefficient matrix, and the best algorithm changes if the coefficient
matrix changes. So, if the reader wants to solve linear systems, I recommend the
reader to apply several Krylov subspace methods (including the BiCGSTABmethod
and the GMRES method) to their problem and choose the best one among them.

This book is suitable for anyone who studied linear algebra and needs to solve
large and sparse linear systems. I hope this book is helpful for the reader to understand
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the principles and properties of Krylov subspacemethods and to correctly use Krylov
subspace methods to solve their problems.

Nagoya, Japan
September 2022

Tomohiro Sogabe
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Chapter 1
Introduction to Numerical Methods
for Solving Linear Systems

Abstract Numerical methods for solving linear systems are classified into two
groups: direct methods and iterative methods. Direct methods solve linear systems
within a finite number of arithmetic operations, and the best-known direct method is
the LU decomposition. Iterative methods produce a sequence of approximate solu-
tions, and the iterativemethods are roughly classified into stationary iterativemethods
and Krylov subspace methods. Multigrid methods also fall into an important class of
iterative methods. This chapter aims to describe the principles of the direct methods,
the stationary iterative methods, and a brief introduction to the theory of Krylov
subspace methods. A brief explanation of multigrid methods is also given.

1.1 Linear Systems

In this book, we consider linear systems of the following form:

Ax = b, (1.1)

where A ∈ C
N×N , b ∈ C, and the coefficient matrix A is assumed to be nonsingular,

i.e., there exists the inverse of A.
Let x̃ be an approximate solution of linear systems (1.1). Then a quantitative way

to know the distance between the solution x and the approximate solution x̃ is to
compute a vector norm of x − x̃. Further, a quantitative way to measure the distance
between two matrices A, B is given by a matrix norm of A − B. The definitions
of a vector norm and a matrix norm are described in the next two subsections. The
explanations are based on [170], and for the details of numerical linear algebra, see
[45, 79, 107, 191].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. Sogabe, Krylov Subspace Methods for Linear Systems,
Springer Series in Computational Mathematics 60,
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2 1 Introduction to Numerical Methods for Solving Linear Systems

1.1.1 Vector Norm

The length of the vector x := (x1, x2)� ∈ R
2 is given by (x21 + x22 )

1/2. The norm is
the extension of the notion of the “length” and, the map ‖ · ‖ : Rn → R is called a
vector norm if for all x, y ∈ R

n, α ∈ R, the map satisfies the following rules:1

(Nv1) ‖x‖ ≥ 0; ‖x‖ = 0 ⇔ x = 0, (Positivity)
(Nv2) ‖αx‖ = |α| ‖x‖, (Homogeneity)
(Nv3) ‖x + y‖ ≤ ‖x‖ + ‖ y‖. (Triangle inequality)

For example, a p-norm (p ≥ 1) is defined by

‖x‖p := (|x1|p + |x2|p + · · · + |xn|p) 1
p .

For p = 1, 2,∞, the vector p-norm is written as

• ‖x‖1 = ∑n
i=1 |xi |,

• ‖x‖2 = (
∑n

i=1 |xi |2) 1
2 (= √

x�x),
• ‖x‖∞ = max

1≤i≤n
|xi |.

Let A be a symmetric positive definite matrix, i.e., A is symmetric and all the
eigenvalues are positive. Then ‖x‖A := x�Ax is called an A-norm of x; this will be
used in Section 3.1.1.

Let x̃ be an approximate solution of linear systems (1.1). Then ‖x − x̃‖p is the
distance between the exact solution and approximate solution of (1.1).

Throughout this book, unless otherwise stated, the symbol ‖ · ‖ means 2-norm,
i.e., ‖ · ‖ = ‖ · ‖2.

1.1.2 Matrix Norm

Similar to the definition of vector norm, matrix norm is defined as follows: a map
‖ · ‖ : Rm×n → R is called a matrix norm if for all A, B ∈ R

m×n , α ∈ R the map
satisfies the following three items:

(Nm1) ‖A‖ ≥ 0; ‖A‖ = 0 ⇔ A = O, (O : zero matrix) (Positivity)
(Nm2) ‖αA‖ = |α|‖A‖, (Homogeneity)
(Nm3) ‖A + B‖ ≤ ‖A‖ + ‖B‖. (Triangle inequality)

In addition, if the matrix norm satisfies

(Nm4) ‖AB‖ ≤ ‖A‖‖B‖, A ∈ R
m×n, B ∈ R

n×q ,

1 In general, given a vector space V , a map ‖ · ‖ : V → R is called a norm if the map satisfies
(Nv1)–(Nv3) for all x, y ∈ V, α ∈ K (K = R or C).
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then the matrix norm is called submultiplicative. Note that in some books the map
satisfying (Nm1)–(Nm4) is also called a matrix norm. As an example of a submul-
tiplicative matrix norm, the following subordinate matrix norm is widely used:2

‖A‖p := sup
x �=0

‖Ax‖p

‖x‖p
. (1.2)

If p = 1, 2,∞, ‖A‖p is given as follows:

• ‖A‖1 = max j
∑n

i=1 |ai j |,
• ‖A‖2 = √

maximum eigenvalue of A�A,
• ‖A‖∞ = maxi

∑n
j=1 |ai j |.

A Frobenius norm is also submultiplicative:

• ‖A‖F :=
√
√
√
√

m∑

i=1

n∑

j=1

|ai j |2.

Let a1, . . . , an be the column vectors of matrix A ∈ R
m×n , and let a =

[a�
1 , . . . , a�

n ]�, i.e., all the columns are connected to get one long vector a. Then,
the Frobenius norm of A equals the 2-norm of a, i.e., ‖A‖F = ‖a‖2.

The max norm of the form

‖A‖max := max
i, j

|ai j |

is not submultiplicative. For example, consider a 2-by-2 matrix A with all the ele-
ments being 1. Then ‖AA‖max = ‖A2‖max = 2 and ‖A‖max‖A‖max = 1. Thus the
max norm does not hold (Nm4) because ‖AA‖max > ‖A‖max‖A‖max.

Some properties of the matrix norm are given next.

Theorem 1.1 The following properties hold true:

(1) ‖Ax‖p ≤ ‖A‖p‖x‖p, ‖Ax‖2 ≤ ‖A‖F‖x‖2,
(2) ‖AB‖p ≤ ‖A‖p‖B‖p, ‖AB‖F ≤ ‖A‖F‖B‖F,
(3) ‖QAQ̃‖2 = ‖A‖2, ‖QAQ̃‖F = ‖A‖F.
Here, Q and Q̃ are orthogonal matrices.3

Theorem 1.2 Let A be an n × n matrix. Then,

(1) n−1/2‖A‖2 ≤ ‖A‖1 ≤ n1/2‖A‖2,
(2) n−1/2‖A‖2 ≤ ‖A‖∞ ≤ n1/2‖A‖2,
(3) n−1‖A‖∞ ≤ ‖A‖1 ≤ n‖A‖∞,
(4) ‖A‖1 ≤ ‖A‖F ≤ n1/2‖A‖2.

2 “sup” can be replaced with “max”.
3 A real square matrix Q is called an orthogonal matrix if Q�Q = I , where I is the identity matrix.
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1.2 Condition Number

Consider Ax = b; if the matrix A and right-hand side vector b are slightly changed,
then by how much will the solution be changed? To answer this question, let �A
and �b be perturbations of A and b. Then the change of the solution denoted by �x
satisfies the following relation:

(A + �A)(x + �x) = b + �b.

Using Ax = b gives

�x = A−1[−�A(x + �x) + �b].

Using Theorem 1.1-(1) and the triangle inequality (Nv3), the p-norm of x can be
evaluated by

‖�x‖p ≤ ‖A−1‖p(‖�A‖p‖x + �x‖p + ‖�b‖p).

Thus, we have

‖�x‖p

‖x + �x‖p
≤ ‖A‖p‖A−1‖p

(‖�A‖p

‖A‖p
+ ‖�b‖p

‖A‖p‖x + �x‖p

)

. (1.3)

Here,

κp(A) := ‖A‖p‖A−1‖p (1.4)

is called the p-norm condition number. Inequality (1.3) implies that if the condition
number is large, the computed approximate solution may be far from the exact
solution. Note that this fact does not depend on what algorithms are used for solving
linear systems.

If the condition number is large, then the linear systems are called ill-conditioned.
Wewill see inChap. 3 that the condition number also affects the speed of convergence
of Krylov subspace methods.

In this book, we often use a 2-norm condition number κ2(A) that will be simply
denoted by κ or cond(A).

1.3 Direct Methods

For simplicity of presentation, we only consider the case Ax = b where A ∈ R
n×n

and b ∈ R
n . In Sect. 1.3.1, the LU decomposition is introduced to solve linear sys-

tems, and then in Sect. 1.3.2 the LU decomposition with pivoting techniques is
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explained, which is numerically stable andwidely used in practice. Away to improve
the accuracy of the approximate solution is described in Sect. 1.3.3.

1.3.1 LU Decomposition

Let A be a square matrix. Then the LU decomposition of A is achieved by decompos-
ing A into the multiplication of a lower triangular matrix L and an upper triangular
matrix U of the form

A = LU, (1.5)

where

L =
⎛

⎜
⎝

l11
...

. . .

ln1 · · · lnn

⎞

⎟
⎠ , U =

⎛

⎜
⎝

u11 · · · u1n
. . .

...

unn

⎞

⎟
⎠ .

The blanks in matrices L and U mean that all the corresponding elements are
zero.

If the diagonal elements of L orU are one, then the LU decomposition is uniquely
determined. The LU decomposition with lii = 1 for all i is referred to as Doolittle’s
method, and the one with uii = 1 for all i is referred to as Crout’s method. Once we
obtain the LU decomposition of A, it is easy to obtain the solution x of the linear
systems via

A = LU, L y = b, U x = y. (1.6)

To be specific, forward substitution:

yi = 1

lii

⎛

⎝bi −
i−1∑

j=1

li j y j

⎞

⎠ (i = 1, . . . , n)

gives y, and then back substitution

xi = 1

uii

⎛

⎝yi −
n∑

j=i+1

ui j x j

⎞

⎠ (i = n, . . . , 1)

yields the solution x, where y1 = b1/ l11 and xn = yn/unn .
The necessary and sufficient condition for the existence of the LU decomposition

is that all the leading principal minors4 are not zero. Below are some examples of
cases where the LU decomposition exists.

4 Using MATLAB notation, “all the leading principal minors” of A are defined by det(A(1:1,1:1)),
det(A(1:2,1:2)), …, det(A(1:n,1:n)).
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1. Strictly diagonally dominant matrix: |aii | >
∑

j �=i |ai j | (1 ≤ i ≤ n).
2. M-matrix: ai j ≤ 0 (i �= j) and all the elements of A−1 are non-negative.
3. Symmetric part of matrix A ∈ R

n×n is positive definite. The term “symmetric
part” means (A + A�)/2 and the term “positive definite” means v�Av > 0 for
any nonzero vector v. For any squarematrix A,matrix A can bewritten as the sum
of the symmetric part (A + A�)/2 and the skew symmetric part (A − A�)/2.

The algorithm of the LU decomposition (Doolittle’s method) is shown in Algo-
rithm 1.1, which produces L and U such that A = LU .

Algorithm 1.1 The LU decomposition
Input: an n × n matrix A
Output: a unit lower triangular matrix L and an upper triangular matrix U
1: for i = 1, . . . , n do
2: a ji = a ji/aii ( j = i + 1, . . . , n)

3: for j = i + 1, . . . , n do
4: a jk = a jk − a ji × aik (k = i + 1, . . . , n)

5: end for
6: end for
7: lii = 1 (i = 1, . . . , n)

8: li j = ai j (i > j)
9: ui j = ai j (i ≤ j)

1.3.2 LU Decomposition with Pivoting

The LU decomposition may not exist for some A. For example, consider

A =
(
0 1
2 3

)

.

Then it is easy to see that the LU decomposition (Algorithm 1.1) fails due to zero
division by a11 = 0. On the other hand, if the first row and the second row are
swapped, i.e.,

PA =
(
0 1
1 0

)(
0 1
2 3

)

=
(
2 3
0 1

)

,

then the LU decomposition does not fail, and we have the LU decomposition of the
form

PA = LU,
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where

L =
(
1 0
0 1

)

, U =
(
2 3
0 1

)

.

This technique is called pivoting.
The LU decomposition with the partial pivoting is shown in Algorithm 1.2. Here,

the term “partial” pivoting corresponds to lines 2–6 of Algorithm 1.2.

Algorithm 1.2 The LU decomposition with partial pivoting
Input: an n × n matrix A and the n × n identity matrix P(= I )
Output: a unit lower triangular matrix L and an upper triangular matrix U
Output: a permutation matrix P
1: for i = 1, . . . , n do
2: Find the maximum element api i from {|aii |, . . . , |ani |}.
3: Swap ai j and api j for j = 1, . . . , n.
4: if i �= n then
5: Swap i th row and pi th row of matrix P .
6: end if
7: a ji = a ji/aii ( j = i + 1, . . . , n)

8: for j = i + 1, . . . , n do
9: a jk = a jk − a ji × aik (k = i + 1, . . . , n)

10: end for
11: end for
12: lii = 1 (i = 1, . . . , n)

13: li j = ai j (i > j)
14: ui j = ai j (i ≤ j)

Algorithm 1.2 produces L , U , and permutation matrix P such that

PA = LU.

Unlike the LU decomposition, the LU decomposition with the partial pivoting never
suffers from breakdown (zero-division).

Next, the LU decomposition with the complete pivoting is shown in Algorithm
1.3. The term “complete” pivoting corresponds to lines 2–8 of Algorithm 1.3.

Notice that at the i th step, the partial pivoting finds the maximum value from
{|ak,i | : k ∈ {i, . . . , n}} and the complete pivoting finds the maximum value from
{|ak,l | : k, l ∈ {i, . . . , n}}.

Algorithm 1.3 produces decomposed matrices L andU and permutation matrices
P and Q such that

PAQ = LU.

The LU decomposition with partial pivoting is usually used, and if the accuracy of
the decomposition is not satisfactory, then the complete pivoting may be used.
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Algorithm 1.3 The LU decomposition with complete pivoting
Input: an n × n matrix A and the n × n identity matrices P(= I ), Q(= I )
Output: a unit lower triangular matrix L and an upper triangular matrix U
Output: permutation matrices P , Q
1: for i = 1, . . . , n do
2: Find the maximum element api qi from {|akl | : i ≤ k ≤ n, i ≤ l ≤ n}.
3: Swap ai j and api j for j = 1, . . . , n.
4: Swap a ji and a jqi for j = 1, . . . , n.
5: if i �= n then
6: Swap i th row and pi th row of matrix P .
7: Swap i th column and qi th row of matrix P .
8: end if
9: a ji = a ji/aii ( j = i + 1, . . . , n)

10: for j = i + 1, . . . , n do
11: a jk = a jk − a ji × aik (k = i + 1, . . . , n)

12: end for
13: end for
14: lii = 1 (i = 1, . . . , n)

15: li j = ai j (i > j)
16: ui j = ai j (i ≤ j)

If we need to solve the set of linear systems of the form

Axi = bi , i = 1, 2, . . . ,m,

then the LU decomposition is very attractive because once we obtain L and U , then
all we have to do is to conduct forward and back substitutions, see the explanation
after (1.6).

1.3.3 Iterative Refinement

In this subsection, we consider the case where the approximate solution x̃ of the
linear systems (1.1) by the LU decomposition is not accurate enough.

In such a case, we can obtain the exact solution x if we know the correction vector
�x such that x = x̃ + �x. It is easy to see that the correction vector�x corresponds
to the solution of the following linear systems:

A�x = r, (1.7)

where r := b − Ax̃. After solving (1.7) to obtain an approximate solution �x̃ of
(1.7), the corrected approximate solution x̃ + �x̃ is expected to be better in accuracy
than x̃. This process can be repeated until the required accuracy is obtained, which
is called iterative refinement. The algorithm of the iterative refinement is shown in
Algorithm 1.4.
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Algorithm 1.4 Iterative refinement for Ax = b
Input: A, b, and an approximate solution x̃ for Ax = b
Output: a refined approximate solution x̃
1: Compute r = b − Ax̃ using “double” precision arithmetic.
2: Solve A�x = r to obtain the approximate solution �x̃.
3: Update x̃ = x̃ + �x̃.
4: Repeat steps 1–3 until required accuracy is obtained.

If the LU decomposition is used for Ax = b, then it is easy to obtain the approx-
imate solution �x̃ because one can reuse the decomposed factors L andU , and thus
only forward and back substitutions are required.

Notice that “double” precision arithmetic at step 1 in Algorithm 1.4 means that if
we use single precision arithmetic, then compute r = b − Ax̃ using double precision
arithmetic, and ifwe use double precision arithmetic, then compute it using quadruple
precision arithmetic.

Algorithm 1.4 can be interpreted as Newton’s method by letting f (x) := b − Ax
and applying Newton’s method to f (x) = 0.

1.4 Direct Methods for Symmetric Linear Systems

When matrix A is symmetric, Cholesky decomposition and LDL� decomposition are
efficient direct methods that are variants of the LU decomposition. As a preliminary,
let us define the notion of positive definite:

1. Positive Definite
Matrix A is called positive definite if x�Ax > 0 for all x �= 0.

2. Symmetric Positive Definite
Matrix A is called symmetric positive definite if positive definite matrix A is
symmetric.

It is known that matrix A is symmetric positive definite if and only if all the
eigenvalues of symmetric matrix A are positive.

1.4.1 Cholesky Decomposition

If matrix A is symmetric positive definite, there exists a lower triangular matrix L
such that

A = LL�.
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The decomposition is referred to as Cholesky decomposition. The algorithm of
the Cholesky decomposition is shown in Algorithm 1.5.

Algorithm 1.5 Cholesky decomposition
Input: A
Output: L
1: for i = 1, . . . , n do

2: lii =
(
aii − ∑i−1

k=1 l
2
ik

)1/2

3: for j = i + 1, . . . , n do

4: l j i =
(
a ji − ∑i−1

k=1 l jk × lik
)

/ lii
5: end for
6: end for

The computational cost of the Cholesky decomposition is about half of that of the
LU decomposition because of the use of the symmetric property.

It is known that from the positive definiteness of A the Cholesky decomposition
never suffers from breakdown and does not need the pivoting technique as described
in Sect. 1.3.2.

1.4.2 LDL� Decomposition

When symmetric matrix A is not positive definite, then the Cholesky decomposition
cannot be used.On the other hand, if all the leading principalminors are non-negative,
then there exists a diagonal matrix D (i.e., all the off-diagonal elements are zero) and
a unit lower triangular matrix L (i.e., lower triangular matrix with all its diagonal
elements being one) such that

A = LDL�.

The decomposition is referred to as LDL�decomposi tion (or modified Cholesky
decomposition) whose algorithm is shown in Algorithm 1.6.

Algorithm 1.6 LDL� decomposition
Input: A
Output: L , D
1: for i = 2, . . . , n do
2: for j = 1, . . . , i − 1 do

3: li j =
(
ai j − ∑ j−1

k=1 lik × l jk × dkk
)

/d j j

4: end for
5: dii = aii − ∑i−1

k=1 l
2
ik × dkk

6: end for
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Algorithm 1.6 produces diagonal elements of diagonal matrix D, and li j for lower
triangular matrix L with lii = 1 for all i . Unlike the Cholesky decomposition, the
square root does not appear in the LDL� decomposition.

The LDL� decomposition is not only useful for solving linear systems but also
gives a rough distribution of the eigenvalues of symmetric matrix A. To see this,
let S be a nonsingular matrix, then Sylvester’s law of inertia ensures that the num-
ber of positive/zero/negative eigenvalues of symmetric matrix A is the same as that
of positive/zero/negative eigenvalues of SAS�. Thus, if we have A = LDL�, then
the number of positive/zero/negative diagonal elements tells us the number of posi-
tive/zero/negative eigenvalues of A.

Further, we can know the number of eigenvalues on a given closed interval
[σ1, σ2] by computing LDL� factorizations of A − σ1 I = L1D1L�

1 and A − σ2 I =
L2D2L�

2 . To be specific, let n1(≥ 0) be the number of nonnegative diagonal ele-
ments of D1 and let n(>0)

2 be the number of positive diagonal elements of D2. Then
the number of eigenvalues on the closed interval [σ1, σ2] is given by n(≥0)

1 − n(>0)
2 .

The fact is useful for the kth (generalized) eigenvalue problem:

Ax = λBx, (1.8)

where A is symmetric and B is symmetric positive definite. It is known that all the
eigenvalues are real numbers, and thus they can be written as λ1 ≤ λ2 ≤ · · · ≤ λk ≤
· · · ≤ λn . The kth (generalized) eigenvalue problem is to find λk and the correspond-
ing eigenvector of (1.8). The generalized eigenvalue problem (1.8) is equivalent to
the following shifted problem:

(A − σ B)x = (λ − σ)Bx. (1.9)

Since B is symmetric positive definite, B has the Cholesky decomposition, i.e.,
B = LBL�

B . Thus from (1.9) we have

L−1
B (A − σ B)L−�

B x̃ = (λ − σ)x̃,

where x̃ = L�
B x. Now, let D be the diagonal matrix of the LDL� decomposition of

(A − σ B). Then,

L−1
B LDL�L−�

B x̃ = (λ − σ)x̃ ⇔ GDG� x̃ = (λ − σ)x̃,

where G = L−1
B L . This indicates that using Sylvester’s law of inertia, the number of

positive (or negative) diagonal elements of D equals the number of the eigenvalues
that are greater (or less) than σ . Thus, if the number of negative diagonal elements of
D is, e.g., 10, then we can know that the eigenvalue λ closest to σ with the condition
λ ≤ σ is the 10th eigenvalue, i.e., λ = λ10. Based on this idea, together with several
accelerating techniques, an algorithm to obtain the kth eigenvalue and eigenvector of
the (generalized) eigenvalue problems was proposed in [120]. For the kth eigenvalue
problems, see also [156].
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1.5 Direct Methods for Large and Sparse Linear Systems

Consider the following matrix:

A =

⎛

⎜
⎜
⎝

2 −1 −1 −1
1 1 0 0
1 0 1 0
1 0 0 1

⎞

⎟
⎟
⎠ . (1.10)

If the number of zeros in a matrix is relatively large, then the matrix is called
sparse. Conversely, if the number of zeros in a matrix is relatively small, it is called
dense.

Applying the LU decomposition (Algorithm 1.1) to (1.10) yields

A = LU =

⎛

⎜
⎜
⎝

1
1/2 1
1/2 1/3 1
1/2 1/3 1/4 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

2 −1 −1 −1
3/2 1/2 1/2

4/3 1/3
5/4

⎞

⎟
⎟
⎠ .

For the lower part of A, we see that a32 = a42 = a43 = 0 but the corresponding
lower part of L , we have l32 = l42 = l43 �= 0. Similarly, for the upper part of A, we
see that a23 = a24 = a34 = 0 but u23 = u24 = u34 �= 0 for the upper part of U . The
nonzero elements in L and U are called fill-ins if the elements in the original matrix
A are zero but the corresponding elements in L and U are not zero.

The fill-ins can be a bottleneck to computing the LU decomposition when matrix
A is large and sparse. For a large and sparse matrix, we usually only use nonzero
elements and do not store zero elements in memory. However, after the LU decom-
position, the L andU may become dense, i.e., at worst n2 elements should be stored
in the memory. This indicates that if the matrix size n is n =1,000,000 and we use
real and double precision arithmetic, then we need n2 × 8 ≈ 8 Terabytes of memory.
If n =10,000,000, then a computer with 800 Terabytes of memory is required.

As we will see in Chap. 2, matrices arising from scientific computing are often
large and sparse. Thus, for solving large and sparse linear systems by the LU decom-
position, it is of prime importance to reduce the fill-ins. In what follows, the key idea
to reduce the fill-ins is described.

The key idea is to permute some rows and columns of sparse matrix A to reduce
fill-ins, and then apply the LU decomposition to the permuted matrix. To be specific,
we apply the LU decomposition to PAQ, where P and Q are prescribed permutation
matrices. Then we solve

PAQ y = Pb

to obtain the solution x = Q y. Here, P and Q are chosen so that the number of
fill-ins of L and U are small as possible.
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Below is an example to reduce fill-ins of A in (1.10). Consider

P = Q =

⎛

⎜
⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟
⎟
⎠ .

Then, from (1.10) it follows that

PAQ =

⎛

⎜
⎜
⎝

1 0 0 1
0 1 0 1
0 0 1 1

−1 −1 −1 2

⎞

⎟
⎟
⎠ .

The LU decomposition of PAQ yields

PAQ = LU =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0

−1 −1 −1 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 5

⎞

⎟
⎟
⎠ .

In this case, fortunately, fill-ins do not occur. The result ismemory-efficient by storing
only nonzero elements in memory.

Although it is difficult to choose optimal permutation matrices P and Q so that
the number of fill-ins is minimum, approximate optimization methods have been
developed. Well-known methods are the minimum degree method and the reverse
Cuthill–McKee method. For the references of these methods see Section 3.5.5. For
the details of sparse direct methods, see, e.g., [44].

1.6 Stationary Iterative Methods

Stationary iterative methods produce approximate solutions by the following recur-
rences:

xk+1 = f (xk), k = 0, 1, . . . (1.11)

with a prescribed initial guess x0 for Ax = b. Here the vector-valued function f is
defined by

f ( y) := M−1N y + M−1b, (1.12)

whereM is a nonsingularmatrix and N is amatrix such thatmatrix A in (1.1) satisfies
A = M − N . The solution x corresponds to a fixed–point of f , i.e., x = f (x).
Therefore, the stationary iterative methods can be regarded as iterative methods
finding the fixed–point of f via the recurrences in (1.11). Since f does not depend
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Table 1.1 Classification of three stationary iterative methods

M N

The Jacobi method D −(L +U )

The Gauss–Seidel method D + L −U

The SOR method (D + ωL)/ω N = [(1 − ω)D − ωU ]/ω

on the number of iterations k, the iterative methods are called “stationary”. From
(1.11) and (1.12), the iterates xk+1 are written as

xk+1 = M−1N xk + M−1b (1.13)

for k = 0, 1, . . . .
Stationary iterative methods are used for solving large and sparse linear systems

because unlike the direct methods such as the LU decomposition, we do not need
to consider fill-ins and only need to store nonzero elements of the coefficient matrix
and some working vectors in memory for computing the approximate solutions.

Inwhat follows, the best-known stationary iterativemethods are described, i.e., the
Jacobi method, the Gauss–Seidel (GS) method, and the Successive Over-Relaxation
(SOR) method. Let A = (ai j ) be the coefficient matrix for Ax = b, and

L = (ai j ), ai j = 0 for i ≤ j,

D = (ai j ), ai j = 0 for i �= j,

U = (ai j ), ai j = 0 for i ≥ j.

Then we have
A = L + D +U.

L , D, and U are referred to as the strictly lower triangular matrix, diagonal matrix,
and strictly upper triangular matrix.

Choices of M and N using L , D, and U yield the Jacobi, GS, and SOR methods.
Table1.1 shows the choices for the representative stationary iterative methods.

1.6.1 The Jacobi Method

From (1.13) and Table1.1, the iterates xk of the Jacobi method are given as follows:

xk+1 = −D−1(L +U )xk + D−1b.
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In practice, xk+1 is computed by the following recurrence relation:

x (k+1)
i = 1

aii

⎛

⎝bi −
∑

j<i

ai j x
(k)
j −

∑

j>i

ai j x
(k)
j

⎞

⎠ (1.14)

for i = 1, 2, . . . , n, where x (k)
i and bi are the i th element of xk and b respectively,

and the symbol
∑

j<i and
∑

j>i denotes
∑i−1

j=1 and
∑n

j=i+1 respectively.

1.6.2 The Gauss–Seidel Method

From (1.13) and Table1.1, the iterates xk of the Gauss–Seidel (GS) method are given
as follows:

xk+1 = −(D + L)−1U xk + (D + L)−1b.

Aderivation of theGSmethod is given below. Let us reconsider the Jacobimethod.
When x (k+1)

i of the Jacobi method is computed by (1.14), x (k+1)
1 , . . . , x (k+1)

i−1 have
already been computed, which can be regarded as new information. Thus, a faster
convergence may be expected if we use the new information

∑
j<i ai j x

(k+1)
j instead

of the old information
∑

j<i ai j x
(k)
j . This is the key idea of the Gauss–Seidel method,

which is written as follows:

x (k+1)
i = 1

aii

⎛

⎝bi −
∑

j<i

ai j x
(k+1)
j −

∑

j>i

ai j x
(k)
j

⎞

⎠ (1.15)

for i = 1, 2, . . . , n.

1.6.3 The SOR Method

From (1.13) and Table1.1, the iterates xk of the SOR method are given as follows:

xk+1 =
[
1

ω
(D + ωL)

]−1 {
1

ω
[(1 − ω)D − ωU ]

}

xk +
[
1

ω
(D + ωL)

]−1

b

= (D + ωL)−1[(1 − ω)D − ωU ]xk + (D + ωL)−1ωb,

or equivalently xk+1 of the SOR method is given by solving the following linear
systems:
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(D + ωL)xk+1 = [(1 − ω)D − ωU ]xk + ωb.

The element-wise iterates of the SOR method are described below:

x̃ (k+1)
i = 1

aii

⎛

⎝bi −
∑

j<i

ai j x
(k+1)
j −

∑

j>i

ai j x
(k)
j

⎞

⎠ ,

x (k+1)
i = x (k)

i + ω(x̃ (k+1)
i − x (k)

i )

for i = 1, 2, . . . , n. From this, it is easy to see that the SORmethod is a one-parameter
generalization of the Gauss–Seidel method since the right-hand side of the first
equation is the same as the Gauss–Seidel method (1.15). If ω = 1, the SOR method
reduces to the Gauss–Seidel method. It is known that the necessary condition for
convergence is 0 < ω < 2.

When A is symmetric, the symmetric SOR (SSOR) method is also well known,
since it can be used as a preconditioner for Krylov subspace methods to solve sym-
metric linear systems. For the SSOR preconditioner, see Section 3.5.4. The iterates
of the SSOR method are given as follows:

(D + ωL)x̃k = [(1 − ω)D − ωU ]xk + ωb,

(D + ωU )xk = [(1 − ω)D − ωL]x̃k + ωb.

For the SSOR method, M and N in (1.13) are given by

MSSOR = 1

ω(2 − ω)
(D + ωL)D−1(D + ωU ), (1.16)

NSSOR = 1

ω(2 − ω)
[(1 − ω)D − ωL]D−1[(1 − ω)D − ωU ]. (1.17)

Since A is symmetric, we haveU = L�. Thus, it follows from (1.16) and (1.17) that
MSSOR and NSSOR are symmetric.

Many basic results of the SOR method including the SSOR method are summa-
rized in [93]. For recent developments of the SOR methods, see, e.g., [128, 130,
131] and the references therein. In [131], an adaptive SORmethod is proposed based
on a novel connection between the SOR method and discrete gradient methods for
gradient systems in [130], which gives a geometric view of the SOR method.

1.6.4 Convergence of the Stationary Iterative Methods

A remarkable property of the stationary iterative methods is that we can estimate the
rate of error reduction by computing ‖M−1N‖, where ‖ · ‖ is a subordinate matrix
norm (1.2). To see this, from (1.13) and the relation Ax = b ⇔ x = M−1N x +
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M−1b, the error is given by

ek+1 := x − xk+1

= (M−1N x + M−1b) − (M−1N xk + M−1b)

= M−1N (x − xk)

= M−1N ek . (1.18)

Thus the norm of the error is given by

‖ek+1‖ ≤ ‖M−1N‖‖ek‖.

The rate of the reduction of the error is ‖M−1N‖, which shows linear convergence.
Let λi (i = 1, . . . , n) be the eigenvalues of an n-by-n matrix G and let ρ(G) =
max{|λ1|, . . . , |λn|}. Then, ρ(G) is referred to as the spectral radius of G. It is easy
to see from (1.18) and the Jordan decomposition of M−1N that the necessary and
sufficient condition of the convergence for an arbitrary initial guess is

ρ(M−1N ) < 1. (1.19)

In what follows, the best-known fact for satisfying (1.19) is described.

Definition 1.1 (Regular splitting) A = M − N is called regular splitting ifM−1 ≥
O and N ≥ O , i.e., all the elements of M−1 and N are greater than or equal to zero.

Theorem 1.3 If A = M − N is regular splitting, then

ρ(M−1N ) < 1 ⇔ A−1 ≥ O.

Proof We first show ρ(M−1N ) < 1 ⇒ A−1 ≥ O . Let G := M−1N and λi be the
eigenvalues of G. Then, the eigenvalues of I − G are nonzeros (i.e., nonsingular),
because the eigenvalues of I − G are 1 − λi , and |λi | < 1 from the assumption
ρ(G) < 1. Since M and I − G are nonsingular, A = M(I − G) is also nonsingular,
i.e., there exists A−1. Since ρ(G) < 1, we have

A−1 = (I − G)−1M−1 = (I + G + G2 + · · · )M−1.

Since A = M − N is assumed to be regular splitting,G ≥ O andM−1 ≥ O . Thus
A−1 ≥ O .

Next, we show the converse. Since A = M − N is regular splitting, M−1 ≥ O
and N ≥ O . Thus G ≥ O . It follows from the Perron–Frobenius theorem that there
exists a nonnegative eigenvector x ≥ 0 such that Gx = ρ(G)x. It is easy to see that
A−1N = (I − G)−1G, and thus we have

A−1N x = (I − G)−1Gx = ρ(G)

1 − ρ(G)
x.
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Since A−1 ≥ O and N ≥ O , we have A−1N x ≥ 0. This implies ρ(G)/(1 −
ρ(G)) ≥ 0, which means (0 ≤)ρ(G) ≤ 1. Since there exists (I − G)−1, we have
ρ(G) �= 1. �

For further convergence theorems of the stationary iterative methods, see, e.g., an
excellent book by Varga [200].

The stationary iterative methods can also be used as a preconditioner for Krylov
subspace methods in Section 3.5.4.

1.7 Multigrid Methods

Multigrid methods fall into a class of iterative methods that have been developed for
solving linear systems arising from elliptic partial differential equations. Multigrid
methods find a good approximate solution of the linear systems from the informa-
tion of some rough approximate solutions of smaller linear systems (arising from
hierarchical coarser meshes) and an accurate approximate solution of the smallest
linear systems (arising from the coarsest mesh). For obtaining the rough approxi-
mate solutions, stationary iterative methods (especially the Gauss–Seidel method)
are often used, which are called smoothers. The name smoother comes from the fact
that the Gauss–Seidel method damps quickly the high frequency components of the
error or residuals for the linear systems, and the multigrid methods make the most
of this property.

The notable feature of the multigrid methods is that the convergence rate does not
depend on the mesh size, though stationary iterative methods and Krylov subspace
methods do. Themultigrid methods are later extended to solving other linear systems
arising from not only elliptic ones but other models.

Multigrid methods are the subject of active research, and there are many excellent
books on multigrid methods, some of them by:

• Hackbusch [91],
• Wesseling [204],
• Bramble [27],
• Briggs et al. [28],
• Trottenberg et al.[193],
• Lottes [125].

Wolfgang Hackbusch’s book presents not only the basic concepts of multigrid
methods using simple one-dimensional differential equations but also describes algo-
rithms, their program codes, and detailed convergence analysis. James Lottes’s book
focuses mainly on algebraic multigrid methods.
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1.8 Krylov Subspace Methods

Krylov subspace methods have a long history, dating from the mid-20th century, and
the best-known method is the Conjugate Gradient (CG) method by Hestenes and
Stiefel.5

Krylov subspace methods are iterative methods for solving linear systems (1.1)
by utilizing Krylov subspace as defined next.

Definition 1.2 (Krylov subspace) Let vectors v, Av, . . . , An−1v ∈ C
N be linearly

independent, then

Kn(A, v) = {
c0v + c1Av + · · · + cn−1A

n−1v : c0, c1, . . . , cn−1 ∈ C
}

(1.20)

(= span{v, Av, . . . , An−1v})

is called an (n dimensional) Krylov subspace.

The dimension ofKn(A, v) depends on v, and the largest dimension with respect
to a given v is known as the grade of a Krylov subspace, as defined next.

Definition 1.3 (Grade of Krylov subspace) The smallest number n such that

dim(Kn(A, v)) = dim(Kn+1(A, v)) (1.21)

is called the grade of A with respect to v.

Consider Ax = b and let m be the grade of A with respect to r0 := b − Ax0,
where x0 is an initial guess to the solution of Ax = b. Then

dim(Km(A, r0)) = dim(Km+1(A, r0)).

This means that there exist c0, c1, . . . , cm−1 such that

Am r0 = c0r0 + c1Ar0 + · · · + cm−1A
m−1r0.

Multiplying the equation by A−1 yields

Am−1r0 = c0A
−1r0 + c1r0 + c2Ar0 + · · · + cm−1A

m−2r0.

Since A−1r0 = A−1(b − Ax0) = x − x0, the solution can be written as

x = x0 + 1

c0

(−c1r0 − c2Ar0 − · · · − cm−1A
m−2r0 + Am−1r0

)

5 After the proposal of the CG method, Stiefel proposed the Conjugate Residual (CR) method in
1955, and he is also known for the Stiefel manifold that is an extension of the unit circle.
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if c0 �= 0. Let zm := (−c1r0 − · · · − cm−1Am−2r0 + Am−1r0
)
/c0. Then, zm ∈ Km

(A, r0), which means that the solution x satisfies

x = x0 + zm, zm ∈ Km(A, r0).

From this we see that the solution x belongs to the affine space x0 + Km(A, r0).
This fact leads to a natural idea to compute approximate solution xn over the affine
space xn ∈ x0 + Kn(A, r0), or equivalently

xn = x0 + zn, zn ∈ Kn(A, r0)

for n = 1, 2, . . . . If zn is appropriately determined, then this approach gives the exact
solution at m iteration steps, which is the basis of Krylov subspace methods.

Now the framework of Krylov subspacemethods is described below. Let x0 ∈ C
N

be an initial guess, and let r0 := b − Ax0 be the corresponding residual vector. Then,
Krylov subspace methods produce the nth approximate solution over the following
affine space:

Krylov subspace condition

xn = x0 + zn, zn ∈ Kn(A, r0). (1.22)

Then, the corresponding residual vector rn is given by

rn := b − Axn = r0 − Azn, rn ∈ Kn+1(A, r0). (1.23)

Since xn cannot be uniquely determined by utilizing the condition (1.22) above,
one of the following conditions needs to be imposed for obtaining the unique approx-
imate solution:

Ritz–Galerkin approach

rn ⊥ Kn(A, r0). (1.24)

Petrov–Galerkin approach

rn ⊥ Wn ⊂ C
N , dim(Wn) = n. (1.25)

Minimal residual approach

min
xn∈x0+Kn(A,r0)

‖b − Axn‖. (1.26)

The Petrov–Galerkin approach includes the Ritz–Galerkin approach and the min-
imal residual approach as described below.



1.8 Krylov Subspace Methods 21

Proposition 1.1 The following statements holds true:

• The Ritz–Galerkin approach (1.24) is the Petrov–Galerkin approach (1.25) with
the choice

Wn = Kn(A, r0).

• Theminimal residual approach (1.26) is the Petrov–Galerkin approach (1.25)with
the choice

Wn = AKn(A, r0), (1.27)

where AKn(A, r0) := {∑n
k=1 ck Avk : c1, c2, . . . , cn ∈ C

}
, and v1, v2, . . . , vn are

the basis vectors of Kn(A, r0).

Proof It is obvious for the Ritz–Galerkin approach, so the equivalence of (1.26)
and (1.27) will only be proved. Let Vn = [v1, v2, . . . , vn] be an N -by-n matrix
whose column vectors v1, v2, . . . , vn are the basis vectors of Kn(A, r0). Then
zn ∈ Kn(A, r0) in (1.22) can be written as Kn(A, r0) � zn = ∑n

k=1 ckvk = Vncn ,
where cn = [c1, c2, . . . , cn]� ∈ C

n . Substitution of zn = Vncn into (1.23) yields

rn = r0 − AVncn. (1.28)

Note that if rn ⊥ Avk(k = 1, 2, . . . , n), then it holds that rn ⊥ AKn(A, r0)
because it is easy to see that rn ⊥ ∑n

k=1 ck Avk for all ci ∈ C. The condition
rn ⊥ Avk(k = 1, 2, . . . , n) is equivalent to (AVn)

Hrn = 0 (:= [0, . . . , 0]�), and
thus it follows from (1.28) that 0 = (AVn)

Hrn = (AVn)
Hr0 − (AVn)

HAVncn . Thus,
the vector c is determined by

cn = [(AVn)
HAVn]−1(AVn)

Hr0. (1.29)

We now show that cn is the solution of the minimization problem (1.26). Since
the minimized solution of ‖b − Axn‖2 is the same as that of (1.26), we consider

min
xn∈x0+Kn(A,r0)

‖b − Axn‖2 = min
cn∈Cn

‖r0 − AVncn‖2

= min
cn∈Cn

(r0 − AVncn)H(r0 − AVncn). (1.30)

The following decomposition is useful for finding the solution of (1.30):

‖d − Mx‖2 = (d − Mx)H(d − Mx) = f (x) + c, (1.31)
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Table 1.2 Krylov subspace methods for Hermitian linear systems

Ritz–Galerkin approach Minimal residual approach

CG MINRES, CR

Table 1.3 Some Krylov subspace methods for non-Hermitian linear systems

Ritz–Galerkin approach Petrov–Galerkin approach Minimal residual approach

FOM BiCG, BiCR GMRES, GCR

where

f (x) = (MHMx − MHd)H(MHM)−1(MHMx − MHd),

c = −dHM(MHM)−1MHd + dHd.

If M is column full rank, then MHM is Hermitian positive definite,6 and thus f (x) ≥
0. This means the minimization of (1.31) is achieved by minimizing f (x). It is easy
to see that

x = (MHM)−1MHd (1.32)

gives f (x) = 0, which is the solution of the minimization problem of (1.31).
Letting x = (MHM)−1MHd with M = AVn and d = r0 yields the same result as in
(1.29). �

Remark 1 The equation (1.31) is also useful for solving the followingminimization:

min
ω∈C

‖a − ωb‖ (1.33)

because setting d = a, M = b, x = ω in (1.32) yields the solution of (1.33) as
follows:

ω = bHa

bHb
. (1.34)

The result will be used for Krylov subspace methods in Chap. 3.

Now, the relationship among representative Krylov subspace methods and three
approaches (1.24)–(1.26) is described in Tables1.2 and 1.3.

6 Matrix G ∈ C
N×N is called Hermitian positive definite if G is Hermitian and vHGv > 0 for all

v(�= 0) ∈ C
N , or equivalently, all the eigenvalues of Hermitian matrix G are positive. From this, it

follows that if G is Hermitian positive definite, then G−1 is also Hermitian positive definite. For
the positive definiteness, see also Sect. 1.4.
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The relationship among Krylov subspace methods for Hermitian and non-
Hermitian linear systems is as follows: the BiCGmethod and the FOMare extensions
of the CG method; the GMRES method is an extension of the MINRES method; the
BiCR method and the GCR method are extensions of the CR method. The details of
these Krylov subspace methods are described in Chap. 3.

1.9 Orthogonalization Methods for Krylov Subspaces

For satisfying Ritz–Galerkin or Petrov–Galerkin or minimal residual approaches
in Sect. 1.8, constructing basis vectors of Krylov subspace is required. For a non-
Hermitian matrix, the Arnoldi and the bi-Lanczos processes are used for Krylov
subspace basis vectors. For a complex symmetric matrix, the complex symmetric
Lanczos process is used, and for a Hermitian matrix, the Lanczos process is used.

The Arnoldi process produces orthonormal basis vectors of Krylov subspace
Kn(A, v). The Arnoldi process never suffers from breakdown (i.e., zero-division),
but the computational costs grow linearly as n increases. The bi-Lanczos process pro-
duces bi-orthogonal basis vectors of the Krylov subspace. The computational costs
do not grow linearly as n increases and thus the costs are less than those of theArnoldi
method. However, it may suffer from breakdown, and near breakdown will lead to
loss of orthogonality in the basis vectors. The complex symmetric Lanczos process
and the Lanczos process are special cases of the bi-Lanczos process. In particular,
since the Lanczos process is also a special case of the Arnoldi process, the Lanczos
process has favorable features of the Arnoldi process and the bi-Lanczos process,
i.e., the Lanczos process generates orthonormal basis vectors and the computational
costs do not grow linearly as n increases.

In the following subsections, these methods are described, together with algo-
rithms and matrix representations that will be used for the derivations of Krylov
subspace methods.

1.9.1 The Arnoldi Process

The Arnoldi process produces orthogonalized basis vectors of Krylov subspace
Kn(A, v), i.e., the basis vectors v1, v2, . . . , vn satisfy

(vi , v j ) = δi, j ,

where (x, y) := xH y = ∑N
i=1 x̄i yi is the standard dot product and δi, j is the Kro-

necker delta, i.e., δi, j = 1 if i = j and δi, j = 0 if i �= j .
For simplicity, consider producing orthonormal vectors of Kn(A, v) for the case

n = 3, i.e., producing v1, v2, v3 from span{v, Av, A2v}.
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A method to obtain orthonormal vectors from span{v, Av, A2v} is to use the
Gram–Schmidt process, which computes v1, v2, and v3 as follows:

v1 = z1v,

v2 = z2(Av − c1v1),

v3 = z3(A
2v − d1v1 − d2v2).

Here zi (i = 1, 2, 3) are scalar values for satisfying the normalizations ‖vi‖ =
1. Scalar value c1 is determined so that v1 and v2 are orthogonal, i.e., (v1, v2) =
0. Similarly, scalar values d1 and d2 are determined so that v3 ⊥ v2 and v3 ⊥ v1,
i.e., (v1, v3) = (v2, v3) = 0. However, it is known that this approach is numerically
unstable, since the angle between Anv and An−1v may be close to zero for large n,
leading to severe cancellation. In fact, under a suitable condition, Anv converges to an
eigenvector of Awhose eigenvalue is themaximum inmagnitude among eigenvalues
of A.

The Arnoldi process slightly modifies the (classical) Gram-Schmidt process as
follows:

v1 = z1v, (1.35)

v2 = z2(Av1 − c1v1), (1.36)

v3 = z3(Av2 − d1v1 − d2v2). (1.37)

Unlike the Gram–Schmidt process, A2v is not computed. In the following, the scalar
values are determined.Let z1 = 1/(v, v)1/2 ∈ R, or equivalently 1/‖v‖. Then‖v1‖ =
1 because ‖v1‖ = (z1v, z1v)1/2 = (z21(v, v))

1/2 = z1(v, v)1/2 = 1. Next consider
determining c1 such that (v1, v2) = 0, i.e.,

0 = (v1, v2)

= (v1, z2(Av1 − c1v1))

= z2((v1, Av1) − c1(v1, v1)) = z2((v1, Av1) − c1).

Thus c1 = (v1, Av1), and z2 is determined by ‖v2‖ = 1, i.e., z2 = 1/‖Av1 − c1v1‖.
Similarly, scaler values d1, d2 in (1.37) are determined by (v1, v3) = (v2, v3) = 0,
and z3 is determined by ‖v3‖ = 1.

The Arnoldi process (classical Gram–Schmidt type) is given in Algorithm 1.7
and a more accurate variant of the Arnoldi process (modified Gram–Schmidt type)
is described in Algorithm 1.8.

The Arnoldi process can be expressed inmatrix form. As an example, we consider
a matrix form of the recurrences (1.36) and (1.37). From (1.36) and (1.37) we have

Av1 = z−1
2 v2 + c1v1,

Av2 = z−1
3 v3 + d1v1 + d2v2,
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Algorithm 1.7 The Arnoldi process of classical Gram–Schmidt type

Input: Non-Hermitian matrix A ∈ C
N×N and choose v1 such that ‖v1‖ = 1

Output: v1, v2, . . . , vN
1: for n = 1, 2, . . . , N − 1 do
2: hi,n = (vi , Avn), i = 1, 2, . . . , n
3: ṽn+1 = Avn − ∑n

i=1 hi,nvi
4: hn+1,n = ‖ṽn+1‖
5: vn+1 = ṽn+1

hn+1,n

6: end for

Algorithm 1.8 The Arnoldi process of modified Gram–Schmidt type

Input: Non-Hermitian matrix A ∈ C
N×N and choose v1 such that ‖v1‖ = 1

Output: v1, v2, . . . , vN
1: for n = 1, 2, . . . , N − 1 do
2: t = Avn
3: for i = 1, 2, . . . , n do
4: hi,n = (vi , t)
5: t = t − hi,nvi
6: end for
7: hn+1,n = ‖t‖
8: vn+1 = t

hn+1,n

9: end for

or equivalently

A[v1, v2] = [v1, v2, v3]
⎡

⎣
c1 d1
z−1
2 d2
0 z−1

3

⎤

⎦ .

Note that A[v1, v2] = [Av1, Av2]. Similarly, the matrix form of Algorithm 1.7 (or
Algorithm 1.8) can be obtained as described next.

Let Vn be the N × n matrix whose columns are the first n orthonormal vectors
given in Algorithm 1.7 (or Algorithm 1.8), i.e.,

Vn = [v1, v2, . . . , vn], V H
n Vn = In,

and Hn+1,n the (n + 1) × n Hessenberg matrix with entries hi, j = 0 for i > j + 1,
and Hn the n × n Hessenberg matrix as follows:

Hn+1,n =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h1,1 h1,2 · · · h1,n−1 h1,n
h2,1 h2,2 · · · h2,n−1 h2,n

. . .
. . .

...
...

. . .
. . .

...

hn,n−1 hn,n

hn+1,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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and

Hn =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

h1,1 h1,2 · · · h1,n−1 h1,n
h2,1 h2,2 · · · h2,n−1 h2,n

. . .
. . .

...
...

. . .
. . .

...

hn,n−1 hn,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where hi, j ’s are scalar values that are produced by Algorithm 1.7 (or Algorithm 1.8).
Then, we have

AVn = Vn+1Hn+1,n = VnHn + hn+1,nvn+1e�
n , (1.38)

where en = (0, 0, . . . , 0, 1)� ∈ R
n . From the above matrix form and VH

n Vn = In ,
we obtain the relation of the form

Hn = VH
n AVn. (1.39)

If A is Hermitian, from HH
n = (V H

n AVn)
H = VH

n AHVn = V H
n AVn = Hn we see

that the Hessenberg matrix Hn is Hermitian. Thus, in this case, Hn is a tridiagonal
matrix. This means that if A is Hermitian, the Arnoldi process has a short-term
recurrences relation, which leads to the Lanczos process. The details of the Lanczos
process will be described in Sect. 1.9.4.

1.9.2 The Bi-Lanczos Process

The bi-Lanczos process is an algorithm for obtaining a bi-orthogonal basis of
Kn(A, v0) with short-term recurrences. Although the process does not generate
orthonormal basis vectors, it plays an important role in solving linear systems with
low memory requirements. The algorithm is given in Algorithm 1.9.

If breakdown does not occur, Algorithm 1.9 generates bi-orthogonal basis vectors
of the two Krylov subspaces such that

(wi , v j ) = δi, j ,

where Kn(A, v1) = span{v1, . . . , vn} and Kn(AH,w1) = span{w1, . . . ,wn}.
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Algorithm 1.9 The bi-Lanczos process
Input: Non-Hermitian matrix A ∈ C

N×N and choose v0 and w0 such that (v0,w0) �= 0
Input: v1 = v0/‖v0‖, w1 = w0/(w0, v1)

Output: v1, v2, . . . , vN and w1,w2, . . . ,wN
1: for n = 1, 2, . . . , N − 1 do
2: αn = (wn, Avn),
3: ṽn+1 = Avn − αnvn − βn−1vn−1
4: w̃n+1 = AHwn − αnwn − γn−1wn−1
5: γn = ‖ṽn+1‖
6: vn+1 = ṽn+1/γn
7: βn = (w̃n+1, vn+1)

8: wn+1 = w̃n+1/βn
9: end for

Similar to the Arnoldi process, the bi-Lanczos process can also be written in matrix
form. Let Tn+1,n be the (n + 1) × n tridiagonal matrix whose entries are recurrence
coefficients of the bi-Lanczos process, i.e.,

Tn+1,n =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1 β1

γ1 α2
. . .

. . .
. . . βn−1

γn−1 αn

γn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Tn =

⎡

⎢
⎢
⎢
⎢
⎣

α1 β1

γ1 α2
. . .

. . .
. . . βn−1

γn−1 αn

⎤

⎥
⎥
⎥
⎥
⎦

.

Then from the bi-Lanczos process, we have

AVn = Vn+1Tn+1,n = VnTn + γnvn+1e�
n , (1.40)

AHWn = Wn+1T
H
n+1,n = WnT

H
n + βnwn+1e�

n .

From the above expression and WH
n Vn = In , we readily obtain the formula Tn =

WH
n AVn .

1.9.3 The Complex Symmetric Lanczos Process

The complex symmetric Lanczos process is a special case for the bi-Lanczos process
(Algorithm 1.9) when the coefficient matrix is complex symmetric, i.e., A = A� �=
AH. If A is complex symmetric, we can readily derive the process from Algorithm
1.9 by setting w0 = v0, and the resulting algorithm is given in Algorithm 1.10.

If breakdowndoes not occur,Algorithm1.10 generates conjugate orthogonal basis
vectors of the Krylov subspace such that
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Algorithm 1.10 The complex symmetric Lanczos process (note: (a, b) = a�b)
Input: Complex symmetric matrix A ∈ C

N×N and choose v1 such that (v1, v1) �= 0
Input: v1 = v1/(v1, v1)

1/2

Output: v1, v2, . . . , vN
1: for n = 1, 2, . . . , N − 1 do
2: αn = (vn, Avn)
3: ṽn+1 = Avn − αnvn − βn−1vn−1
4: βn = (ṽn+1, ṽn+1)

1/2

5: vn+1 = ṽn+1/βn
6: end for

(vi , v j ) = δi j ,

where Kn(A, v1) = span{v1, . . . , vn}.
Similar to the Arnoldi process and the bi-Lanczos process, Algorithm 1.10 can

also bewritten inmatrix form. Let Tn+1,n be the (n + 1) × n tridiagonalmatrixwhose
entries are recurrence coefficients of the complex symmetric Lanczos process, i.e.,

Tn+1,n =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1 β1

β1 α2
. . .

. . .
. . . βn−1

βn−1 αn

βn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Tn =

⎡

⎢
⎢
⎢
⎢
⎣

α1 β1

β1 α2
. . .

. . .
. . . βn−1

βn−1 αn

⎤

⎥
⎥
⎥
⎥
⎦

.

Then from Algorithm 1.10, we have

AVn = Vn+1Tn+1,n = VnTn + βnvn+1e�
n . (1.41)

From the above, we see that Tn is also complex symmetric, i.e., Tn = T�
n �= TH

n .

1.9.4 The Lanczos Process

The Lanczos process is the Arnoldi process specialized to the case where A is Her-
mitian. Since Hn is both Hermitian and Hessenberg, it is tridiagonal. This means that
in the inner loop of the Arnoldi process (Algorithm 1.7), the summation from 1 to n
can be replaced by n − 1 to n. Therefore, instead of the (n + 1)-term recurrence at
step n, the Lanczos process only requires a three-term recurrence. As a result of this
amazing property, each step of the Lanczos process is much more concise than the
corresponding step of the Arnoldi process or the bi-Lanczos process. The Lanczos
process is listed in Algorithm 1.11.
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Algorithm 1.11 The Lanczos process

Input: Hermitian matrix A ∈ C
N×N and choose v1 such that ‖v1‖ = 1

Input: β0 = 0, v0 = 0
Output: v1, v2, . . . , vN
1: for n = 1, 2, . . . , N − 1 do
2: αn = (vn, Avn)
3: ṽn+1 = Avn − αnvn − βn−1vn−1
4: βn = (ṽn+1, ṽn+1)

1/2

5: vn+1 = ṽn+1/βn
6: end for

We can readily derive the Lanczos process from the Arnoldi process or the bi-
Lanczos process with settingw0 = v0. If breakdown does not occur, the above algo-
rithm generates an orthonormal basis of Kn(A, v1) such that

(vi , v j ) = δi j ,

where Kn(A, v1) = span{v1, . . . , vn}.
Similar to the Arnoldi process and the bi-Lanczos process, the Lanczos process

can also be written in matrix form. Let Tn+1,n be the (n + 1) × n tridiagonal matrix
whose entries are recurrence coefficients of the Lanczos process, i.e.,

Tn+1,n =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1 β1

β1 α2
. . .

. . .
. . . βn−1

βn−1 αn

βn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Tn :=

⎡

⎢
⎢
⎢
⎢
⎣

α1 β1

β1 α2
. . .

. . .
. . . βn−1

βn−1 αn

⎤

⎥
⎥
⎥
⎥
⎦

.

Then from the Lanczos process, we have

AVn = Vn+1Tn+1,n = VnTn + βnvn+1e�
n . (1.42)

From the above expression and VH
n Vn = In , we readily obtain the following formula:

Tn = V H
n AVn. (1.43)

We see that Tn is also Hermitian (more precisely, real symmetric). The Lanczos
process is used for solving Hermitian linear systems.



Chapter 2
Some Applications to Computational
Science and Data Science

Abstract Linear systems of the form Ax = b arise in a rich variety of applications
such as computational science and data science. For computational science, phys-
ical phenomena are often described as partial differential equations. For solving
partial differential equations, the finite-difference methods and the finite element
method are widely used, leading to a problem of solving linear systems. Large-scale
electronic structure calculation for condensed matter physics and lattice quantum
chromodynamics for particle physics require solving large-scale linear systems. For
data science, regression and classification are fundamental tasks that also require
solving linear systems. Minimizing or maximizing functions is one of the most
important optimization problems, which requires solving linear systems when New-
ton’s method is used. We will see in this chapter how the linear systems arise in these
applications by using simple and concrete examples.

2.1 Partial Differential Equations

In this section, the finite difference method and the finite element method are
described using some partial differential equations, and we will see that the more
accurate solution we need, the larger the linear systems we need to solve.

2.1.1 Finite Difference Methods

This subsection describes the finite difference methods using several simple partial
differential equations. The notion of tensor products is also explained, which comes
in handy to describe the coefficient matrix of the linear systems arising from the
finite difference discretization of the partial differential equations. First of all, a
mathematical preliminary is given next.
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2.1.1.1 Preliminary

This subsection describes several formulas for approximating derivatives f ′(x), f ′′(x)
of a smooth function f (x) at x using f (x), f (x − h), and f (x + h) with 0 < h < 1.

Consider how to approximate f ′(x). The Taylor series of f (x) is given by

f (x + h) = f (x) + f ′(x)h + 1

2! f ′′(x)h2 + 1

3! f ′′′(x)h3 + · · · . (2.1)

Then, f ′(x) is written as

f ′(x) = f (x + h) − f (x)

h
− 1

2! f ′′(x)h − 1

3! f ′′′(x)h2 − · · ·

= f (x + h) − f (x)

h
+ O(h).

O(·) is the big O notation. Roughly speaking, O(h) in this case means that − 1
2! f

′′(x)
h − 1

3! f
′′′(x)h2 − · · · can be written as ch for a suitable constant value c as h → 0.

The approximation to f ′(x) by the recurrence

f ′(x) ≈ f (x + h) − f (x)

h
(2.2)

is referred to as the forward difference. The accuracy of the forward difference is of
order h. A similar approximation

f ′(x) ≈ f (x) − f (x − h)

h
(2.3)

is referred to as the backward difference. The accuracy of the backward difference
is also of order h. For a more accurate formula, it follows from (2.1) that we have

f (x + h) − f (x − h)

2h
= f ′(x) + O(h2),

from which, we have

f ′(x) ≈ f (x + h) − f (x − h)

2h
, (2.4)

and this is referred to as the central difference for the first derivative of f (x), whose
accuracy is of order h2.

We now consider approximating the second derivative f ′′(x). From the Taylor
series (2.1) of f (x + h) and f (x − h), we have

f (x + h) − 2f (x) + f (x − h) = f ′′(x)h2 + O(h4).
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Thus

f ′′(x) = f (x + h) − 2f (x) + f (x − h)

h2
+ O(h2).

The following approximation

f ′′(x) ≈ f (x + h) − 2f (x) + f (x − h)

h2
(2.5)

is referred to as the central difference for the second derivative of f (x), whose accu-
racy is of order h2.

2.1.1.2 Example 1 (Symmetric Matrix)

Consider the Laplace equation of the form

uxx + uyy = 0, (x, y) ∈ (0, 1) × (0, 1),

u(x, y) = g(x, y), (x, y) ∈ �,

where � is the boundary of (0, 1) × (0, 1). To be specific, the boundary condi-
tion is given by u(0, y) = g(0, y), u(1, y) = g(1, y), u(x, 0) = g(x, 0), and u(x, 1) =
g(x, 1).

We now approximately solve the Laplace equation by using central difference
(2.5). To this end, an equispaced grid of N × N points in (0, 1) × (0, 1) is used. The
case N = 3 (h = 1/4) is shown in Fig. 2.1.

Fig. 2.1 Mesh grid on the
region for example 1 (the
Laplace equation)
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In the following, we use the mesh in Fig. 2.1 and we will see how linear systems
are obtained. Central difference (2.5) for approximating uxx and uyy is given by

uxx(x, y) ≈ 1

h2
(u(x + h, y) − 2u(x, y) + u(x − h, y)), (2.6)

uyy(x, y) ≈ 1

h2
(u(x, y + h) − 2u(x, y) + u(x, y − h)). (2.7)

It is convenient to introduce an abbreviated notation ui,j = u(xi, yj). Then we obtain
the following five-point formula:

uxx(xi, yj) + uyy(xi, yj) ≈ 1

h2
(ui+1,j + ui−1,j − 4ui,j + ui,j+1 + ui,j−1), (2.8)

where u(xi, yj) = g(xi, yj) on the boundary. Let u1 := u(x1, y1), u2 := u(x1, y2),…,
u9 := u(x3, y3) and gi,j := u(xi, yj) on the boundary. Then from Fig. 2.1 and (2.8),
unknowns u1, u2, . . . , u9 have the following relations:

u2 + g0,1 − 4u1 + u4 + g1,0 = 0,

u3 + u1 − 4u2 + u5 + g2,0 = 0,

g4,1 + u2 − 4u3 + u6 + g3,0 = 0,

u5 + g0,2 − 4u4 + u7 + u1 = 0,

...

g4,3 + u8 − 4u9 + g3,4 + u6 = 0.

The corresponding matrix form is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 1 0 1 0 0 0 0 0
1 −4 1 0 1 0 0 0 0
0 1 −4 0 0 1 0 0 0
1 0 0 −4 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 1 −4 1 0 1
0 0 0 1 0 0 −4 1 0
0 0 0 0 1 0 1 −4 1
0 0 0 0 0 1 0 1 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5
u6
u7
u8
u9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1,0
g2,0
g3,0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

g1,4
g2,4
g3,4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0,1
0
0

g0,2
0
0

g0,3
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

g4,1
0
0

g4,2
0
0

g4,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
b

.

(2.9)

By solving the linear systems, we obtain the approximate solution u1, . . . , u9 on the
mesh grid.

The matrix of the linear systems (2.9) has a special nonzero structure, which
can be rewritten in a simple form using Kronecker product. Let A(= {aij}) and B
are matrices. Then, the symbol A ⊗ B is called the Kronecker product (or Tensor
product), defined by
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A ⊗ B :=
⎡
⎢⎣

a11B · · · a1mB
...

. . .
...

an1B · · · anmB

⎤
⎥⎦ . (2.10)

Below is an example for A, B being 2-by-2 matrices:

A ⊗ B =
[

a11B a12B
a21B a22B

]
=

⎡
⎢⎢⎣

a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

⎤
⎥⎥⎦ .

Now, let

M =
⎡
⎣

−2 1 0
1 −2 1
0 1 −2

⎤
⎦ , I =

⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦ .

Then, the coefficient matrix A in (2.9) can be written as

A = I ⊗ M + M ⊗ I . (2.11)

The size of the matrix A is 32 × 32. In general, N × N grid yields an N 2 × N 2

matrix, which can be very large and symmetric. Krylov subspace methods for sym-
metric linear systems are described in Sect. 3.1.

Finally, some properties of the Kronecker product are listed below.

Theorem 2.1 The Kronecker product has the following properties:

(1) For A ∈ C
m×n, B ∈ C

p×q, C ∈ C
r×s,

(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C).

(2) For A, B ∈ C
m×n, C ∈ C

p×q,

(A + B) ⊗ C = A ⊗ C + B ⊗ C.

(3) For A ∈ C
m×n, B, C ∈ C

p×q,

A ⊗ (B + C) = A ⊗ B + A ⊗ C.

(4) For c ∈ C, A ∈ C
m×n, B ∈ C

p×q,

(cA) ⊗ B = A ⊗ (cB) = c(A ⊗ B).

(5) For A ∈ C
m×n, B ∈ C

p×q,
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(A ⊗ B)H = AH ⊗ BH.

(6) For A ∈ C
m×n, B ∈ C

p×q, C ∈ C
n×r , D ∈ C

q×s,

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).

Proof We only give a proof of (6). The (i, k) block element of A ⊗ B is ai,kB,
and the (k, j) block element of C ⊗ D is ck,jD. Thus the (i, j) block element of
(A ⊗ B)(C ⊗ D) is given as

((A ⊗ B)(C ⊗ D))i,j =
n∑

k=1

(ai,kB)(ck,jD) =
(

n∑
k=1

ai,kck,j

)
BD

= (AC)i,jBD = ((AC) ⊗ (BD))i,j,

which concludes the proof. �

Note that (i, j) “block” element is not a scalar but a matrix. For example, consider
the following 2-by-2 block matrices of the form

A =
[

A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
.

Then the (1,1) block element of A is matrix A11, and the (1,2) block element of B
is matrix B12. Furthermore, we can calculate AB as if the submatrices Ai,j and Bi,j

are scalars when the matrix multiplication Ai,jBj,k is defined. For example, The (1,1)
block element of AB is given by A11B11 + A12B21.

From Theorem 2.1-(6), the following properties hold true.

Corollary 2.1 Let A and B be invertible matrices. Then

(A ⊗ B)−1 = A−1 ⊗ B−1.

Proof FromTheorem 2.1-(6), we have (A−1 ⊗ B−1)(A ⊗ B) = (A−1A) ⊗ (B−1B) =
I ⊗ I , which is the Kronecker product of the two identity matrices. It is easy to see
that the Kronecker product of the two identity matrices is the identity matrix. �

Corollary 2.2 Let p(A)
i and p(B)

j be eigenvectors of A and B, and the corresponding

eigenvalues are λ
(A)
i and λ

(B)
j . Then an eigenvector of A ⊗ B is p(A)

i ⊗ p(B)
j , and the

corresponding eigenvalue is λ
(A)
i λ

(B)
j , i.e.,

(A ⊗ B)
(
p(A)

i ⊗ p(B)
j

)
= λ

(A)
i λ

(B)
j

(
p(A)

i ⊗ p(B)
j

)
.

Proof From Theorem 2.1-(4) and (6), we have
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(A ⊗ B)
(
p(A)

i ⊗ p(B)
j

)
=
(

Ap(A)
i

)
⊗
(

Bp(B)
j

)
= λiλj

(
p(A)

i ⊗ p(B)
j

)
,

which concludes the proof. �
Corollary 2.3 Using the same notations as in Corollary 2.2, it follows that

(A ⊗ I + I ⊗ B)
(
p(A)

i ⊗ p(B)
j

)
= (λ

(A)
i + λ

(B)
j )
(
p(A)

i ⊗ p(B)
j

)
,

where I is the identity matrix.

The matrix A ⊗ I + I ⊗ B is referred to as a Kronecker sum (or Tensor sum).
It follows from Corollary 2.3 that eigenvectors and eigenvalues of matrix A in

(2.11) can be given by (pi ⊗ pj, λi + λj), where pi and λi is the eigenvector and
eigenvalue of M . This indicates that matrix A in (2.11) is not invertible if and only
if there exist i, j such that λi = −λj. Thus, the distribution of eigenvalues of much
smaller matrices M than A determines whether matrix A is invertible or not.

In general, the Kronecker product does not commute, i.e.,

A ⊗ B �= B ⊗ A,

where A ∈ C
m×n, B ∈ C

p×q. However, there are permutation matrices Pmp ∈ R
mp×mp

and Pnq ∈ R
nq×nq such that

P�
mp(A ⊗ B)Pnq = B ⊗ A.

We describe this fact in detail as given next.

Theorem 2.2 Let Pmn ∈ R
mn×mn be a matrix of the form

Pmn =

⎡
⎢⎢⎢⎣

(E11)
� (E12)

� . . . (E1n)
�

(E21)
� (E22)

� . . . (E2n)
�

...
...

. . .
...

(Em1)
� (Em2)

� . . . (Emn)
�

⎤
⎥⎥⎥⎦ , (2.12)

where Ei,j ∈ R
m×n is a matrix whose (i, j) element is one and the other elements are

zeros. Then,

Pmn = P�
nm = P−1

nm

and for A ∈ C
m×n, B ∈ C

p×q,

P�
mp︸︷︷︸

mp×mp

(A ⊗ B)︸ ︷︷ ︸
mp×nq

Pnq︸︷︷︸
nq×nq

= B ⊗ A. (2.13)

If A and B are square matrices (i.e., m = n, p = q),
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P�
mp(A ⊗ B)Pmp = B ⊗ A.

Proof We give a proof of (2.13). The (i, j) block element of Pm,n in (2.12) is E�
ij ,

and Eij can be factorized as

Eij = eie�
j ,

where ei is the ith unit vector, i.e., the ith element is one, and the others are zeros.
Let aij and bij be the (i, j) elements of A and B. Then, from (2.12), the (i, j) block
element of P�

mp(A ⊗ B)Pnq is calculated as

(
P�

mp(A ⊗ B)Pnq

)
ij

=
∑
k,�

Eki(ak�B)E�
�j =

∑
k,�

ak�

(
EkiBEj�

)

=
∑
k,�

ak�

(
eke�

i Beje�
�

) =
∑
k,�

ak�

(
ekbije�

�

)

= bij

∑
k,�

ak�

(
eke�

�

) = bij

⎛
⎝∑

k,�

ak�Ek�

⎞
⎠ = bijA

= (B ⊗ A)ij,

which concludes the proof. �

2.1.1.3 Example 2 (Complex Symmetric Matrix)

We consider the following boundary value problem:

uxx + uyy + σ 2u = 0, (x, y) ∈ (0, π) × (0, π),

ux|x=0 = i
√

σ 2 − 1
4 cos

y
2 , Neumann Condition (1),

ux|x=π − i
√

σ 2 − 1
4u|x=π = 0, Radiation Condition,

uy|y=0 = 0, Neumann Condition (2),
u|y=π = 0, Dirichlet Condition.

The elliptic partial differential equation is known as the Helmholtz equation, see,
e.g., [19]. For simplicity, we use a 3-by-3 mesh grid as shown in Figs. 2.2 and 2.3.

Similar toExample 1 in the previous section, applying (2.6)–(2.8) to theHelmholtz
equation yields

− ui+1,j − ui−1,j + (4 − h2σ 2)ui,j − ui,j+1 − ui,j−1 = 0. (2.14)

Considering Eq. (2.14) over the mesh points given in Fig. 2.3 leads to the following
six equations:
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Fig. 2.2 Mesh points on the
region

Fig. 2.3 Mesh points on the
region satisfying the
boundary conditions

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−u2 − g4 − u4 − g1 + (4 − h2σ 2)u1 = 0,
−u3 − u1 − u5 − g2 + (4 − h2σ 2)u2 = 0,
−g5 − u2 − u6 − g3 + (4 − h2σ 2)u3 = 0,
−u5 − g6 − g8 − u1 + (4 − h2σ 2)u4 = 0,
−u6 − u4 − g9 − u2 + (4 − h2σ 2)u5 = 0,
−g7 − u5 − g10 − u3 + (4 − h2σ 2)u3 = 0,

(2.15)

whereu1 := u1,1 = u(0, 0),u2 := u2,1 = u(h, 0),u3 := u3,1 = u(2h, 0),u4 := u1,2 =
u(0, h), u5 := u2,2 = u(h, h), u6 := u3,2 = u(2h, h) and h = π/2. Here gk ’s for
k = 1, . . . , 10 in Fig. 2.3 can be computed by considering the four boundary condi-
tions as follows: first, from Neumann Condition (2) it follows that

u4 − g1
2h

= u5 − g2
2h

= u6 − g3
2h

= 0,

and thus

g1 = u4, g2 = u5, g3 = u6.

Second, from Neumann Condition (1), we have
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ux(0, 0) ≈ u2 − g4
2h

= id cos

(
0

2

)
, ux(0, h) ≈ u5 − g6

2h
= id cos

(
1

2
× h

2

)
.

or equivalently,

g4 = u2 − 2idh, g6 = u5 − 2idh cos

(
h

4

)
,

where d = √σ 2 − 1/4. Third, from the Radiation Condition we obtain

g5 − u2
2h

− idu3 = g7 − u5
2h

− idu6 = 0

or equivalently,

g5 = u2 + 2idhu3, g7 = u5 + 2idhu6.

Finally, it follows from the Dirichlet Condition that g8, g9 and g10 satisfy

g8 = g9 = g10 = 0.

Substituting g1, g2, . . . , g10 into the six equations (2.15) yields the following linear
systems:

⎡
⎢⎢⎢⎢⎢⎢⎣

a −2 0 −2 0 0
−1 a −1 0 −2 0
0 −2 a − idh 0 0 −2

−1 0 0 a −2 0
0 −1 0 −1 a −1
0 0 −1 0 −2 a − idh

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u1

u2
u3
u4
u5
u6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

f1
0
0
f4
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2.16)

where a = √σ 2 − 1/4, f1 = −2idh, and f4 = −2idh cos(h/4). The coefficient
matrix of the linear systems (2.16) is not symmetric. By scaling each equation,
we obtain symmetric linear systems of the form

⎡
⎢⎢⎢⎢⎢⎢⎣

a/4 −1/2 0 −1/2 0 0
−1/2 a/2 −1/2 0 −1 0
0 −1/2 (a − idh)/4 0 0 −1/2

−1/2 0 0 a/2 −1 0
0 −1 0 −1 a −1
0 0 −1/2 0 −1 (a − idh)/2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5
u6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

f1/4
0
0

f4/2
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.17)

The coefficient matrix of the form (2.17) is non-Hermitian but symmetric, i.e., com-
plex symmetric. Krylov subspace methods for solving complex symmetric linear
systems are described in Sect. 3.2.
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2.1.1.4 Example 3 (Nonsymmetric Matrix)

Consider the following three-dimensional partial differential equation:

[a · (∇ ∗ ∇) + b · ∇ + c]u(x, y, z) = g(x, y, z), in �,
u(x, y, z) = 0, on ∂�.

Here, � is the cubic domain, i.e., (0, 1) × (0, 1) × (0, 1) and ∂� is the boundary.
The symbol “*” denotes element-wise multiplication. Equivalently, the operator a ·
(∇ ∗ ∇) + b · ∇ + c is rewritten as

a1
∂2

∂x2
+ a2

∂2

∂y2
+ a3

∂2

∂z2
+ b1

∂

∂x
+ b2

∂

∂y
+ b3

∂

∂z
+ c

with a = [a1, a2, a3]�, b = [b1, b2, b3]�, and c = [c1, c2, c3]�.
Using central difference (2.5) for the second derivative of u yields

a1uxx(x, y, z) ≈ a1
h2

(u(x + h, y, z) − 2u(x, y, z) + u(x − h, y, z)),

a2uyy(x, y, z) ≈ a2
h2

(u(x, y + h, z) − 2u(x, y, z) + u(x, y − h, z)),

a3uzz(x, y, z) ≈ a3
h2

(u(x, y, z + h) − 2u(x, y, z) + u(x, y, z − h)).

Similarly, using central difference (2.4) for the first derivative of u gives

b1ux(x, y, z) ≈ b1
2h

(u(x + h, y, z) − u(x − h, y, z)),

b2uy(x, y, z) ≈ b2
2h

(u(x, y + h, z) − u(x, y − h, z)),

b3uz(x, y, z) ≈ b3
2h

(u(x, y, z + h) − u(x, y, z − h)).

Considering an (N + 1) × (N + 1) × (N + 1) grid, together with the central differ-
ences above, leads to

[a · (∇ ∗ ∇) + b · ∇ + c]u(x, y, z)

≈ a1
h2

(ui+1,j,k − 2ui,j,k + ui−1,j,k) + b1
2h

(ui+1,j,k − ui−1,j,k) + cui,j,k

+ a2
h2

(ui,j+1,k − 2ui,j,k + ui,j−1,k) + b2
2h

(ui,j+1,k − ui,j−1,k)

+ a3
h2

(ui,j,k+1 − 2ui,j,k + ui,j,k−1) + b3
2h

(ui,j,k+1 − ui,j,k−1),

where h = 1/(N + 1). Since u = 0 on the boundary. Following Sect. 2.1.1.2, we
have
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(IN ⊗ IN ⊗ A + IN ⊗ B ⊗ IN + C ⊗ IN ⊗ IN )u = g, (2.18)

where IN is the N -by-N identity matrix, each element of u and g corresponds to
u(xi, yi, zi) and g(xi, yi, zi), and

A := a1
h2

M1 + b1
2h

M2 + cIN ,

B := a2
h2

M1 + b2
2h

M2,

C := a3
h2

M1 + b3
2h

M2.

Here, M1 and M2 are defined by

M1 :=

⎡
⎢⎢⎢⎢⎢⎣

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎤
⎥⎥⎥⎥⎥⎦

, M2 :=

⎡
⎢⎢⎢⎢⎢⎣

0 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 0

⎤
⎥⎥⎥⎥⎥⎦

.

M1 and M2 are N -by-N (tridiagonal Toeplitz) matrices, and blanks in the matrices
are zeros.

The size of linear systems (2.18) is N 3 × N 3. If N = 100, which is an equispaced
grid with h ≈ 0.01, then the size of the matrix is a million. If N = 1000, then the
size is now a billion! Therefore, efficient numerical solvers for solving very large
(and sparse) linear systems are required for a well approximate solution to the partial
differential equation.

The matrix in (2.18) is (real) nonsymmetric if b �= 0. Krylov subspace methods
for nonsymmetric (non-Hermitian) linear systems are described in Sect. 3.3.

2.1.2 The Finite Element Method

In the previous section,we have seen that a finite difference approximation to (partial)
derivatives yields linear recurrence relations, leading to linear systems by using the
recurrence relations. The approximate solution corresponds to the values of given
grid points, which are the elements of the solution vector for the linear systems. In
this section, the Finite Element Method (FEM, hereafter) is introduced, and we will
see how linear systems are obtained through a simple example. The advantages of
the FEM over the finite difference method are (i) square (or rectangular) grid points
on the domain are not necessarily needed, and thus it is suitable for not only square
or rectangular but other various domains; (ii) there are many mathematical results
for the error analysis based on functional analysis.
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Fig. 2.4 The domain and the
boundary of the Poisson Eqs.
(2.19)–(2.21)

In this section, we consider applying the FEM to the following Poisson equation:

− 	u(x, y) = f , (x, y) ∈ �, (2.19)

· u(x, y) = g, (x, y) ∈ �1, Dirichlet Condition, (2.20)

· ∂

∂n
u(x, y) = 0, (x, y) ∈ �2, Neumann Condition, (2.21)

where 	 := ∂2/∂x2 + ∂2/∂y2. The domain and the boundary with the boundary
conditions are illustrated in Fig. 2.4. In the following, the explanations are based on
[118, 170].

2.1.3 Weak Form

In this section, an integral equation called the weak form is derived from the Poisson
equation.

Consider integrating (2.19)multiplied by an arbitrary function over the domain�:

−
∫

�

v	u d� =
∫

�

vf d�. (2.22)

If we can find a function u that satisfies (2.22) for all v, then u is the solution of
(2.19). The FEM tries to find the solution u that satisfies (2.22) instead of solving
(2.19), which differs from the finite difference methods. Here, function v is referred
to as the test function or the weight function.

Now, in order to simplify the mathematical formulas, let v be an arbitrary smooth
function but v = 0 on �1. Applying the Gauss–Green theorem to the left-hand side
of (2.22), the integration by parts yields
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∫
�

v	u d� =
∫

�

v
∂u

∂n
d� −

∫
�

∇v · ∇u d� (the Gauss–Green theorem)

=
∫

�1

v
∂u

∂n
d�1 +

∫
�2

v
∂u

∂n
d�2 −

∫
�

∇v · ∇u d�

= −
∫

�

∇v · ∇u d�. (2.23)

Here we used the assumption v = 0 on �1 and Neumann condition (2.21) on �2, i.e.,
∂u
∂n = 0 on �2.

Substituting (2.23) into (2.22) gives

∫
�

∇v · ∇u d� =
∫

�

vf d�.

Thus all we have to do is to find u such that
∫∫

�

(
∂v

∂x

∂u

∂x
+ ∂v

∂y

∂u

∂y

)
dxdy =

∫∫
�

vf dxdy. (2.24)

The equation does not have the second-order derivative, whereas the original Eq.
(2.19) does. In other words, the condition of differentiability of u in (2.24) looks to
be weak. Therefore, (2.24) is referred to as the weak form.

As seen in (2.24), the weak form is the integral over the whole domain. Now
consider that the whole domain is divided into finite elements ei, i.e., � = ∪n

i=1ei

and ei ∩ ej = ∅ for i �= j. Then we have

∫∫
ei

(
∂v

∂x

∂u

∂x
+ ∂v

∂y

∂u

∂y

)
dxdy =

∫∫
ei

vf dxdy (2.25)

for i = 1, 2, . . . , n. An example of the domain decomposition by triangle elements
is shown in Fig. 2.5. In the next section, we will see how linear systems are obtained
from (2.25).

2.1.4 Derivation of Linear Systems

Let finite elements ei in (2.25) be triangular, see Fig. 2.5. Each node of the triangular
element ei is given the position and a number, and the node numbers of the triangle
are given clockwise, see Fig. 2.6. As seen in Fig. 2.6, the position of node i is (xi, yi)

for i = 1, 2, 3.
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Fig. 2.5 The domain
decomposition by triangular
finite elements

Fig. 2.6 The numbering of
triangular finite elements

Now we introduce the following vector-valued function:

h(x, y) =
⎛
⎝

h1(x, y)
h2(x, y)
h3(x, y)

⎞
⎠ =

⎛
⎝
1 1 1
x1 x2 x3
y1 y2 y3

⎞
⎠

−1⎛
⎝
1
x
y

⎞
⎠ , (2.26)

and let ũ be an approximate function to the solution function u over the triangular
domain such that ũ is a linear function of x, y with ũ(xi, yi) = ui for i = 1, 2, 3. Then
ũ is given by

ũ = h�ue = (1 x y
)
⎛
⎝
1 1 1
x1 x2 x3
y1 y2 y3

⎞
⎠

−�⎛
⎝

u1
u2
u3

⎞
⎠ . (2.27)

Confirming equalities ũ(xi, yi) = ui for 1 ≤ i ≤ 3 is left as an exercise for the reader.
Now substituting ũ into the left integrand in (2.25) and choosing v as the same

form of ũ, i.e., v = h�ve with ve := (v1, v2, v3)� gives

∂v

∂x

∂ ũ

∂x
+ ∂v

∂y

∂ ũ

∂y
= ∂

∂x
v�

e h
∂

∂x
h�ue + ∂

∂y
v�

e h
∂

∂y
h�ue

= v�
e

(
∂

∂x
h

∂

∂x
h� + ∂

∂y
h

∂

∂y
h�
)
ue,
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where we used the relation h�ve = v�
e h. Here, from (2.26), it follows that

hx := ∂h
∂x

=
⎛
⎝
1 1 1
x1 x2 x3
y1 y2 y3

⎞
⎠

−1⎛
⎝
0
1
0

⎞
⎠ = 1

D

⎛
⎝

y2 − y3
y3 − y1
y1 − y2

⎞
⎠ =:

⎛
⎝

b1
b2
b3

⎞
⎠ , (2.28)

hy := ∂h
∂y

=
⎛
⎝
1 1 1
x1 x2 x3
y1 y2 y3

⎞
⎠

−1⎛
⎝
0
0
1

⎞
⎠ = 1

D

⎛
⎝

x3 − x2
x1 − x3
x2 − x1

⎞
⎠ =:

⎛
⎝

c1
c2
c3

⎞
⎠ , (2.29)

where D is defined by

D := det

⎛
⎝
1 1 1
x1 x2 x3
y1 y2 y3

⎞
⎠ .

D is twice the area of the triangle. Since hx and hy do not depend on x, y, the left
side of (2.25) is calculated as follows:

∫∫
ei

(
∂v

∂x

∂ ũ

∂x
+ ∂v

∂y

∂ ũ

∂y

)
dxdy = v�

e (hxh�
x + hyh�

y )ue

∫∫
ei

dxdy

= v�
e

(hxh�
x + hyh�

y )D

2
ue

= v�
e Aeue.

Here,
∫∫

ei
dxdy is the area of triangle ei, i.e., D/2. Matrix Ae is a 3 × 3 symmetric

matrix whose (i, j) element, a(e)
ij , is given by

a(e)
ij = D

2
(bibj + cicj), (2.30)

from (2.28) and (2.29). The right-hand side of (2.25) is written as

f e :=
⎛
⎝

f (e)
1

f (e)
2

f (e)
3

⎞
⎠ =

⎛
⎝
∫∫

ei
f0h1 dxdy∫∫

ei
f0h2 dxdy∫∫

ei
f0h3 dxdy

⎞
⎠ = f0D

6

⎛
⎝
1
1
1

⎞
⎠ , (2.31)

where we used f (x, y) = f0 (constant function) for simplicity. Then, we have

∫∫
ei

vf dxdy = v�
e f e.



2.1 Partial Differential Equations 47

On calculating the right-hand side of (2.31), the integrand hi (1 ≤ i ≤ 3) is a
triangular pyramid with the height being 1 and the area of the base being D/2. Thus
the volume of the triangle pyramid is (D/2) · 1 · 1/3 = D/6.

From this, the left-hand side and the right-hand side of (2.25) are approximated
by

v�
e Aeue, v�

e f e. (2.32)

The above process is the derivation of (2.32) regarding a small area ei . Considering all
the linear systems for all ei’s together with boundary conditions leads to large linear
systems. By solving the large linear systems, the approximate solution ui on each
node can be obtained. In the next subsection, we will see how large linear systems
can be obtained.

2.1.5 Example

As an example of the previous subsection, we consider Poisson Eq. (2.19) on the
(0, 1) × (0, 1) square domain � in Fig. 2.7, and we will see how linear systems are
obtained.

We first decompose the square domain in Fig. 2.7 into eight triangles in Fig. 2.8.
Next, calculate (2.32) for Ae and f e in each triangle element in Fig. 2.8, and finally,
combine all the information, leading to linear systems.

In what follows, we calculate (2.32) for Ae and f e. We see from Fig. 2.8 that there
are two kinds of triangles, i.e., type I for eI1, eI3, eI5, eI7 and type II for eII2 , eII4 , eII6 , eII8 ,
leading to two types of linear systems corresponding to (2.8). The details of the two
triangles are shown in Fig. 2.9.

For the type I triangle, it follows from (2.28), (2.29), and recalling D being twice
the area of the triangle (i.e., D = h2), we have

Fig. 2.7 The (0, 1) × (0, 1)
square domain
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Fig. 2.8 Triangle mesh

Fig. 2.9 Two types of
triangles

⎛
⎝

b1
b2
b3

⎞
⎠ = 1

h2

⎛
⎝

−h
h
0

⎞
⎠ ,

⎛
⎝

c1
c2
c3

⎞
⎠ = 1

h2

⎛
⎝

−h
0
h

⎞
⎠ .

Then, from (2.30) and (2.31), we obtain

AeI = 1

2

⎛
⎝

2 −1 −1
−1 1 0
−1 0 1

⎞
⎠ , f eI = f0h2

6

⎛
⎝
1
1
1

⎞
⎠ , (2.33)

which correspond to (2.32).
Similarly, for the type II triangle, we have

⎛
⎝

b1
b2
b3

⎞
⎠ = 1

h2

⎛
⎝

0
h

−h

⎞
⎠ ,

⎛
⎝

c1
c2
c3

⎞
⎠ = 1

h2

⎛
⎝

−h
h
0

⎞
⎠ ,

and thus

AeII = 1

2

⎛
⎝

1 −1 0
−1 2 −1
0 −1 1

⎞
⎠ , f eII = f0h2

6

⎛
⎝
1
1
1

⎞
⎠ . (2.34)



2.1 Partial Differential Equations 49

Table 2.1 Relation between local node numbers and global node numbers.

Element eI1 eII2 eI3 eII4 eI5 eII6 eI7 eII8
Node number of triangle
element

Whole node numbers

1 1 2 2 3 4 5 5 6

2 2 5 3 6 5 8 6 9

3 4 4 5 5 7 7 8 8

In the following, we explain how to combine all the information to obtain linear
systems. In order to combine them, it is required to relate global node numbers 1–9
in Fig. 2.8 with local node numbers 1, 2, and 3 in Fig. 2.9, and the resulting table is
shown in Table2.1. Finally, linear systems are derived as follows. We first consider
triangle element eI1. From (2.33) and Table 2.1, we have

AeI1
= 1

2

⎛
⎝
2 −1 −1 1

−1 1 0 2

−1 0 1 4

1 2 4

⎞
⎠ , f eI = f0h2

6

⎛
⎝
1 1

1 2

1 4

⎞
⎠

and by using the information we construct the following matrix and right-hand side:

1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 −1 0 0 0 0 0 1

−1 1 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 3

−1 0 0 1 0 0 0 0 0 4
0 0 0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 0 0 7

0 0 0 0 0 0 0 0 0 8

0 0 0 0 0 0 0 0 0 9

1 2 3 4 5 6 7 8 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
f0h2

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1

1 2
0 3

1 4
0 5

0 6

0 7

0 8

0 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for the linear systems. We next consider triangle element eII2 . From (2.34) and
Table 2.1, we have

AeII2
= 1

2

⎛
⎝
1 −1 0 2

−1 2 −1 5

0 −1 1 4

2 5 4

⎞
⎠ , f eII = f0h2

6

⎛
⎝
1 2

1 5

1 4

⎞
⎠
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and adding the information to the aforementioned matrix and the right-hand side
yields

1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 -1 0 -1 0 0 0 0 0 1

-1 2 0 0 -1 0 0 0 0 2
0 0 0 0 0 0 0 0 0 3

-1 0 0 2 -1 0 0 0 0 4
0 -1 0 -1 2 0 0 0 0 5
0 0 0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 0 0 7

0 0 0 0 0 0 0 0 0 8

0 0 0 0 0 0 0 0 0 9

1 2 3 4 5 6 7 8 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
f0h2

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1

2 2
0 3

2 4
1 5
0 6

0 7

0 8

0 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and similarly for the remaining elements eI3, eII4 , . . . , eII8 , we finally have

1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 −1 0 0 0 0 0

−1 4 −1 0 −2 0 0 0 0
0 −1 2 0 0 −1 0 0 0
−1 0 0 4 −2 0 −1 0 0
0 −2 0 −2 8 −2 0 −2 0
0 0 −1 0 −2 4 0 0 −1
0 0 0 −1 0 0 2 −1 0
0 0 0 0 −2 0 −1 4 −1
0 0 0 0 0 −1 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

u2
u3
u4
u5
u6
u7
u8
u9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= f0h2

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

3
2
3
6
3
2
3
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The linear systems do not include the information of Dirichlet condition (u(x, 0) =
0 for x ∈ [0, 1]). It follows from Figs. 2.7 and 2.8 that the following condition is
required for satisfying the Dirichlet condition:

u1 = u2 = u3 = 0.

Thus, removing the first three rows from the linear systems and substituting u1 =
u2 = u3 = 0 into the resulting linear systems yields:

1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

4 −2 0 −1 0 0
−2 8 −2 0 −2 0
0 −2 4 0 0 −1

−1 0 0 2 −1 0
0 −2 0 −1 4 −1
0 0 −1 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

u4
u5
u6
u7
u8
u9

⎞
⎟⎟⎟⎟⎟⎟⎠

= f0h2

6

⎛
⎜⎜⎜⎜⎜⎜⎝

3
6
3
2
3
1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.35)

By solving the linear systems we have u4, u5, . . . , u9.
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Finally, we compare the approximate solution with the exact solution. The exact
solution of the Poisson equation is u(x, y) = f0y − 1

2 f0y2. When f0 = 1, the values
of u4, u5, u6 for the exact solution are 0.375 and u7, u8, u9 are 0.5. Solving linear
systems (2.35) with f0 = 1 and h = 1

2 yields u4 ≈ 0.381, u5 ≈ 0.375, u6 ≈ 0.369
and u7 ≈ 0.524, u8 ≈ 0.500, u9 ≈ 0.476.

If a more accurate approximate solution is required, the number of nodes should
be increased. From the above derivation, we see that the size of the linear systems is
almost the same as the number of the whole nodes.

2.2 Computational Physics

2.2.1 Large-Scale Electronic Structure Calculation

Molecular dynamics simulations in large scale systems can be efficiently computed
by using the one-body density matrix ρ, which is based on the fact that any physical
quantity 〈X 〉 can be obtained by

〈X 〉 = Tr (ρX ) =
∫∫

ρ(r, r′)X (r′, r) drdr′

and the corresponding discretization form is written as

∑
i,j

ρijXji.

It is important to note here that if X is a short-range operator, we only need the short-
range behavior of the densitymatrix.As an extreme example, ifX is a diagonalmatrix
(i.e., off-diagonal elements are zeros), then we only need the diagonal element of the
density matrix because

∑
i,j ρijXji =∑i ρiiXii, leading to very efficient computation.

In what follows, we explain the density matrix ρ in detail. It is known that the
(i, j) element of the density matrix ρ is given by

ρij = − 1

π

∫ ∞

−∞
Im Gij(ε)f

(
ε − μ

KBT

)
dε, (2.36)

where f (x) is the Fermi distribution function, μ is a chemical potential that may
be determined so that the total number of electrons equals the sum of the diagonal
elements of the density matrix. Here, Gij(ε) is the (i, j) element of the following
matrix:

G(ε) = [(ε + iδ)I − H ]−1, (2.37)
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where i is the unit imaginary number, δ is an (infinitely) small positive number
(δ → 0+), and I and H are the identity matrix and a Hamiltonian matrix. The matrix
G is referred to as Green’s function. The (i, j) element of the Hamiltonian matrix H
may be given by the following real space integration:

Hij =
∫

fi(r)
(−�

2m
	 + V (r)

)
fj(r) dr,

where m and � are the mass of the electron and the (reduced) Planck constant, 	 is
the Laplacian. fj(r)’s are prescribed functions that are linearly independent. V (r) is a
prescribed function regarding the interactions between electrons and nuclei. For the
details, see, e.g., [184, 190] and the references therein.

We now describe how linear systems arise from the above computation. Let ei be
the ith unit vector. Then from (2.37), the (i, j) element of G(ε) is calculated by

Gij(ε) = e�
i [(ε + iδ)I − H ]−1ej.

Therefore, letting xj = [(ε + iδ)I − H ]−1ej yields

[(ε + iδ)I − H ]xj = ej,

which is a linear system.
In computational physics, the Hamiltonian matrix H is Hermitian or real sym-

metric. If H is real symmetric, the coefficient matrix (ε + iδ)I − H is complex
symmetric. Furthermore, for computing the integration in (2.36), a suitable numer-
ical quadrature formula is used, which requires Gij(εk) for k = 1, 2, . . . , m. Thus,
for computing the (i, j) element of the density matrix ρi,j, we need to solve linear
systems of the form

(A + σk I)x(k)
j = b, k = 1, 2, . . . , m,

whereA := iδI − H ,b := ej andσk := εk . These are knownas shifted linear systems,
which are efficiently solved by Krylov subspace methods by utilizing the shift-
invariance of Krylov subspace. Krylov subspace methods for shifted linear systems
are described in Chap.4.

2.2.2 Lattice Quantum Chromodynamics

Quantum chromodynamics (QCD) is the theory of the strong interaction between
quarks and gluons, and lattice QCD is a non-perturbative approach to solving QCD,
where the theory is formulated on a lattice in space and time.

It is known that the most time-consuming part of lattice QCD is solving linear
systems



2.2 Computational Physics 53

Ax = b,

which are often written as Aψ = φ and the solution is used for obtaining quark
propagators. For the details of the quark propagators including a summary of lattice
QCD, see, e.g., [69]. In the following, we describe the structure of theWilson fermion
matrix A.

The Wilson fermion matrix is written as A = I − κD, where I is the identity
matrix, and κ is a real nonnegative parameter, referred to as the hopping parameter.
Matrix D is called the hopping matrix. We now explain the structure of the hopping
matrix.

Let us consider a four-dimensional hypercubic lattice which can be regarded as
an equispaced grid of the hypercube. Each grid point can be written as a vector x
such that

x ∈ � := {(x1, x2, x3, x4) : x1, x2, x3, x4 ∈ {1, 2, . . . , N }}.

For simplicity, we assume that x1, x2, x3, x4 run from 1 to the same number N . Then
it is easy to see that the number of elements of � is N 4.

Using x, y ∈ �, the hopping matrix D is written by block matrix from

D(x; y) =
4∑

μ=1

{[
(I4 − γμ) ⊗ Uμ(x)

]
δx,y−eμ

+ [(I4 + γμ) ⊗ UH
μ (x − eμ)

]
δx,y+eμ

}
.

(2.38)

Here, δx,y is the Kronecker delta, i.e., δx,y = 1 if x = y and δx,y = 0 if x �= y. D(x; y)
is a small matrix of the size 12 × 12 and the hopping matrix D is given as follows:

D =

⎡
⎢⎢⎢⎢⎣

D1,1 D1,2 · · · D1,N4

D2,1 D2,2 · · · D2,N4

.

.

.
.
.
.

. . .
.
.
.

DN4,1 DN4,2 · · · DN4,N4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

D(1, 1, 1, 1; 1, 1, 1, 1) D(1, 1, 1, 1; 1, 1, 1, 2) · · · D(1, 1, 1, 1; N , N , N , N )

D(1, 1, 1, 2; 1, 1, 1, 1) D(1, 1, 1, 2; 1, 1, 1, 2) · · · D(1, 1, 1, 2; N , N , N , N )

.

.

.
.
.
.

. . .
.
.
.

D(N , N , N , N ; 1, 1, 1, 1) D(N , N , N , N ; 1, 1, 1, 2) · · · D(N , N , N , N ; N , N , N , N )

⎤
⎥⎥⎥⎦ .

The size of the hopping matrix D is thus 12N 4 × 12N 4. If N = 64, then the number
of unknowns for the linear systems is about 200 million! The size grows much
more rapidly than that arising from the discretization of three-dimensional partial
differential equations in Sect. 2.1.1.4.
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The details of (2.38) are explained as follows: I4 is the 4-by-4 identity matrix, δx,y
is a function (δ : R

4 × R
4 → R), where δx,y = 0 if x �= y, and δx,y = 1 if x = y. The

symbol eμ is the transpose of the μth unit vector, or equivalently the μth row of the
4 × 4 identity matrix I4. For each μ, the symbol γμ is a matrix given by

γ1 = σy ⊗ σx, γ2 = σy ⊗ σy, γ3 = σy ⊗ σz, γ4 = σz ⊗ I2,

where I2 is the 2-by-2 identity matrix, and σx, σy, and σz are the Pauli matrices, i.e.,

σx =
[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
.

Finally, for each μ and x, the symbol Uμ(x)(= Uμ([x1, x2, x3, x4]) for μ = 1, 2, 3, 4
belongs to SU(3), i.e., a 3-by-3 unitary matrix whose determinant is one. Uμ(x)
corresponds to the background gauge field. Uμ(x) is called “cold” if Uμ(x) = I3 and
“hot” if the Uμ(x) ∈ SU(3) is randomly chosen.

Below are some examples for D(x, y) when N = 2:

D1,1 = D(1, 1, 1, 1; 1, 1, 1, 1) = O,

D1,2 = D(1, 1, 1, 1; 1, 1, 1, 2) = (I4 − γ4) ⊗ U4([1, 1, 1, 1]),
D1,3 = D(1, 1, 1, 1; 1, 1, 2, 1) = (I4 − γ3) ⊗ U3([1, 1, 1, 1]),
D1,4 = D(1, 1, 1, 1; 1, 1, 2, 2) = O,

D1,5 = D(1, 1, 1, 1; 1, 2, 1, 1) = (I4 − γ2) ⊗ U2([1, 1, 1, 1]),
D1,6 = D(1, 1, 1, 1; 1, 2, 1, 2) = O,

D1,7 = D(1, 1, 1, 1; 1, 2, 2, 1) = O,

D1,8 = D(1, 1, 1, 1; 1, 2, 2, 2) = O,

D1,9 = D(1, 1, 1, 1; 2, 1, 1, 1) = (I4 − γ1) ⊗ U1([1, 1, 1, 1]),
...

D2,1 = D(1, 1, 1, 2; 1, 1, 1, 1) = (I4 + γ4) ⊗ UH
4 ([1, 1, 1, 1]),

D2,2 = D(1, 1, 1, 2; 1, 1, 1, 2) = O,

D2,3 = D(1, 1, 1, 2; 1, 1, 2, 1) = O,

D2,4 = D(1, 1, 1, 2; 1, 1, 2, 2) = (I4 − γ3) ⊗ U3([1, 1, 1, 2]),
...

D16,16 = D([2, 2, 2, 2; 2, 2, 2, 2]) = O.

Note that D2,1 = (I4 + γ4) ⊗ UH
4 ([1, 1, 1, 2] − e4) = (I4 + γ4) ⊗ UH

4 ([1, 1, 1, 1]).
Matrix D is neither symmetric nor Hermitian, but it has a hidden symmetry as

described next. Let
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γ5 = σx ⊗ I2.

Then, the hopping matrix D has the following property:

�5D = DH�5, (2.39)

where�5=IN 4 ⊗ γ5 ⊗ I3. This property is known as γ5-symmetric (or γ5-Hermitian).
From Theorem 2.1-(5), matrix γ5 is real symmetric and matrix �5 is also real sym-
metric, and thus we have �5 = �H

5 . Then, we can rewrite (2.39) as

�5D = (�5D)H.

This means that�5D is Hermitian. FromCorollary 2.1, we have�−1
5 = I−1

N 4 ⊗ γ −1
5 ⊗

I−1
3 = IN 4 ⊗ γ5 ⊗ I3 = �5. Thus we have another representation of (2.39):

�5D�5 = DH. (2.40)

Now, let us confirm (2.40) for N = 2. Let P = γ5 ⊗ I3. Then the (i, j) block
element of D is

(�5D�5)i,j =
⎛
⎜⎝

⎡
⎢⎣

P
. . .

P

⎤
⎥⎦

⎡
⎢⎣

D1,1 · · · D1,16
...

. . .
...

D16,1 · · · D16,16

⎤
⎥⎦

⎡
⎢⎣

P
. . .

P

⎤
⎥⎦

⎞
⎟⎠

i,j

=
⎛
⎜⎝

⎡
⎢⎣

PD1,1P · · · PD1,16P
...

. . .
...

PD16,1P · · · PD16,16P

⎤
⎥⎦

⎞
⎟⎠

i,j

= PDi,jP.

As an example, consider (i, j) = (1, 2). Then, from Theorem 2.1-(5) and (6), it
follows that

(�5D�5)1,2 = PD1,2P

= (γ5 ⊗ I3)
[
(I4 − γ4) ⊗ U4([1, 1, 1, 1])

]
(γ5 ⊗ I3)

= γ5(I4 − γ4)γ5 ⊗ U4([1, 1, 1, 1])
= (I4 − γ5γ4γ5) ⊗ U4([1, 1, 1, 1])
= (I4 + γ4) ⊗ U4([1, 1, 1, 1])
= [(I4 + γ4)

H ⊗ UH
4 ([1, 1, 1, 1])]H

= [(I4 + γ4) ⊗ UH
4 ([1, 1, 1, 1])]H

= DH
2,1.
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Similarly, we can confirm that (�5D�5)i,j = DH
j,i for the other i, j’s. Thus we see that

(2.40) holds true for the case N = 2.
In lattice QCD, there is a need to compute some small eigenvalues in magnitude.

In this case, the shift-and-invert Lanczos (Arnoldi) methodmay be used. The method
requires solving linear systems at each iteration. See [12] for algorithms to compute
eigenvalue problems. A thick-restart Lanczos type method for eigenvalue problems
arising in lattice QCD was proposed in [108].

2.3 Machine Learning

Linear systems arise in the field of machine learning. In this section, through two
examples: least-squares regression and least-squares classification, we will see the
importance of linear systems.

2.3.1 Least-squares Regression

In this subsection, we consider one of the simplest supervised learning: least-squares
learning. Given training data set (xi, yi) (i = 1, . . . , n) and a function fθ (x). Then
the least-squares learning learns a parameter θ ∈ R

m such that the following error
function is minimized:

J (θ) =
n∑

i=1

(yi − fθ (xi))
2. (2.41)

If fθ (x) is given by the linear combination of functions f1(x), . . . , fm(x) of the form

fθ (x) = θ1f1(x) + θ2f2(x) + θmfm(x), (2.42)

then the error function (2.41) is rewritten as1

J (θ) = ‖y − M θ‖22 , (2.43)

where y = [y1, y2, . . . , yn]�, θ = [θ1, θ2, . . . , θm]�, and

1 In this section, we explicitly describe the 2-norm as ‖ · ‖2. In machine learning, 1-norm ‖ · ‖1
is also used, especially for obtaining a sparse solution of the least-squares problems of the form
‖y − M θ‖22 + λ‖θ‖1.
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Fig. 2.10 The plot of the
given data set
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M =

⎡
⎢⎢⎢⎣

f1(x1) f2(x1) . . . fm(x1)
f1(x2) f2(x2) . . . fm(x2)

...
...

. . .
...

f1(xn) f2(xn) . . . fm(xn)

⎤
⎥⎥⎥⎦ .

For simplicity, column vectors of M are assumed to be linearly independent. For
minimizing the error function (2.43), the following decomposition is useful:

J (θ) = ‖y − M θ‖22 = (y − M θ)�(y − M θ)

= v�
θ (M �M )−1vθ − (M �y)�(M �M )−1(M �y) + y�y. (2.44)

Here vθ = M �y − M �M θ . Since the columns ofM are linearly independent, M �M
is a symmetric positive definite matrix, i.e., all the eigenvalues are positive, or equiv-
alently x�M �M x > 0 for all nonzero vectors x. From this, J (θ) is minimized if
vθ = 0, i.e., M �y − M �M θ = 0. Thus we need to solve the following linear sys-
tems:

M �M θ = M �y. (2.45)

As a numerical example, consider y = (1/2) sin(x) + ε, where ε is a noise. We
generated a data set (training data set) with (x1, x2, . . . , x63) = (0, 0.1, 0.2, . . . , 6.2)
and (y1, y2, . . . , y63) = (y(0), y(0.1), y(0.2), . . . , y(6.2)). The visualization of the
data is shown in Fig. 2.10.

Next, we consider (2.42). For the basis functions f1(x), f2(x),…, fm(x), we use

fk(x) =
{
sin 1

2kx (k : even),
cos 1

2kx (k : odd).

The unknown vector θ of themodel function (2.42) is given by solving linear systems
(2.45), and the plots of fθ (x) with m = 5 and m = 10 are shown in Fig. 2.11.
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Fig. 2.11 The plots of fθ (x) in (2.42) with m = 5 and m = 10

From Fig. 2.11a, the function fθ (x) with m = 5 is robust against the noise. On the
other hand, the function with m = 10 seems to try to fit the data with the given noise.
This phenomenon is known as overfitting.

In what follows, one remedy for the overfitting is introduced, which also requires
solving (parameterized) linear systems. We now consider the following constrained
minimization problem of the form

min
θ

‖y − M θ‖22 subject to ‖θ‖22 ≤ R. (2.46)

If R is infinite, the minimization problem is equivalent to (2.43).
In order to solve (2.46), the dual problem is useful. Let f (θ) = ‖y − M θ‖22 and

g(θ) = ‖θ‖22 − R, then (2.46) can be rewritten as

min
θ

f (θ) subject to g(θ) ≤ 0. (2.47)

Here we introduce the Lagrange function with λ ≥ 0:

L(θ , λ) := f (θ) + λg(θ).

Since λ ≥ 0 and g(θ) ≤ 0, we obtain

max
λ≥0

L(θ , λ) =
{

f (θ) (if g(θ) ≤ 0),

+∞ (otherwise).

Thus (2.47) is equivalent to

min
θ

max
λ≥0

L(θ , λ).
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We now consider the following dual problem:

max
λ≥0

min
θ

L(θ , λ). (2.48)

If f and g are convex, and certain conditions are satisfied, we have

max
λ≥0

min
θ

L(θ , λ) = min
θ

max
λ≥0

L(θ , λ),

which is called the strong duality. This is related to the Lagrangian duality theory;
see [26] for the details.

The optimization problem (2.48) reads

max
λ≥0

min
θ

L(θ , λ) ⇔ max
λ≥0

min
θ

‖y − M θ‖22 + λ(‖θ‖22 − R). (2.49)

Similar to (2.44), the error function can be decomposed as

‖y − M θ‖22 + λ(‖θ‖22 − R)

= w�
θ (M �M + λI)−1wθ − (M �y)�(M �M + λI)−1M �y + y�y − λR,

where wθ = M �y − (M �M + λI)θ . Since λ ≥ 0, matrix M �M + λI is symmetric
positive definite. Thus θ can be obtained by solving the following linear systems:

(M �M + λI)θ = M �y. (2.50)

Let θ(λ) be the solution of the linear systems (2.50). Then (2.48) is equivalent to

max
λ≥0

L(θ(λ), λ).

For approximately solving the above maximization problem, one may set 0 ≤ λ1 <

λ2 < · · · < λm and then compute

max{L(θ(λ1), λ1), L(θ(λ2), λ2), . . . , L(θ(λm), λm)}.

In this case, we need θ(λ1), θ(λ2), . . . , θ(λm), i.e.,

(M �M + λk I)θ(λk) = M �y k = 1, 2, . . . , m. (2.51)

Equations (2.51) are known as shifted linear systems. Krylov subspace methods for
solving shifted linear systems are described in Chap.4.

Here, we show below a numerical example whose data is the same as in Fig. 2.10.
Solving linear systems (2.50)with a given λ yields the unknown vector θ of themodel
function (2.42). The plot of fθ (x) with m = 10 and λ = 1.0 is shown in Fig. 2.12b.
For reference and convenience, Fig. 2.11b is shown again in Fig. 2.12a.
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Fig. 2.12 The plots of fθ (x) in (2.42) with m = 10 and m = 10 with λ = 1.0

In Fig. 2.12b, we see the result is now robust against the noise and thus seems to
avoid the overfitting that is seen in Fig. 2.12a.

2.3.2 Least-squares Classification

In this subsection, least-squares probabilistic classification [178] (see also [148] for
the summary) is described.

LetX ⊂ R
d andY = {1, 2, . . . , c}, where c is the number of classes. The problem

of the classification is to classify x ∈ X into classes y ∈ Y , based on a given dataset
(training dataset) (xi, yi) ∈ X × Y for i = 1, 2, . . . , n. Here (xi, yi) means that the
data xi ∈ X belongs to the class yi ∈ Y .

The probabilistic pattern recognition is to estimate the class-posterior probability
p(y|x) from the training data {(xi, yi)}n

i=1. Once p(y|x) is obtained, new data x can
be classified by

ŷ = argmax
y∈{1,2,...,c}

p(y|x).

Let p(x) be the marginal density of xwith p(x) > 0 for all x. Then the class-posterior
probability p(y|x) is written as

p(y|x) = p(x, y)

p(x)
, (2.52)

since p(x, y) = p(y|x)p(x) and the assumption p(x) > 0.
The least-squares probabilistic classification uses the following linear model

q(y|x; θ (y)) for the class-posterior probability p(y|x):
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q(y|x; θ (y)) = θ (y)�f (x) = θ
(y)
1 f1(x) + θ

(y)
2 f2(x) + · · · + θ

(y)
b fb(x), (2.53)

where θ (y) = [θ(y)
1 , θ

(y)
2 , . . . , θ

(y)
b ]�, and fi(x) (i = 1, . . . , b) are the given basis func-

tions, e.g.,

fi(x) = K(x, xi) = exp

(
−‖x − xi‖22

2h2

)
. (2.54)

Here K(x, xi) is known as the Gaussian kernel and h is a scalar parameter that is set
by users.

Parameter θ (y) is determined by approximately minimizing the following least
squares error:

Jy(θ
(y)) = 1

2

∫ (
q(y|x; θ (y)) − p(y|x))2 p(x) dx.

Jy(θ
(y)) can be rewritten as

Jy(θ
(y)) = 1

2

∫
q(y|x; θ (y))2p(x) dx −

∫
q(y|x; θ (y))p(y|x)p(x) dx + c

= 1

2

∫
q(y|x; θ (y))2p(x) dx −

∫
q(y|x; θ (y))p(x, y) dx + c

= 1

2

∫
q(y|x; θ (y))2p(x) dx −

∫
q(y|x; θ (y))p(y)p(x|y) dx + c, (2.55)

where c = (1/2)
∫

p(y|x)2p(x) dx, and (2.52) was used in the second equation.
By using the average of the training data (x1, y1), (x2, y2), . . . , (xn, yn), we have

the following approximation:

∫
q(y|x; θ (y))2p(x) dx ≈ 1

n

n∑
i=1

q(y|xi; θ (y))2,

∫
q(y|x; θ (y))p(y)p(x|y) dx ≈ 1

ny

∑
i:yi=y

q(y|xi; θ (y))p(y) ≈ 1

n

∑
i:yi=y

q(y|xi; θ (y)).

In the last approximation, we used p(y) ≈ ny/n, where ny is the number of training
data that belong to the class y ∈ Y . Note that the symbol

∑
i:yi=y means the sum over

i such that yi = y for the given class y ∈ Y .
Using this approximation to (2.55) together with regularization term (λ/2n)

‖θ (y)‖22, see also (2.49), we have the following new minimization problem:

Ĵy(θ
(y)) = 1

2n

n∑
i=1

q(y|xi; θ (y))2 − 1

n

∑
i:yi=y

q(y|xi; θ (y)) + λ

2n
‖θ (y)‖22, (2.56)



62 2 Some Applications to Computational Science and Data Science

where the constant cwas omitted because it does not affect theminimization problem.
Let (M )i,j = fi(xj). Then from (2.53), approximate error function (2.56) can be

rewritten as

Ĵy(θ
(y)) = 1

2n
θ (y)�M �M θ (y) − 1

n
θ (y)�M �p(y) + λ

2n
θ (y)�θ (y), (2.57)

where p(y) is a vector whose ith element p(y)
i is defined by

p(y)
i =

{
1 (if yi = y),

0 (if yi �= y).

Similar to the previous subsection, (2.57) can be decomposed as

Ĵy(θ
(y)) = 1

2n

(
M �p(y)−Gθ (y))� G−1 (M �p(y) − Gθ (y))− 1

2n
p(y)�M G−1M �p(y),

where G = M �M + λI . If columns of M are linearly independent, then G is sym-
metric positive definite for all λ ≥ 0. Thus Ĵy(θ

(y)) is minimized when M �p(y) −
Gθ (y) = 0, which leads to

(M �M + λI)θ (y) = M �p(y). (2.58)

After obtaining the solution of θ (y), we have (2.53). Then, the following normalization
gives the approximated class probability:

p̂(y|x) = max(0, q(y|x; θ (y)))∑c
ỹ=1 max(0, q(ỹ|x; θ (ỹ)))

.

Inwhat follows, a simple numerical example is illustrated to see how the least-squares
probabilistic classification works. We use the training data as given in Fig. 2.13a,
where there are two classes: ◦ denotes class y = 1 and × denotes class y = 2. From
(2.53) and (2.54), the following model is used:

q(y|x; θ (y)) =
∑

i:yi=y

θ
(y)
i K(x, xi).

This means that we will obtain two function q(y|x; θ (y)) for y = 1 and y = 2, after
solving two linear systems (2.58) for y = 1 and y = 2.

The result of the least-squares probabilistic classification is given in Fig. 2.13,
where the number of samples n = 60, and the two parameters λ in (2.56) and h in
(2.54) are λ = 0.1 and h = 1.
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(a) Training samples of two classes.
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(b) The class-posterior probabilities.

Fig. 2.13 The result of the least-squares probabilistic classification

Fig. 2.13a shows the distribution of two classes of samples as mentioned before,
and Fig. 2.13b is the corresponding result. FromFig. 2.13b,we see that the probability
of the point x = 0 that belongs to class 1 (y = 1) is about 50%, i.e., p(y = 1|x = 0) ≈
0.5.

2.4 Matrix Equations

Consider the following matrix equation:

AX + XB = C, (2.59)

where A and B are m-by-m and n-by-n matrices. The matrix equation is known as the
Sylvester equation, which arises in the field of control theory. The Sylvester equation
also arises in a derivation of Newton’s method for computing the matrix square root,
see Sect. 5.3.1.

TheSylvester equation canbe transformed into linear systemsof the formM x = c,
and in what follows, we will see the connection between the Sylvester equation in
(2.59) and linear systems M x = c.

Let G be an n-by-m matrix whose column vectors are written as g1, g2, . . . , gm.
Then, matrix G is written as G = [g1, g2, . . . , gm]. We now define vec operator.
The vec operator is a map from C

n×m to C
nm, and vec(G) is written as

vec(G) =
⎡
⎢⎣
g1
...

gm

⎤
⎥⎦ . (2.60)

Some properties of the vec operator are listed next.
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Theorem 2.3 Let X ∈ C
m×n, Ai ∈ C

m×m, Bi ∈ C
n×n, and Pmn be a permutation

matrix given in Theorem 2.2. Then,

(1) vec(A1XB1 + · · · + AkXBk) = (B�
1 ⊗ A1 + · · · + B�

k ⊗ Ak)vec(X ),
(2) vec(X �) = Pmnvec(X ).

Proof We first give a proof of (2). From the definition of Pmn in Theorem 2.2,

Pmnvec(X ) =
⎡
⎢⎣

(E11)
� . . . (E1n)

�
...

. . .
...

(Em1)
� . . . (Emn)

�

⎤
⎥⎦

⎡
⎢⎣
x1
...

xn

⎤
⎥⎦ ,

and thus the kth block element of Pmnvec(X ) is given by

(Pmnvec(X ))k =
n∑

j=1

E�
kjxj =

n∑
j=1

Ejkxj =
n∑

j=1

eje�
k xj =

n∑
j=1

ejxkj =
⎡
⎢⎣

xk1
...

xkn

⎤
⎥⎦ ,

which is the kth column of X �. Therefore,

Pmnvec(X ) =
⎡
⎢⎣

(Pmnvec(X ))1
...

(Pmnvec(X ))n

⎤
⎥⎦ = vec(X �).

Next, we give a proof of (1). Since vec(X + Y ) = vec(X ) + vec(Y ), it is sufficient
to prove vec(AXB) = (B� ⊗ A)vec(X ). Let M = XB and M = [m1, . . . ,mn], then
AM = [Am1, . . . , Amn]. Thus

vec(AXB) = vec(AM ) =
⎡
⎢⎣

Am1
...

Amn

⎤
⎥⎦ = (I ⊗ A)

⎡
⎢⎣
m1
...

mn

⎤
⎥⎦ = (In ⊗ A)vec(M ), (2.61)

and the vec(M ) is calculated as

vec(XB) = vec((B�X �)�) = Pnmvec(B
�X �) = Pnm(Im ⊗ B�)vec(X �)

= Pnm(Im ⊗ B�)Pmnvec(X ) = P�
mn(Im ⊗ B�)Pmnvec(X )

= (B� ⊗ Im)vec(X ).

The last equation holds from (2.13), and this result together with (2.61) yields

vec(AXB) = (In ⊗ A)vec(XB) = (In ⊗ A)(B� ⊗ Im)vec(X ) = (B� ⊗ A)vec(X ).

The last equation follows from Theorem 2.1-(6), which concludes the proof. �
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We are now ready to describe a relation between the Sylvester equation and linear
systems. Applying Theorem 2.3-(1) to Sylvester Eq. (2.59) yields

vec(AX + XB) = vec(C) ⇔ [(In ⊗ A) + (B� ⊗ Im)]︸ ︷︷ ︸
M

vec(X )︸ ︷︷ ︸
x

= vec(C)︸ ︷︷ ︸
c

,

where Im is the m-by-m identity matrix.
Here we consider a slightly modified matrix equation of the form

AX + X �B = C.

The matrix is referred to as the T-congruence Sylvester equation. Applying the vec
operator and using Theorem 2.3-(2) yields

AX + X �B = C ⇔ vec(AX + X �B) = vec(C)

⇔ vec(AX ) + vec(X �B) = vec(C)

⇔ vec(In ⊗ A)vec(X ) + (B� ⊗ Im)vec(X �) = vec(C)

⇔ (In ⊗ A)vec(X ) + (B� ⊗ Im)Pmnvec(X ) = vec(C)

⇔ [(In ⊗ A) + (B� ⊗ Im)Pmn]︸ ︷︷ ︸
M̃

vec(X )︸ ︷︷ ︸
x

= vec(C)︸ ︷︷ ︸
c

.

Therefore, the T-congruence Sylvester equation is also equivalent to linear systems
of the form M̃ x = c.

2.5 Optimization

Consider unconstrained optimization problems of the form

min
x∈Rn

f (x), (2.62)

where f (x) is a smooth function. Unless function f (x) has a special structure, e.g.,
a convex function, it is in general difficult to find the solution of the minimization
problems. In order to find the solution, as is known in standard calculus, the critical
points, xc such that ∇f (xc) = 0, are usually important.

In this section, Newton’s method is introduced over a Euclidean space and a
Riemannian manifold (Grassmann manifold) to obtain the critical points, and we
will see how linear systems arise in each iteration step of Newton’s method. As a
preliminary, tensor notations are introduced in the next subsection. We will see that
tensor notations enable us to describe the Taylor series systematically and concisely.
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2.5.1 Tensor Notations

Amatrix denoted by A is a two-dimensional array that has (i, j) elements, which are
written as (A)ij or aij. A tensor denoted by A is a multidimensional array that has,
for a three-dimensional array, (i, j, k) elements, which are written as (A)ijk or aijk .

More generally, an N th-order tensor (or an N -way tensor)A is an N -dimensional
array whose i1, i2, . . . , iN elements are written as (A)i1,i2,...,iN or ai1,i2,...,iN . If all the
elements ai1,i2,...,iN ∈ R with i1, i2, . . . , iN running from i1 = i2 = · · · = iN = 1 to
i1 = I1, i2 = I2, . . . , iN = IN , then A ∈ R

I1×I2×···×IN .
Given two tensors X ,Y ∈ R

I1×I2×···×IN and a scalar value α ∈ R, tensor addition
and scalar multiplication are defined by

(X + Y)i1,i2,...,iN = xi1,i2,...,iN + yi1,i2,...,iN , (αX )i1,i2,...,iN = αxi1,i2,...,iN .

A tensor–matrix multiplication, or n-mode product, is defined next. Let X ∈
R

I1×I2×···×IN and U ∈ R
J×In . The n-mode product of X and U is defined as

(X ×n U )i1,...,in−1,j,in+1,...,iN =
In∑

k=1

xi1,i2,...,in−1,k,in+1,...,iN uj,k .

For a third-order tensor,

(X ×1 U )j,i2,i3 =
I1∑

k=1

xk,i2,i3uj,k ,

(X ×2 U )i1,j,i3 =
I2∑

k=1

xi1,k,i3uj,k ,

(X ×3 U )i1,i2,j =
I3∑

k=1

xi1,i2,kuj,k .

From the definition, it is easy to see

(X ×1 A) ×2 B = (X ×2 B) ×1 A. (2.63)

Thus, one may write

X ×1 A ×2 B,

and more generally X ×1 A1 ×2 A2 ×3 · · · ×N AN . If X is a matrix (rewritten as X ,
instead of X ), (2.63) is equivalent to

(AX )B� = A(XB�).
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Thus, in standard linear algebra, the parentheses are omitted, i.e.,AXB�. The singular
value decomposition of matrix X is U�VH, where U and V are unitary matrices
and� is a diagonal matrix whose diagonal elements are (�)i,i = σi ≥ 0. Then using
tensor notations, the singular value decomposition of X can be rewritten as

X = U�V � = � ×1 U ×2 V .

Amore general product is a contracted product 〈·, ·〉, which is the following map:

〈·, ·〉1,...,m;1,...,m : R
I1×···×Im×J1×···×JN × R

I1×···×Im×K1×···×Kp

→ R
J1×···×JN ×K1×···×Kp ,

〈X ,Y〉1,...,m;1,...,m :=
I1∑

i1=1

. . .

Im∑
im=1

xi1,...,im,j1,...,jN yi1,...,im,k1,...,kp .

More generally, some examples of contracted products of two tensors are given next.
ForX ∈ R

I1×I2×I3 and Y ∈ R
J1×J2×J3×J4 , below is an example of contracted products

of the two tensors.

〈X ,Y〉1,3:2,3 =
I1∑

k=1

I3∑
l=1

xk,i2,l × yj1,k,l,j4 ,

where we assumed I1 = J2 and I3 = J3. Another example is as follows:

〈X ,Y〉1,2:2,4 =
I1∑

k=1

I2∑
l=1

xk,l,i3 × yj1,k,j3,l,

where we assumed I1 = J2 and I2 = J4.

2.5.2 Newton’s Method on Euclidean Space

For a smooth function f (x)with x ∈ R
n, themode-n product of a tensor and a vector (a

matrix having only one column) is useful for describing the Taylor series of f (x + h)

at x:

f (x + h) = f (x) + 1

1! [f
(1)(x)] ×1 h (2.64)

+ 1

2! [f
(2)(x)] ×1 h ×2 h + 1

3! [f
(3)(x)] ×1 h ×2 h ×3 h + · · · ,

(2.65)
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where

[f (1)(x)]i1 = ∂

∂xi1

f (x), [f (1)(x)] ∈ R
n,

[f (2)(x)]i1i2 = ∂2

∂xi1∂xi2

f (x), [f (2)(x)] ∈ R
n×n,

[f (3)(x)]i1i2i3 = ∂3

∂xi1∂xi2∂xi3

f (x), [f (3)(x)] ∈ R
n×n×n,

...

for i1, i2, i3, . . . ∈ {1, 2, . . . , n}. The vector f (1)(x) is the gradient of f (x), i.e.,
f (1)(x) = ∇f (x). The matrix f (2)(x) is called a Hessian matrix, which is denoted
by H (x). With this notation, the Taylor series (2.65) can be rewritten as

f (x + h) = f (x) + h�∇f (x) + 1

2
h�H (x)h + 1

3! [f
(3)(x)] ×1 h ×2 h ×3 h + · · · .

(2.66)

We now consider finding a local minimizer x∗ that locally minimizes f (x). Let xn

be an approximate minimizer of f (x) (i.e., xn ≈ x∗). Then, the original problem is
transformed into finding a correction vector h so that f (xk + h) is minimized.

Newton’s method finds a correction vector h such that xk + h minimizes not
f (xk + h) but the quadratic approximation of f (xk + h), i.e.,

min
h∈Rn

q(h), q(h) := f (xk) + h�∇f (xk) + 1

2
h�H (xk)h.

If H (xk) is positive definite, the minimizer of q(h) is unique and is given by the
solution of ∇q(h) = 0. Since ∇q(h) = ∇f (xk) + H (xk)h, the correction vector h at
the kth iteration step, denoted by hk , can be obtained by solving linear systems of
the form

H (xk)hk = −∇f (xk). (2.67)

After solving (2.67), we obtain a new approximate minimizer xk+1(= xk + hk ). At
each iteration k, we need to solve the linear systems (2.67).

2.5.3 Newton’s Method on Riemannian Manifold

Similar to the previous section, linear systems also arise in minimization problems
over Riemannian manifolds when we consider Newton’s method over Riemannian
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manifolds. As an example, we consider an optimization problem over the Grassmann
manifold, which is an example of Riemannian manifolds.

We consider the following minimization problems

min
X ∈Rn×p

f (X ), (2.68)

where f is assumed to be a smooth function. Using vec operator (2.60), the function
in (2.68) is equivalent to f (x̃), where x̃ = vec(X ). Thus the minimization problem
(2.68) is essentially the same as (2.62).

If X satisfies the condition X �X = Ip, then the minimization problem (2.68) can
be written as

min
X ∈St(p,n)

f (X ), (2.69)

where St(p, n) = {X ∈ R
n×p : X �X = Ip} (p ≤ n) and St(p, n) is referred to as the

Stiefel manifold. The condition X �X = Ip means that all the column vectors xi (i =
1, . . . , p) of X are orthonormal, i.e., x�

i xj = 0 for i �= j and x�
i xj = 1 for i = j.

We now further assume that the function f has the following property:

f (XQ) = f (X ) (2.70)

for any orthogonal matrix Q ∈ R
p×p. This property leads to difficulty in solving the

minimization problem. To be specific, let Xk be an approximate minimizer of f (X )

and let Xk+1 be the next iterate given by XkQk for some orthogonal matrix Qk . Then
the iterate Xk+1 is not an improved approximate solution because the value of the
objective function does not change. In order to avoid such a situation, one promising
approach is that for a given Xk ∈ St(p, n) we regard the set [Xk ] := {XkQ : Q�Q =
Ip} as one element. Then the next iterate [Xk+1]( �= [Xk ]) is meaningful because Xk+1

can avoid the situation f (Xk) = f (Xk+1) caused by Xk+1 = XkQk .
In general, the set Grass(p, n) := {[X ] : X ∈ St(p, n)} is referred to as theGrass-

mann manifold. The approach mentioned above corresponds to considering the fol-
lowing minimization problem:

min
[Y ]∈Grass(p,n)

f (Y ), (2.71)

instead of considering (2.69) with (2.70). In numerical computation, the following
approximate solutions are produced: X0 ∈ [Y0], X1 ∈ [Y1], . . . , i.e., representatives
of the equivalence class [Yk ] for k = 0, 1, . . . .

The minimization problem (2.71) can be regarded as an unconstrained minimiza-
tion problem over the Grassmann manifold. Similar to (2.67), Newton’s method over
the Grassmann manifold requires us to solve the following linear systems (Newton-
Grassmann equation):
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Y �
k⊥∂2f (Yk)[Yk⊥Ck ] − CkY �

k ∂f (Yk) = −Y �
k⊥∂f (Yk)︸ ︷︷ ︸
(n−p)×p

, (2.72)

where Yk ∈ St(p, n), Yk⊥ ∈ St(n − p, n) whose column vectors are orthogonal to the
column vectors of Yk , and the unknown matrix to be solved is Ck ∈ R

(n−p)×p. Here
the (i, j) elements of ∂f (Y ) ∈ R

n×p (Y ∈ R
n×p) and ∂2f (Y )[Z] ∈ R

n×p (Z ∈ R
n×p)

are given by

(∂f (Y ))ij = ∂

∂yij
f (Y ),

(∂2f (Y )[Z])ij =
n∑

k=1

p∑
l=1

∂2

∂yij∂ykl
f (Y ) × zkl .

We now use a fourth-order tensor G ∈ R
n×p×n×p whose (i, j, k, l) element is defined

by

(G)ijkl = ∂2

∂yij∂ykl
f (Y ).

Then, ∂2f (Yk)[Z] can be regarded as the following contracted product of G and Z :

∂2f (Yk)[Yk⊥Ck ] = 〈G, Z〉3,4;1,2 .

For the contracted product, see Sect. 2.5.1.
After obtaining Ck by solving (2.72), one may think the next iterate is Yk+1 =

Yk⊥Ck . However, in general, Yk⊥Ck does not belong to the Grassmann manifold.
Therefore Yk⊥Ck needs to be mapped to the Grassmann manifold, and the geometri-
cally suitable map is referred to as retraction. The next iterate Yk+1 is the matrix over
the Grassmann manifold that is obtained from Yk⊥Ck by using one of the retractions.
For the details of optimization over matrix manifolds, see [3, 56, 155].

2.5.3.1 Example

As an example, we consider minimizing the following Rayleigh quotient on the
Grassman manifold:

min
[Y ]∈Grass(p,n)

f (Y ), f (Y ) := 1

2
tr(Y �AY ),

where Y ∈ R
n×p and A ∈ R

n×n. Let Q ∈ R
p×p be an orthogonal matrix. Then,

f (YQ) = tr((YQ)�AYQ)/2 = tr(Q�Y �AYQ)/2 = tr(Y �AYQQ�)/2 = tr(Y �AY )/

2 = f (Y ). Thus we consider {YQ ∈ R
n×p : Q�Q = Ip} as one element (i.e., equiv-

alence class), which is denoted by [Y ]. In what follows, we calculate ∂f (Y ) and
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∂2f (Y )[Z]. The (i, j) element of ∂f (Y ) can be calculated as follows:

(∂f (Y ))ij = ∂

∂yij
f (Y ) = ∂

∂yij

1

2
tr(Y �AY ) = 1

2

∂

∂yij

∑
k,l,m

y�
kl almymk

= 1

2

∂

∂yij

∑
k,l,m

ylkalmymk = 1

2

∑
k,l,m

∂ylk

∂yij
almymk + 1

2

∑
k,l,m

ylkalm
∂ymk

∂yij

= 1

2

∑
m

∂yij

∂yij
aimymj + 1

2

∑
l

yljali
∂yij

∂yij
= 1

2

∑
m

aimymj + 1

2

∑
l

yljali

= 1

2

∑
m

aimymj + 1

2

∑
l

a�
il ylj

= 1

2
(AY )ij + 1

2
(A�Y )ij.

Here we used the symbol “�” for scalar value y�
kl , which means ylk . The notation is

convenient if one calculates the (i, j) element of A�B. From the definition of matrix–
matrix multiplications, we have (AB)ij =∑k aikbkj. Using the notation, for the (i, j)
element of A�B, we have (A�B)ij =∑k a�

ik bkj =∑k akibkj.
Since A = A�, it follows that

∂f (Y ) = AY . (2.73)

Next, the (i, j) element of ∂2f (Y )[Z] is given by

(∂2f (Y )[Z])ij =
∑
k,l

∂2

∂yij∂ykl
f (Y ) × zkl =

∑
k,l

∂

∂yij

(
∂

∂ykl
f (Y )

)
× zkl

=
∑
k,l

∂

∂yij

(
1

2

∑
m

akmyml + 1

2

∑
m

a�
kmyml

)
× zkl

=
∑
k,l

(
1

2

∑
m

akm
∂yml

∂yij
+ 1

2

∑
m

a�
km

∂yml

∂yij

)
× zkl

=
∑

k

(
1

2
aki

∂yij

∂yij
+ 1

2
a�

ki

∂yij

∂yij

)
× zkj

=
∑

k

(
1

2
akizkj + 1

2
a�

ki zkj

)

=
∑

k

(
1

2
a�

ik zkj + 1

2
aikzkj

)

=
(
1

2
(A�Z)ij + 1

2
(AZ)ij

)
.



72 2 Some Applications to Computational Science and Data Science

Since A = A�, we obtain

∂2 f̄ (Y )[Z] = AZ . (2.74)

Substituting (2.73) and (2.74) into Newton–Grassmann Eq. (2.72) yields

(Y �
k⊥AYk⊥)Ck − Ck(Y

�
k AYk) = −Y �

k⊥AYk , (2.75)

whereC is an unknownmatrix to be solved.This is theSylvester equation as described
in (2.59).

After obtaining Ck by solving (2.75), the next iterate Yk+1 is, for example, given
by Yk+1 = Qk , where Qk is the (thin) QR factorization of Yk⊥Ck .



Chapter 3
Classification and Theory of Krylov
Subspace Methods

Abstract Krylov subspace methods are roughly classified into three groups: ones
for Hermitian linear systems, for complex symmetric linear systems, and for non-
Hermitian linear systems. Non-Hermitian linear systems include complex symmetric
linear systems since a complex symmetric matrix is non-Hermitian and symmetric.
Krylov subspace methods for complex symmetric linear systems use the symmetry
of the coefficient matrix, leading to more efficient Krylov subspace methods than
ones for non-Hermitian linear systems. This chapter also presents preconditioning
techniques to boost the speed of convergence of Krylov subspace methods.

3.1 Hermitian Linear Systems

In this section, we give derivations of the Conjugate Gradient (CG) method, the
Conjugate Residual (CR) method, and the Minimal Residual (MINRES) method.
Thesemethods are used for the case wherematrixA is Hermitian (or real symmetric).
The CG method is usually used for the case where A is a Hermitian positive definite
matrix, and the CR method and the MINRES method are used for a Hermitian
(indefinite) matrix. In exact precision arithmetic, the CR method and the MINRES
method produce the same approximate solutions.We will see that these methods find
the best approximate solutions at each iteration step. To be specific, the CG method
for a Hermitian positive definite matrix finds the best approximate solution such that
a weighted norm of the error is minimized. On the other hand, the CR method and
the MINRES method find the best approximate solution such that the 2-norm of the
residual is minimized.

3.1.1 The Conjugate Gradient (CG) Method

The CG method [95] was proposed by Hestenes (1906–1991) and Stiefel (1909–
1978) in 1952, and is the best-known Krylov subspace method. In exact precision
arithmetic, as well as other Krylov subspace methods the CG method produces the
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exact solution within finite iteration steps. This means that the CG method has two
features: a direct method as in Sect. 1.3 and an iterative method as in Sect. 1.6. For
the chronological history of the development of the CG method, see an excellent
review by Golub and O’Leary [80].

In what follows, the CG method is derived from the Lanczos process (Algorithm
1.11). From (1.42), the Lanczos process in matrix form is given by

ARn = Rn+1Tn+1,n, (3.1)

where

Rn := [r0, r1, . . . , rn−1],

Tn+1,n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t0,0 t0,1

−α−1
0 t1,1

. . .

−α−1
1

. . . tn−2,n−1

. . . tn−1,n−1

−α−1
n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

tk−1,k := (rk−1,Ark)
(rk−1, rk−1)

, (k = 1, 2, . . . , n − 1),

tk,k := (rk ,Ark)
(rk , rk)

, (k = 0, 1, . . . , n − 1).

Here, the scaling parameters (αk ’s) have not been determined yet. Let xk be the kth
approximate solution of Ax = b such that xk ’s satisfy the following equation:

Rn = [b − Ax0, b − Ax1, . . . , b − Axn−1] = b1�
n − AXn,

where 1n := [1, 1, . . . , 1]� ∈ R
n and Xn := [x0, x1, . . . , xn−1]. Notice that Rn is the

matrix given in (3.1). Then, it follows that

ARn = Rn+1Tn+1,n = (b1�
n+1 − AXn+1)Tn+1,n

⇔ Rn = A−1(b1�
n+1 − AXn+1)Tn+1,n = x1�

n+1Tn+1,n − Xn+1Tn+1,n. (3.2)

Nowweuse the condition1�
n+1Tn+1,n = [0, 0, . . . , 0] to determine scaling parameters

αk , i.e., α−1
0 = t0,0 and α−1

k−1 = tk−1,k−1 + tk−2,k−1 for k = 2, 3, . . . , n. Then, the
condition and (3.2) yield

Rn = −Xn+1Tn+1,n, (3.3)

where the matrix Tn+1,n in (3.1) is rewritten as
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Tn+1,n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α−1
0 t0,1

−α−1
0 α−1

1 − t0,1
. . .

−α−1
1

. . . tn−2,n−1

. . . α−1
n−1 − tn−2,n−1

−α−1
n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and the matrix Tn+1,n has the following LDU decomposition:

Tn+1,n =

⎡
⎢⎢⎢⎣

1
−1 1

. . .
. . .

−1 1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
L

⎡
⎢⎢⎢⎣

α−1
0

α−1
1

. . .

α−1
n−1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
D−1

⎡
⎢⎢⎢⎢⎣

1 α0t0,1

1
. . .

. . . αn−1tn−1,n

1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
U

, (3.4)

whereL is the n + 1-by-n lower bidiagonalmatrix,D−1 is the n-by-n diagonalmatrix,
and U is the n-by-n upper bidiagonal matrix. Thus, we obtain

Rn = −Xn+1LD
−1U. (3.5)

We now define Pn(= [p0, p1, . . . , pn−1]) := RnU−1. Then, (3.5) can be rewritten as

PnD = Xn+1 (−L) , (3.6)

which is equivalent to

xk+1 = xk + αkpk , k = 0, 1, . . . , n − 1. (3.7)

The relation between rk = b − Axk and (3.7) yields

rk+1 = rk − αkApk , k = 0, 1, . . . , n − 1. (3.8)

The definition Pn = RnU−1 leads to PnU = Rn, which is equivalent to

p0 = r0, (3.9)

pk = rk + βk−1pk−1, k = 1, 2, . . . , n − 1, (3.10)

where βk−1 := −αk−1tk−1,k .
As described above, computing αk requires Ark because αk = (tk,k + tk−1,k)

−1,
which means two matrix–vector multiplications are required per iteration step, i.e.,
Ark and Apk if we use the iterates (3.7)–(3.10). In what follows, we will see that Ark
is not required. To see this, first we derive a computational formula for αk .
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From (3.1), (3.4), and the definition of Pn, it follows that

APn = Rn+1LD
−1.

This leads to

PH
n APnD = U−HRH

n Rn+1L. (3.11)

Since Rn = [r0, r1, . . . , rn−1] in (3.1) is generated by the Lanczos process, we have
rHi rj = 0 for i �= j. In matrix form, this means (i, j) elements of RH

n Rn+1 is zero for
i �= j. This fact yields that the (k + 1, k + 1) element of U−HRH

n Rn+1L in (3.11) is
rHk rk because L andU

−H are the lower triangular matrices with all the diagonals being
one. Thus from the (k + 1, k + 1) element in (3.11), we have pHk Apkαk = rHk rk , or

αk = rHk rk
pHk Apk

. (3.12)

Since A is Hermitian, αk is a real number for all k, which will be later used for
deriving the computational formula for βk .

Next, we give a computational formula for βk . From (3.1), it follows that

RH
n ARn = RH

n Rn+1Tn+1,n, (3.13)

The (k + 1, k) element of RH
n ARn is rHk Ark−1. As seen in (3.11), RH

n Rn+1 is a matrix
whose (k, k) elements are rHk−1rk−1 for k = 1, 2 . . . , n and the other elements are zero.
From this, it is seen that the (k + 1, k) element ofRH

n Rn+1Tn+1,n is rHk rk × (−αk−1)
−1.

Thus we obtain rHk Ark−1 = rHk rk × (−αk−1)
−1. Because αk−1 is a real number as

mentioned before, rHk Ark−1 is also a real number. Thus rHk Ark−1 = (rHk Ark−1)
H =

rHk−1A
Hrk = rHk−1Ark . From this fact it follows that rHk−1Ark = rHk rk × (−αk−1)

−1.
Recalling βk−1 = −αk−1tk−1,k yields

βk−1 = −αk−1tk−1,k = rHk rk
rHk−1Ark

rHk−1Ark
rHk−1rk−1

= rHk rk
rHk−1rk−1

. (3.14)

From (3.7)–(3.10), (3.12), and (3.14), the algorithm of the CG method is obtained,
which is listed in Algorithm 3.1.

Properties of the CG method are described in Proposition 3.1.

Proposition 3.1 Let pn, rn be the vectors in the CG method, then:

1. (ri, rj) = 0 for i �= j,
2. (pi,Apj) = 0 for i �= j.

Proof The first property readily follows from the fact that (3.1) is obtained from the
Lanczos process. For the second property, it follows from (3.11) that we have
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Algorithm 3.1 The CG method
Input: x0 ∈ C

N , β−1 = 0, p−1 = 0, r0 = b − Ax0
Output: xn
1: for n = 0, 1, 2, . . . , until convergence do
2: pn = rn + βn−1pn−1

3: αn = (rn,rn)
(pn,Apn)

4: xn+1 = xn + αnpn
5: rn+1 = rn − αnApn
6: βn = (rn+1,rn+1)

(rn,rn)
7: end for

PH
n APn = U−HRH

n Rn+1LD
−1.

PH
n APn is Hermitian because A is Hermitian. Thus, U−HRH

n Rn+1LD−1 is Hermitian.
Since the (i, j) element RH

n Rn+1 is zero for i �= j, matrixU−HRH
n Rn+1LD−1 is a lower

triangular matrix. This means that PH
n APn is a Hermitian and lower triangular matrix.

Thus PH
n APn is a diagonal matrix, which is equivalent to the second property. �

From Proposition 3.1, we have the following properties of the CG method:

Corollary 3.1 Let pn and rn be the vectors in the CG method, then:

1. rn ⊥ Kn(A, r0),
2. Apn ⊥ Kn(A, r0).

Proof From(3.8) and (3.9),wehave r1 = r0 − α0Ar0. Thismeans that span{r0, r1} =
K2(A, r0). Similarly, span{r0, r1, . . . , rn−1} = Kn(A, r0). From the first property of
Proposition 3.1, it follows that rn ⊥ r0, r1, . . . , rn−1. Thus rn ⊥ Kn(A, r0). Next, from
(3.8) and the first property of Proposition 3.1, it follows thatApn = (rn − rn+1)/αn ⊥
r0, r1, . . . , rn−1, and thus Apn ⊥ Kn(A, r0). �

From the proof of Corollary 3.1, it is easy to see that

rn ∈ Kn+1(A, r0), pn ∈ Kn+1(A, r0), xn − x0 ∈ Kn(A, r0). (3.15)

If the coefficient matrix A is a Hermitian (or real symmetric) positive definite
matrix, then the CG method produces the optimal approximate solution in terms of
A-norm of the error as described below.

Theorem 3.1 Let Ax = b beHermitian positive definite linear systems. Then the CG
method produces approximate solutions such that A-norm of the error is minimized:

min
xn∈x0+Kn(A,r0)

‖en‖A,

where ‖en‖A = (eHn Aen)
1/2 and en = x − xn is the error of the nth approximate solu-

tion of the CG method.
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Proof Since A is Hermitian positive definite, the Cholesky decomposition exists,
i.e., A = LLH. (The Cholesky decomposition for a real symmetric positive definite
matrix is described in Sect. 1.4.1.) Recall that the approximate solutions of the CG
method satisfy

xn = x0 + zn, zn ∈ Kn(A, r0),

where zn is determined by rn ⊥ Kn(A, r0), see Corollary 3.1. Let Vn be a matrix
whose column vectors correspond to orthonormalized basis vectors of Kn(A, r0).
Then,

xn = x0 + Vnyn, yn ∈ C
n, (3.16)

where yn is determined by VH
n rn = 0. From (3.16) and en = x − xn, it follows that

en = e0 − Vnyn,

where yn is determined by VH
n LL

Hen = 0 since VH
n rn = 0 and rn = b − Axn =

Ax − Axn = Aen = LLHen. Here we used the Cholesky decomposition A = LLH.
Equivalently, we have

LHen = LHe0 − LHVnyn,

where yn is determined by (LHVn)
HLHen = 0. This means that the CG method finds

approximate solutions such that

min
yn∈Cn

‖LHen‖, (3.17)

because (LHVn)
HLHen = 0 is equivalent to the normal equation (LHVn)

H(LHVn)yn =
(LHVn)

HLHe0. The minimization (3.17) is equivalent to

min
xn∈x0+Kn(A,r0)

‖LHen‖.

Since ‖LHen‖2 = (LHen)H(LHen) = eHn LL
Hen = eHn Aen, we finally have

min
xn∈x0+Kn(A,r0)

‖en‖A,

which concludes the proof. �

Theorem 3.1 shows an optimality of the CGmethod. On the other hand, we cannot
see how fast the CG method converges. To see the convergence rate later, the matrix
polynomial representation of the CGmethod is described. The residual vector rn and
the auxiliary vector pn of the CGmethod can be expressed by using two polynomials
Rn and Pn,
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rn = Rn(A)r0, pn = Pn(A)r0, (3.18)

where Rn(λ) denotes Lanczos polynomials, which satisfy the following three-term
recurrence relations:

R0(λ) = 1, (3.19)

R1(λ) = (1 − α0λ)R0(λ), (3.20)

Rn(λ) =
(
1 + βn−2

αn−2
αn−1 − αn−1λ

)
Rn−1(λ)

− βn−2

αn−2
αn−1Rn−2(λ), n = 2, 3, . . . , (3.21)

where Rn(0) = 1. Rn and Pn satisfy the following two-term recurrences:

R0(λ) = 1, P0(λ) = 1, (3.22)

Rn(λ) = Rn−1(λ) − αn−1λPn−1(λ), (3.23)

Pn(λ) = Rn(λ) + βn−1Pn−1(λ) n = 1, 2, . . . (3.24)

The rate of the convergence of the CG method is described in Theorem 3.2.

Theorem 3.2 The A-norm of the error of the CG method satisfies

‖en‖A ≤ 2

(√
κ − 1√
κ + 1

)n

‖e0‖A, (3.25)

where κ is the condition number of A.

Proof Since the residual vector of the CG method can be described as rn = R(A)r0
and rn = Aen, we obtain en = Rn(A)e0. From (3.25) it follows that

‖en‖A = ‖Rn(A)e0‖A = min
pn∈Pn

‖pn(A)e0‖A,

where Pn is the set of polynomials of degree n with P0 = 1.
Using the diagonalization of Hermitian positive definite matrix A, we have

A = PDPH with unitary matrix P and diagonal matrix D whose diagonal elements
are eigenvalues of A. Let A1/2 = PD1/2PH, where D1/2 is a diagonal matrix whose
diagonal elements are square roots of eigenvalues of A. Note that all the eigen-
values of A are positive and A1/2 is Hermitian, i.e., (A1/2)H = A1/2. We see that
A1/2A1/2 = PD1/2PHPD1/2PH = PD1/2D1/2PH = PDPH = A. Then we have
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‖en‖A = min
pn∈Pn

‖pn(A)e0‖A,

= min
pn∈Pn

√
(pn(A)e0)HA(pn(A)e0)

= min
pn∈Pn

√
(pn(A)e0)H(A1/2)HA1/2(pn(A)e0)

= min
pn∈Pn

√
(A1/2pn(A)e0)H(A1/2pn(A)e0)

= min
pn∈Pn

‖A1/2pn(A)e0‖.

Using A = PDPH and A1/2 = PD1/2PH yields

‖en‖A = min
pn∈Pn

‖A1/2pn(A)e0‖ = min
pn∈Pn

‖PD1/2PHpn(PDP
H)e0‖

= min
pn∈Pn

‖PD1/2PHPpn(D)PHe0‖ = min
pn∈Pn

‖PD1/2pn(D)PHe0‖
= min

pn∈Pn

‖Ppn(D)D1/2PHe0‖ = min
pn∈Pn

‖Ppn(D)PHPD1/2PHe0‖
= min

pn∈Pn

‖Ppn(D)PHA1/2e0‖
≤ min

pn∈Pn

‖Ppn(D)PH‖‖A1/2e0‖
= min

pn∈Pn

‖pn(D)‖‖e0‖A
= min

pn∈Pn

max
i=1,2,...,N

|pn(λi)| × ‖e0‖A.

Thus, we have

‖en‖A
‖e0‖A ≤ min

pn∈Pn

max
i=1,2,...,N

|pn(λi)|.

Let a be the smallest eigenvalue and b be the largest eigenvalue of A. Then all
the eigenvalues λi belong to the closed interval [a, b]. Thus we have the following
inequalities:

‖en‖A
‖e0‖A ≤ min

pn∈Pn

max
i=1,2,...,N

|pn(λi)| ≤ min
pn∈Pn

max
λ∈[a,b]

|pn(λ)|.

The solution of the min-max problem can be rewritten using Chebyshev polynomials
as follows:

min
pn∈Pn

max
λ∈[a,b]

|pn(λ)| = max
λ∈[a,b]

|Tn( 2λ−b−a
b−a )|

Tn(
−b−a
b−a )

,
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where

Tn(x) = 1

2

[(
x +

√
x2 − 1

)n +
(
x −

√
x2 − 1

)n]
for |x| ≥ 1. (3.26)

From the property of Chebyshev polynomials, |Tn( 2λ−b−a
b−a )| ≤ 1, from which we

have

min
pn∈Pn

max
λ∈[a,b]

|pn(λ)| ≤ 1

|Tn(−b−a
b−a )| = 1

|Tn(−κ−1
κ−1 )| ,

where κ = b/a is the condition number of A. Using (3.26) yields

min
pn∈Pn

max
λ∈[a,b]

|pn(λ)| ≤ 1

|Tn(−κ−1
κ−1 )| = 2(√

κ−1√
κ+1

)n +
(√

κ+1√
κ−1

)n ≤ 2(√
κ+1√
κ−1

)n

= 2

(√
κ − 1√
κ + 1

)n

,

which concludes the proof. �

Theorem 3.2 indicates that the speed of convergence of the CG method depends
on the condition number of the coefficient matrix A, i.e., the smaller the condition
number is, the faster the CG method converges. It is therefore natural to consider the
following equivalent linear systems:

Ax = b ⇔ Ãx̃ = b̃,

so that the condition number of Ã is much smaller than that of A, and then apply
the CG method not to Ax = b but to the transformed linear systems Ãx̃ = b̃. The
resulting algorithm is called the preconditioned (PCG) method. The technique to
construct Ã is called preconditioning, which will be discussed in Sect. 3.5.

We now describe the algorithm of the preconditioned CG method. Let A ≈ K =
LLH. Then Ã = L−1AL−H is expected to be close to the identity matrix whose con-
dition number is one. We now consider applying the CG method to the following
transformed linear system

Ãx̃ = b̃,

where Ã = L−1AL−H, x̃ = LHx, and b̃ = L−1b. Then, the CG method for Ãx̃ = b̃ is
expected to converge much faster than the CG method for Ax = b. From Algorithm
3.1, the iterates of the CG method for Ãx̃ = b̃ are written as
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p̃n = r̃n + βn−1p̃n−1,

αn = (r̃n, r̃n)

(p̃n, Ãp̃n)
,

x̃n+1 = x̃n + αnp̃n,

r̃n+1 = r̃n − αnÃp̃n,

βn = (r̃n+1, r̃n+1)

(r̃n, r̃n)
.

Using the following rewrites:

x̃ ⇒ LHx, p̃ ⇒ LHp, r̃ ⇒ L−1r,

we have

pn = L−HL−1rn + βn−1L
−HLHpn−1 = L−HL−1rn + βn−1pn−1,

αn = (L−1rn,L−1rn)
(LHpn,L−1AL−HLHpn)

= (L−HL−1rn, rn)
(pn,Apn)

,

xn+1 = L−HLHxn + αnL
−HLHpn = xn + αnpn,

rn+1 = LL−1rn − αnLL
−1AL−HLHpn = rn − αnApn,

βn = (L−1rn+1,L−1rn+1)

(L−HL−1rn, rn)
= (L−HL−1rn+1, rn+1)

(L−HL−1rn, rn)
.

Since K−1 = L−HL−1, we have the PCG method that is described in Algorithm 3.2.

Algorithm 3.2 The preconditioned CG method
Input: x0 ∈ C

N , β−1 = 0, p−1 = 0, r0 = b − Ax0
Output: xn
1: for n = 0, 1, 2, . . . , until convergence do
2: pn = K−1rn + βn−1pn−1

3: αn = (K−1rn,rn)
(pn,Apn)

4: xn+1 = xn + αnpn
5: rn+1 = rn − αnApn
6: βn = (K−1rn+1,rn+1)

(K−1rn,rn)
7: end for

Some notes on the CG method are listed next.

1. From Theorem 3.1, in exact precision arithmetic, the CG method finds the exact
solution within N iteration steps.

2. We can still use the CG method even if the coefficient matrix is not positive
definite. In this case, the optimality in Theorem 3.1 does not hold anymore,
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and the CG method may suffer from breakdown, i.e., zero division, because
(pn,Apn) > 0 for any pn �= 0 does not hold anymore, see line 3 of Algorithm
3.1. In practice, breakdown (zero division) does not occur, but near breakdown
may occur, i.e., (pn,Apn) ≈ 0, leading to numerical instability.

3. In exact precision arithmetic, the CG method for Hermitian indefinite matrices
also finds the exact solutionwithinN iteration steps if breakdown does not occur.

In the next two subsections, the CR method and the MINRES method for Hermi-
tian linear systems are described.

3.1.2 The Conjugate Residual (CR) Method

The Conjugate Residual (CR) method [177] was proposed by in 1955 Stiefel, who
is one of the authors of the CG method. The feature of the CR method is that it has
optimality in terms of the residual norm, which will be described later.

It is possible to derive the CR method like the derivation of the CG method, but
here we give a concise derivation of the CR method using the algorithm of the CG
method. A drawback of the derivation here is that A is assumed to be Hermitian
positive definite, whereas the CR method can be used for Hermitian indefinite linear
systems. On the other hand, we will see the derivation is much simpler than that of
the CG method. A derivation of the CR method similar to that of the CG method
can be found in Sect. 3.2.2 by restricting the derivation of the COCR method for
complex symmetric linear systems to that for real symmetric ones.

We now derive the CR method from the CG method. If A is Hermitian positive
definite, then there exists a square root of A: the Cholesky factorization of A, see
Sect. 1.4.1, is obtained as LLH, and L can be decomposed asU�VH by using singular
value decomposition.1 Then, we have

A = LLH = (U�VH)(V�UH) = U�2UH = (U�UH)(U�UH) = A
1
2A

1
2 .

Thus, the square root of A is A
1
2 = U�UH. Here, we show that if A is Hermitian

positive definite, then the algorithm of the CR method is obtained by applying the
CG method to the following linear systems:

Ax̃ = A
1
2 b, x̃ = A

1
2 x. (3.27)

It follows from the algorithm of the CG method that

1 U andV are unitarymatrices, and� is a diagonalmatrixwhose diagonal elements are nonnegative.
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p̃n = r̃n + βn−1p̃n−1,

αn = (r̃n, r̃n)
(p̃n,Ap̃n)

,

x̃n+1 = x̃n + αnp̃n,

r̃n+1 = r̃n − αnAp̃n,

βn = (r̃n+1, r̃n+1)

(r̃n, r̃n)
.

The residual vector of the original system Ax = b is rn = b − Axn, and then
from (3.27) we have r̃n = A

1
2 b − Ax̃n = A

1
2 (b − Axn) = A

1
2 rn. Substituting r̃n =

A
1
2 rn, p̃n = A

1
2 pn, and x̃n = A

1
2 xn into the above recurrences, we have the algorithm

of the CR method (Algorithm 3.3).

Algorithm 3.3 The CR method
Input: x0 ∈ C

N , β−1 = 0, p−1 = 0, r0 = b − Ax0
Output: xn
1: for n = 0, 1, 2, . . . , until convergence do
2: pn = rn + βn−1pn−1
3: Apn = Arn + βn−1Apn−1

4: αn = (rn,Arn)
(Apn,Apn)

5: xn+1 = xn + αnpn
6: rn+1 = rn − αnApn
7: βn = (rn+1,Arn+1)

(rn,Arn)
8: end for

From line 7 of Algorithm 3.3, the CR method may suffer from breakdown if
Hermitian matrix A is indefinite, i.e., (rn,Arn) = 0.

By induction, it can be shown that the CR method generates iterates ri, pi that
satisfy

(ri,Arj) = 0 for i �= j, (3.28)

(Api,Apj) = 0 for i �= j. (3.29)

Comparing the two properties ((3.28) and (3.29)) and those of the CG method, the
CR method finds approximate solutions such that

xn = x0 + zn, zn ∈ Kn(A, r0),

where zn is determined by rn ⊥ AKn(A, r0)(:= Kn(A,Ar0)), or equivalently

xn = x0 + Vnyn, yn ∈ C
n,
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where yn is determined by (AVn)
Hrn = 0. Following the proof of Theorem 3.1, we

have

min
xn∈x0+Kn(A,r0)

‖en‖A2 .

Since ‖en‖2A2 = eHn A
2en = (Aen)HAen = rHn rn = ‖rn‖2, the CR method finds approx-

imate solutions such that

min
xn∈x0+Kn(A,r0)

‖rn‖.

Therefore, the CRmethod produces the optimal approximate solution in terms of the
residual norm.

Similar to the derivation of the preconditioned CG method, the preconditioned
CR method can be derived from applying the CR method to the transformed linear
systems Ãx̃ = b̃. The resulting algorithm is described in Algorithm 3.4.

Algorithm 3.4 The preconditioned CR method
Input: x0 ∈ C

N , β−1 = 0, p−1 = 0, r0 = b − Ax0
Output: xn
1: for n = 0, 1, 2, . . . , until convergence do
2: pn = K−1rn + βn−1pn−1
3: (Apn = AK−1rn + βn−1Apn−1)

4: αn = (K−1rn,AK−1rn)
(Apn,K−1Apn)

5: xn+1 = xn + αnpn
6: rn+1 = rn − αnApn
7: (K−1rn+1 = K−1rn − αnK−1Apn)

8: βn = (K−1rn+1,AK−1rn+1)

(K−1rn,AK−1rn)
9: end for

Note that lines 3 and 7 in Algorithm 3.4 are added for reducing the number of
matrix–vector multiplications of the form Av and solving linear systems of the form
Kv = w. In fact, at each iteration, it seems that we need to compute

Apn, K−1rn+1, A(K−1rn), K−1(Apn).

But from lines 3 and 7, we do not need to compute Apn and K−1rn+1, except K−1r0
at the first iteration step. Thus, essentially we only need to compute the following
form:

Av, K−1w

at each iteration step. Here, v := K−1rn+1 is obtained by line 7 and w := Apn is
obtained by line 3.
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3.1.3 The Minimal Residual (MINRES) Method

TheMinimalResidual (MINRES)method [143]was proposed byPaige andSaunders
in 1975. TheMINRESmethod generates xn that minimizes ‖b − Axn‖ over the affine
space x0 + Kn(A, r0). Therefore, in exact precision arithmetic, the MINRES method
and the CR method produce the same approximate solutions. The minimization can
be achieved by using the Lanczos process.

Here, we give a derivation process of the MINRES method. Let Vn be the
orthonormal basis of Kn(A, r0). The MINRES method finds xn over the affine space
x0 + Kn(A, r0), i.e.,

xn = x0 + Vnyn, yn ∈ C
n. (3.30)

The corresponding residual vector is given by

rn = r0 − AVnyn.

From the matrix form of the Lanczos process in (1.42), it follows that

rn = r0 − Vn+1Tn+1,nyn = Vn+1(βe1 − Tn+1,nyn),

where β := ‖r0‖. The 2-norm of the residual vector is written as

‖rn‖ = ‖Vn+1(βe1 − Tn+1,nyn)‖
=

√
[Vn+1(βe1 − Tn+1,nyn)]HVn+1(βe1 − Tn+1,nyn)

=
√

(βe1 − Tn+1,nyn)HV
H
n+1Vn+1(βe1 − Tn+1,nyn)

=
√

(βe1 − Tn+1,nyn)H(βe1 − Tn+1,nyn)

= ‖βe1 − Tn+1,nyn‖.

TheMINRESmethodfinds approximate solutions such that the 2-normof the residual
vector is minimized, i.e., yn is chosen such that

yn := argmin
y∈Cn

‖βe1 − Tn+1,ny‖. (3.31)

By solving the least-squares problem in (3.31) using a Givens rotation that is one of
the unitary matrices, the MINRES method is obtained.

In the following, we describe how Givens rotations work for solving (3.31). For
simplicity, we consider the case n = 4 for solving it. βe1 − T5,4y is written as
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βe1 − T5,4y =

⎡
⎢⎢⎢⎢⎣

β

0
0
0
0

⎤
⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎣

t11 t12
t21 t22 t23

t32 t33 t34
t43 t44

t54

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
y1
y2
y3
y4

⎤
⎥⎥⎦ ,

where tij = tji, 1 ≤ i, j ≤ 4. Let G1 be a matrix of the Givens rotation, i.e.,

G1 =

⎡
⎢⎢⎢⎢⎣

c1 s1
−s1 c1

1
1
1

⎤
⎥⎥⎥⎥⎦

with c1 = |t11|√|t11|2 + |t21|2
, s1 = t21

t11
c1,

and s1 is obtained by the conjugate of s̄1. There is one exception: set s1 = s̄1 = 1
if t11 = 0. Then, G1 is a unitary matrix, and thus ‖βe1 − Tn+1,ny‖ = ‖G1(βe1 −
Tn+1,ny)‖. This leads to

G1(βe1 − T5,4y) =

⎡
⎢⎢⎢⎢⎣

g(1)
1

g(1)
2
0
0
0

⎤
⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎣

t(1)11 t(1)12 t(1)13

t(1)22 t(1)23
t32 t33 t34

t43 t44
t54

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
y1
y2
y3
y4

⎤
⎥⎥⎦ ,

where g(1)
2 = −s1β. Next, let G2 be a unitary matrix defined by

G2 =

⎡
⎢⎢⎢⎢⎣

1
c2 s2

−s2 c2
1
1

⎤
⎥⎥⎥⎥⎦

with c2 = |t(1)22 |√
|t(1)22 |2 + |t32|2

, s2 = t32

t(1)22

c2.

There is one exception: set s2 = s̄2 = 1 if t(1)22 = 0. Then, G2 and G2G1 are unitary
matrices, and thus ‖βe1 − Tn+1,ny‖ = ‖G2G1(βe1 − Tn+1,ny)‖. This leads to

G2G1(βe1 − T5,4y) =

⎡
⎢⎢⎢⎢⎣

g(1)
1

g(2)
2

g(2)
3
0
0

⎤
⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎣

t(1)11 t(1)12 t(1)13

t(2)22 t(2)23 t(2)24

t(2)33 t(2)34
t43 t44

t54

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
y1
y2
y3
y4

⎤
⎥⎥⎦ ,

where g(2)
3 = (−1)2s2s1β. Similarly, using G3 and G4, we finally obtain
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Q4(βe1 − T5,4y) =

⎡
⎢⎢⎢⎢⎢⎣

g(1)
1

g(2)
2

g(3)
3

g(4)
4

g(5)
5

⎤
⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎣

t(1)11 t(1)12 t(1)13

t(2)22 t(2)23 t(2)24

t(3)33 t(3)34

t(4)44

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
y1
y2
y3
y4

⎤
⎥⎥⎦

=
[
g4
g(5)
5

]
−

[
R4

0�

]
y4,

whereQ4 = G4G3G2G1 and g
(5)
5 = (−1)4s4s3s2s1β. Hence, we obtain y4 by solving

the following equation:

R4y4 = g4 (3.32)

using backward substitution. It is interesting to see that we can obtain the value
of miny∈C4 ‖βe1 − T5,4y‖ without solving the equation R4y4 = g4, since the value
satisfies

‖r4‖ = min
y∈C4

‖βe1 − T5,4y‖ = min
y∈C4

‖Q4(βe1 − T5,4y)‖

=
∥∥∥∥
[
g4
g(5)
5

]
−

[
R4

0�

]
y4

∥∥∥∥ =
∥∥∥∥
[

0
g(5)
5

]∥∥∥∥
= |g(5)

5 |.

Thus, |g(5)
5 | corresponds to the residual norm of r4, and this can be used as a stopping

criterion. To obtain the approximate solution, it follows from (3.30) and (3.32) that

x4 = x0 + V4R
−1
4 g4. (3.33)

Here, we introduce a matrix P4 := V4R
−1
4 with columns [p1, p2, p3, p4]. Then, from

[p1, p2, p3, p4]R4 = [v1, v2, v3, v4], we have the following recurrences:

p1 = v1/t
(1)
11 , (3.34)

p2 = (v2 − t(1)12 p1)/t
(2)
22 , (3.35)

p3 = (v3 − t(1)13 p1 − t(2)23 p2)/t
(3)
33 , (3.36)

p4 = (v4 − t(2)24 p2 − t(3)34 p3)/t
(4)
44 . (3.37)

From (3.33), x4 = x0 + P4g4 = x0 + ∑4
i=1 gipi and thus

xi = xi−1 + gipi, i = 1, . . . , 4, (3.38)
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where gi is the ith element of g4. The approximate solutions x1, . . . , x4 of the MIN-
RES method are obtained by (3.38) with the recurrences (3.34)–(3.37).

The derivation for the case n = 4 can be easily generalized to the nth iteration
step, leading to Algorithm 3.5. From Algorithm 3.5, the MINRES method never
suffers from breakdown since βn �= 0 unless ṽn+1 = 0.

Algorithm 3.5 The MINRES method
Input: x0 ∈ C

N , β0 = 0, v0 = 0, r0 = b − Ax0
Output: xn
1: g = (‖r0‖, 0, . . . , 0)�, v1 = r0/‖r0‖
2: for n = 1, 2, . . . do
3: (Lanczos process)
4: αn = (vn,Avn)
5: ṽn+1 = Avn − αnvn − βn−1vn−1
6: βn = (ṽn+1, ṽn+1)

1/2

7: vn+1 = ṽn+1/βn
8: tn−1,n = βn−1, tn,n = αn
9: tn+1,n = βn
10: (Givens rotations)
11: for i = max{1, n − 2}, . . . , n − 1 do

12:

[
ti,n
ti+1,n

]
=

[
ci si

−si ci

] [
ti,n
ti+1,n

]

13: end for

14: cn = |tn,n|√
|tn,n|2+|tn+1,n|2

15: sn = tn+1,n
tn,n

cn
16: tn,n = cntn,n + sntn+1,n
17: tn+1,n = 0

18:

[
gn
gn+1

]
=

[
cn sn

−sn cn

] [
gn
0

]

19: (Update xn)
20: pn = (vn − tn−2,npn−2
21: − tn−1,npn−1)/tn,n
22: xn = xn−1 + gnpn
23: (Check convergence)
24: if |gn+1|/‖b‖ ≤ ε, then stop
25: end for

As mentioned above, the MINRES method never suffers from breakdown. Paige
and Saunders also proposed the SYMMLQ method in [143], which is a variant of
the CG method, to avoid breakdown for Hermitian indefinite linear systems. A brief
explanation is given next.

Recall that the approximate solution xn of the CG method is given by

xn = x0 + Vnyn,

rn = r0 − Vn+1Tn+1,nyn = Vn+1(βe1 − Tn+1,nyn),

where yn is determined by rn ⊥ Kn(A, r0) (see Corollary 3.1), i.e., VHrn = 0. This
yields

Tnyn = βe1, (3.39)

where Tn is the tridiagonal matrix obtained by removing the last row of Tn+1,n. The
CG method is obtained by the LDLH decomposition of Tn, i.e.,

Tn = LDLH,

where L is a unit lower bidiagonal matrix andD is a diagonal matrix. IfA is Hermitian
positive definite,Tn is alsoHermitian positive definite. Thus this decomposition never
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suffers from breakdown. On the other hand, when A is indefinite, LDLH of Tn may
not be obtained due to breakdown.

In order to circumvent the problem, Paige and Saunders proposed to use the LQ
factorization of Tn, i.e.,

Tn = LnQn, QH
n Qn = I ,

where Ln is a lower triangular matrix and the decomposition is obtained by Givens
rotations. Thus the decomposition is free from breakdown. The resulting algorithm
is known as the SYMMLQ method. When the coefficient matrix A is Hermitian
positive definite, the SYMMLQ method gives the same result as the CG method in
exact precision arithmetic, and for indefinite cases, the SYMMLQmethod succeeded
in avoiding breakdown when solving (3.39).

For a brief historical note including the relation between the SYMMLQ method
and (less-known) Fridman’s method of 1962, see Sect. 2.4 in [160].

Another important remedy is “composite step” technique by Bank and Chan [16]
and similar techniques (hyperbolic pairs) in [58, 126]. The key idea of the composite
step is decomposing Tn in (3.39) into

Tn = L̃D̃L̃H,

where L̃ is a unit lower block bidiagonal matrix and D̃ is a block diagonal matrix
whose block is of size 1 × 1 or 2 × 2, i.e.,

D̃ =
⎡
⎢⎣
D1

. . .

Dm

⎤
⎥⎦ ,

where Di is a scalar or a 2 × 2 matrix. This decomposition is also free from break-
down, see, e.g., [16, Theorem 2.2]. An algorithmic explanation of the composite step
technique (the composite step BiCG method) is described in Sect. 3.3.2.

3.2 Complex Symmetric Linear Systems

In this section, we consider complex symmetric linear systems of the form

Ax = b,

where A is complex symmetric, i.e., A = A� and A �= AH. Note that complex sym-
metric matrix A is not Hermitian. Below is an example of a complex symmetric
matrix:
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A =
[
1 + i 2 + i
2 + i 3

]
.

For applications of complex symmetric linear systems, see the Helmholtz equation
in Sect. 2.1.1.3 and a large-scale electronic structure calculation in Sect. 2.2.1.

This section describes theCOCGmethod, theCOCRmethod, and theQMR_SYM
method for solving complex symmetric linear systems. These methods reduce to the
CG method, the CR method, and the MINRES method if these methods are applied
to real symmetric linear systems. Other Krylov subspace methods and applications
for complex symmetric linear systems, see, e.g., [1, 30, 37, 40, 83, 84, 124, 141]
and the references therein.

3.2.1 The Conjugate Orthogonal Conjugate Gradient
(COCG) Method

The COCG method [197] is the best-known method for solving complex symmetric
linear systems. The algorithm can be formally derived by the CG method with the
change of the dot product (a, b) into (a, b). Here a denotes the complex conjugate of
a.With this rewrite, the algorithmof theCOCGmethod is described inAlgorithm3.6.

Algorithm 3.6 The COCG method (note: (a, b) = a�b)
Input: x0 ∈ C

N , β−1 = 0, p−1 = 0, r0 = b − Ax0
Output: xn
1: for n = 0, 1, 2, . . . , until convergence do
2: pn = rn + βn−1pn−1

3: αn = (rn,rn)
(pn,Apn)

4: xn+1 = xn + αnpn
5: rn+1 = rn − αnApn
6: βn = (rn+1,rn+1)

(rn,rn)
7: end for

The residual vector rn of the COCG method satisfies the following relation:

rn ⊥ Kn(A, r0),

where Kn(A, r0) := Kn(A, r0). From Algorithm 3.6, it is easy to see that if matrix A
is a real symmetric matrix, then the COCG method is the same as the CG method.
The preconditioned COCG method is described in Algorithm 3.7.
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Algorithm 3.7 The preconditioned COCG method (note: (a, b) = a�b)
Input: x0 ∈ C

N , r0 = b − Ax0, p−1 = 0, β−1 = 0
Output: xn
1: for n = 0, 1, 2, . . . , until convergence do
2: pn = K−1rn + βn−1pn−1

3: αn = (K
−1

rn,rn)
(pn,Apn)

4: xn+1 = xn + αnpn
5: rn+1 = rn − αnApn

6: βn = (K
−1

rn+1,rn+1)

(K
−1

rn,rn)
7: end for

3.2.2 The Conjugate Orthogonal Conjugate Residual
(COCR) Method

The COCR method [171] is also a Krylov subspace method for solving complex
symmetric linear systems. The algorithm can be formally derived by the CR method
with the change of the dot product (a, b) into (a, b). The COCR method produces
approximate solutions such that the residual vector satisfies

rn ⊥ AKn(A, r0),

whereAKn(A, r0) := AKn(A, r0). From this, if matrixA is real symmetric, the COCR
method is identical to the CR method. This indicates that if A is complex symmetric
and is close to the real matrix, then it can be expected that the residual 2-norm tends
to decrease almost monotonically or tends to show smooth convergence behavior.

In what follows, the COCR method is derived. To begin with, the conjugate A-
orthogonalization process is introduced in Algorithm 3.8.

Algorithm 3.8 The conjugate A-orthogonalization process without normalization
(note: (a, b) = a�b)
Input: v0 = r0 = b − Ax0
Input: t0,0 = (Av0,Av0)/(v0,Av0)
Input: v1 = −α0(Av0 − t0,0v0)
1: t0,0 = (Av1Av1)/(v1,Av1)
2: v1 = −α0(Av1 − t0,0v1)
3: for n = 1, 2, . . . ,N − 1 do
4: tn−1,n = (Avn−1,Avn)/(vn−1,Avn−1)

5: tn,n = (Avn,Avn)/(vn,Avn)
6: vn+1 = −αn(Avn − tn,nvn − tn−1,nvn−1)

7: end for

Similar to the Lanczos process (Algorithm 1.11), the vectors vi’s of Algorithm
3.8 satisfy the following relations:
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span{v1, v2, . . . , vn} = Kn(A, r0),

(vi,Avj) = 0 for i �= j. (3.40)

In what follows, the COCRmethod is derived fromAlgorithm 3.8. Let r0 := b − Ax0
be the initial residual vector for a given initial guess x0. Then, Algorithm 3.8 can be
expressed in the following matrix form:

A [r0, r1, . . . , rn−1]︸ ︷︷ ︸
Rn

= [r0, r1, . . . , rn−1, rn]︸ ︷︷ ︸
Rn+1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t0,0 t0,1

−α−1
0 t1,1

. . .

−α−1
1

. . . tn−2,n−1

. . . tn−1,n−1

−α−1
n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Tn+1,n

,

where tk−1,k = (Ark−1,Ark )
(rk−1,Ark−1)

and tk,k = (Ark ,Ark )
(rk ,Ark )

. From the abovematrix form, we obtain

ARn = Rn+1Tn+1,n. (3.41)

Since thematrixRn is generated byAlgorithm3.8, it follows fromA-orthogonal prop-
erty (3.40) that we have R�

n ARn = Dn, where Dn is an n-by-n diagonal matrix. The
scalar parameters α0, . . . , αn−1 still remain unknown. We show that if we determine
the scalar parameters such that approximate solutions x0, . . . , xn−1 can be extracted
from the information of r0, . . . , rn−1, then we obtain the algorithm of the COCR
method.

Let Xn := [x0, . . . , xn−1] and 1 be [1, . . . , 1]�. Then Rn := [r0, r1, . . . , rn−1] and
Xn are related as follows:

Rn = [b − Ax0, b − Ax1, . . . , b − Axn−1] = b1�
n − AXn. (3.42)

Substituting (3.42) into (3.41) yields

ARn = (b1�
n+1 − AXn+1)Tn+1,n.

Then,

Rn = (x1�
n+1 − Xn+1)Tn+1,n,

where x is the exact solution of the linear system Ax = b. If the condition of the form

x1�
n+1Tn+1,n = On (3.43)
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holds, then Rn = −Xn+1Tn+1,n. The relation Rn = −Xn+1Tn+1,n implies that the
approximate solution vectors can be obtained by residual vectors. Conversely, if
the relationship does not hold, the approximate solution vectors cannot be obtained
by residual vectors.

Since unknown parameters α0, . . . , αn−1 in Tn+1,n have not yet been determined,
we determine the parameters so that (3.43) holds. This leads to

α−1
0 = t0,0,

α−1
k = tk,k + tk−1,k , 1 ≤ k ≤ n − 1.

Substituting the above recurrence into Tn+1,n, we have

Tn+1,n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α−1
0 t0,1

−α−1
0 α−1

1 − t0,1
. . .

−α−1
1

. . . tn−2,n−1

. . . α−1
n−1 − tn−2,n−1

−α−1
n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, Tn+1,n can be factorized as follows:

Tn+1,n =

⎡
⎢⎢⎢⎢⎣

1

−1
. . .

. . . 1
−1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎣

α−1
0

. . .

α−1
n−1

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎣

1 α0t0,1

1
. . .

. . . αn−2tn−2,n−1

1

⎤
⎥⎥⎥⎥⎦

= B(L)
n+1,n�

−1
n B(U )

n .

From (3.41) and the above factorization, we obtain

ARn = Rn+1Tn+1,n = Rn+1B
(L)
n+1,n�

−1
n B(U )

n . (3.44)

Here, Pn := Rn(B(U )
n )−1. From (3.44), it follows that

APn = ARn(B
(U )
n )−1 = Rn+1B

(L)
n+1,n�

−1
n . (3.45)

The above matrix forms are equivalent to the following recurrences:

rk = rk−1 − αk−1Apk−1, 1 ≤ k ≤ n. (3.46)

From Pn = Rn(B(U )
n )−1 it follows that

pk = rk + βk−1pk−1, 1 ≤ k ≤ n, (3.47)
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where βk−1 := −αk−1tk−1,k . We now give the computational formulas of the approx-
imate solutions. From (3.45),

APn = Rn+1B
(L)
n+1,n�

−1
n

= (b1� − AXn+1)B
(L)
n+1,n�

−1
n

= −AXn+1B
(L)
n+1,n�

−1
n .

Thus, we obtain

Pn�n = Xn+1(−B(L)
n+1,n),

and it is equivalent to

xk = xk−1 + αk−1pk−1, 1 ≤ k ≤ n. (3.48)

Now, we give more practical computational formulas of αk and βk . From (3.41), it
follows that

(AR)�n ARn = R�
n ARn+1Tn+1,n.

From the (k + 1, k) element of the above relation,we have (Ark ,Ark−1) = −α−1
k−1(rk ,

Ark). Thus from βk−1 = −αk−1tk−1,k , we obtain

βk = −αk tk,k+1 = (rk+1,Ark+1)

(Ark+1,Ark)
× (Ark ,Ark+1)

(rk ,Ark)
= (rk+1,Ark+1)

(rk ,Ark)
. (3.49)

Here, we used the relation (rk ,Ark+1) = (rk+1,Ark) because

(rk ,Ark+1) = (rk ,Ark+1)
� = (r�k Ark+1)

� = (rk+1,A
�rk) = (rk+1,Ark). (3.50)

From (3.45) and recalling Pn = Rn(B(U )
n )−1, it follows that

(APn)
�APn = (APn)

�Rn+1B
(L)
n+1,n�

−1
n = (B(U )

n )−�R�
n ARn+1B

(L)
n+1,n�

−1
n .

(B(U )
n )−� is a lower triangular matrix, andA-orthogonal property (3.40) indicates that

the off-diagonal elements of R�
n ARn+1 are zeros. From this, (APn)

�APn is a lower
triangular matrix of the form

(APn)
�APn =

⎡
⎢⎢⎢⎢⎣

d0

∗ . . .

...
. . .

. . .

∗ · · · ∗ dn−1

⎤
⎥⎥⎥⎥⎦

,
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where dk = (rk , rk)α
−1
k . Thus, we obtain

αk = (rk ,Ark)

(Apk ,Apk)
. (3.51)

Moreover, since (APn)
�APn is complex symmetric, we have

(APn)
�APn =

⎡
⎢⎢⎢⎢⎣

d0

∗ . . .

...
. . .

. . .

∗ · · · ∗ dn−1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

d0 ∗ · · · ∗
. . .

. . .
...

. . . ∗
dn−1

⎤
⎥⎥⎥⎥⎦

,

which means (APn)
�APn = diag(d0, . . . , dn−1). Thus pi and pj are conjugate A2-

orthogonal, i.e.,

(Api,Apj) = 0 for i �= j.

From (3.46)–(3.51), we obtain the algorithm of the COCR method, which is listed
in Algorithm 3.9.

Algorithm 3.9 The COCR method (note: (a, b) = a�b)
Input: x0 ∈ C

N , β−1 = 0, p−1 = 0, r0 = b − Ax0
Output: xn
1: for n = 0, 1, 2, . . . , until convergence do
2: pn = rn + βn−1pn−1
3: Apn = Arn + βn−1Apn−1

4: αn = (rn,Arn)
(Apn,Apn)

5: xn+1 = xn + αnpn
6: rn+1 = rn − αnApn
7: βn = (rn+1,Arn+1)

(rn,Arn)
8: end for

When the COCR method is applied to the linear systems K−1
1 AK−�

1 x̃ = K−1
1 b

(x̃ = K�
1 x), the preconditioned COCR method can be obtained by the following

rewrites:

x̃n ⇒ K�
1 xn, p̃n ⇒ K�

1 pn, r̃n ⇒ K−1
1 rn,

where A ≈ K = K1K�
1 . Then, we have the preconditioned COCR method which is

described in Algorithm 3.10.
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Algorithm 3.10 The preconditioned COCR method (note: (a, b) = a�b)
Input: x0 ∈ C

N , r0 = b − Ax0, p−1 = 0, β−1 = 0
Output: xn
1: for n = 0, 1, 2, . . . , until convergence do
2: pn = K−1rn + βn−1pn−1
3: (Apn = AK−1rn + βn−1Apn−1)

4: αn = (K
−1

rn,AK−1rn)
(Apn,K−1Apn)

5: xn+1 = xn + αnpn
6: rn+1 = rn − αnApn
7: (K−1rn+1 = K−1rn − αnK−1Apn)

8: βn = (K
−1

rn+1,AK−1rn+1)

(K
−1

rn,AK−1rn)
9: end for

Note that lines 3 and 7 in Algorithm 3.10 are added for reducing the number of
matrix–vector multiplications of the form Av and solving linear systems of the form
Kv = w, which is the same technique as described in the preconditioned CR method
in Sect. 3.1.2.

3.2.3 The Quasi-Minimal Residual (QMR_SYM) Method

The QMR_SYM method [61] that is named in van der Vorst’s book [196, p.112]
is also a well-known Krylov subspace method for solving complex symmetric lin-
ear systems, which can be derived from the complex symmetric Lanczos process
described in Sect. 1.9.3.

This subsection describes the derivation process of the QMR_SYM method. Let
Vn be an N -by-n matrix whose column vectors are produced by the complex sym-
metric Lanczos process (Algorithm 1.10). Then, the QMR_SYM method finds an
approximate solution from

xn = x0 + Vnyn, yn ∈ C
n. (3.52)

Here, yn is to be determined by a condition as described later. Note that xn lies in the
affine space x0 + Kn(A, r0). The corresponding residual vector is

rn = r0 − AVnyn.

From the matrix form of the complex symmetric Lanczos process (1.41), it follows
that

rn = r0 − Vn+1Tn+1,nyn = Vn+1(βe1 − Tn+1,nyn)
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with β := ‖r0‖. The above derivation process is similar to that of the MINRES
method in Sect. 3.1.3. The difference is that if we choose yn such that the norm of
the residual is minimized as well as the MINRES method, then it may lead to a large
amount of computational costs since

‖rn‖ = ‖Vn+1(βe1 − Tn+1,nyn)‖ �= ‖(βe1 − Tn+1,nyn)‖, (3.53)

due to the fact thatVH
n+1Vn+1 �= I . This means that we need tominimize ‖Vn+1(βe1 −

Tn+1,nyn)‖ if we try to obtain a minimal residual approximate solution. As a result,
the computational costs and memory requirements grow as the number of iterations
increases.

The QMR_SYM method, therefore, is designed not by the minimal residual
approach but by a quasi-minimal residual approach, i.e., choosing yn such that

yn := argmin
y∈Cn

‖βe1 − Tn+1,ny‖. (3.54)

The resulting vector βe1 − Tn+1,nyn is referred to as a quasi-residual vector. Here,
we note that if Vn satisfies the relation VH

n Vn = In, then the above choice leads to
the minimization of the residual norm. Since A is complex symmetric, in general Vn

does not satisfy the relation VH
n Vn = In except some special cases: one of the special

cases is given in [61], which has the form

A = B + iσ I , B = B� ∈ R
N×N , σ ∈ R.

To achieve the minimization (3.54), Givens rotations described in Sect. 3.1.3 play an
important role. Multiplying βe1 − Tn+1,ny by Givens rotations Qn = Gn · · ·G1 such
that QH

n Qn = In and

QnTn+1,n =
[
Rn

0�

]
,

we have

min
y∈Cn

‖βe1 − Tn+1,ny‖ = min
y∈Cn

∥∥∥∥
[

gn
gn+1

]
−

[
Rn

0�

]
y

∥∥∥∥ , (3.55)

where
[

gn
gn+1

]
= βQne1

and Rn is an upper triangular matrix. Thus, we have yn = R−1
n gn as the solution

of (3.55), from which, together with (3.52), we obtain the approximate solution
xn = x0 + VnR−1

n gn.Similar to theMINRESmethod, introducingPn := VnR−1
n gives

a three-term recurrence relation. Then, we have a more practical formula of xn:
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xi = xi−1 + gipi, i = 1, . . . , n,

where gi and pi are the ith element of gn and the ith column of Pn respectively. The
complete algorithm of the QMR_SYM method is described in Algorithm 3.11.

Unlike the MINRES method, the residual norm ‖rn‖ is not obtained from (3.55)
due to the relation (3.53). Thus the problem is how to compute ‖rn‖ for evaluating
the quality of approximate solutions. One simple solution is to compute ‖b − Axn‖,
which requires an additional matrix–vector multiplication per iteration. On the other
hand, it is possible to circumvent the computation of the matrix–vector multiplica-
tion. The technique is given next. Similar to the MINRES method, the approximate
solutions of the QMR_SYM method are given by

pn = 1

tn,n
(vn − tn−2,npn−2 − tn−1,npn−1),

xn = xn−1 + gnpn.

Since rn = b − Axn, we have

rn = rn−1 − gnApn.

Here, Apn can be updated by

Apn = 1

tn,n
(Avn − tn−2,nApn−2 − tn−1,nApn−1).

Since Avn is computed by the complex symmetric Lanczos process, we can compute
the residual 2-norm ‖rn‖ without the direct computation of ‖b − Axn‖, leading to
a cost-efficient evaluation of ‖rn‖ to check the convergence. These recurrences are
added to lines 24–26 in Algorithm 3.11.

3.3 Non-Hermitian Linear Systems

Let us recall that the CG method and the CR method (or the MINRES method) have
the following two favorable properties:

1. The residual vectors satisfy Ritz-Galerkin approach (1.24) or minimal residual
approach (1.26).

2. The residual vectors are generated by short-term recurrences.

As described in Sect. 3.1, the first property determines the optimality of approxi-
mate solutions, and the second property plays an important role in keeping the com-
putational costs and memory requirements constant at each iteration step. Recalling
that theRitz–Galerkin approach (1.24) is for theCGmethod, and theminimal residual
approach (1.26) is for the CR method and the MINRES method.
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Algorithm 3.11 The QMR_SYM method (note: (a, b) = a�b)
Input: x0 ∈ C

N , β0 = 0, v0 = p−1 = p0 = 0, r0 = b − Ax0
Output: xn
1: g = (‖r0‖, 0, . . . , 0)�, v1 = r0/‖r0‖
2: for n = 1, 2, . . . do
3: (Complex symmetric Lanczos process)
4: αn = (vn,Avn)
5: ṽn+1 = Avn − αnvn − βn−1vn−1
6: βn = (ṽn+1, ṽn+1)

1/2

7: vn+1 = ṽn+1/βn
8: tn−1,n = βn−1, tn,n = αn
9: tn+1,n = βn
10: (Givens rotations)
11: for i = max{1, n − 2}, . . . , n − 1 do

12:

[
ti,n
ti+1,n

]
=

[
ci si

−si ci

] [
ti,n
ti+1,n

]

13: end for
14: cn = |tn,n|√

|tn,n|2+|tn+1,n|2

15: sn = tn+1,n
tn,n

cn
16: tn,n = cntn,n + sntn+1,n
17: tn+1,n = 0

18:

[
gn
gn+1

]
=

[
cn sn

−sn cn

] [
gn
0

]

19: (Update xn)
20: pn = (vn − tn−2,npn−2
21: − tn−1,npn−1)/tn,n
22: xn = xn−1 + gnpn
23: (Check convergence)
24: Apn = (Avn − tn−2,nApn−2
25: − tn−1,nApn−1)/tn,n
26: rn = rn−1 − gnApn
27: if ‖rn‖/‖b‖ ≤ ε, then stop
28: end for

Here, a question arises: are there Krylov subspace methods satisfying both the
properties for non-Hermitian linear systems? The answer is negative, which was
proved in [57] and known as the Faber–Manteuffel theorem. More concretely, if
matrix A has the form

A = eiφ(icI + G) (c ≥ 0, 0 ≤ φ ≤ 2π, B−1GHB = G),

then algorithms satisfying the both properties can be constructed. For the details, see
[57] and Greenbaum’s book [81, Chap.6]. See also [121] and the references therein.

For solving non-Hermitian linear systems, one may consider the following trans-
formed linear systems:

AHAx = AHb. (3.56)

If A is nonsingular, then AHA is Hermitian positive definite. Thus the CGmethod can
be applied to the transformed linear systems. However, the condition number of AHA
may be twice as large as the condition number of the original matrix A. Hence, from
Theorem 3.2, the speed of convergence may be slow. Furthermore, if the condition
number is very large, then it follows from the error analysis (1.3), the accuracy of
an obtained approximate solution may be very low. Note that the error analysis (1.3)
does not depend on numerical algorithms for solving linear systems. This means that
the accuracy of an approximate solution computed by any numerical algorithm may
become low.
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On the other hand, if the condition number AHA is not so large, there are cases
where applying the CG method to (3.56) is a method of choice. In fact, if A is a
unitary matrix, then AHA = I , which indicates that the CGmethod gives the solution
within only one iteration. Thus, we can guess that this approach is particularly useful
for the case where A is close to a unitary matrix. Well-known algorithms in this
approach are the CGNE method and the CGNR method, which will be described in
Sect. 3.4.1.

In what follows, Krylov subspace methods for non-Hermitian linear systems are
derived. We will see that the BiCGmethod, the BiCR method, and the QMRmethod
can be regarded as extensions of the CG method, the CR method, and the MINRES
method respectively, and these are based on the bi-Lanczos process (or a bi-Lanczos-
like process), and the GMRES method can be regarded as an extension of the MIN-
RES method, and the GMRES method is based on the Arnoldi process. We will also
see how the BiCG method has been improved via product-type Krylov subspace
methods and the IDR(s) method.

3.3.1 The Bi-Conjugate Gradient (BiCG) Method

Similar to the derivation process of the CG method in Sect. 3.1.1, the BiCG method
[58, 119] can be derived by the bi-Lanczos process in Section 1.9.2.

In this subsection, we give a concise way of the derivation to see that the BiCG
method for non-Hermitian linear systems can be derived from the preconditioned
COCG method (Algorithm 3.7). First, we consider the following 2N × 2N complex
symmetric linear system:

[
O A
A� O

] [
x∗
x

]
=

[
b
b

∗
]

, or Ãx̃ = b̃. (3.57)

We can see from the system (3.57) that it is mathematically equivalent to

Ax = b and A�x∗ = b
∗
(⇔ AHx∗ = b∗).

If we apply the algorithm of COCG with the preconditioner

M̃ =
[
O I
I O

]
, I : identity matrix, (3.58)

to (3.57), then the resulting algorithm at the nth iteration step can be written as
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p̃COCG

n = M̃−1r̃COCGn + βn−1p̃
COCG

n−1 ,

αn = (M̃−1r̃COCGn , r̃COCGn )

(p̃COCG

n , Ãp̃COCG

n )
,

x̃COCG

n+1 = x̃COCG

n + αnp̃
COCG

n ,

r̃COCGn+1 = r̃COCGn − αnÃp̃
COCG

n ,

βn = (M̃−1r̃COCGn+1 , r̃COCGn+1 )

(M̃−1r̃COCGn , r̃COCGn )
.

Substituting M̃−1(= M̃ ) of (3.58) and the vectors

x̃COCG

n :=
[
xn
x∗
n

]
, r̃COCGn :=

[
rn
r∗n

]
, p̃COCG

n :=
[
p∗
n
pn

]

into the previous recurrences, and using the following results:

(M̃−1r̃COCGn , r̃COCGn ) = [
r∗n

�r�n
] [rn

r∗n

]

= r∗n
�rn + r�n r

∗
n

= r∗n
Hrn + (r�n r

∗
n)

�

= (r∗n, rn) + r∗n
Hrn

= 2(r∗n, rn)

(p̃COCG

n , Ãp̃COCG

n ), = [
((p∗

n)
�pn)�

] [ Apn
A�p∗

n

]

= (p∗
n)

HApn + p�
n A

�p∗
n,

= (p∗
n)

HApn + (p�
n A

�p∗
n)

�,

= 2(p∗
n,Apn),

we readily obtain the algorithm of BiCG for solving non-Hermitian linear sys-
tems described in Algorithm 3.12. If matrix A is real non-symmetric, the afore-
mentioned derivation process corresponds to the derivation in van der Vorst’s book
[196, Chap.7], where the BiCG method for real non-symmetric linear systems is
derived from the CG method.

It can be seen from Algorithm 3.12 that the choice r∗0 = r0 reduces to the CG
method if the coefficient matrix A is Hermitian.

Similar to the CG iterates as shown in Proposition 3.1, the BiCG iterates have the
following relations:

Proposition 3.2 Let pn, rn be the vectors in the BiCG method. Then,

1. (r∗i , rj) = 0 for i �= j,
2. (p∗

i ,Apj) = 0 for i �= j.
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Algorithm 3.12 The BiCG method
Input: x0 ∈ C

N , β−1 = 0, p−1 = p∗−1 = 0, r0 = b − Ax0
Input: Choose r∗0 ∈ C

N , e.g., r∗0 = r0
Output: xn
1: for n = 0, 1, 2, . . . , until convergence do
2: pn = rn + βn−1pn−1, p∗

n = r∗n + βn−1p
∗
n−1

3: αn = (r∗n,rn)
(p∗

n,Apn)
4: xn+1 = xn + αnpn
5: rn+1 = rn − αnApn, r∗n+1 = r∗n − αnAHp∗

n

6: βn = (r∗n+1,rn+1)

(r∗n,rn)
7: end for

From Proposition 3.2, the following properties hold true:

Corollary 3.2 Let pn, rn be the vectors in the BiCG method. Then,

1. rn ⊥ Kn(AH, r∗0),
2. Apn ⊥ Kn(AH, r∗0).

In what follows, we give the other computational formulas for αn and βn of
the BiCG method, which will be used to derive the product-type Krylov subspace
methods in Section 3.3.8.

Since r∗n ∈ Kn+1(AH, r∗0), the vector r∗n can be written as

r∗n = cn(A
H)nr∗0 + cn−1(A

H)n−1r∗0 + · · · + c0r∗0︸ ︷︷ ︸
z

= cn(A
H)nr∗0 + z, z ∈ Kn(A

H, r∗0).

From the above equation and Corollary 3.2, it follows that

(r∗n, rn) = (cn(A
H)nr∗0 + z, rn) = cn((A

H)nr∗0, rn) + (z, rn)

= cn((A
H)nr∗0, rn)

(r∗n,Apn) = (cn(A
H)nr∗0 + z,Apn) = cn((A

H)nr∗0,Apn) + (z,Apn)

= cn((A
H)nr∗0,Apn).

Thus, αn of the BiCG method (Algorithm 3.12) can be rewritten as

αn = (r∗n, rn)
(p∗

n,Apn)
= ((AH)nr∗0, rn)

((AH)nr∗0,Apn)
. (3.59)

Similarly, we give the other computational formulas for βn. From Corollary 3.2, two
vectors (AH)nr∗0 ∈ Kn+1(AH, r∗0) and Apn+1 are orthogonal, and thus
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0 = ((AH)nr∗0,Apn+1)

= ((AH)nr∗0,Arn+1 + βnApn)

= ((AH)nr∗0,Arn+1) + βn((A
H)nr∗0,Apn)

= ((AH)n+1r∗0, rn+1) + βn((A
H)nr∗0,Apn),

which immediately leads to

βn = − ((AH)n+1r∗0, rn+1)

((AH)nr∗0,Apn)
.

Using (3.59) together with the above result yields

βn = −αn
((AH)n+1r∗0, rn+1)

((AH)nr∗0, rn)
. (3.60)

3.3.2 The Composite Step Bi-Conjugate Gradient (CSBiCG)
Method

From the algorithm of the BiCG method (Algorithm 3.12), there are two kinds of
possible (near) breakdown:

1. ρn := (r∗n, rn) = 0 for rn �= 0 (Lanczos breakdown),
2. σn := (p∗

n,Apn) = 0 (pivot breakdown).

The Lanczos breakdown can be circumvented by the look-ahead Lanczos process in
[145, 189]. Bank and Chan focused on the pivot breakdown and proposed the Com-
posite Step Bi-Conjugate Gradient (CSBiCG) method to cure the pivot breakdown
[16, 17] under the assumption that the Lanczos breakdown does not occur. Below is
a brief explanation of the algorithm that is based on [17].

If σn = 0, then rn+1 = rn − (ρn/σn)Apn and r
∗
n+1 = r∗n − (ρn/σ n)AHp∗

n cannot be
obtained. Consider auxiliary vectors:

zn+1 = σnrn − ρnApn,

z∗n+1 = σ nrn − ρnA
Hp∗

n.

Then, zn+1 and z∗n+1 exist even if σn = 0, and zn+1 and z∗n+1 belong to Kn+2(A, r0)
andKn+2(AH, r∗0) respectively. The composite step technique then considers rn+2 and
r∗n+2 as follows:

rn+2 = rn − c1Apn − c2Azn+1,

r∗n+2 = r∗n − c∗
1A

Hp∗
n − c∗

2A
Hz∗n+1,
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where c1, c2, c∗
1, c

∗
2 are determined so that

rn+2 ⊥ span{p∗
n, z

∗
n+1},

r∗n+2 ⊥ span{pn, zn+1},

i.e., (rn+2, p∗
n) = (rn+2, z∗n+1) = (r∗n+2, pn) = (r∗n+2, zn+1) = 0. Similarly, let

pn+2 = rn+2 + d1pn + d2zn+1,

p∗
n+2 = r∗n+2 + d∗

1 p
∗
n + d∗

2 z
∗
n+1,

and d1, d2, d∗
1 , d∗

2 are determined so that

Apn+2 ⊥ span{p∗
n, z

∗
n+1},

AHp∗
n+2 ⊥ span{pn, zn+1}.

Then, it is shown in [17, Theorem 4.4] that (r∗i , rj) = (p∗
i ,Apj) = 0 for i �= j, which

means that the composite step residual vector rn+2 and Apn+2 satisfies

rn+2 ⊥ Kn+2(A
H, r∗0), Apn+2 ⊥ Kn+2(A

H, r∗0).

which are the same properties that the BiCG method has, see Corollary 3.2. The
resulting algorithm is described in Algorithm 3.13.

From Algorithm 3.13, the number of matrix–vector multiplications is the same as
that of the BiCG method. The composite step techniques are used for other Krylov
subspace methods [35, 113].

At each step in Algorithm 3.13, one needs to choose a 1 × 1 step (BiCG
step) or a 2 × 2 step (composite step). In [17], the following choice is proposed:

1: if ‖zn+1‖ ≤ ‖rn‖ |σn| then
2: 1 × 1 step
3: else
4: νn+2 = ‖δnrn − ρ3

nζn+1qn − θn+1ρ
2
nyn+1‖

5: if νn+2|σn| < ‖zn+1‖ |δn| then
6: 2 × 2 step
7: else
8: 1 × 1 step
9: end if
10: end if
This choice leads to not only avoiding (near) pivot breakdowns but also some smooth-
ing of the convergence history in residual norms.
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Algorithm 3.13 The Composite Step BiCG method
Input: x0 ∈ C

N , r0 = b − Ax0
Input: Choose r∗0 ∈ C

N , e.g., r∗0 = r0
Output: xn
1: p0 = r0, p∗

0 = r∗0
2: q0 = Ap0, q∗

0 = AHp∗
0

3: ρ0 = (r∗0, r0)
4: n = 0
5: while until convergence do
6: σn = (p∗

n, qn)
7: zn+1 = σnrn − ρnqn, z∗n+1 = σ nr∗n − ρnq

∗
n

8: yn+1 = Azn+1, y∗
n+1 = AHz∗n+1

9: θn+1 = (z∗n+1, zn+1)

10: ζn+1 = (z∗n+1, yn+1)

11: if 1 × 1 step then
12: α = ρn/σn
13: ρn+1 = θn+1/σ

2
n

14: βn+1 = ρn+1/ρn
15: xn+1 = xn + αnpn
16: rn+1 = rn − αnqn, r∗n+1 = r∗n − αnq∗

n

17: pn+1 = zn+1/σn + βn+1pn, p∗
n+1 = z∗n+1/σ n + βn+1p

∗
n

18: qn+1 = yn+1/σn + βn+1qn, q∗
n+1 = y∗

n+1/σ n + βn+1q
∗
n

19: n = n + 1
20: end if
21: if 2 × 2 step then
22: δn = σnζn+1ρ

2
n − θ2n+1

23: αn = ζn+1ρ
3
n/δn, αn+1 = θn+1ρ

2
n/δn

24: xn+2 = xn + αnpn + αn+1zn+1
25: rn+2 = rn − αnqn − αn+1yn+1, r∗n+2 = r∗n − αnq∗

n − αn+1yn+1
26: ρn+2 = (r∗n+2, rn+2)

27: βn+1 = ρn+2/ρn, βn+2 = ρn+2σn/θn+1
28: pn+2 = rn+2 + βn+1pn + βn+2zn+1, p∗

n+2 = r∗n+2 + βn+1p
∗
n + βn+2z

∗
n+1

29: qn+2 = Apn+2, q∗
n+2 = AHp∗

n+2
30: n = n + 2
31: end if
32: end while

The following theorem shows the best approximation result of the (composite
step) BiCG method:

Theorem 3.3 ([16]) Consider applying the (composite step) BiCG method to real
nonsymmetric linear systems with initial guess x0 = 0 and r∗0 = r0. Suppose that for
all v,w ∈ R

N , we have

|w�Av| ≤ �‖v‖‖w‖,

where � is a constant independent of v and w. Further, suppose that for those steps
in the (composite step) BiCG method in which we compute an approximation xn, we
have
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inf
v∈Kn(A,r0)‖v‖=1

sup
w∈Kn(A�,r∗0)‖w‖≤1

w�Av ≥ δn ≥ δ > 0.

Then

‖x − xn‖ ≤ (1 + �/δ) inf
v∈Kn(A,r0)

‖x − v‖.

Theorem 3.3 is a simplified result of Theorem 4.1 in [16]. From Theorem 3.3, we
see that the (composite step) BiCG method produces an approximate solution close
to the best approximate solution in error norm when �/δ is close to 0.

3.3.3 The Bi-Conjugate Residual (BiCR) Method

The BiCR method [169] is an extension of the CR method to non-Hermitian linear
systems.2 In this subsection, we show that the BiCR method can be derived from the
preconditioned COCR method in Algorithm 3.10. When we apply the algorithm of
the COCR method with the preconditioner (3.58) to (3.57), the resulting algorithm
at the nth iteration step can be written as

p̃COCR

n = M̃−1r̃COCRn + βn−1p̃
COCR

n−1 ,

αn = (M̃−1r̃COCRn , ÃM̃−1r̃COCRn )

(Ãp̃COCR

n , M̃−1Ãp̃COCR

n )
,

x̃COCR

n+1 = x̃COCR

n + αnp̃
COCR

n ,

r̃COCRn+1 = r̃COCRn − αnÃp̃
COCR

n ,

βn = (M̃−1r̃COCRn+1 , ÃM̃−1r̃COCRn+1 )

(M̃−1r̃COCRn , ÃM̃−1r̃COCRn )
.

Substituting M̃−1(= M̃ ) of (3.58) and the vectors

x̃COCR

n :=
[
xn
x∗
n

]
, r̃COCRn :=

[
rn
r∗n

]
, p̃COCR

n :=
[
p∗
n
pn

]

into the previous recurrences, and using the following results:

2 The method was mentioned in the unpublished paper [38] by Chronopulous and Ma in 1989, and
Dr. Chronopulous emailed the author about this fact on Apr. 6th, 2020.
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(M̃−1r̃COCRn , ÃM̃−1r̃COCRn ) = [
r∗n

�r�n
] [ Arn

A�r∗n

]

= r∗n
�Arn + r�n A

�r∗n
= r∗n

HArn + (r�n A
�r∗n)

�

= (r∗n,Arn) + r∗n
HArn

= 2(r∗n,Arn)

and

(Ãp̃COCR

n , M̃−1Ãp̃COCR

n ) = [
(Apn)

�(A�p∗
n)

�] [A�p∗
n

Apn

]

= (Apn)
�A�p∗

n + (A�p∗
n)

�Apn
= (p�

n A
�A�p∗

n)
� + (AHp∗

n)
HApn

= (AHp∗
n)

HApn + (AHp∗
n,Apn)

= 2(AHp∗
n,Apn),

we readily obtain the algorithm of the BiCRmethod for solving non-Hermitian linear
systems.

Algorithm 3.14 The BiCR method
Input: x0 ∈ C

N , β−1 = 0, p−1 = p∗−1 = 0, r0 = b − Ax0
Input: Choose r∗0 ∈ C

N , e.g., r∗0 = r0
Output: xn
1: for n = 0, 1, 2, . . . , until convergence do
2: pn = rn + βn−1pn−1, p∗

n = r∗n + βn−1p
∗
n−1

3: Apn = Arn + βn−1Apn−1

4: αn = (r∗n,Arn)
(AHp∗

n,Apn)
5: xn+1 = xn + αnpn
6: rn+1 = rn − αnApn, r∗n+1 = r∗n − αnAHp∗

n

7: βn = (r∗n+1,Arn+1)

(r∗n,Arn)
8: end for

Similar to Proposition 3.2, BiCR iterates hold the following properties:

Proposition 3.3 Let pn, rn be the vectors in the BiCR method. Then,

1. (r∗i ,Arj) = 0 for i �= j,
2. (AHp∗

i ,Apj) = 0 for i �= j.

If the coefficient matrix A is Hermitian or real symmetric, the choice r∗0 = r0
reduces to the CR method that generates optimal approximate solutions in terms of
residual 2-norms. Thus, if A is close to Hermitian or real symmetric, it is expected
that the BiCR method has smooth convergence behavior and generates near minimal
residual solutions.
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Fig. 3.1 Convergence histories of BiCG and BiCR for b1 = b2 = b3 = 0.1

To see this, we consider nonsymmetric linear systems (2.18) with parametersN =
20, a1 = a2 = a3 = 1, two different numbers b1 = b2 = b3 = 0.1 (near symmetric
matrix) and b1 = b2 = b3 = 10 (far symmetric matrix), and c = 700. The horizontal
axis is the number of matrix–vector multiplications. The stopping criterion used for
the BiCG method and the BiCR method is ‖rn‖/‖b‖ ≤ 10−10.

The results for b1 = b2 = b3 = 0.1 (near symmetric matrix) are shown in Fig.
3.1. We see from Fig. 3.1 that the BiCR method shows much smoother convergence
behavior than the BiCG method.

The results for b1 = b2 = b3 = 0.1 (far symmetric matrix) are shown in Fig. 3.2.
From Fig. 3.2, the BiCG method and the BiCR method have similar convergence
behavior, and the BiCR method does not show smooth convergence behavior.

3.3.4 The Quasi-Minimal Residual (QMR) Method

In this subsection, we describe the idea of the Quasi-Minimal Residual (QMR)
method [66]. The derivation process of the QMR method is almost the same as
that of the QMR_SYM method in Sect. 3.2.3. The main difference is the use not
of the complex symmetric Lanczos process but the bi-Lanczos process. Let Vn be
the bi-orthogonal basis of Kn(A, r0) via the bi-Lanczos process given in Algorithm
1.9. Then, the QMR method finds an approximate solution xn such that xn lies in the
affine space x0 + Kn(A, r0), i.e.,
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Fig. 3.2 Convergence histories of BiCG and BiCR for b1 = b2 = b3 = 10

xn = x0 + Vnyn, yn ∈ C
n.

The corresponding residual vector is given by

rn = r0 − AVnyn.

From the matrix form of the bi-Lanczos process (1.40), it follows that

rn = r0 − Vn+1Tn+1,nyn = Vn+1(βe1 − Tn+1,nyn),

where β := ‖r0‖. The above derivation process is very similar to that of theMINRES
method; however, in this case, if we choose yn such that the norm of the residual is
minimized, then it may lead to a large amount of computational costs and memory
requirement as described in Sect. 3.2.3. Similar to the QMR_SYMmethod, the QMR
method chooses yn such that

yn := argmin
y∈Cn

‖βe1 − Tn+1,ny‖. (3.61)

The minimization problem can be solved efficiently by Givens rotations. Following
the solution of (3.31) and Sect. 3.2.3, the QMRmethod is obtained and the algorithm
is described in Algorithm 3.15.

Finally, one should note that Algorithm 3.15, as well as the BiCG method and
the BiCR method, has a possibility of breakdown (zero division). In finite precision
arithmetic, such breakdown is very rare; however, near breakdown may occur, and
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Algorithm 3.15 The QMR method
Input: x0 ∈ C

N , β0 = 0, γ0 = 0, v0 = 0, w0 = 0, r0 = b − Ax0
Output: xn
1: g = (‖r0‖, 0, . . . , 0)�, v1 = r0/‖r0‖
2: for n = 1, 2, . . . do
3: (Bi-Lanczos process)
4: αn = (wn,Avn),
5: ṽn+1 = Avn − αnvn − βn−1vn−1
6: w̃n+1 = AHwn − αnwn − γn−1wn−1
7: γn = ‖ṽn+1‖2
8: vn+1 = ṽn+1/γn
9: βn = (w̃n+1, vn+1)

10: wn+1 = w̃n+1/βn
11: (Givens rotations)
12: for i = max{1, n − 2}, . . . , n − 1 do

13:

[
ti,n
ti+1,n

]
=

[
ci si

−si ci

] [
ti,n
ti+1,n

]

14: end for
15: cn = |tn,n|√

|tn,n|2+|tn+1,n|2

16: sn = tn+1,n
tn,n

cn
17: tn,n = cntn,n + sntn+1,n
18: tn+1,n = 0

19:

[
gn
gn+1

]
=

[
cn sn

−sn cn

] [
gn
0

]

20: (Update xn)
21: pn = (vn − tn−2,npn−2,
22: − tn−1,npn−1)/tn,n
23: xn = xn−1 + gnpn
24: (Check convergence)
25: Apn = (Avn − tn−2,nApn−2
26: − tn−1,nApn−1)/tn,n
27: rn = rn−1 − gnApn
28: if ‖rn‖/‖b‖ ≤ ε, then stop
29: end for

this causes numerical instability. Hence, to avoid the (near) breakdown problem, the
QMR method in [66] uses the look-ahead Lanczos process, which was proposed by
Taylor [189] and Parlett et al. [145].

3.3.5 The Generalized Minimal Residual (GMRES) Method

The derivation process of theGMRESmethod [152] is closely related to theMINRES
method in Sect. 3.1.3. The GMRES method generates xn that minimizes ‖b − Axn‖
over the affine space x0 + Kn(A, r0). This can efficiently be achieved by using the
Arnoldi process in Section 1.9.1. Now, we give the derivation process of the GMRES
method.

Let Vn be an N -by-n matrix whose columns are the orthonormal basis vectors
of Kn(A, r0) by the Arnoldi process. Then, since xn lies in the affine space x0 +
Kn(A, r0), we have

xn = x0 + Vnyn, yn ∈ C
n.

The corresponding residual vector is written as

rn = r0 − AVnyn.

From the matrix representation of the Arnoldi process in (1.38) it follows that
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rn = Vn+1(βe1 − Hn+1,nyn), (3.62)

where β := ‖r0‖. Since VH
n+1Vn+1 = In+1, i.e., the identity matrix, the 2-norm of the

residual vector is given by

‖rn‖ = ‖Vn+1(βe1 − Hn+1,nyn)‖ = ‖βe1 − Hn+1,nyn‖.

Hence, the 2-norm of the residual vector can beminimized by choosing yn as follows:

yn := argmin
y∈Cn

‖βe1 − Hn+1,ny‖. (3.63)

The vector yn can be obtained by using Givens rotations. Following the solution of
(3.31), the GMRES method is obtained. Now, we describe the algorithm of GMRES
inAlgorithm 3.16, which is based on the Arnoldi process of modifiedGram–Schmidt
type (Algorithm 1.8).

Algorithm 3.16 The GMRES method of modified Gram-Schmidt type
Input: x0 ∈ C

N , r0 = b − Ax0
Output: xn
1: g = (‖r0‖, 0, . . . , 0)�, v1 = r0/‖r0‖
2: for n = 1, 2, . . . do
3: (Arnoldi process)
4: t = Avn
5: for i = 1, 2, . . . , n do
6: hi,n = (vi, t)
7: t = t − hi,nvi
8: end for
9: hn+1,n = ‖t‖
10: vn+1 = t/hn+1,n
11: (Givens rotations)
12: for i = 1, 2, . . . , n − 1 do

13:

[
hi,n
hi+1,n

]
=

[
ci si

−si ci

] [
hi,n
hi+1,n

]

14: end for

15: cn = |hn,n|√
|hn,n|2+|hn+1,n|2

16: sn = hn+1,n
hn,n

cn
17: hn,n = cnhn,n + snhn+1,n
18: hn+1,n = 0

19:

[
gn
gn+1

]
=

[
cn sn

−sn cn

] [
gn
0

]

20: (Check convergence)
21: if |gn+1|/‖b‖ ≤ ε, then
22: xn = x0 + VnH−1

n g
23: end if
24: end for

Note that computing c := H−1
n g in line 22 of Algorithm 3.16 corresponds to

solving linear systems of the formHnc = g. After Givens rotations,Hn becomes not
a Hessenberg but an upper triangular matrix. Thus the linear systems can easily be
solved by the back substitution as described in (1.6).

In what follows, the convergence analysis of the GMRES method is described.

Proposition 3.4 Let A be an N-by-N diagonalizable matrix, i.e., A = X�X−1 with
� = diag{λ1, . . . , λN }, and let rn be the m-step GMRES residual vector. Then

‖rn‖ ≤ κ(X )εn‖r0‖,
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where κ(X ) = ‖X ‖‖X−1‖ and

ε(n) = min
p∈Pn,p(0)=1

max
i=1,...,N

|p(λi)|.

Here, Pm denotes the set of all polynomials of degree at most m.

Proof The GMRES method finds an approximate solution xn such that

min
xn∈x0+Kn(A,r0)

‖rn‖.

Since rn ∈ Kn+1(A, r0), the GMRES residual vector can be written in the matrix
polynomial form rn = (I + c1A + c2A2 + · · · + cnAn)r0, so that ci’s are determined
by minimizing ‖rn‖, or equivalently rn = p(opt)

n (A)r0 with p(opt)
n (0) = 1, and p(opt)

n is
determined by minimizing ‖rn‖, i.e.,

min
p∈Pn,p(0)=1

‖pn(A)r0‖.

Therefore, for any p ∈ Pn and p(0) = 1, the residual 2-norm ‖rn‖ can be bounded
by

‖rn‖ = ‖p(opt)
n (A)r0‖

≤ ‖pn(A)r0‖
= ‖Xpn(�)X−1r0‖
≤ ‖X ‖‖X−1‖‖pn(�)‖‖r0‖
= κ(X ) max

i=1,...,N
|pn(λi)|‖r0‖

Since the above inequality holds for any p ∈ Pn and p(0) = 1, we have

‖rn‖ ≤ κ(X )

(
min

p∈Pn,p(0)=1
max

i=1,...,N
|p(λi)|

)
‖r0‖

= κ(X )εn‖r0‖,

which concludes the proof. �

From Proposition 3.4, if the condition number of X is small, the value of εn depends
highly on the speed of convergence. Further, if the condition number of X is small
and eigenvalues are well clustered, the GMRES method shows good convergence
behavior. If matrixA is symmetric, then the condition number ofX is 1. Therefore the
convergence of the GMRES method (or the MINRES method) depends only on the
distribution of eigenvalues. By using an upper bound of εn, the convergence behavior
can be estimated without using all the eigenvalues. For the details, see an excellent
book by Saad [151, pp. 206–207].
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Nice features of the GMRES method are that the GMRES method never suffers
from breakdown, and the residual 2-norm decreases monotonically and has the opti-
mality regarding the residual 2-norm, unlike Krylov subspace methods based on the
BiCG method and the BiCR method. On the other hand, a drawback of the GMRES
method is that the computational costs and memory requirement of the GMRES
method increase linearly with the number of iterations. For example, if the number
of iterations is 10000, then an N × 10000 matrix needs to be stored and the size of
the least–squares problem in (3.63) is 10001 × 10000. To overcome the drawback, a
restarted version of theGMRESmethod is proposed, which is described inAlgorithm
3.17.

The idea of the restarted GMRES method denoted by GMRES(m) is that we run
the GMRES method until the prescribed maximum iteration number m is reached,
and then we restart the GMRES method using the initial guess as the approximate
solution produced by the previous GMRES method at the mth iteration step.

Algorithm 3.17 The GMRES(m) method
Input: Initial guess x0 ∈ C

N and restart number m
Output: xm
1: Run m iterations of the GMRES method (Algorithm 3.16) with x0 and produce xm.
2: while convergence do
3: Set x0 = xm.
4: Run m iterations of the GMRES method (Algorithm 3.16) with x0 and produce xm.
5: end while

Consider the restart frequency m of the GMRES(m) method as fixed. This means
that we apply the m-step GMRES method to the linear systems repeatedly until
convergence. On the other hand, an unfixed restart frequency means that we run the
GMRES(m1) and then run the GMRES(m2) method, the GMRES(m3) method, and
so on, until convergence. If m1 = m2 = · · · = m then this corresponds to the fixed
restart frequency.

Efficient ways for determining mk for k = 1, 2, . . . are studied in [117] and by
some authors, e.g., [14, 137, 176, 211].

Another important development of the GMRES method is augmentation. There
are two approaches to the augmentation: one is to use previous approximate solu-
tions, e.g., the LGMRES method [15]; another is to use approximate eigenvectors
corresponding to small eigenvalues in magnitude, e.g., the GMRES-E method [134].
The basic ideas of the LGMRES method and the GMRES-E method are described
next.

The group of m iteration steps (e.g., lines 3 and 4 in Algorithm 3.17) is called a
cycle, and the approximate solution of the LGMRES method after the jth cycle is
denoted by x(j)

m . Let z(k) := x(j−1)
m − x(j−2)

m . Then for a given l, the LGMRES method
finds an approximate solution in the following way:
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x(j)
m = x(j−1)

m + q(j)
m−1(A)r(j−1)

m +
j−1∑

k=j−l

αj,k(A)z(k),

where q(j)
m−1(A) is a polynomial of degree m − 1, and αj,k(A)’s are polynomials of

degree k. These polynomials are determined by minimizing the residual 2-norm of
x(j)
m . For the related algorithms, see, e.g., [13, 103, 104, 106].
The approximate solution of the GMRES-E method after the jth cycle is denoted

by x(j)
m , and p(j)

k is an approximate eigenvector (Harmonic Ritz vectors) that corre-
sponds to the kth smallest approximate eigenvalue (Harmonic Ritz value) in magni-
tude. Then, for a given p the GMRES-E method finds an approximate solution in the
following way:

x(j)
m = x(j−1)

m + q(j)
m−1(A)r(j−1)

m +
p∑

k=1

βj,k(A)p(j−1)
k ,

where q(j)
m−1(A) is a polynomial of degree m − 1, and βj,k(A)’s are polynomials of

degree k. These polynomials are determined by minimizing the residual 2-norm of
x(j)
m . For the related algorithms, see, e.g., [11, 135]. By combining the LGMRES
method and the GMRES-E method, the LGMRES-E method using a switching con-
troller is proposed in [31]. Roughly speaking, the switching rule is to choose the
LGMRES method while good convergence appears and to choose the GMRES-E
method when slow convergence is found.

The augmentation is not only for the GMRESmethod. In fact, frameworks of aug-
mentation and deflation for Krylov subspace methods including the BiCG method,
the BiCR method, and the other important Krylov space methods are developed in
[74, 89, 90].

Finally, we provide the result of a numerical example for the GMRES method
and the GMRES(m) method. Consider nonsymmetric linear systems (2.18) with
parameters N = 20, a1 = a2 = a3 = 1, b1 = b2 = b3 = 1, and c = 1. The result is
shown in Fig. 3.3, where the stopping criterion used for the GMRES method and the
GMRES(m) method is ‖rn‖/‖b‖ ≤ 10−10, and the horizontal axis is the number of
matrix–vector multiplications.

We see from Fig. 3.3 that the residual 2-norms of the GMRES method, the
GMRES(10) method, and the GMRES(20) method decrease monotonically, which
are theoretically guaranteed. In terms of the number of matrix–vector multipli-
cations, the GMRES method performs better than the restarted GMRES method
(GMRES(10), GMRES(20)). As for the GMRES method, the required number of
matrix–vector multiplications is the smallest of all, since it finds the best approxi-
mate solution over the Krylov subspace. On the other hand, as mentioned before,
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Fig. 3.3 Convergence histories of GMRES, GMRES(10), and GMRES(20)

the computational cost of the GMRES method grows linearly as the number of iter-
ations increases. This means that matrix–vector multiplications may not become the
most time-consuming parts when the required number of iterations is very large.
In terms of CPU time, the GMRES method required 0.39 sec., GMRES(10) 0.31
sec., GMRES(20) 0.26 sec.3 Therefore, with respect to CPU time, the GMRES(20)
method was the best of all, which balanced the increasing computational costs and
the required number of iterations.

3.3.6 The Generalized Conjugate Residual (GCR) Method

The Generalized Conjugate Residual (GCR) method [54] is another Krylov solver
based on the Arnoldi process. In exact precision arithmetic, the GCR method pro-
duces the same approximate solution as the GMRES method. The algorithm is
obtained by the following Arnoldi process with the weight AHA and r0 = b − Ax0:

3 Codes: GNU Octave version 6.2.0, OS: macOS Moterey version 12.2.1, CPU: Apple M1 pro.
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set v1 = r0
‖r0‖AHA

,

for n = 1, 2, . . . , do:

hi,n = (vi,Avn)AHA, i = 1, 2, . . . , n,

ṽn+1 = Avn −
n∑

i=1

hi,nvi, (3.64)

hn+1,n = ‖ṽn+1‖AHA,

vn+1 = ṽn+1

hn+1,n
. (3.65)

end

The process generates AHA-orthonormal vectors, i.e.,

(vi,AHAvj) = (Avi,Avj) = δi,j.

Let Vn be a matrix whose columns are v1, v2, . . . , vn. Then, the GCR method gener-
ates

xn = x0 + Vnyn

such that the residual 2-norm ‖rn‖ is minimized. The corresponding residual vector
can be written as

rn = r0 − AVnyn = r0 −
n∑

i=1

yiAvi. (3.66)

From the above relation, we have

rn = rn−1 − ynAvn. (3.67)

Unknown parameters yi (i = 1, 2, . . . , n) are determined by minimizing the residual
2-norm, i.e., from (3.66) this can be achieved by

yi = (Avi, rn), for i = 1, 2, . . . , n.

Since Avi is an orthonormal vector, we have

yi = (Avi, r0), for i = 1, 2, . . . , n.

Here, we define the vector pn := −ynṽn+1. Then, it follows from (3.64) that
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pn = −ynAvn −
n∑

i=1

(vi,−ynAvn)AHAvi. (3.68)

From (3.67)we have−ynAvn = rn − rn−1. Substituting this relation into (3.68) yields

pn = rn − rn−1 −
n∑

i=1

(vi, rn − rn−1)AHAvi (3.69)

= rn −
n∑

i=1

(vi, rn)AHAvi −
(
rn−1 −

n∑
i=1

(vi, rn−1)AHAvi

)
.

Since rn−1 lies in Kn(A, r0), it can be expanded as rn−1 = ∑n
i=1 civi. Then,

(vj, rn−1)AHA =
n∑

i=1

ci(vj, vi) = ci

because (vj, vi) = δj,i. Thus we have

rn−1 =
n∑

i=1

(vi, rn−1)AHAvi. (3.70)

From (3.69) and (3.70), the vector pn can be written as

pn = rn −
n∑

i=1

(vi, rn)AHAvi. (3.71)

On the other hand, pn and vn+1 are related by

pn = − yn
|yn| ‖Apn‖vn+1,

because it follows from the definition of pn and (3.65) that

pn = −ynṽn+1

= −yn‖ṽn+1‖AHAvn+1

= −yn
√

(Aṽn+1,Aṽn+1) vn+1

= −yn

√
(− 1

yn
Apn,−

1

yn
Apn) vn+1

= − yn
|yn|

√
(Apn,Apn) vn+1.
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Hence, using vn = −(|yn−1|/yn−1) × pn−1/
√

(Apn−1,Apn−1), we have the following
relations:

ynAvn = (Avn, r0)Avn = (Apn−1, r0)
(Apn−1,Apn−1)

Apn−1,

(vi, rn)AHAvi = (Api−1,Arn)
(Api−1,Api−1)

pi−1.

Therefore, substituting the above results into (3.67) and (3.71), we have

rn = rn−1 − (Apn−1, r0)
(Apn−1,Apn−1)

Apn−1,

pn = rn −
n∑

i=1

(Api−1,Arn)
(Api−1,Api−1)

pi−1.

Now, from the definition of pn, we have pn−1 = cvn for a constant c. Thus pn−1 is
AHA-orthogonal to v1, . . . , vn−1. From (3.66), it follows that

(Apn−1, rn−1) = (Apn−1, r0) −
n−1∑
i=1

yi(Apn−1,Avi) = (Apn−1, r0).

Now, let us define αn−1 and βn−1,i as

αn−1 = (Apn−1, rn−1)

(Apn−1,Apn−1)
, (3.72)

βn−1,i = − (Api−1,Arn)
(Api−1,Api−1)

. (3.73)

Then, we have

rn = rn−1 − αn−1Apn−1, (3.74)

pn = rn +
n∑

i=1

βn−1,ipi−1. (3.75)

From the recurrence relation of the residual vector, we obtain

xn = xn−1 + αn−1pn−1. (3.76)

To reduce the number of matrix–vector multiplications, use the following recur-
rences:



120 3 Classification and Theory of Krylov Subspace Methods

Apn = Arn +
n∑

i=1

βn−1,iApi−1. (3.77)

From (3.72)–(3.77), the algorithm of the GCRmethod is obtained in Algorithm 3.18.

Algorithm 3.18 The GCR method
Input: x0 ∈ C

N , β−1 = 0, r0 = b − Ax0, p0 = r0
Output: xn
1: for n = 0, 1, 2, . . . , until convergence do
2: αn = (Apn,rn)

(Apn,Apn)
3: xn+1 = xn + αnpn
4: rn+1 = rn − αnApn
5: βn,i = − (Api−1,Arn+1)

(Api−1,Api−1)
, 1 ≤ i ≤ n + 1

6: pn+1 = rn+1 + ∑n+1
i=1 βn,ipi−1

7: (Apn+1 = Arn+1 + ∑n+1
i=1 βn,iApi−1)

8: end for

The properties of the GCR method are given next.

Proposition 3.5 The GCR iterates hold the following properties:

(G1) (Api,Apj) = 0, i �= j,
(G2) (ri,Apj) = 0, i > j,
(G3) (ri,Api) = (ri,Ari),
(G4) (ri,Arj) = 0, i > j,
(G5) (ri,Api) = (r0,Api), i ≥ j.

For the proof, see [54, Theorem 3.1].
From the above properties, we see that the previous derivation is based on the

property (G1). In exact precision arithmetic, the GCRmethod, as well as the GMRES
method, converges within at most N iterations. However, the GCR method has the
same shortcoming as the GMRES method in that the computational work and the
requiredmemory increasewith the number of iterations. Hence, a restarted version of
GCRwhich is referred to as the GCR(k) method was proposed in [54]. The algorithm
is described in Algorithm 3.19.

Another alternative is to keep only k-direction vectors:

pn+1 = rn+1 +
min{k,n+1}∑

i=1

βn,ipi−1.

Thismethod is known as theOrthominmethod proposed byVinsome [201]. Later the
Orthomin method was referred to as the Orthomin(k) method in [54]. The algorithm
of the Orthomin(k) method is described in Algorithm 3.20.
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Algorithm 3.19 The GCR(k) method
Input: x0 ∈ C

N , r0 = b − Ax0, p0 = r0
Output: xk+1
1: for n = 0, 1, . . . , k until convergence do
2: αn = (Apn,rn)

(Apn,Apn)
3: xn+1 = xn + αnpn
4: rn+1 = rn − αnApn
5: βn,i = − (Api−1,Arn+1)

(Api−1,Api−1)
, 1 ≤ i ≤ n + 1

6: pn+1 = rn+1 + ∑n+1
i=1 βn,ipi−1

7: (Apn+1 = Arn+1 + ∑n+1
i=1 βn,iApi−1)

8: end for
9: x0 = xk+1
10: repeat

Algorithm 3.20 The Orthomin(k) method
Input: x0 ∈ C

N , r0 = b − Ax0, p0 = r0
Output: xn
1: for n = 0, 1, . . . , until ‖rn‖ ≤ ε‖b‖ do
2: αn = (Apn,rn)

(Apn,Apn)
3: xn+1 = xn + αnpn
4: rn+1 = rn − αnApn
5: βn,i = − (Api−1,Arn+1)

(Api−1,Api−1)
, n − k + 2 ≤ i ≤ n + 1

6: pn+1 = rn+1 + ∑min{k,n+1}
i=1 βn,ipi−1

7: (Apn+1 = Arn+1 + ∑n+1
i=1 βn,iApi−1)

8: end for

The convergence analysis of the GCR method, the GCR(k) method, and the
Orthomin(k) method is given in Proposition 3.6.

Proposition 3.6 Let M be the symmetric part of A ∈ R
N×N and let R be the skew-

symmetric part ofA, i.e.,M = (A + A�)/2, R = (A − A)�/2. IfM is positive definite,
then {rn} that are the sequence of residuals generated by theGCRmethod, theGCR(k)
method, or the Orthomin(k) method satisfy

‖rn‖ ≤
(
1 − λmin(M )2

λmax(A�A)

) n
2

‖r0‖

and

‖rn‖ ≤
(
1 − λmin(M )2

λmin(M )λmax(M ) + ρ(R)2

) n
2

‖r0‖,

where λmin(M ) and λmax(M ) are the minimum and maximum eigenvalues of the
symmetric positive definite matrix M , and ρ(R) is the spectral radius of R.

See (1.19) for the spectral radius. For the proof, see [54, Theorem 4.4].
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We can see from Proposition 3.6 that if A is close to I , then the three methods
converge fast since λmin(M ) ≈ λmax(M ) ≈ 1 and R ≈ O.

3.3.7 The Full Orthogonalization Method (FOM)

The FOM [149] is a generalization of the CG method. As well as the CG method,
the FOM finds approximate solutions such that

xn = x0 + zn, zn ∈ Kn(A, r0),

rn ⊥ Kn(A, r0).

The FOM uses the Arnoldi method in Sect. 1.9.1 to produce the orthonormal basis
vectors of Kn(A, r0). Thus the residual vector rn has the same form as (3.62), i.e.,

rn = Vn+1(βe1 − Hn+1,nyn). (3.78)

The difference between theGMRESmethod and the FOM is that theGMRESmethod
finds yn such that the 2-norm of the residual vector ‖rn‖ is minimized, and the FOM
finds yn such that the residual vector is orthogonal to the n dimensional Krylov
subspace rn ⊥ Kn(A, r0). Let vi be the ith column of Vn+1. Then

VH
n rn = 0 ⇔ vHi rn = 0 for i = 1, 2, . . . , n

⇔ rHn (c1v1 + c2v2 + · · · + cnvn) = 0 for all ci ∈ C

⇔ rn ⊥ Kn(A, r0).

Note that the statement vHi rn = 0 ⇐ rHn (c1v1 + c2v2 + · · · + cnvn) = 0 can be shown
by setting ci = 1 and cj = 0 for i �= j. From this, finding yn such that rn ⊥ Kn(A, r0)
is equivalent to determining yn such that V

H
n rn = 0. Then, from (3.78) it follows that

0 = VH
n rn = VH

n Vn+1(βe1 − Hn+1,nyn) = βe1 − Hn,nyn.

Thus yn can be obtained by solving the following linear systems:

Hn,nyn = βe1.

Since Hn,n is a Hessenberg matrix, the linear systems can be solved by the LU
decomposition with the computational cost ofO(n2). After the advent of the GMRES
method, the FOM became less attractive because, unlike the GMRES method, the
FOM may suffer from breakdown due to using the LU decomposition without piv-
oting. On the other hand, the FOM is still attractive to use for solving shifted linear
systems in Chap. 4, when considering the restart.
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3.3.8 Product-Type Krylov Subspace Methods

As seen in Sect. 3.3.1, theBiCGmethod requiresAH for solvingAx = b. P. Sonneveld
found that squaring the BiCG polynomials leads to an algorithm without using the
information of AH, and the resulting algorithm is known as the CGS method [173].
Though the convergence depends on linear systems, the CGS method is much faster
than the BiCG method when the BiCG method shows smooth convergence behav-
ior. However, the CGS method sometimes has much irregular convergence and may
suffer from loss of accuracy of the approximate solution or may diverge. H. A. van
der Vorst observed that squaring the BiCG polynomials can be replaced by the mul-
tiplication of degree-one minimum residual polynomials and the BiCG polynomial,
leading to the BiCGSTAB method [195], which tends to have smoother conver-
gence behavior than the CGS method. M. H. Gutknecht proposed the multiplication
of degree-two minimum residual polynomials and the BiCG polynomials, which is
known as the BiCGSTAB2 method [87]. G. L. G. Sleijpen and D. R. Fokkema pro-
posed the multiplication of degree-� minimal residual polynomials and the BiCG
polynomials, which is known as the BiCGSTAB(�) method [162]. S.-L. Zhang con-
structed a framework that includes the CGS method, the BiCGSTAB method, and
the BiCGSTAB2 method. In the framework, the GPBiCG method was proposed in
[212]. These methods are referred to as product-type methods (based on the Bi-CG
method) first named by S.-L. Zhang.

In this section, Zhang’s framework is explained, based on Zhang’s book in [72].
As seen in (3.18), the residual vector of the CG method can be written as the mul-
tiplication of Lanczos polynomials and the initial residual vector r0. Similarly, the
residual vector of the BiCG method can also be written as follows:

rBiCGn = Rn(A)r0,

where

R0(λ) = 1, P0(λ) = 1, (3.79)

Rn(λ) = Rn−1(λ) − αn−1λPn−1(λ), (3.80)

Pn(λ) = Rn(λ) + βn−1Pn−1(λ) n = 1, 2, . . . (3.81)

The differences between the (matrix) polynomial representation of the CG method
and that of the BiCG method are αi and βi of the Lanczos polynomials. The nth
residual vector of product-type methods based on the BiCGmethod is defined by the
product of n degree polynomials and the nth residual vector of the BiCG method as
follows:

rn = Hn(A)rBiCGn = Hn(A)Rn(A)r0. (3.82)
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3.3.8.1 Restructuring of Residual Polynomials

S.-L. Zhang proposed Hn in (3.82) as the following three-term recurrence relations:

H0(λ) := 1, (3.83)

H1(λ) := (1 − ζ0λ)H0(λ), (3.84)

Hn(λ) := (1 + ηn−1 − ζn−1λ)Hn−1(λ) − ηn−1Hn−2(λ), n = 2, 3, . . . (3.85)

We see that Hn is similar to the Lanczos polynomials (3.19)–(3.21).
In the following, Hn is rewritten as the form of coupled two-term recurrence

relation. We introduce Gn−1 as

Gn−1(λ) := Hn−1(λ) − Hn(λ)

λ
,

and we rewrite (3.85) as

−(Hn−1(λ) − Hn(λ)) = −ζn−1λHn−1(λ) − ηn−1(Hn−2(λ) − Hn−1(λ)).

Then Hn(λ) in (3.83)–(3.85) can be rewritten as

H0(λ) = 1, G0(λ) = ζ0, (3.86)

Hn(λ) = Hn−1(λ) − λGn−1(λ), (3.87)

Gn(λ) = ζnHn(λ) + ηnGn−1(λ), n = 1, 2, . . . (3.88)

3.3.8.2 Recurrence Formulas for the Iterates of the Product-Type
Methods

Since recurrence relations of Rn, Pn,Hn, Gn are already given in (3.79)–(3.81) and in
(3.86)–(3.88), the residual vector rn+1 = Hn+1(A)Rn+1(A)r0 can be computed by the
previous residual vector rn = Hn(A)Rn(A)r0 using the recurrence relations. In fact,
Hn+1Rn+1 can be expanded as follows:

Hn+1Rn+1 = HnRn+1 − ηnλGn−1Rn+1 − ζnλHnRn+1 (3.89)

= HnRn − αnλHnPn − λGnRn+1, (3.90)

HnRn+1 = HnRn − αnλHnPn, (3.91)

λGnRn+2 = HnRn+1 − Hn+1Rn+1 − αn+1λHnPn+1 + αn+1λHn+1Pn+1, (3.92)

Hn+1Pn+1 = Hn+1Rn+1 + βnHnPn − βnλGnPn, (3.93)

λHnPn+1 = λHnRn+1 + βnλHnPn, (3.94)

λGnPn = ζnλHnPn + ηn(Hn−1Rn − HnRn + βn−1λGn−1Pn−1), (3.95)

GnRn+1 = ζnHnRn + ηnGn−1Rn − αnλGnPn. (3.96)
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Let us define new auxiliary vectors as

tn := Hn(A)rBiCGn+1, yn := AGn−1(A)rBiCGn+1,

pn := Hn(A)pBiCG
n , wn := AHn(A)pBiCG

n+1,

un := AGn(A)pBiCG
n , zn := Gn(A)rBiCGn+1.

Then, from (3.89)–(3.96) we have the following recurrence formulas:

rn+1 = tn − ηnyn − ζnAtn (3.97)

= rn − αnApn − Azn, (3.98)

tn = rn − αnApn, (3.99)

yn+1 = tn − rn+1 − αn+1wn + αn+1Apn+1, (3.100)

pn+1 = rn+1 + βn(pn − un), (3.101)

wn = Atn + βnApn, (3.102)

un = ζnApn + ηn(tn−1 − rn + βn−1un−1), (3.103)

zn = ζnrn + ηnzn−1 − αnun. (3.104)

Two recurrence relations, (3.97) and (3.98), are described for the residual vector
and the approximate solution. The first recurrence relation (3.97) will be used to
determine the two parameters ζn and ηn, and the second recurrence relation (3.98)
can be used to obtain the approximate solution as follows:

xn+1 = xn + αnpn + zn.

3.3.8.3 Computations for αn and βn

Since the coefficient of the highest-order term of Hn is (−1)n
∏n−1

i=0 ζi, we obtain

(r∗0, rn) = (Hn(A
H)r∗0, r

BiCG
n ) =

(
(−1)n

n−1∏
i=0

ζi

)
((AH)nr∗0, r

BiCG
n ),

(r∗0,Apn) = (Hn(A
H)r∗0,Ap

BiCG
n ) =

(
(−1)n

n−1∏
i=0

ζi

)
((AH)nr∗0,Ap

BiCG
n ).

Thus, from (3.59) and (3.60) it follows that

αn = (r∗0, rn)
(r∗0,Apn)

, βn = αn

ζn
× (r∗0, rn+1)

(r∗0, rn)
.
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Table 3.1 Choices of ζn and ηn for the product-type methods

CGS ζn = αn, ηn = βn−1

αn−1
αn

BiCGSTAB ζn = arg min
ζn∈C

‖rn+1‖, ηn = 0

GPBiCG {ζn, ηn} = arg min
ζn,ηn∈C

‖rn+1‖
BiCGSTAB2 BiCGSTAB parameters at even iterations

GPBiCG parameters at odd iterations

3.3.8.4 Implementation Details

Krylov subspace methods, such as the CGS method, the BiCGSTAB method, the
BiCGSTAB2method, and the GPBiCGmethod, can be derived from Zhang’s frame-
work by determining the two parameters ζn and ηn. The relations among these Krylov
subspace methods and the parameters are listed in Table 3.1.

3.3.8.5 The Choice for the CGS Method

Setting ζn = αn and ηn = (βn−1/αn−1)αn in recurrence relations (3.87) and (3.88)
yields the CGS method, i.e., the polynomials Hn and Gn become the Lanczos poly-
nomials:

Hn(λ) = Rn(λ),

Gn(λ) = αnPn(λ).

This fact leads to the relation pn − un = zn/αn, since from the definitions of auxiliary
vectors we have

pn − un = Hn(A)Pn(A)r0 − AGn(A)Pn(A)r0
= Rn(A)Pn(A)r0 − αnAPn(A)Pn(A)r0
= (Rn(A) − αnAPn(A))Pn(A)r0
= Rn+1(A)Pn(A)r0
= Pn(A)Rn+1(A)r0
= Pn(A)rBiCGn+1

= 1

αn
× Gn(A)rBiCGn+1

= 1

αn
× zn.
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Notice that tn−1 − rn = Azn−1 from (3.98) and (3.99). We use the recurrence for-
mula (3.98) to update rn+1, and then the auxiliary vectors tn, yn, and wn are not
required in the recurrence formulas (3.97)–(3.104). Now we introduce the following
auxiliary vectors:

ũn := A−1un/αn, z̃n := zn/αn,

instead of un and zn. By using the relation (r∗0,Apn) = (r∗0,un/αn), the CGS method
can be obtained and the algorithm is described in Algorithm 3.21. Here ũn and z̃n
were rewritten as un and zn.

Algorithm 3.21 The CGS method
Input: x0 ∈ C

N , β−1 = 0, u−1 = z−1 = 0, r0 = b − Ax0
Input: Choose r∗0 ∈ C

N , e.g., r∗0 = r0
Output: xn
1: for n = 0, 1, . . . do
2: pn = rn + βn−1zn−1
3: un = pn + βn−1(zn−1 + βn−1un−1)

4: αn = (r∗0,rn)
(r∗0,Aun)

5: zn = pn − αnAun
6: xn+1 = xn + αn(pn + zn)
7: rn+1 = rn − αnA(pn + zn)

8: βn = (r∗0,rn+1)

(r∗0,rn)
9: end for

The residual vector of the CGS method is written as rn+1 = Rn+1(A)Rn+1(A)r0.
The CGS method is short for the (Bi)CG squared method, which comes from the
termRn+1(A)Rn+1(A). From this, the CGSmethod is expected to converge as twice as
fast as the BiCGmethod. On the other hand, when the BiCGmethod shows irregular
convergence behavior as is often the case, the CGS method gives much irregular
convergence behavior, leading to much less accurate approximate solutions or no
convergence.

3.3.8.6 The Choice for the BiCGSTAB Method

If we choose ηn = 0 and ζn such that the 2-norm of the residual vector ‖rn+1‖ =
‖tn − ζnAtn‖ is minimized, then the BiCGSTAB method is obtained. To achieve the
minimization, we choose ζn such that the following property holds:

rn+1 ⊥ Atn,

or equivalently it follows from (1.34) that
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ζn = tHn Atn
(Atn)H(Atn)

.

Since ηn = 0, we obtain

un = ζnApn, zn = ζntn.

The algorithm of the BiCGSTAB method is described in Algorithm 3.22.
The BiCGSTAB method is short for the BiCG stabilized method. Below is an

explanation of themeaning of the stabilization. Since ηn = 0, the recurrence relations
in (3.87) and (3.88) reduce to

Hn(λ) = Hn−1(λ) − ζn−1λHn−1(λ) = (1 − ζn−1λ)Hn−1(λ).

This means that the residual vector of the BiCGSTAB method is given by

rn+1 = Hn+1(A)Rn+1(A)r0 = (I − ζnA)rBiCGn .

This implies that since ζn is chosen such that ‖rn+1‖ is minimized, the residual
vector of the BiCG method is expected to be stabilized, i.e., the BiCGSTAB method
is expected to have smoother convergence behavior than the BiCG method.

Algorithm 3.22 The BiCGSTAB method
Input: x0 ∈ C

N , β−1 = 0, p−1 = 0, r0 = b − Ax0
Input: Choose r∗0 ∈ C

N , e.g., r∗0 = r0
Output: xn
1: for n = 0, 1, . . . do
2: pn = rn + βn−1(pn−1 − ζn−1Apn−1)

3: αn = (r∗0,rn)
(r∗0,Apn)

4: tn = rn − αnApn
5: ζn = (Atn,tn)

(Atn,Atn)
6: xn+1 = xn + αnpn + ζntn
7: rn+1 = tn − ζnAtn
8: βn = αn

ζn
× (r∗0,rn+1)

(r∗0,rn)
9: end for

3.3.8.7 The Choice for the GPBiCG Method

For the GPBiCG method, two parameters ηn and ζn are chosen by minimizing the 2-
norm of the residual vector ‖rn+1‖ = ‖tn − ηnyn − ζnAtn‖. The following orthogonal
condition enables us to achieve the minimization:
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rn+1 ⊥ Atn, rn+1 ⊥ yn,

or equivalently it follows from (1.31) and (1.32) with setting d = tn,M = [yn, A tn],
x = [ηn, ζn]� that we have

ζn = (yn, yn)(Atn, tn) − (yn, tn)(Atn, yn)
(Atn,Atn)(yn, yn) − (yn,Atn)(Atn, yn)

,

ηn = (Atn,Atn)(yn, tn) − (yn,Atn)(Atn, tn)
(Atn,Atn)(yn, yn) − (yn,Atn)(Atn, yn)

.

The algorithm of the GPBiCG method is described in Algorithm 3.23. Note the
GPBiCG method uses two parameters ζn and ηn for the minimization of the residual
2-norm, and the BiCGSTAB method uses one parameter ζn for the minimization of
the residual 2-norm and ηn = 0. From this, the GPBiCG method is expected to give
smoother convergence behavior than the BiCGSTAB method.

Algorithm 3.23 The GPBiCG method
Input: x0 ∈ C

N , β−1 = 0, p−1 = t−1 = u−1 = w−1 = z−1 = 0, r0 = b − Ax0
Input: Choose r∗0 ∈ C

N , e.g., r∗0 = r0
Output: xn
1: for n = 0, 1, . . . do
2: pn = rn + βn−1(pn−1 − un−1)

3: αn = (r∗0,rn)
(r∗0,Apn)

4: yn = tn−1 − rn − αnwn−1 + αnApn
5: tn = rn − αnApn
6: ζn = (yn,yn)(Atn,tn)−(yn,tn)(Atn,yn)

(Atn,Atn)(yn,yn)−(yn,Atn)(Atn,yn)

7: ηn = (Atn,Atn)(yn,tn)−(yn,Atn)(Atn,tn)
(Atn,Atn)(yn,yn)−(yn,Atn)(Atn,yn)

8: if n = 0 then
9: ζn = (Atn,tn)

(Atn,Atn)
, ηn = 0

10: end if
11: un = ζnApn + ηn(tn−1 − rn + βn−1un−1)

12: zn = ζnrn + ηnzn−1 − αnun
13: xn+1 = xn + αnpn + zn
14: rn+1 = tn − ηnyn − ζnAtn
15: βn = αn

ζn
× (r∗0,rn+1)

(r∗0,rn)
16: wn = Atn + βnApn
17: end for

From Zhang’s framework, the GPBiCG(m, �) method was proposed by Fujino
[71]. A unified generalization of the GPBiCGmethod and the BiCGSTAB(�) method
was proposed by K. Aihara [4], which is referred to as the GPBiCGstab(L) method.
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Fig. 3.4 Convergence histories of CGS, BiCGSTAB, and GPBiCG for N = 20, c = 300

3.3.8.8 Numerical Examples

In this subsection, some illustrative numerical examples are shown. We consider
nonsymmetric linear systems (2.18) with parameters N = 20, a1 = a2 = a3 = 1,
b1 = b2 = b3 = 1, and two different parameters c = 300 and c = 900. The stopping
criterion used for all the Krylov subspace methods is ‖rn‖/‖b‖ ≤ 10−10.

The convergence histories of the CGS method, the BiCGSTAB method, and the
GPBiCG method are shown in Fig. 3.4 for c = 300. The horizontal axis is not the
number of iterations but the number of matrix–vector multiplications. (The CGS
method, theBiCGSTABmethod, and theGPBiCGmethod require twomatrix–vector
multiplications per iteration.)

FromFig. 3.4, theGPBiCGmethod converges faster thanBiCGSTABmethod, and
the CGS method is the best in terms of the number of matrix–vector multiplications,
or equivalently the number of iterations. On the other hand, the CGS method shows
irregular convergence behavior, which may lead to a loss of accuracy. The GPBiCG
method and the BiCGSTAB method show relatively smooth convergence behavior,
which may be caused by local minimization of the residual 2-norms. In terms of
accuracy, the log10 of the true relative residual 2-norms for the CGS method, the
BiCGSTABmethod, and theGPBiCGmethod are –9.79, –10.50, –10.17 respectively.
From which, all the methods produced sufficiently accurate approximate solutions.

Next, the convergence histories for c = 900 are shown in Fig. 3.5. We see from
Fig. 3.5 that the CGS method shows much irregular convergence behavior and the
slowest convergence, and the GPBiCG method is the best in terms of the number
of matrix–vector multiplications. In terms of accuracy, the log10 of the true relative
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Fig. 3.5 Convergence histories of CGS, BiCGSTAB, and GPBiCG for N = 20, c = 900

residual 2-norms for the CGS method, the BiCGSTAB method, and the GPBiCG
method are –6.37, –10.03, –9.79 respectively. This means that the CGS method
suffers from a loss of accuracy of about four digits. This loss of accuracy is known
as a residual gap. Therefore, it is strongly recommended to check the true relative
residual 2-norm, i.e., ‖b − Axn‖/‖b‖ (not ‖rn‖/‖b‖!), after satisfying the stopping
criterion.

3.3.8.9 Other Related Methods

The QMR method in Sect. 3.3.4 requires the information of AH, as well as the BiCG
method. Similar to the idea of the CGS method, R. W. Freund proposed a squared
variant of the QMRmethod referred to as the TFQMR (transpose-free QMR)method
[63], which tends to give smooth convergence behavior. Based on the BiCGSTAB
method and the idea of the QMR method, the QMRCGSTAB method was proposed
in [34].

The BiCR method in Sect. 3.3.3 may give a smoother convergence behavior than
the BiCGmethod when the coefficient matrixA is close to Hermitian, since the BiCR
method with the choice r∗0 = r0 becomes the CR method when A is Hermitian and
the residual 2-norm of the CR method monotonically decreases. Thus it is natural to
replace the product-type Krylov subspace methods based on the BiCG method with
those based on the BiCR method. In fact, the product-type methods based on the
BiCR method can be constructed, and the resulting algorithms (CRS, BiCRSTAB,
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GPBiCR) are derived in [165]. K. Abe and G. L. G. Sleijpen independently proposed
product-type methods based on the BiCR method, see [2].

Y.-F. Jing et al. proposed an approach similar to the BiCR method called the
BiCOR method [114], and the product-type variants were proposed in [32].

3.3.9 Induced Dimension Reduction (IDR(s)) Method

The Induced Dimension Reduction (IDR) method was developed by Wesseling and
Sonneveld around 1979 [205]. The IDR method is mathematically equivalent to the
BiCGSTAB method, and the BiCGSTAB method can be regarded as a stabilized
variant of the IDR method. It is written in the acknowledgements in [195] that
Sonneveld suggested that van der Vorst reconsiders Sonneveld’s IDR.

Though the IDR method was not given further attention, about 30years later,
Sonneveld and van Gijzen proposed an innovative algorithm called the IDR(s)
method [174]. In this section, the theory and the derivation of the IDR(s) method are
described. The derivation in this section looks to be redundant, but it makes it easier
to understand the principle of the IDR(s) method.

Theorem 3.4 (The IDR theorem [174] [205, p. 550]) Let A be any matrix in CN×N ,
let v0 be any nonzero vector in C

N , and let G0 be the complete Krylov space, i.e.,
G0 := KN (A, v0). Let S denote any (proper) subspace of CN such that S and G0 do
not share a nontrivial invariant subspace,4 and define the sequences Gj , j = 1, 2, . . .
as

Gj = (I − ωjA)(Gj−1 ∩ S), (3.105)

where the ωj’s are nonzero scalars. Then:

(1) Gj ⊂ Gj−1 for all j > 0.
(2) Gj = {0} for some j ≤ N .

Proof The proof is based on [174, Theorem 2.1].
The first statement is shown by induction. First, we show G1 ⊂ G0. From G0 =

KN (A, v0), it follows that (I − ω1A)G0 ⊂ G0, because for a given v ∈ (I − ω1A)G0

we have

v = (I − ω1A)(c0v0 + c1Av0 + · · · + cN−1A
N−1v0)

= c0(I − ω1A)v0 + c1(I − ω1A)Av0 + · · · + cN−1(I − ω1A)AN−1v0

= d0v0 + d1Av0 + · · · + dN−1A
N−1v0 + dNA

N v0

= d̃0v0 + d̃1Av0 + · · · + d̃N−1A
N−1v0

∈ G0.

4 This means that S ∩ G0 does not contain any eigenvector of A, and the trivial invariant subspace
is {0}.
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Thus we have G1 ⊂ G0 because

G1 = (I − ω1A)(G0 ∩ S) ⊂ (I − ω1A)G0 ⊂ G0.

Next we show Gj+1 ⊂ Gj (i.e., x ∈ Gj+1 ⇒ x ∈ Gj) for all j > 0 using the assumption
Gj ⊂ Gj−1. Let x ∈ Gj+1. Then x can be written as x = (I − ωj+1A)y for some y ∈
Gj ∩ S. From the assumption Gj ⊂ Gj−1, it follows that y ∈ Gj ∩ S ⊂ Gj−1 ∩ S, and
thus (I − ωjA)y ∈ Gj. Since y ∈ Gj and y − ωjAy ∈ Gj, we have Ay ∈ Gj, and thus
(I − ωj+1A)y = x ∈ Gj.

The second statement is shownnext. The propertyGj+1 ⊂ Gj means that dim(Gj+1)

< dim(Gj) or dim(Gj+1) = dim(Gj).
If Gj ∩ S �= Gj, then dim(Gj ∩ S) < dim(Gj) and thus we have dim(Gj+1) <

dim(Gj) because dim(Gj+1) = dim((I − ωjA)(Gj ∩ S)) ≤ dim(Gj ∩ S) < dim(Gj).
On the other hand, if Gj ∩ S = Gj, then Gj ⊂ S, and we have Gj+1 = (I −

ωj+1A)(Gj ∩ S) = (I − ωj+1A)Gj ⊂ Gj. (The last inclusion follows from the first
statementGj+1 ⊂ Gj.) This impliesAGj ⊂ Gj, whichmeans thatGj is an invariant sub-
space ofA. RecallingGj ⊂ S andGj ⊂ G0 leads toGj ⊂ G0 ∩ S. From the assumption
that G0 ∩ S do not share a nontrivial invariant subspace of A, the subspace Gj is the
trivial invariant subspace of A, i.e., Gj = {0}.

Therefore either dim(Gj+1) < dim(Gj) or dim(Gj) = 0 occurs, which indicates
that dim(Gk) = 0, i.e., Gk = {0} for some k ≤ N . �

Corollary 3.3 Let S be a subspace of CN with dim(S) = N − s for a given s ≥ 1.
If Gi−1 + S = C

N and (I − ωjA) is nonsingular, then

dim(Gj) = dim(Gj−1) − s. (3.106)

Proof Let W1, W2 be subspaces of C
N (or a general vector space V). Then

it is well known in linear algebra that dim(W1) + dim(W2) = dim(W1 + W2) +
dim(W1 ∩ W2). Let W1 = Gi−1, W2 = S. Then, from the assumption Gi−1 + S =
C

N , we have dim(Gi−1 + S) = N . Thus dim(Gi) = dim((I − ωjA)(Gi−1 ∩ S)) =
dim(Gi−1 ∩ S) = dim(Gi−1) + dim(S) − N = dim(Gi−1) − s. �

Remark 3.1 From Corollary 3.3, if Gi−1 + S = C
N for i = 1, 2, . . . , n, then

dim(Gn) = dim(G0) − ns. Thus, if N/s is an integer and dim(G0) = N , we have
dim(GN/s) = 0, i.e., GN/s = {0}. This remark will be cited in Remark 3.2 for the
maximum required number of matrix–vector multiplications of the IDR(s) method.

3.3.9.1 The Derivation of the IDR(s) Method

The IDR(s) method with a given number s ≥ 1 generates residual vectors r0, r1, . . .
such that:

1. rj(s+1), rj(s+1)+1, . . . , rj(s+1)+s ∈ Gj, j = 0, 1, 2, . . . ;
2. The subspace S in (3.105) is chosen so that dim S = N − s.
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For simplicity, we consider the case s = 2, i.e., the IDR(2) method. In this case, the
IDR(2) method produces the following residual vectors:

r0, r1, r2 ∈ G0, r3, r4, r5 ∈ G1, r6, r7, r8 ∈ G2, . . .

Here we explain how to produce r3, r4, r5 ∈ G1 from the given residual vectors
r0, r1, r2 ∈ G0. Since s = 2, it follows from Remark 3.1 that we need to choose
S such that dim(S) = N − 2. The standard choice is

S = span{s1, s2}⊥ (3.107)

with arbitrary linearly independent vectors s1 and s2, where the symbol ⊥ is the
orthogonal complement.

Now, let S = [s1, s2] ∈ C
N×2 with linearly independent vectors s1 and s2. Then

for a vector v ∈ C
N , the following fact holds true:

v ⊥ S ⇔ SHv = 0. (3.108)

In what follows, we use the following definitions:

�rk := rk+1 − rk , dRk := [�rk ,�rk+1], ck = (
SHdRk

)−1
SHrk+2. (3.109)

The following vector v0 lies in G0 ∩ S:

v0 = r2 − dR0c0 ∈ G0 ∩ S. (3.110)

In fact, v0 ∈ G0 because v0 ∈ span{r2,�r0,�r1} with r2,�r0,�r1 ∈ G0 from the
assumption r0, r1, r2 ∈ G0, and v0 ∈ S because it is easy to see SHv0 = 0 and the
relation (3.108).

From (3.105), we can produce r3 ∈ G1 by

r3 = (I − ω0A)v0 ∈ G1, (3.111)

whereω0 is usually chosen so that ‖r3‖ isminimized, i.e.,ω0 = (Av0, v0)/(Av0,Av0).
In order to produce r4 ∈ G1, we need a vector v1 such that v1 ∈ G0 ∩ S. To this

end, v1 is constructed by using r3 and dR1 as follows:

v1 = r3 − dR1c1 ∈ G0 ∩ S.

From a similar discussion to that above, we see v1 ∈ G0 and v1 ∈ S. Thus, we have

r4 = (I − ω0A)v1 ∈ G1.

Similarly,
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v2 = r4 − dR2c2 ∈ G0 ∩ S, r5 = (I − ω0A)v2 ∈ G1.

Now, we obtained r3, r4, r5 ∈ G1 from the given residual vectors r0, r1, r2 ∈ G0. Sim-
ilarly, the following algorithm produces r6, r7, r8 ∈ G2 from r3, r4, r5 ∈ G1:

v3 = r5 − dR3c3 ∈ G1 ∩ S, r6 = (I − ω1A)v3 ∈ G2,

v4 = r6 − dR4c4 ∈ G1 ∩ S, r7 = (I − ω1A)v4 ∈ G2,

v5 = r7 − dR5c5 ∈ G1 ∩ S, r8 = (I − ω1A)v5 ∈ G2,

whereω1 is usually chosen so that ‖r6‖ isminimized, i.e.,ω1 = (Av3, v3)/(Av3,Av3).
Now, we describe how to extract approximate solutions x3, x4, x5 from x0, x1, x2.

In what follows, we use the following definition:

�xk := xk+1 − xk , dXk := [�xk ,�xk+1].

Then from (3.110) and (3.111) x3 is obtained as follows:

r3 = (I − ω0A)v0 = r2 − dR0c0 − ω0Av0
⇔ b − Ax3 = b − Ax2 − dR0c0 − ω0Av0

⇔ x3 = x2 + A−1dR0c0 + ω0v0
⇔ x3 = x2 − dX0c0 + ω0v0.

Similarly,

x4 = x3 − dX1c1 + ω0v1,

x5 = x4 − dX2c2 + ω0v2.

x6, x7, x8 can be obtained as follows:

x6 = x5 − dX3c3 + ω1v3,

x7 = x7 − dX4c4 + ω1v4,

x8 = x8 − dX5c5 + ω1v5.

Finally, we describe how to determine initial residual vectors r0, r1, r2 ∈ G0 and
x0, x1, x2. These vectors are given as follows: we compute

r0 = b − Ax0,

r1 = (I − c0A)r0, x1 = x0 + c0r0,

r2 = (I − c1A)r1, x2 = x1 + c1r1,

where x0 is an arbitrary vector, and c0 and c1 are chosen so that ‖r1‖ and ‖r2‖ are
minimized.
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From the above discussion, the IDR(s) method with s = 2 can be easily gen-
eralized to the IDR(s) method with a general number s ≥ 1, and the algorithm is
described in Algorithm 3.24. The symbol “�X (:, i)” means that the ith column of
matrix �X .

Algorithm 3.24 The IDR(s) method
Input: x0 ∈ C

N , P ∈ C
N×s, s ≥ 1

Output: xi
1: r0 = b − Ax0

(The other initial residuals r1, . . . , rs ∈ G0)
2: for i = 1 to s do
3: v = Ari−1, ω = vHri−1

vHv
4: �X (:, i) = ωri−1, �R(:, i) = −ωv
5: xi = xi−1 + �X (:, i); ri = ri−1 + �R(:, i)
6: end for
7: j = 1, i = s
8: M = PH�R, h = PHri
9: while ‖ri‖‖b‖ > ε do
10: for k = 0 to s do
11: Solve c from M c = h
12: q = −�Rc
13: v = ri + q
14: if k = 0 then
15: t = Av, ω = tHv

tH t
16: �R(:, j) = q − ωt
17: �X (:, j) = −�X c + ωv
18: else
19: �X (:, j) = −�X c + ωv
20: �R(:, j) = −A�X (:, j)
21: end if

(Update approximate solutions xi)
22: ri+1 = ri + �R(:, j)
23: xi+1 = xi + �X (:, j)
24: �m = PH�R(:, j)
25: M (:, j) = �m
26: h = h + �m
27: i = i + 1, j = j + 1
28: j = (j − 1)%s + 1 (%: modulo operation, i.e. a%n = r, where a = mn + r.)
29: end for
30: end while

Remark 3.2 In order to produce residual vectors in Gj from residual vectors in Gj−1,
the IDR(s) method requires s + 1 matrix–vector multiplications. From Remark 3.1,
the residual vector in GN/s is zero. Thus, in exact precision arithmetic, the number
of matrix–vector multiplications for the IDR(s) method is at most (s + 1) × N/s =
N + N/s to obtain the exact solution. Note that the number of matrix–vector mul-
tiplications for the product-type Krylov subspace methods in Sect. 3.3.8 is at most
2N .
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From the following remark, the IDR(s) method can be regarded as an extension of
the BiCGSTAB method.

Remark 3.3 The IDR(1) method and the BiCGSTABmethod give the same residual
vectors at the even steps.

Remark 3.4 In terms of orthogonality, the IDR(s) method produces residual vectors
that belong to the following so-called Sonneveld subspace:

{
�j(A)v : v ⊥ Bj(A

H, S)
}
. (3.112)

Here�j(A) := �
j
i=1(I − ωiA), andBj(AH, S) is a subspace ofCN generated by using

A and S := [s1, . . . , ss], which is defined by

Bj(A
H, S) := Kj(A

H, s1) + · · · + Kj(A
H, ss).

Here the symbol “+” means the sum of subspaces.5 Bj(AH,R∗
0) will be redefined in

Definition 3.1 for block Krylov subspace methods. For the details of the view in
(3.112), see [161, 163].

We give a rough explanation of Remark 3.4 using the IDR(s) method with s = 2
for the two cases j = 1, 2 in (3.112). First we consider the case j = 1. From (3.105)
G1 is generated by

G1 = (I − ω1A)(G0 ∩ S),

where S = span{s1, s2}⊥, see also (3.107). Then, r ∈ G1 can be written as

r = (I − ω1A)v, v ∈ G0, v ⊥ span{s1, s2}.

Note that v ∈ Smeans v ⊥ span{s1, s2}. SinceB1(AH, S) = K1(AH, s1) + K1(AH, s2)
= span{s1, s2}, we have

r ∈ {(I − ω1A)v : v ⊥ B1(A
H, S)} = {�1(A)v : v ⊥ B1(A

H, S)},

which corresponds to the case j = 1 in (3.112).
Next, we consider the case j = 2. G2 is generated by

G2 = (I − ω2A)(G1 ∩ S).

Then a residual vector r̃ ∈ G2 can be written as

r̃ = (I − ω2A)ṽ, ṽ ∈ G1, ṽ ⊥ span{s1, s2}. (3.113)

5 Given two subspaces W1 and W2, the sum of W1 and W2 is defined by W1 + W2 := {w1 + w2 :
w1 ∈ W1,w2 ∈ W2}.
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Since ṽ ∈ G1 = (I − ω1A)(G0 ∩ S), the vector ṽ can be written as

ṽ = (I − ω1A)v, v ∈ G0, v ⊥ span{s1, s2}. (3.114)

From (3.113) and (3.114), we have

r̃ = (I − ω2A)(I − ω1A)v, (3.115)

where

ṽ = (I − ω1A)v ⊥ span{s1, s2}, v ⊥ span{s1, s2}.

Note that

(I − ω1A)v ⊥ span{s1, s2} ⇔ ((I − ω1A)v)Hsi = 0 (i = 1, 2)

⇔ vH(I − ω1A)Hsi = 0 (i = 1, 2)

⇔ v ⊥ span{(I − ω1A)Hs1, (I − ω1A)Hs2}.

v ⊥ span{(I − ω1A)Hs1, (I − ω1A)Hs2} and v ⊥ span{s1, s2} imply

v ⊥ s1, v ⊥ s2, v ⊥ AHs1, v ⊥ AHs1.

Thus,

v ⊥ span{s1,AHs1, s2,AHs2}.
= span{s1,AHs1} + span{s2,AHs2}
= K2(A

H, s1) + K2(A
H, s2)

= B2(A
H, S).

Then, from (3.115), together with the above result, we have

r̃ = (I − ω2A)(I − ω1A)v, v ⊥ B2(A
H, S), (3.116)

from which we obtain

r̃ ∈ {�2(A)v : v ⊥ B2(A
H, S)}. (3.117)

This corresponds to the case j = 2 in (3.112).
In what follows, some references related to the IDR(s) method are described. An

elegant explanation of the IDR(s) method is found in [88], where a visualization
of the IDR theorem in [88, Fig. 3.1] is useful for intuitively understanding the IDR
theorem (Theorem 3.4). A more stable and accurate variant of the IDR(s) method
is proposed by the same authors in [199], and the IDR(s) method with the quasi-
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minimal residual strategy is proposed in [47]. Variants of the IDR(s) method with
partial orthonormalization is proposed in [209]. Extensions of the IDR(s) methods
using the idea of the BiCGSTAB(�) method are known as the IDRstab method [164]
and the GBiCGSTAB(s,L) method [185]. Variants of the IDRstab method are found
in [5–7].

3.3.9.2 Numerical Example

In this subsection, typical convergence behavior of the IDR(s) method is shown by
one numerical experiment. We consider nonsymmetric linear systems (2.18) with
parameters N = 20, a1 = a2 = a3 = 1, b1 = b2 = b3 = 1, and c = 300. The stop-
ping criterion is ‖rn‖/‖b‖ ≤ 10−10.

The convergence histories of the IDR(s) method (s = 1, 2, 4) and the BiCGSTAB
method are shown in Fig. 3.6. The horizontal axis is the number of matrix–vector
multiplications.

From Fig. 3.6, we see that as the number of s in the IDR(s) method increases, the
required number of matrix–vector multiplications decreases. The IDR(4) method
and the IDR(2) method converge faster than the BiCGSTAB method. In terms of
accuracy, the true relative residual 2-norms for the BiCGSTAB method, the IDR(1)
method, the IDR(2)method, and the IDR(4)method are –10.50, –10.04, –10.2, –8.76.
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Fig. 3.6 Convergence histories of BiCGSTAB, IDR(1), IDR(2), and IDR(4)
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3.3.10 Block Induced Dimension Reduction (Block IDR(s))
Method

The block IDR(s) method [46] is an extension of the IDR(s) method to solve the
block linear systems of the form

AX = B, (3.118)

where A ∈ C
N×N , B ∈ C

N×m, and m is usually much less than N .
Prior to the theory of the block IDR(s) method, the framework of block Krylov

subspace methods is briefly described after the following definitions:

Definition 3.1 (Block Krylov subspace) Let V ∈ C
N×m. Then Kn(A,V ) ⊂ C

N×m

defined by

Kn(A,V ) := {
VC0 + AVC1 + · · · + An−1VCn−1 : C0,C1, . . . ,Cn−1 ∈ C

m×m
}

(= block span{V ,AV , . . . ,An−1V })

is called the block Krylov subspace with respect to A and V .

Definition 3.2 (Sum of Krylov subspaces) Let V = [v1, v2, . . . , vm] ∈ C
N×m. Then

Bn(A,V ) ⊂ C
N is defined by

Bn(A,V ) := Kn(A, v1) + Kn(A, v2) + · · · + Kn(A, vm)

= {
V c0 + AV c1 + · · · + An−1V cn−1 : c0, c1, . . . , cn−1 ∈ C

m
}
.

Definition 3.3 (Grade of block Krylov subspace) The smallest number n such that

dim(Bn(A,V )) = dim(Bn+1(A,V ))

is called the block grade of A with respect to V , which is denoted by v(V ,A).

Remark 3.5 Definitions 3.1 and 3.3 are extensions of Definitions 1.2 and 1.3. In
fact, if m = 1, these definitions are identical to Definitions 1.2 and 1.3.

We now describe the framework of the block Krylov subspace methods. Let
X0 ∈ CN×s be an initial guess, and let R0 := B − AX0 be the corresponding initial
residual matrix. Then, block Krylov subspace methods find the nth approximate
solution Xn as follows:

Xn = X0 + Zn, Zn ∈ Kn(A,R0).

The corresponding residual matrix is given by

Rn = B − AXn = R0 − AZn ∈ Kn+1(A,R0).
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Determining Zn yields various block Krylov subspace methods, e.g.,

• The block CG method: Rn ⊥ Bn(A,R0).

• The block COCG method: Rn ⊥ Bn(A,R0).

• The block BiCG method: Rn ⊥ Bn(AH,R∗
0).

Here, R∗
0 is an initial shadow residual matrix,6 and the symbol Rn ⊥ Bn(A,V ) means

that all the column vectors of Rn are orthogonal to Bn(A,V ).
Here, we give a brief history of the block Krylov subspace methods. In 1980,

O’Leary proposed the block BiCG method (and the block CG method) in [142]. In
1990, Vital proposed the block GMRES method in [202]. Block Krylov subspace
methods based on the QMR method were proposed in 1997 [65, 157]. In 2003,
Guennouni et al. proposed the block BiCGSTAB method [86]. In 2011, Du et al.
proposed the block IDR(s) method [46]. For other block Krylov subspace methods,
see [153, 181, 182, 210].

Nowwe turn our attention to deriving the block IDR(s) method. The block IDR(s)
method is based on the following theorem (see [46]), which is a slight modification
of Theorem 3.4.

Theorem 3.5 Let A be any matrix in C
N×N , let v0 be any nonzero vector in C

N ,
and let G0 = Bv(R0,A)(A,R0). Let S denote any (proper) subspace of CN such that S
and G0 do not share a nontrivial invariant subspace,7 and define the sequences Gj ,
j = 1, 2, . . . as

Gj = (I − ωjA)(Gj−1 ∩ S), (3.119)

where the ωj’s are nonzero scalars. Then:

(1) Gj ⊂ Gj−1 for all j > 0.
(2) Gj = {0} for some j ≤ N .

Proof The only difference between Theorems 3.4 and 3.5 is the definition of G0,
i.e., G0 = KN (A, v0) or G0 = Bv(R0,A)(A,R0). In the proof of Theorem 3.4-(1), G0 =
KN (A, v0) is used only for proving G1 ⊂ G0. Thus, all we have to do is to prove
G1 ⊂ G0. FromG0 = Bv(R0,A)(A,R0), we have (I − ω1A)G0 ⊂ G0, because for a given
v ∈ (I − ω1A)G0 = (I − ω1A)Bv(R0,A)(A,R0) we have

v = (I − ω1A)(R0c0 + AR0c1 + · · · + Aν(R0,A)−1R0cν(R0,A)−1)

= (I − ω1A)R0c0 + (I − ω1A)AR0c1 + · · · + (I − ω1A)Aν(R0,A)−1R0cν(R0,A)−1

= R0d0 + AR0d1 + · · · + Aν(R0,A)−1R0dν(R0,A)−1 + Aν(R0,A)R0dν(R0,A)

= R0d̃0 + AR0d̃1 + · · · + Aν(R0,A)−1R0d̃ν(R0,A)−1

∈ G0.

6 In practice, R∗
0 is usually set to R∗

0 = R0 or a random matrix.
7 This means that S ∩ G0 does not contain any eigenvector of A, and the trivial invariant subspace
is {0}.
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Thus G1 = (I − ω1A)(G0 ∩ S) ⊂ (I − ω1A)G0 ⊂ G0.

Theorem 3.5-(2) is shown by following the proof of Theorem 3.4-(2) and using
dim G0 ≤ N . �

Similar to Corollary 3.3, we have the following fact:

Corollary 3.4 Let S be a subspace ofCN with dim(S) = N − sm for a given s,m ≥
1. If Gi−1 + S = C

N and (I − ωjA) is nonsingular, then

dim(Gj) = dim(Gj−1) − sm.

The difference between Corollaries 3.3, 3.4 is the parameter m. The parameter m
corresponds to the size of the number of right-hand sides of AX = B, where B is an
N -by-m matrix.

In what follows, the block IDR(s) method is explained. The block IDR(s) method
generates residual matrices Rk = B − AXk for k = 0, 1, . . . such that:

1. all the column vectors of Rj(s+1),Rj(s+1)+1, . . . ,Rj(s+1)+s belong to Gj in (3.119)
for j = 0, 1, 2, . . . ;

2. the subspace S in (3.119) is chosen so that dim S = N − sm.

Let S = [s1, s2, . . . , ssm] ∈ C
N×sm. Then, a standard choice of the subspace S is

as follows:

S = span{S}⊥ = span{s1, s2, . . . , ssm}⊥,

where all the column vectors of S ∈ C
N×sm are linearly independent, and thus it is

easy to see that dim S = N − sm.
We now briefly explain the block IDR(s) method with s = 2. For j = 0, 1, 2, the

block IDR(2) method produces the following residual matrices:

R0,R1,R2, R3,R4,R5, R6,R7,R8,

where all the columnvectorsR0,R1,R2 belong toG0, all the columnvectorsR3,R4,R5

belong to G1, and all the column vectors R3,R4,R5 belong to G2.
In what follows, we describe how to obtain R3,R4,R5 from R0,R1,R2 under the

assumption that all the column vectors of R0,R1,R2 belong to G0. Similar to the
IDR(s) method, the following definitions are useful for the block IDR(s) method:

�Rk := Rk+1 − Rk , dR�
k := [�Rk ,�Rk+1], Ck =

(
SHdR�

k

)−1
SHRk+2.

(3.120)

All the column vectors of the following matrix V0 lie in G0 ∩ S:

V0 = R2 − dR�
0 C0, Im(V0) ⊂ G0 ∩ S
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because all the column vectors of R2 ∈ C
N×m and dR0 ∈ C

N×2m belong to G0 from
the assumption that all the column vectors of R0,R1,R2 belong to G0, and all the
column vectors of V0 also belong to S from the relation SHV0 = O, where O is the
2m × m zero matrix. Here Im(V0) is the image of V0, i.e., the subspace spanned by
all the column vectors of V0.

From (3.119), the residual matrix R3 whose column vectors belong to G1 can be
produced by

R3 = (I − ω0A)V0, Im(R3) ⊂ G1, (3.121)

where ω0 is usually chosen so that ‖R3‖F is minimized,8 i.e.,

ω0 = Tr(TH
0 V0)

Tr(TH
0 T0)

, T0 := AV0.

The Frobenius norm minimization follows from the following fact:

Proposition 3.7 Let V ,W ∈ C
m×n. Then the following minimization problem:

min
ω∈C

‖V − ωW‖F

can be solved by

ω = Tr(WHV )

Tr(WHW )
.

Proof Let V = [v1, . . . , vn] and W = [w1, . . . ,wn], then using

v := vec(V ) =
⎡
⎢⎣
v1
...

vn

⎤
⎥⎦ , w := vec(W ) =

⎡
⎢⎣
w1
...

wn

⎤
⎥⎦

yields ‖V − ωW‖F = ‖v − ωw‖. Thus from (1.34), the minimizer is

ω = wHv
wHw

= Tr(WHV )

Tr(WHW )
,

which concludes the proof. �

Similar to the derivation of r3 and r4 in the IDR(s) method,R3 andR4 are obtained
as follows:

8 For R = (ri,j) ∈ C
N×m, the symbol ‖R‖F := (

∑N
i=1

∑m
j=1 r̄i,jri,j)

1/2 is called the Frobenius norm

of R, and for a square matrix A = (ai,j) ∈ C
N×N , the symbol Tr(A) := ∑N

i=1 ai,i is called the trace
of A.
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V1 = R3 − dR�
1 C1, Im(V1) ⊂ G0 ∩ S,

R4 = (I − ω0A)V1, Im(R4) ⊂ G1,

V2 = R4 − dR�
2 C2, Im(V2) ⊂ G0 ∩ S,

R5 = (I − ω0A)V2, Im(R5) ⊂ G1.

From the above calculations, we have residual matrices Rk (k = 0, . . . , 5) such that

Im(Rk) ⊂ G0 for k = 0, 1, 2,

Im(Rk) ⊂ G1 for k = 3, 4, 5.

Next, we describe how to obtain approximate solution matrices X3,X4,X5 from
X0,X1,X2. Let

�Xk := Xk+1 − Xk , dX�
k := [�Xk ,�Xk+1].

Then X3 is obtained as follows:

R3 = (I − ω0A)V0 = R2 − dR�
0 C0 − ω0AV0

⇔ B − AX3 = B − AX2 − dR�
0 C0 − ω0AV0

⇔ X3 = X2 + A−1dR�
0 C0 + ω0V0

⇔ X3 = X2 − dX�
0 C0 + ω0V0.

Similarly,

X4 = X3 − dX�
1 C1 + ω0V1,

X5 = X4 − dX�
2 C2 + ω0V2.

We have described how to obtain Rk and Xk for k = 3, 4, 5 from Rk and Xk for
k = 0, 1, 2 in the block IDR(s) method with s = 2. Following the above derivation,
we have the block IDR(s) method in Algorithm 3.25. Further, the preconditioned
version of the block IDR(s) method is shown in Algorithm 3.26. Note that the symbol
“B(:, �)” represents the �th column of matrix B, and the symbol “�X (:, im + 1 :
(i + 1)m)” represents the (im + 1)th,(im + 2)th,. . ., (i + 1)mth columns of matrix
�X .

Remark 3.6 From Corollary 3.4, the dimension reduction is usually sm, i.e., dim
(Gj) = dim(Gj−1) − sm and the block IDR(s) method requires m(s + 1) matrix–
vector multiplications. Thus, in exact precision arithmetic, the total number of
matrix–vector multiplications for the block IDR(s) method is at most m(s + 1) ×
N/sm = N + N/s to obtain the exact solution matrix, which does not depend on
the block size m. Note that if the IDR(s) method is applied to AX = B (i.e.,
Ax1 = b1,Ax2 = b2, . . . ,Axm = bm), then the required number of matrix–vector
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multiplications of the IDR(s) method is at most m(N + N/s), which is m times
larger than that of the block IDR(s) method.

From the following remark, the block IDR(s) method can be regarded as an exten-
sion of the block BiCGSTAB method.

Remark 3.7 The block IDR(1) method and the block BiCGSTAB method give the
same residual vectors at the even steps.

Algorithm 3.25 The block IDR(s) method
Input: X0 ∈ C

N×s, R0 = B − AX0, P ∈ C
n×sm

Output: Xi
1: for i = 0 to s − 1 do
2: V = ARi , ω = Tr(VHRi)

Tr(VHV )

3: �X (:, im + 1 : (i + 1)m) = ωRi , �R(:, im + 1 : (i + 1)m) = −ωV
4: Xi+1 = Xi + �X (:, im + 1 : (i + 1)m), Ri+1 = Ri + �R(:, im + 1 : (i + 1)m)

5: end for
6: j = 1, i = s
7: M = PH�R, H = PHRi
8: while max�∈{1,2,...,m} ‖Ri(:,�)‖F‖B(:,�)‖F > ε do
9: for k = 0 to s do
10: Solve C from MC = H
11: Q = −�RC,
12: V = Ri + Q
13: if k = 0 then
14: T = AV , ω = Tr(THV )

Tr(THT )

15: �R(:, (j − 1)m + 1 : jm) = Q − ωT
16: �X (:, (j − 1)m + 1 : jm) = −�XC + ωV
17: else
18: �X (:, (j − 1)m + 1 : jm) = −�XC + ωV
19: �R(:, (j − 1)m + 1 : jm) = −A�X (:, (j − 1)m + 1 : jm)

20: end if
21: Ri+1 = Ri + �R(:, (j − 1)m + 1 : jm)

22: Xi+1 = Xi + �X (:, (j − 1)m + 1 : jm)

23: �M = PH�R(:, (j − 1)m + 1 : jm)

24: M (:, (j − 1)m + 1 : jm) = �M
25: H = H + �M
26: i = i + 1, j = j + 1
27: j = (j − 1)%s + 1 (%: modulo operation, i.e. a%n = r, where a = mn + r.)
28: end for
29: end while
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Algorithm 3.26 The preconditioned block IDR(s) method
Input: X0 ∈ C

N×s, R0 = B − AX0, P ∈ C
n×sm

Input: X0 = KX0 (K : preconditioning matrix)
Output: Xi
1: for i = 0 to s − 1 do
2: W = K−1Ri

3: V = AW , ω = Tr((K−1
1 V )HK−1

1 Ri)

Tr((K−1
1 V )HK−1

1 V )

4: �X (:, im + 1 : (i + 1)m) = ωRi , �R(:, im + 1 : (i + 1)m) = −ωV
5: Xi+1 = Xi + �X (:, im + 1 : (i + 1)m), Ri+1 = Ri + �R(:, im + 1 : (i + 1)m)

6: end for
7: j = 1, i = s
8: M = PH�R, H = PHRi
9: while max�∈{1,2,...,m} ‖Ri(:,�)‖F‖B(:,�)‖F > ε do
10: for k = 0 to s do
11: Solve C from MC = H
12: Q = −�RC
13: V = Ri + Q
14: if k = 0 then
15: T = AK−1V , ω = Tr((K−1

1 T )HK−1
1 V )

Tr((K−1
1 T )HK−1

1 T )

16: �R(:, (j − 1)m + 1 : jm) = Q − ωT
17: �X (:, (j − 1)m + 1 : jm) = −�XC + ωV
18: else
19: �X (:, (j − 1)m + 1 : jm) = −�XC + ωV
20: �R(:, (j − 1)m + 1 : jm) = −AK−1�X (:, (j − 1)m + 1 : jm)

21: end if
22: Ri+1 = Ri + �R(:, (j − 1)m + 1 : jm)

23: Xi+1 = Xi + �X (:, (j − 1)m + 1 : jm)

24: �M = PH�R(:, (j − 1)m + 1 : jm)

25: M (:, (j − 1)m + 1 : jm) = �M
26: H = H + �M
27: i = i + 1, j = j + 1
28: j = (j − 1)%s + 1 (%: modulo operation, i.e. a%n = r, where a = mn + r.)
29: end for
30: end while
31: Xi = K−1Xi

3.4 Other Krylov Subspace Methods

This section describes the Krylov subspace methods based on normal equations and
augmented linear systems: the CGNE method, the CGNR method, and the LSQR
method.
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3.4.1 Krylov Subspace Methods for Normal Equations

As described in the introduction in Sect. 3.3, we can apply the CG method to normal
equation (3.56) because AHA is Hermitian positive definite. In this subsection, the
details are described. Instead of non-Hermitian linear systems Ax = b, we consider
the following normal equations:

AHAx = AHb (3.122)

or

AAHy = b, x = AHy. (3.123)

As mentioned before, it is natural to solve the normal equations by the CG method,
since AHA and AAH are Hermitian positive definite. If we apply the CG method
to (3.122), then we have the CGNR method (or the CGLS method) [95] given in
Algorithm 3.27.

Algorithm 3.27 The CGNR method
Input: x0 ∈ C

N , β−1 = 0, p−1 = 0, r0 = b − Ax0
Output: xn
1: for n = 0, 1, . . . , until convergence do
2: pn = AHrn + βn−1pn−1

3: αn = (AHrn,AHrn)
(Apn,Apn)

4: xn+1 = xn + αnpn
5: rn+1 = rn − αnApn
6: βn = (AHrn+1,AHrn+1)

(AHrn,AHrn)
7: end for

It readily follows from the algorithm of the CGNR method and Theorem 3.1
that the CGNR method minimizes the AHA-norm of the error, or the 2-norm of the
residual vector:

min
xn∈x0+Kn(AHA,AHr0)

‖x − xn‖AHA = min
xn∈x0+Kn(AHA,AHr0)

‖rn‖,

where rn := b − Axn.
On the other hand, if we apply the CGmethod to (3.123), then we have the CGNE

method [41] (or Craig’s method) given in Algorithm 3.28.
It readily follows from the algorithm of the CGNE method and (3.16) that the

CGNEmethodminimizes theAAH-normof the error on the linear systemsAAHy = b:

min
yn∈y0+Kn(AAH,b−AAHy0)

‖y − yn‖AAH .
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Algorithm 3.28 The CGNE method
Input: x0 ∈ C

N , β−1 = 0, p−1 = 0, r0 = b − Ax0
Output: xn
1: for n = 0, 1, . . . , until convergence do
2: pn = AHrn + βn−1pn−1

3: αn = (rn,rn)
(pn,pn)

4: xn+1 = xn + αnpn
5: rn+1 = rn − αnApn
6: βn = (rn+1,rn+1)

(rn,rn)
7: end for

It follows from the above fact and yn = A−Hxn that the CGNE method generates xn
such that

min
yn∈y0+Kn(AAH,b−AAHy0)

‖y − yn‖AAH
= min

A−Hxn∈A−Hx0+Kn(AAH,b−Ax0)
‖A−Hx − A−Hxn‖AAH

= min
A−Hxn∈A−Hx0+Kn(AAH,b−Ax0)

‖x − xn‖
= min

xn∈x0+AHKn(AAH,b−Ax0)
‖x − xn‖

= min
xn∈x0+Kn(AHA,AHr0)

‖x − xn‖,

where r0 := b − Ax0. Thus, the CGNE method minimizes the 2-norm of the error
on the linear systems Ax = b.

The convergence of the CGNRmethod and the CGNEmethod performs very well
in some special cases [64, 138]. However, since the condition number of AHA (or
AAH) is twice that of A, these methods may show slow convergence from Theorem
3.2.

If the coefficient matrix is ill-conditioned, the LSQR method [144] is often pre-
ferred. This algorithm is based on the Golub–Kahan bidiagonalization process [78]
and the process is obtained by applying the Lanczos process to the following aug-
mented linear systems of the form

[
I A
AH O

] [
r
x

]
=

[
b
0

]
.

We write it as Ãx̃ = b̃. The process begins with a unit vector:

w1 :=
[
u1
0

]
= 1

‖b‖
[
b
0

]
.
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Let h0,1 := ‖b‖. Then we have h01u1 = b. For the first step, applying the Lanczos
process (Algorithm 1.11) to Ã yields

w̃2 = Ãw1 − α1w1 =
[

0
AHu1

]
,

w2 =
[
0
v1

]
= 1

‖AHu1‖
[

0
AHu1

]
.

Using h1,1 := ‖AHu1‖ gives

h1,1v1 = AHu1. (3.124)

For the second step, we have

w̃3 = Ãw2 − α2w2 − β1w1 =
[
Av1 − β1u1

0

]
,

w3 =
[
u2
0

]
= 1

‖Av1 − h1,1u1‖
[
Av1 − h1,1u1

0

]
.

Using h2,1 := ‖Av1 − h1,1u1‖, the equation on w3 is rewritten as

h2,1u2 = Av1 − h1,1u1. (3.125)

For the third step, it follows that

w̃4 = Ãw3 − α3w3 − β2w2 =
[

0
AHu2 − β2v1

]
,

w4 =
[
0
v2

]
= 1

‖AHu2 − h2,1v1‖
[

0
AHu2 − h2,1v1

]
.

The equation on w4 is rewritten as

h2,2v2 = AHu2 − h2,1v1 (3.126)

by using h2,2 := ‖AHu2 − h2,1v1‖. Hence, from (3.124)–(3.126), we have the fol-
lowing matrix form:

Av1 = [u1,u2]
[
h1,1
h2,1

]
⇔ AV1 = U2B2,1,

AH[u1,u2] = [v1, v2]
[
h1,1 h2,1
0 h2,2

]
⇔ AHU2 = V1B

�
2,1 + h2,2v2e�

2 ,
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where U2 = [u1,u2], V1 = v1, and B�
2,1 = [h1,1, h2,1]. The above recurrences corre-

spond to the first few steps of the Golub–Kahan bidiagonalization process [78]. The
algorithm of the Golub–Kahan bidiagonalization process is described in Algorithm
3.29.

Algorithm 3.29 The Golub–Kahan bidiagonalization process
Input: A ∈ C

N×N , b ∈ C
N

Output: ui , vi (i = 1, 2, . . . )
1: h0,1 = ‖b‖, u1 = b/h0,1
2: h1,1 = ‖AHu1‖, v1 = AHu1/h1,1
3: for n = 1, 2, . . . do
4: ũn+1 = Avn − hn,nun
5: hn+1,n = ‖ũn+1‖
6: un+1 = ũn+1/hn+1,n
7: ṽn+1 = AHun+1 − hn+1,nvn
8: hn+1,n+1 = ‖ṽn+1‖
9: vn+1 = ṽn+1/hn+1,n+1
10: end for

The Golub–Kahan bidiagonalization process can be written in matrix form

AVn = Un+1Bn+1,n, (3.127)

AHUn+1 = VnB
�
n+1,n + hn+1,n+1vn+1e�

n+1,

where

Un := [u1, . . . ,un], Vn := [v1, . . . , vn], Bn+1,n :=

⎡
⎢⎢⎢⎢⎣

h1,1

h2,1
. . .

. . . hn,n
hn+1,n

⎤
⎥⎥⎥⎥⎦

.

It is clear from the bidiagonalization process that Un and Vn satisfy the following
properties:

UH
n Un = VH

n Vn = In. (3.128)

We are now ready for the derivation of the LSQR method. The LSQR method gen-
erates the nth approximate solution with Vn and x0 = 0, i.e., xn = Vnyn, where y is
determined by minimizing the 2-norm of the corresponding residual vector

rn = b − AVnyn. (3.129)

Substituting (3.127) into (3.129) leads to
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rn = b −Un+1Bn+1,nyn
= Un+1(h0,1e1 − Bn+1,nyn).

From the property (3.128) it follows that

min
yn∈Cn

‖rn‖ = min
yn∈Cn

‖h0,1e1 − Bn+1,nyn‖. (3.130)

Hence, similar to theMINRESmethod in Sect. 3.1.3, the solution of yn in (3.130) can
be obtained by using Givens rotations, and following the derivation of the MINRES
method, we have the LSQR algorithm described in Algorithm 3.30.

Algorithm 3.30 The LSQR method
Input: A ∈ C

N×N , b ∈ C
N

Output: xn
1: x0 = 0, h0,1 = ‖b‖, u1 = b/h0,1
2: h1,1 = ‖AHu1‖, v1 = AHu1/h1,1
3: for n = 1, 2, . . . do
4: (G.-K. bidiagonalization process)
5: ũn+1 = Avn − hn,nun
6: hn+1,n = ‖ũn+1‖
7: un+1 = ũn+1/hn+1,n
8: ṽn+1 = AHun+1 − hn+1,nvn
9: hn+1,n+1 = ‖ṽn+1‖
10: vn+1 = ṽn+1/hn+1,n+1
11: (Givens rotations)
12: for i = max{1, n − 1}, . . . , n − 1 do

13:

[
ti,n
ti+1,n

]
=

[
ci si

−s̄i ci

] [
ti,n
ti+1,n

]

14: end for
15: cn = |tn,n|√

|tn,n|2+|tn+1,n|2
16: s̄n = tn+1,n

tn,n
cn

17: tn,n = cntn,n + sntn+1,n
18: tn+1,n = 0

19:

[
gn
gn+1

]
=

[
cn sn

−s̄n cn

] [
gn
0

]

20: (Update xn)
21: pn = (vn − tn−1,npn−1)/tn,n
22: xn = xn−1 + gnpn
23: (Check convergence)
24: if |gn+1|/‖b‖ ≤ ε, then stop.
25: end for

3.5 Preconditioning Techniques

The convergence rate of iterative methods depends strongly on the spectral property,
the distribution of the eigenvalues, of the coefficient matrix. It is therefore natural to
try to transform the original linear system into one having the same solution and a
more favorable spectral property. IfK is a nonsingular matrix, the transformed linear
system

K−1Ax = K−1b (3.131)

has the same solution as that of the original one. Hence, we can obtain the solution of
the original linear system by applying Krylov subspace methods to the transformed
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linear system. ThematrixK is called a preconditioner and a favorable preconditioner
satisfies the following properties:

• K−1A ≈ I .
• K−1z is readily obtained for any vector z.

If A is Hermitian positive definite (h.p.d.), the transformed system (3.131) is not
useful in practice because the coefficient matrix K−1A is not h.p.d. any longer. To
preserve the h.p.d. structure of the coefficient matrix, we split the preconditioner into
K = K1KH

1 and then transform the linear system into

K−1
1 AK−H

1 (KH
1 x) = K−1

1 b.

The above coefficient matrix K−1
1 AK−H

1 is h.p.d. Hence, Krylov subspace methods
for h.p.d. linear systems, e.g., the CG method, can be applied to it. If the coefficient
matrix A is non-Hermitian, then the corresponding preconditioning is

K−1
1 AK−1

2 (K2x) = K−1
1 b, (3.132)

where K = K1K2. The above form is called left and right preconditioning. When
K1 = I , we have

AK−1(Kx) = b. (3.133)

This preconditioning is referred to as right preconditioning, and when K2 = I we
have (3.131), which is referred to as left preconditioning.

The right preconditioning is often used for the GMRES method and the GCR
method. In this case, these methods find approximate solutions such that the 2-norm
of the residuals for the original linear systemAx = b isminimized. On the other hand,
if the left preconditioning is used, then thesemethods find approximate solutions such
that the 2-norm of the residuals for the transformed linear system K−1Ax = K−1b is
minimized.

For the overviews of preconditioning techniques, see, e.g., [20, 146]. See also pre-
conditioned algorithms of bi-Lanczos-type Krylov subspace methods [109]. Precon-
ditioned algorithms of Arnoldi-type Krylov subspace methods, the GMRES method
for singular linear systems, have been studied in [49, 94, 136, 206].

3.5.1 Incomplete Matrix Decomposition Preconditioners

Many preconditioners have been proposed in the last few decades of the 20th century.
Of various preconditioners, the best-known ones fall in a category of incomplete
factorizations of the coefficient matrix, which can be given in the form of A ≈ K =
LU (with nonsingular triangular matrices L and U ).
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One of the simplest incomplete factorizations is the D-ILU preconditioner that
was proposed by Pommerell (see, e.g., [147, pp.77–78]). The idea of this method
is given as follows: first, split the coefficient matrix into its diagonal, strictly lower
triangular, and strictly upper triangular parts asA = DA + LA +UA; second, useK =
(D + LA)D−1(D +UA) as a preconditioner,whereD is determinedbydiag(K) = DA,
i.e., (K)ii = (DA)ii for all i. Hence, only the computation of D is required.

The algorithm of the D-ILU preconditioner is described in Algorithm 3.31, where
N0(A) is the index set of nonzero elements of matrix A, i.e.,

N0(A) := {(i, j) : ai,j �= 0}.

After running Algorithm 3.31, we obtain d1, d2, . . . , dN . Then setting

D =
⎡
⎢⎣
d−1
1

. . .

d−1
N

⎤
⎥⎦

yields the D-ILU preconditioner of the form K = (D + LA)D−1(D +UA).

Algorithm 3.31 The D-ILU decomposition
Input: A ∈ C

N×N , N0(A) (index set of nonzeros of A)
Output: D−1 = diag(d1, d2, . . . , dN )

1: for i = 1, 2, . . . ,N do
2: di = ai,i
3: end for
4: for i = 1, 2, . . . ,N do
5: di = 1/di
6: for j = i + 1, i + 2, . . . ,N do
7: if (i, j) ∈ N0(A) and (j, i) ∈ N0(A), then dj = dj − aj,idiai,j
8: end for
9: end for

The implementation of the preconditioned Krylov subspace methods is explained
next. D-ILU preconditioned Krylov subspace methods need to compute the multi-
plication of K−1 and a vector v, i.e., w = K−1v = (D +UA)

−1D(D + LA)−1v, and
the vector w is computed as follows:

1. solve (D + LA)y = v by forward substitution;
2. compute z = Dy;
3. solve (D +UA)w = z by back substitution.

Note that since theD-ILUpreconditioner explicitly contains the off-diagonal parts
of the original matrix, Eisenstat’s trick [53] (see also Section 3.5.4) can be used to
give a more efficient implementation of the D-ILU preconditioned Krylov subspace
methods.
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One of themostwell-known and powerful incomplete LUdecompositions is given
by Meijerink and van der Vorst [127]. This factorization is referred to as ILU(0), and
the explanation is given next.

The ILU(0) preconditioner is based on the LU decomposition of A as described
in Algorithm 1.1. Algorithm 3.32 is a slightly modified version of Algorithm 1.1 for
ease of presentation of the ILU(0) preconditioner.

The input in Algorithm 3.32 is A as described below.

A =

⎡
⎢⎢⎢⎣

a1,1 a1,2 · · · A1,N

a2,1 a2,2 · · · A2,N
...

...
. . .

...

aN ,1 aN ,2 · · · aN ,N

⎤
⎥⎥⎥⎦ ,

and the output is ai,j, where

A = LU,

with

L =

⎡
⎢⎢⎢⎢⎣

1

a2,1
. . .

...
. . .

. . .

aN ,1 · · · aN ,N−1 1

⎤
⎥⎥⎥⎥⎦

, U =

⎡
⎢⎢⎢⎢⎣

a1,1 a1,2 · · · a1,N
. . .

. . .
...

. . . aN−1,N

aN ,N

⎤
⎥⎥⎥⎥⎦

.

Notice that the input ai,j is the original matrix and the output ai,j is overwritten for
the matrices L and U .

Algorithm 3.32 The LU decomposition (a slightly modified version of Algorithm
1.1)
1: for i = 2, 3, . . . ,N do
2: for k = 1, 2, . . . , i − 1 do
3: ai,k = ai,k/ak,k
4: for j = k + 1, k + 2, . . . ,N do
5: ai,j = ai,j − ai,k × ak,j
6: end for
7: end for
8: end for

The ILU(0) preconditioner is the LU decomposition in Algorithm 3.32 without
computing (i, j) element if (i, j) /∈ N0(A). The algorithmof the ILU(0) preconditioner
is described in Algorithm 3.33.

From Algorithm 3.33, the number of nonzeros in the factorized matrix is usually
the same as that in the original matrix. Hence, the upper and lower matrices of the
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Algorithm 3.33 The ILU(0) preconditioner
1: for i = 2, 3, . . . ,N do
2: for k = 1, 2, . . . , i − 1 do
3: if (i, k) ∈ N0(A), then ai,k = ai,k/ak,k
4: for j = k + 1, k + 2, . . . ,N do
5: if (i, j) ∈ N0(A), then ai,j = ai,j − ai,k × ak,j
6: end for
7: end for
8: end for

ILU(0) preconditioner are sparse matrices when A is a sparse matrix. This fact is
important in terms of both memory and computational costs.

As an extension of the ILU(0) preconditioner, the ILU(p) preconditioner is also
proposed in the same paper [127], where p denotes the level of fill-in. The definition
of the level of fill-in is given as follows: let the initial level of fill-in in position (i, j)
for ai,j �= 0 be zero, and let the initial level of fill-in in position (i, j) for ai,j = 0 be
∞. Then the level of fill-in in position (i, j) is defined by

Levelij := min
1≤k≤min{i,j}

{Levelik + Levelkj + 1}. (3.134)

For example, consider

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ 0 0 0 ∗ 0 0 0
∗ ∗ ∗ 0 0 0 ∗ 0 0
0 ∗ ∗ ∗ 0 0 0 ∗ 0
0 0 ∗ ∗ ∗ 0 0 0 ∗
0 0 0 ∗ ∗ ∗ 0 0 0
∗ 0 0 0 ∗ ∗ ∗ 0 0
0 ∗ 0 0 0 ∗ ∗ ∗ 0
0 0 ∗ 0 0 0 ∗ ∗ ∗
0 0 0 ∗ 0 0 0 ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.135)

where the symbol “*” is nonzero. Since the nonzero elements of A have level zero
and the zeros in A have level ∞, we have the following matrix whose elements are
levels of fill-in:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ∞ ∞ ∞ 0 ∞ ∞ ∞
0 0 0 ∞ ∞ ∞ 0 ∞ ∞
∞ 0 0 0 ∞ ∞ ∞ 0 ∞
∞ ∞ 0 0 0 ∞ ∞ ∞ 0
∞ ∞ ∞ 0 0 0 ∞ ∞ ∞
0 ∞ ∞ ∞ 0 0 0 ∞ ∞
∞ 0 ∞ ∞ ∞ 0 0 0 ∞
∞ ∞ 0 ∞ ∞ ∞ 0 0 0
∞ ∞ ∞ 0 ∞ ∞ ∞ 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.136)

Applying (3.134) to (3.136), we have the following matrix whose level of the (i, j)
position is 1:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ∞ ∞ ∞ 0 ∞ ∞ ∞
0 0 0 ∞ ∞ 1 0 ∞ ∞
∞ 0 0 0 ∞ ∞ 1 0 ∞
∞ ∞ 0 0 0 ∞ ∞ 1 0
∞ ∞ ∞ 0 0 0 ∞ ∞ 1
0 1 ∞ ∞ 0 0 0 ∞ ∞
∞ 0 1 ∞ ∞ 0 0 0 ∞
∞ ∞ 0 1 ∞ ∞ 0 0 0
∞ ∞ ∞ 0 1 ∞ ∞ 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Applying (3.134) to the above matrix, we can determine the (i, j) element with
Levelij = 2.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ∞ ∞ ∞ 0 ∞ ∞ ∞
0 0 0 ∞ ∞ 1 0 ∞ ∞
∞ 0 0 0 ∞ 2 1 0 ∞
∞ ∞ 0 0 0 ∞ 2 1 0
∞ ∞ ∞ 0 0 0 ∞ 2 1
0 1 2 ∞ 0 0 0 ∞ 2
∞ 0 1 2 ∞ 0 0 0 ∞
∞ ∞ 0 1 2 ∞ 0 0 0
∞ ∞ ∞ 0 1 2 ∞ 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Applying (3.134) to the above matrix, all the levels of fill-in are determined and the
matrix is given by
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ∞ ∞ ∞ 0 ∞ ∞ ∞
0 0 0 ∞ ∞ 1 0 ∞ ∞
∞ 0 0 0 ∞ 2 1 0 ∞
∞ ∞ 0 0 0 3 2 1 0
∞ ∞ ∞ 0 0 0 3 2 1
0 1 2 3 0 0 0 3 2
∞ 0 1 2 3 0 0 0 3
∞ ∞ 0 1 2 3 0 0 0
∞ ∞ ∞ 0 1 2 3 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.137)

Let Np(A) be the index set that corresponds to Levelij ≤ p, i.e.,

Np(A) := {(i, j) : Levelij ≤ p}.

For example, from (3.137), Np(A) of (3.135) with p = 1, 2, 3 is given as follows:

N1(A) = N0(A) ∪ {(2, 6), (3, 7), (4, 8), (5, 9), (6, 2), (7, 3), (8, 4), (9, 5)},
N2(A) = N1(A) ∪ {(3, 6), (4, 7), (5, 8), (6, 9), (6, 3), (7, 4), (8, 5), (9, 6)},
N3(A) = N2(A) ∪ {(4, 6), (5, 7), (6, 8), (7, 9), (6, 4), (7, 5), (8, 6), (9, 7)}.

The ILU(p) preconditioner is the LU decomposition in Algorithm 3.32 without
computing the (i, j) element if (i, j) /∈ Np(A). Now, the algorithm of the ILU(p)
preconditioner is given in Algorithm 3.34.

Algorithm 3.34 The ILU(p) preconditioner
1: for i = 2, 3, . . . ,N do
2: for k = 1, 2, . . . , i − 1 do
3: if (i, k) ∈ Np(A), then ai,k = ai,k/ak,k
4: for j = k + 1, k + 2, . . . ,N do
5: if (i, j) ∈ Np(A), then ai,j = ai,j − ai,k × ak,j
6: end for
7: end for
8: end for

Another successful variant of ILU is an ILU with a threshold approach proposed
by Saad [150]. This factorization is referred to as ILUT(p,τ ), where p is used for
saving memory and τ is a criterion for dropping elements, i.e., forcing the small
elements to be zero in magnitude.
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3.5.2 Approximate Inverse Preconditioners

In the previous preconditioners, their performance depends on how close to A the
product of the factorized matrices L̃Ũ is. Here, we describe another criterion for a
good preconditioner. That is how close to A−1 the preconditioning matrix is. Based
on the criterion, Grote and Huckle [82] attempt to minimize the following Frobenius
norm:

min
K

‖I − AK‖F,

where ‖A‖F =
√∑

i,j a
2
i,j. Since the above minimization can be written as

min
K

∥∥∥∥
[
e1 − Ak1, e2 − Ak2, . . . , eN − AkN

]∥∥∥∥
F

,

we have N independent least-squares problems

min
ki

‖ei − Aki‖, i = 1, . . . ,N .

Hence, the construction of this preconditioner is very suitable for parallel computing.
Another outstanding idea for approximate inverses was given by Benzi and Tůma

[24]. This idea is finding nonsingular matrices V and W such that

WHAV = D. (3.138)

Then, it follows from (WHAV )−1 = V−1A−1W−H = D−1 that the inverse of the
matrix A is given as

A−1 = VD−1WH.

Since the equation (3.138) implies (wi,Avj) = 0 for i �= j, V andW are computed by
an A-biorthogonalization process. The algorithm, referred to as the Sparse Approx-
imate Inverse (AINV) preconditioner, is given in Algorithm 3.35. In the algorithm,
ai and ci denote the ith column of A and AH respectively. From Algorithm 3.35, we
see that the algorithm uses a MGS-style A-biorthogonalization process and is used
for non-Hermitian matrices. For Hermitian and normal matrices, the corresponding
approximate inverse preconditioners have been developed, see [21, 22].
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3.5.3 Matrix Polynomial Preconditioners

We have described two types of preconditioners. One of them is approximating
the coefficient matrix A ≈ M , and M−1v can easily be computed. The other one
is approximating the inverse of the coefficient matrix A−1 ≈ M . Here, we describe
another approach that is closely related to sparse approximate inverses. Since this
approach is based on matrix polynomials, it is referred to as a polynomial precondi-
tioner.

Algorithm 3.35 The AINV preconditioner

Input: w(0)
i = v(0)

i = ei, 1 ≤ i ≤ N
1: for i = 1, . . . ,N do
2: for j = i, . . . ,N do
3: p(i−1)

j = aHi v
(i−1)
j , q(i−1)

j = cHi w
(i−1)
j

4: end for
5: if i = N , then exit.
6: for j = i + 1, . . . ,N do

7: v(i)
j = v(i−1)

j −
(

p(i−1)
j

p(i−1)
i

)
v(i−1)
i , w(i)

j = w(i−1)
j −

(
q(i−1)
j

q(i−1)
i

)
w(i−1)
i

8: v(i)
k,j = 0 if |v(i)

k,j| < Tol, 1 ≤ k ≤ N , w(i)
k,j = 0 if |w(i)

k,j| < Tol, 1 ≤ k ≤ N
9: end for
10: end for
11: zi = z(i−1)

i , wi = w(i−1)
i , pi = p(i−1)

i , 1 ≤ i ≤ N
12: V = [v1, v2, . . . , vN ], V = [w1,w2, . . . ,wN ], D = diag(p1, p2, . . . , pN )

Among themostwell-knownpolynomial preconditioners are theNeumann expan-
sion and Euler expansion. Let A be of the form I − B with ρ(B) < 1. Then, we can
write the inverse matrix of A as

A−1 =
∞∑
i=0

Bi (Neumann expansion)

=
∞∏
i=0

(I + B2i ). (Euler expansion)

Hence, from the above expansions, we can readily obtain and moreover control an
approximate inverse of A by using the low order terms of the Neumann (or Euler)
expansion. This approach was studied in [50], and see also [116, 198].
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3.5.4 Preconditioners Based on Stationary Iterative Methods

The idea of stationary iterative methods in Sect. 1.6 can also be used for constructing
efficient preconditioners forKrylov subspacemethods. In this section, Jacobi,Gauss–
Seidel, and SOR-type preconditioners are described.

The Jacobi preconditioner (or the diagonal preconditioner) is the simplest pre-
conditioner and is usually more effective than solving the original linear systems
Ax = b by unpreconditioned Krylov subspace methods. The Jacobi preconditioner
is constructed by using the diagonal entries of the coefficient matrix as follows:

KJ := diag(a1,1, a2,2, . . . , an,n).

If the matrix A is a diagonal matrix, then K−1
J A = I . This means Jacobi precondi-

tioned Krylov subspace methods obtain the solution within only one iteration step.
In general, there is an approach to choosing diagonal matrix D as a preconditioner
so that the condition number of D−1A is as small as possible. The analysis of the
condition numbers of D−1A is found in [59, 194].

The symmetric Gauss–Seidel (SGS) preconditioner uses more information of A
than the Jacobi preconditioner. The SGS preconditioner is named after the Gauss–
Seidel method, which is one of the stationary iterative methods in Sect. 1.6. The
preconditioner is defined as

KSGS := (D − L)D−1(D −U ),

where A := D − L −U . If all the diagonal elements of A are scaled to one, then we
have a simpler preconditioner:

KSGS = (I − L)(I −U ).

In this case, it is known that there is an efficient implementation as follows: when
using the preconditioner KSGS , we have the transformed linear systems of the form

(I − L)−1A(I −U )−1x̃ = b̃, x̃ = (I −U )x, b̃ = (I − L)−1b.

Hence, applying Krylov subspace methods to the transformed linear systems, we
need to compute the following matrix–vector multiplication:

(I − L)−1A(I −U )−1z.

When the cost of the matrix–vector product Az is dominant at each iteration step, this
usually leads to about double computational cost per iteration. However, recalling
A = I − L −U , it follows that
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(I − L)−1A(I −U )−1 = (I − L)−1(I − L −U )(I −U )−1

= (I − L)−1[(I − L) + (I −U − I)](I −U )−1

= (I − L)−1[(I − L)(I −U )−1 + I − (I −U )−1]
= (I −U )−1 + (I − L)−1[I − (I −U )−1].

Thus, we obtain

(I − L)−1A(I −U )−1z = (I −U )−1z + (I − L)−1[I − (I −U )−1]z
= t + (I − L)−1(z − t),

where t := (I −U )−1z. Hence, we see that the cost of the above operation is only
about one matrix–vector multiplication. This implementation is one of Eisenstat’s
tricks [53].

The Symmetric Successive OverRelaxation (SSOR) preconditioner is regarded as
an extension of the SGS preconditioner. The preconditioner is defined as

KSSOR := (D̃ − L)D̃−1(D̃ −U ), D̃ = D/ω.

Note that the choice ω = 1 leads to KSGS . Eisenstat’s trick is then given as follows:
from A = D − L −U and Ã = (D̃ − L)−1A(D̃ −U )−1, we have

Ãz = (D̃ − L)−1A(D̃ −U )−1z

= (D̃ − L)−1[(D̃ − L) + (D − 2D̃) + (D̃ −U )](D̃ −U )−1z

= (D̃ −U )−1z + (D̃ − L)−1(D − 2D̃)(D̃ −U )−1z + (D̃ − L)−1z

= t + (D̃ − L)−1[(D − 2D̃)t + z],

where t = (D̃ −U )−1z.

3.5.5 Reorderings for Preconditioners

In the previous subsections, we have considered some preconditioning techniques
for solving original systems effectively. On the other hand, it is natural to find effec-
tive reorderings to improve the performance of preconditioners, e.g., apply Krylov
subspace methods to the following systems with a reordering matrix P:

K−1PAP�x̃ = b̃,

where x̃ = Px, b̃ = K−1Pb. From this idea, we can use many reordering techniques
such as Cuthill–Mckee (CM) [42], Reverse Cuthill–Mckee (RCM) [75], Nested Dis-
section (ND) [76], and Minimum Degree (MD) [77]. For these algorithms, see also
[51, 123, 151]. CM and RCM decrease the bandwidth of a matrix, MD reduces the
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number of fill-ins of a matrix, and ND generates an approximate block diagonal
matrix and is suitable for parallel computing.

For symmetric definite matrices, Duff and Meurant gave important results on the
effects of reorderings that reordering techniques for direct solvers did not enhance
the quality of preconditioners [52].

For nonsymmetric matrices, Saad experimentally showed that MD and ND
reorderings before ILUT preconditioning gave no advantage over the original sys-
tems and only RCMwas themost likely to yield an improvement [151, p.334]. On the
other hand, Benzi et al. [23] studied the effects of reorderings on ILU-type precondi-
tioners and obtained the result that RCM dramatically enhanced the preconditioner
in a case where the coefficient matrix is highly nonsymmetric. Similar results of the
effects on approximate inverse preconditioners are also discussed in [25].



Chapter 4
Applications to Shifted Linear Systems

Abstract As seen in Sect. 2.2 (computational physics) and Sect. 2.3 (machine learn-
ing), one needs to solve a set of linear systems of the form

(A + σk I )x(k) = b, k = 1, 2, . . . ,m,

where σk is a scalar, which are called shifted linear systems. When using the LU
decomposition in Sect. 1.3.1, m times LU decompositions are required. Similarly,
when using stationary iterative methods in Sect. 1.6, solving m linear systems, i.e.,
(L + D + σk I )z = v for all k, is required. To solve these linear systems, one can
apply a suitable Krylov subspace method to each linear system. On the other hand, if
the initial residual vector with respect to the i th linear system and the initial residual
vector with respect to the j th linear system are collinear, i.e., the angle between the
two initial residual vectors is 0 or π , the generated Krylov subspaces become the
same, which is referred to as the shift-invariance property of Krylov subspaces. This
means that we can share the information of only one Krylov subspace to solve all the
shifted linear systems, leading to efficient computations of shifted linear systems. In
this chapter, Krylov subspacemethods using the shift-invariance property are derived
from the Krylov subspace methods in Chap. 3.

4.1 Shifted Linear Systems

The Krylov subspace methods in Chap. 3 are attractive for solving the following
linear systems:

A(k)x(k) = b, k = 1, 2, . . . ,m, (4.1)

where A(k) is a nonsingular matrix of the form

A(k) := A + σk I, (4.2)
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with I being the identity matrix and σk ∈ C. The linear systems (4.1) are referred to
as shifted linear systems. For simplicity, we also use the following notation:

(A + σ I )xσ = b.

Here ασ , βσ , . . . and aσ , bσ , . . . denote scalars and vectors related to the shifted
linear system (A + σ I )xσ = b. Note that ασ is not the α to the power of σ .

If a Krylov subspace method with the initial guess x0 = 0 is applied to (4.1), then
from (1.22) the Krylov subspace method finds the approximate solutions of (4.1)
over the following subspaces:

x(k)
n ∈ Kn(A

(k), b), k = 1, 2, . . . ,m. (4.3)

From the definition ofKrylov subspace (1.20), the following shift invariance property
holds true:

Kn(A, b) = Kn(A
(k), b). (4.4)

This can be easily shown by induction and the definition of a Krylov subspace. As
an example, for the case n = 3 it follows that

K3(A + σ I, b) = {c1b + c2(A + σ I )b + c3(A + σ I )2b : c1, c2, c3 ∈ C}
= {(c1 + c2σ + c3σ

2)b + (c2 + 2c3σ)Ab + c3A
2b : c1, c2, c3 ∈ C}

= {d1b + d2Ab + d3A
2b : d1, d2, d3 ∈ C}

= K3(A, b).

In the third equation, the relation between ci and di is given by
⎡
⎣
d1
d2
d3

⎤
⎦ =

⎡
⎣
1 σ σ 2

0 1 2σ
0 0 1

⎤
⎦
⎡
⎣
c1
c2
c3

⎤
⎦ .

Since the 3 × 3 matrix is nonsingular, for any d1, d2, d3 there exist c1, c2, c3. Thus
the third equation holds true. From this example, we see that the shift invariance
property can be slightly extended as follows:

Kn(A, v) = Kn(A
(k),w), v = cw.

If v = cw holds for some c, the two vectors are referred to as collinear.
Now from the shift invariance property (4.4), it follows that (4.3) can be rewrit-

ten as

x(k)
n ∈ Kn(A, b), k = 1, 2, . . . ,m.



4.2 Shifted Hermitian Linear Systems 165

This means that only one Krylov subspace, Kn(A, b), is required for obtaining the
approximate solutions x(1)

n , x(2)
n , . . . , x(m)

n . Note that if the shift-invariance property
does not hold, m different Krylov subspaces are required.

In the following sections, we will see how to utilize the shift-invariance property
and how this property is incorporated into Krylov subspace methods.

4.2 Shifted Hermitian Linear Systems

Throughout this section, the coefficient matrix A(k) in (4.1) is assumed to be Hermi-
tian,1 i.e., A(k) = (A(k))H.

4.2.1 The Shifted CG Method

In this subsection, the algorithm of the CG method utilizing the shift-invariance
property (4.4) is described. The CGmethod applied to the shifted linear systems was
considered in [207, 208], where all the Lanczos vectors have to be stored. In what
follows, the memory-efficient algorithm based on [67, 70] is described.

It follows from Corollary 3.1, (3.15), and (4.4) that applying the CG method
(Algorithm 3.1) with x0 = x(k)

0 = 0 to Ax = b and A(k)x(k) = b produces residual
vectors rn and r(k)

n := b − A(k)x(k)
n with

rn, r(k)
n ∈ Kn+1(A, b) ⊥ Kn(A, b), k = 1, 2, . . . ,m.

This means that rn , r(k)
n ∈ Kn+1(A, b) ∩ Kn(A, b)⊥, whereKn(A, b)⊥ is the orthog-

onal complement of Kn(A, b). Since Kn(A, b) ⊂ Kn+1(A, b),

dim
(Kn+1(A, b) ∩ Kn(A, b)⊥

) = 1. (4.5)

Therefore rn and all r(k)
n ’s belong to the same one-dimensional subspace of CN , i.e.,

there exists scalar values π(k)
n ∈ C such that

rn = π(k)
n r(k)

n , k = 1, 2, . . . ,m. (4.6)

The relation (4.6) implies that if π(k)
n is known, all the residuals r(k)

n can be
produced by the residual rn . In what follows, π(k)

n is determined.
From (3.18), the residual vector rn+1 can be written as

rn+1 =
(
1 + βn−1

αn−1
αn − αn A

)
rn − βn−1

αn−1
αn rn−1. (4.7)

1 Since A(k) is Hermitian, it follows that σ ∈ R.
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Similarly, the residual vector r(k)
n+1 can also be written as

r(k)
n+1 =

{
1 + β

(k)
n−1

α
(k)
n−1

α(k)
n − α(k)

n (A + σk I )

}
r(k)
n − β

(k)
n−1

α
(k)
n−1

α(k)
n r(k)

n−1. (4.8)

Substituting (4.6) into (4.8) yields

rn+1 =
{
1 + β

(k)
n−1

α
(k)
n−1

α(k)
n − α(k)

n (A + σk I )

}
π

(k)
n+1

π
(k)
n

rn − β
(k)
n−1α

(k)
n π

(k)
n+1

α
(k)
n−1π

(k)
n−1

rn−1. (4.9)

Comparing the coefficients of Arn , rn , and rn−1 in (4.7) and (4.9) yields

α(k)
n = π(k)

n

π
(k)
n+1

αn, (4.10)

(
1 + β

(k)
n−1

α
(k)
n−1

α(k)
n − α(k)

n σk

)
π

(k)
n+1

π
(k)
n

= 1 + βn−1

αn−1
αn, (4.11)

βn−1

αn−1
αn = β

(k)
n−1α

(k)
n π

(k)
n+1

α
(k)
n−1π

(k)
n−1

. (4.12)

Substituting (4.10) into (4.12) gives

β
(k)
n−1 =

(
π

(k)
n−1

π
(k)
n

)2

βn−1. (4.13)

Substituting (4.10) and (4.13) into (4.11) leads to

π
(k)
n+1 =

(
1 + βn−1

αn−1
αn + αnσk

)
π(k)
n − βn−1

αn−1
αnπ

(k)
n−1. (4.14)

Since r0 = r(k)
0 , it follows that π

(k)
0 = 1. From (3.21) and (4.14), we have the fol-

lowing relation:

π
(k)
n+1 = Rn+1(−σk). (4.15)

In what follows, the computational formula of the approximate solution vector
x(k)
n+1 for (4.1) is derived from (4.8). Let p(k)

n−1 := (A + σk I )−1(r(k)
n−1 − r(k)

n )/α
(k)
n−1,

then from (4.8) we have

p(k)
n = r(k)

n + β
(k)
n−1 p

(k)
n−1, (4.16)

r(k)
n+1 = r(k)

n − α(k)
n (A + σk I ) p(k)

n . (4.17)
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Substituting r(k)
n = b − (A + σk I )x(k)

n into (4.17) yields

x(k)
n+1 = x(k)

n + α(k)
n p(k)

n . (4.18)

From (4.6) the search direction p(k)
n is updated by

p(k)
n = 1

π
(k)
n

rn + β
(k)
n−1 p

(k)
n−1. (4.19)

It is worth mentioning that approximate solutions are computed without using the
recurrence (4.17). Thus, matrix–vector multiplications (A + σk I ) p(k)

n for all k’s are
not required, which is much cost-efficient.

Using (4.6), (4.10)–(4.15), (4.18), and (4.19), we obtain the shifted CG method
described in Algorithm 4.1. In Algorithm 4.1, the CGmethod is applied to A(s)x = b
for a given s ∈ {1, 2, . . . ,m} that is referred to as a seed system, and approximate
solutions x(k)

n for the other shifted linear systems A(k)x = b are computed by using
the residual vector rn produced by the CG method.

Algorithm 4.1 has the following properties:

1. the multiplication of A(s) and a vector is required, but the multiplications of A(k)

for the other k and a vector are not required;
2. the approximate solution x(k)

n of the shifted CG method is the same as the nth
approximate solution of the CG method (with x0 = 0) applied to A(k)x(k) = b.

It is obvious from Algorithm 4.1 that the first property holds. The second property
is also obvious from the derivation process of the shifted CG method.

In Algorithm 4.1, the relation ‖r(k)
n ‖ = ‖rn‖/|π(k)

n | can be used for monitoring
the convergence of the approximate solution x(k)

n . Finally, notice that for computing
A(s)v, we compute Av + σsv.

4.2.2 The Shifted CR Method

The shifted CR method can be very similarly derived from the CR method in Sect.
3.1.2 and the derivation process given in Sect. 4.2.1. The algorithm of the shifted CR
method is described in Algorithm 4.2.

The main differences between the shifted CG method and the shifted CR method
are the computational formulas for α(s)

n and β(s)
n . The shifted CR method (Algorithm

4.2) has the following properties:

1. the multiplication of A(s) and a vector is required, but the multiplications of A(k)

for the other k and a vector are not required, which is the same property as that
of the shifted CG method;

2. Unlike the shifted CG method, the approximate solution x(k)
n of the shifted CR

method is not the same as the nth approximate solution of the CR method (with
x0 = 0) applied to A(k)x(k) = b.
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Algorithm 4.1 The shifted CG method

Input: Choose a seed system s ∈ S = {1, 2, . . . ,m} and set r(s)
0 = b, β

(s)
−1 = 0

Input: A and σs for k = 1, 2, . . . ,m
Input: x(k)

0 = p(k)
−1 = 0, π(s,k)

0 = π
(s,k)
−1 = 1 for k = 1, 2, . . . ,m

Output: x(k)
n for k = 1, 2, . . . ,m

1: for n = 0, 1, . . ., until convergence do
2: p(s)

n = r(s)
n + β

(s)
n−1 p

(s)
n−1

3: α
(s)
n = (r(s)

n ,r(s)
n )

( p(s)
n ,A(s) p(s)

n )

4: x(s)
n+1 = x(s)

n + α
(s)
n p(s)

n
5: {Begin shifted system}
6: for k(�= s) = 1, 2, . . . ,m do
7: if ‖r(k)

n ‖(= ‖r(s)
n ‖/|π(k)

n |) > ε2‖b‖ then
8: π

(s,k)
n+1 = R(s)

n+1(σs − σk) {← see (4.15)}

9: =
[
1 + β

(s)
n−1

α
(s)
n−1

α
(s)
n − α

(s)
n (σs − σk)

]
π

(s,k)
n − β

(s)
n−1

α
(s)
n−1

α
(s)
n π

(s,k)
n−1

10: β
(k)
n−1 =

(
π

(s,k)
n−1

π
(s,k)
n

)2

β
(s)
n−1

11: α
(k)
n = π

(s,k)
n

π
(s,k)
n+1

α
(s)
n

12: p(k)
n = 1

π
(s,k)
n

r(s)
n + β

(k)
n−1 p

(k)
n−1

13: x(k)
n+1 = x(k)

n + α
(k)
n p(k)

n
14: end if
15: end for
16: {End shifted system}
17: r(s)

n+1 = r(s)
n − α

(s)
n A(s) p(s)

n

18: β
(s)
n = (r(s)

n+1,r
(s)
n+1)

(r(s)
n ,r(s)

n )

19: end for

Algorithm 4.2 The shifted CR method

Input: Choose a seed system s ∈ S = {1, 2, . . . ,m} and set r(s)
0 = b, β

(s)
−1 = 0

Input: x(k)
0 = p(k)

−1 = 0, π(s,k)
0 = π

(s,k)
−1 = 1 for k = 1, 2, . . . ,m

Output: x(k)
n for k = 1, 2, . . . ,m

1: for n = 0, 1, . . ., until convergence do
2: p(s)

n = r(s)
n + β

(s)
n−1 p

(s)
n−1

3: (A(s) p(s)
n = A(s)r(s)

n + β
(s)
n−1A

(s) p(s)
n−1)

4: α
(s)
n = (r(s)

n ,A(s) r(s)
n )

(A(s) p(s)
n ,A(s) p(s)

n )

5: x(s)
n+1 = x(s)

n + α
(s)
n p(s)

n
6: {Begin shifted system}
7: Run lines 6-15 of the shifted CG method.
8: {End shifted system}
9: r(s)

n+1 = r(s)
n − α

(s)
n A(s) p(s)

n

10: β
(s)
n = (r(s)

n+1,A
(s) r(s)

n+1)

(r(s)
n ,A(s) r(s)

n )

11: end for
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The second property comes from the fact that the nth residual vectors of the CR
method for Ax = b and A(k)x = b do not belong to the same one-dimensional sub-
space because the residual vectors belong to

rCRn ∈ Kn+1(A, b) ∩ AKn(A, b)⊥,

r(k)CR
n ∈ Kn+1(A

(k), b) ∩ A(k)Kn(A
(k), b)⊥.

Notice thatKn+1(A, b) = Kn+1(A(k), b) holds true from the shift invariance property
(4.4), but in general AKn(A, b) �= A(k)Kn(A(k), b). Thus,

Kn+1(A, b) ∩ AKn(A, b)⊥ �= Kn+1(A
(k), b) ∩ A(k)Kn(A

(k), b)⊥.

This means that rCRn and r(k)CR
n are not produced by the same one-dimensional sub-

space, which are not collinear.

4.2.3 The Shifted MINRES Method

The shifted MINRES method is based on the MINRES method in Sect. 3.1.3, which
achieves the minimization of residual 2-norms:

min
x(k)
n ∈Kn(A(k),b)(=Kn(A,b))

∥∥b − A(k)x(k)
n

∥∥ . (4.20)

In what follows, we will see how the above minimization problems can efficiently
be solved, and note that the idea below corresponds to the special case of the shifted
GMRES method [43] that will be described in Sect. 4.4.3.

From the Lanczos process in Sect. 1.9.4, x(k)
n ∈ Kn(A, b) can be rewritten as

x(k)
n = Vn y(k)

n , k = 1, 2, . . . ,m, (4.21)

where y(k)
n ∈ C

n . The corresponding residual vectors for (4.1) are r(k)
n := b −

A(k)x(k)
n = b − (A + σk I )x(k)

n . From (4.21) and the matrix form of the Lanczos pro-
cess (1.42), it follows that

r(k)
n = b − (A + σk I )Vn y(k)

n

= Vn+1g1e1 − (AVn + σkVn) y(k)
n

= Vn+1

(
g1e1 − T (k)

n+1,n y
(k)
n

)
, T (k)

n+1,n := Tn+1,n + σk

[
In
0	

]
. (4.22)
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Here, e1=(1, 0, . . . , 0)	 is the first unit vector and g1 = (b, b)1/2. From (4.20) and
(4.22), we have

min
xn∈Kn(A,b)

∥∥b − A(k)xn
∥∥ = min

y(k)
n ∈Cn

∥∥∥Vn+1

(
g1e1 − T (k)

n+1,n y
(k)
n

)∥∥∥

= min
y(k)
n ∈Cn

∥∥∥g1e1 − T (k)
n+1,n y

(k)
n

∥∥∥ . (4.23)

Theminimization problem (4.23) can be solved byGivens rotations that are described
in Sect. 3.1.3. The algorithm of the shifted MINRES method is shown in Algorithm
4.3.

Algorithm 4.3 The shifted MINRES method

Input: x(k)
0 = p(k)

−1 = p(k)
0 = 0, v1 = b/(b, b)1/2, g(k)

1 = (b, b)1/2, β−1 = 0

Output: x(k)
n for l = 1, 2, . . . ,m

1: for n = 1, 2, . . . do
2: {The Lanczos process}
3: αn = (vn, Avn)
4: ṽn+1 = Avn − αnvn − βn−1vn−1
5: βn = (ṽn+1, ṽn+1)

1/2

6: vn+1 = ṽn+1/βn

7: t (k)n−1,n = βn−1, t (k)n,n = αn + σ�, t (k)n+1,n = βn
8: {Solve least-squares problems by Givens rotations}
9: for k = 1, 2, . . . ,m do
10: if |g(k)

n+1|/‖b‖ > ε then
11: for i = max{1, n − 2}, . . . , n − 1 do

12:

[
t (k)i,n

t (k)i+1,n

]
=
[

c(k)
i s(k)

i

−s(k)
i c(k)

i

][
t (k)i,n

t (k)i+1,n

]

13: end for

14: c(k)
n = |t (k)n,n |√

|t (k)n,n |2+|t (k)n+1,n |2

15: s(k)
n = t (k)n+1,n

t (k)n,n
c(k)
n

16: t (k)n,n = c(k)
n t (k)n,n + s(k)

n t (k)n+1,n

17: t (k)n+1,n = 0

18:

[
g(k)
n

g(k)
n+1

]
=
[

c(k)
n s(k)

n

−s(k)
n c(k)

n

][
g(k)
n
0

]

19: {Update approximate solutions x(k)
n }

20: p(k)
n = vn − (t (k)n−2,n/t

(k)
n−2,n−2) p

(k)
n−2 − (t (k)n−1,n/t

(k)
n−1,n−1) p

(k)
n−1

21: x(k)
n = x(k)

n−1 + (g(k)
n /t (k)n,n) p

(k)
n

22: end if
23: end for
24: if |g(k)

n+1|/‖b‖ ≤ ε for all �, then exit.
25: end for

From Algorithm 4.3 and the derivation process, we see that:
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1. the multiplication of A(s) and a vector is required, but the multiplications of A(k)

for the other k and a vector are not required, which is the same property as that
of the shifted CG method and the shifted CR method;

2. the approximate solution x(k)
n of the shifted MINRES method is the same as

the nth approximate solution of the MINRES method (with x0 = 0) applied to
A(k)x(k) = b.

4.3 Shifted Complex Symmetric Linear Systems

Throughout this section, the coefficient matrix A(k) in (4.1) is assumed to be complex
symmetric, i.e., A(k) = (A(k))	 �= (A(k))H.

4.3.1 The Shifted COCG Method

The derivation of the shifted COCGmethod [184] is the same as in (4.6)–(4.19). The
only differences between the shifted CG method and the shifted COCG methods are
αn and βn . The algorithm of the shifted COCG method is described in Algorithm
4.4.

Algorithm 4.4 The shifted COCG method (note: (a, b) = a	b)
Input: Choose a seed system s ∈ S = {1, 2, . . . ,m} and set r(s)

0 = b, β
(s)
−1 = 0

Input: x(k)
0 = p(k)

−1 = 0, π(s,k)
0 = π

(s,k)
−1 = 1 for k = 1, 2, . . . ,m

Output: x(k)
n for k = 1, 2, . . . ,m

1: for n = 0, 1, . . ., until convergence do
2: p(s)

n = r(s)
n + β

(s)
n−1 p

(s)
n−1

3: α
(s)
n = (r(s)

n ,r(s)
n )

( p(s)
n ,A(s) p(s)

n )

4: x(s)
n+1 = x(s)

n + α
(s)
n p(s)

n
5: {Begin shifted system}
6: Run lines 6–15 of the shifted CG method.
7: {End shifted system}
8: r(s)

n+1 = r(s)
n − α

(s)
n A(s) p(s)

n

9: β
(s)
n = (r(s)

n+1,r
(s)
n+1)

(r(s)
n ,r(s)

n )

10: end for

Algorithm 4.4 has the following properties:

1. the multiplication of A(s) and a vector is required, but the multiplications of A(k)

for the other k and a vector are not required;
2. the approximate solution x(k)

n of the shifted COCGmethod is the same as the nth
approximate solution of the COCG method (with x0 = 0) applied to A(k)x(k) =
b.
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When matrix A(k) is real symmetric for all k, the shifted COCG method is
equivalent to the shifted CG method.

In [190], the shifted COCG method is generalized to solving the following linear
systems:

(A + σk B)x(k) = b, (4.24)

which are referred to as generalized shifted linear systems. Here A and B are real
symmetric and σk’s are complex numbers, and thus the coefficient matrix A + σk B
is complex symmetric. It is easy to see that if B is the identity matrix, then the
generalized shifted linear systems (4.24) reduce to the shifted linear systems.

We note that the shifted COCG method and the other shifted Krylov subspace
methods cannot be applied to (4.24) because the shift invariance properties do not
hold any longer, i.e., Kn(A + σi B, b) �= Kn(A + σ j B, b) for i �= j . One remedy is
to consider the following shifted linear systems:

(B−1A + σk I )x(k) = B−1b,

where B is assumed to be nonsingular. However, B−1A + σk I is non-Hermitian,
and thus one may use shifted Krylov subspace methods for non-Hermitian linear
systems. On the other hand, without using such general solvers, it is shown that an
algorithm similar to the shifted COCG method is constructed, which is referred to
as the generalized shifted COCG method [190]. If B = I , the generalized shifted
COCG method reduces to the shifted COCG method.

As pointed out in Sect. 2.2.1, if the Hamiltonian matrix is real symmetric, then
the coefficient matrices (ε + iδ)I − H of the shifted linear systems are complex
symmetric. Thus the shifted COCG method is a method of choice, and applications
to computational physics are found in, e.g., [73, 110, 111]. An open-source library
of the shifted COCG method and related solvers is developed in [100].

The generalized shifted linear systems also arise in the following linear systems:

(σ 2 A + σ B + C)x = b, (4.25)

where A, B,C are complex symmetric. Parameterized linear systems of this type
are considered in [158, 159], together with their application to structural dynamics.
The interesting observation in [158, §3] is that (4.25) can be transformed into the
following linear systems:

([
B C
C	 O

]
+ σ

[
A O
O −C	

])[
y
x

]
=
[
b
0

]
(4.26)

if C is nonsingular. Since A, B,C are complex symmetric, the coefficient matri-
ces of (4.26) are complex symmetric generalized shifted linear systems. Thus, the
generalized shifted COCG method can also be used to solve (4.25).
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4.3.1.1 Seed Switching Technique

We can see from Algorithm 4.4 (see also line 8 of Algorithm 4.1) that if |π(s,k)
n | =

|R(s)
n (σs − σk)| ≥ 1, then ‖r(k)

n ‖ ≤ ‖r(s)
n ‖. Hence, if we could find a seed system such

that |R(s)
n (σs − σk)| ≥ 1, then all the shifted systems could be solved. However, it is

extremely difficult to find such a system in advance except for some special cases
discussed in [67, Corollary 1]. The seed switching technique [166] will avoid such
a problem, and consists of the following steps:

(S1) Choose a seed system, and then start Algorithm 4.4.
(S2) If the seed system was solved at the nth iteration, then find a new one that

remained unsolved.
(S3) Start Algorithm 4.4 from the (n + 1)th iteration using the new seed system.

In (S2), one of the criteria for choosing the new seed system s̃ may be

s̃ = argmax
i∈I {‖r(i)

n ‖},

where I denotes an index set of the unsolved linear systems. In (S3), we need two
steps to switch the old seed system to the new one. First, compute

π
(s,s̃)
n+1 = R(s)

n+1(σs − σs̃), β(s̃)
n =

(
π(s,s̃)
n /π

(s,s̃)
n+1

)2
βn

to obtain r(s̃)
n+1 and β(s̃)

n p(s̃)
n . Since it follows from r(s̃)

n+1 + β(s̃)
n p(s̃)

n that we obtain

p(s̃)
n+1, one can start the COCG method solving the system (A + σs̃ I )x(s̃) = b from

the (n + 1)th iteration step. Second, to solve the remaining linear systems by using
the new seed s̃, the parameters α

(i)
n+1 and β(i)

n must be generated from the new seed.
We see that they can readily be generated by the following polynomial:

π
(s̃,i)
n+1 = R(s̃)

n+1(σs̃ − σi ) for all i ∈ I.

To obtain the above polynomial, one needs to compute

α
(s̃)
i =

(
π

(s,s̃)
i /π

(s,s̃)
i+1

)
αi , β

(s̃)
j =

(
π

(s,s̃)
j /π

(s,s̃)
j+1

)2
β j

for i = 0, . . . , n, j = 0, . . . , n − 1. Hence, the switching strategy requires only
scalar operations, andmoreoverwe can see that if breakdowndoes not occur, iterating
the process from (S2) to (S3) enables us to keep solving the systems without losing
the dimension of theKrylov subspace that has been generated until the last switching.

The seed switching technique enables us to be free from the problem of the choice
of the seed system, and can also be applied to the shifted CG method in Sect. 4.2.1
and the shifted BiCG method in Sect. 4.4.1, since the residual vectors of the shifted
CG (BiCG) method for shifted systems are true CG (BiCG) residuals.
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4.3.2 The Shifted COCR Method

The derivation of the shifted COCR method [172] is also the same as in (4.6)–
(4.19). The only differences between the shifted CR method and the shifted COCR
methods are αn and βn . The algorithm of the shifted COCR method is described in
Algorithm 4.5.

Algorithm 4.5 has the following properties:

1. the multiplication of A(s) and a vector is required, but the multiplications of A(k)

for the other k and a vector are not required, which is the same property as that
of the shifted COCG method;

2. unlike the shifted COCG method, x(k)
n of the shifted COCR method is not the

same as the nth approximate solution of theCOCRmethod (with x0 = 0) applied
to A(k)x(k) = b.

Algorithm 4.5 The shifted COCR method (note: (a, b) = a	b)
Input: Choose a seed system s ∈ S = {1, 2, . . . ,m} and set r(s)

0 = b, β
(s)
−1 = 0

Input: x(k)
0 = p(k)

−1 = 0, π(s,k)
0 = π

(s,k)
−1 = 1 for k = 1, 2, . . . ,m

Output: x(k)
n for k = 1, 2, . . . ,m

1: for n = 0, 1, . . ., until convergence do
2: p(s)

n = r(s)
n + β

(s)
n−1 p

(s)
n−1

3: (A(s) p(s)
n = A(s)r(s)

n + β
(s)
n−1A

(s) p(s)
n−1)

4: α
(s)
n = (r(s)

n ,A(s) r(s)
n )

(A(σs ) p
(s)
n ,A(s) p(s)

n )

5: x(s)
n+1 = x(s)

n + α
(s)
n p(s)

n
6: {Begin shifted system}
7: Run lines 6–15 of the shifted CG method.
8: {End shifted system}
9: r(s)

n+1 = r(s)
n − α

(s)
n A(s) p(s)

n

10: β
(s)
n = (r(s)

n+1,A
(s) r(s)

n+1)

(r(s)
n ,A(s) r(s)

n )

11: end for

When matrix A(k) is real symmetric for all k, the shifted COCR method is equiv-
alent to the shifted CR method.

4.3.3 The Shifted QMR_SYM Method

The shifted QMRmethod for solving non-Hermitian linear systems was proposed in
[62]. As is known in [61], the shifted QMR_SYM method is a simplification of the
shifted QMR method, and the derivation of the shifted QMR_SYM is similar to the
shifted MINRES method.
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From the complex symmetric Lanczos process in Sect. 1.9.3, xn ∈ Kn(A, b) can
be rewritten as

x(k)
n = Vn y(k)

n , k = 1, 2, . . . ,m, (4.27)

where y(k)
n ∈ C

n . The corresponding residual vectors for (4.1) are r(k)
n := b − (A +

σk I )x(k)
n . From (4.27) and thematrix formof the complex symmetric Lanczos process

(1.41), it follows that

r(k)
n = b − (A + σk I )Vn y(k)

n

= Vn+1g1e1 − (AVn + σkVn) y(k)
n

= Vn+1

(
g1e1 − T (k)

n+1,n y
(k)
n

)
, T (k)

n+1,n := Tn+1,n + σk

[
In
0	

]
. (4.28)

Here, e1=(1, 0, . . . , 0)	 is the first unit vector and g1 = (b, b)1/2. As well as the
QMR_SYMmethod in Sect. 3.2.3, y(k)

n is determined by solving the following min-
imization problem.

min
y(k)
n ∈Cn

∥∥∥g1e1 − T (k)
n+1,n y

(k)
n

∥∥∥ . (4.29)

Theminimization problem (4.29) can be solved byGivens rotations that are described
in Sect. 3.1.3. The algorithm of the shifted QMR_SYM method is shown in Algo-
rithm 4.6.

Algorithm 4.6 holds the following properties:

1. the multiplication of A(s) and a vector is required, but the multiplications of A(k)

for the other k and a vector are not required, which is the same property as those
of the shifted CG method and the shifted CR method;

2. the approximate solution x(k)
n of the shifted QMR_SYM method is the same as

the nth approximate solution of the QMR_SYM method (with x0 = 0) applied
to A(k)x(k) = b.

Algorithm 4.6 The shifted QMR_SYM method (note: (a, b) = a	b)
Input: x(k)

0 = p(k)
−1 = p(k)

0 = 0, v1 = b/(b, b)1/2, g(k)
1 = (b, b)1/2, β−1 = 0

Output: x(k)
n for l = 1, 2, . . . ,m

1: for n = 1, 2, . . . do
2: (The complex symmetric Lanczos process)
3: αn = (vn, Avn)
4: ṽn+1 = Avn − αnvn − βn−1vn−1
5: βn = (ṽn+1, ṽn+1)

1/2

6: vn+1 = ṽn+1/βn

7: t (�)n−1,n = βn−1, t (�)n,n = αn + σ�, t (�)n+1,n = βn
8: (Solve least-squares problems by Givens rotations)
9: Run lines 9–24 of the shifted MINRES method.
10: end for
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In [60], the following shifted linear systems are considered:

(A + σk I )x(k) = b, (4.30)

where A is Hermitian and σk’s are complex numbers. Thus the coefficient matrix
(A + σk I ) is neither Hermitian nor complex symmetric. In this case, one may use
the shiftedQMRmethod for non-Hermitian shifted linear systems.On the other hand,
there is an algorithm in [60] that is more efficient than the shifted QMR method so
that the multiplication of (A + σk I )H and a vector is not required, i.e., the number of
required matrix–vector multiplications is only one per each iteration step. The key
idea is to generate a Krylov subspace of Kn(A, b) by the Lanczos process, and the
basis vectors are used to solve (4.30). Note that if we generateKn(A + σ I, b)with σ

being a complex number instead of Kn(A, b), then we need the bi-Lanczos process
whose computational cost is about twice as large as that of the Lanczos process when
the matrix–vector multiplication is the most time-consuming part.

In [168], the shifted QMR_SYMmethod is generalized to solving (complex sym-
metric) generalized shifted linear systems (4.24). Similar to the generalized shifted
COCG method as mentioned in Sect. 4.3.1, the generalized shifted QMR_SYM
method [168] reduces to the shifted QMR_SYMmethod when B = I . Furthermore,
based on the shifted weighted QMR_SYM method in [167] for complex symmetric
shifted linear systems, the corresponding algorithm for solving complex symmetric
generalized shifted linear systems is proposed in [168].

4.4 Shifted Non-Hermitian Linear Systems

Throughout this section, the coefficient matrix A(k) in (4.1) is assumed to be non-
Hermitian, i.e., A(k) �= (A(k))H.

4.4.1 The Shifted BiCG Method

As seen in Sect. 4.2.1, the i th residual vector r i of the CGmethod for the seed system
Ax = b and the i th residual vector rσ

i for the shifted system (A + σ I )xσ = b are
collinear. Theorem4.1 is a generalized result of the condition that two residual vectors
of a Krylov subspace method are collinear.

Theorem 4.1 ([67]) Let W1 ⊆ W2 ⊆ · · · ⊆ Wk be a sequence of subspaces of CN

such that dim(Wi ) = i and Wi ∩ Ki+1(A, b)⊥ = {0} for i = 1, 2, . . . , k. Let xi ∈
Ki (A, b)⊥ be an approximate solution of Ax = b defined via the following Petrov–
Galerkin condition of the residual r i = b − Axi = pi (A)b:

r i ⊥ Wi for i = 1, 2, . . . , k,

where pi (A) =∑i
k=0 ck A

i .
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Similarly, let xσ
i ∈ Ki (A + σ I, b) = Ki (A, b) be the approximation to the solu-

tion of (A + σ I )xσ = b with the residual rσ = b − (A + σ I )xσ
i = pσ

i (A + σ I )b,
again satisfying

rσ
i ⊥ Wi for i = 1, 2, . . . , k.

Then r i and rσ
i are collinear, i.e., there exists πσ

i ∈ C such that r i = πσ
i r

σ
i .

Proof LetU1,U2 be subspaces of CN . Then from standard linear algebra, it follows
that (U1 ∩U2)

⊥ = U⊥
1 +U⊥

2 . From assumption Wi ∩ Ki+1(A, b)⊥ = {0}, we have

(Wi ∩ Ki+1(A, b)⊥)⊥ = {0}⊥ ⇔ W⊥
i + Ki+1(A, b) = C

N . (4.31)

dimW⊥
i = N − i and Ki+1(A, b) = i + 1, and thus dimW⊥

i + dimKi+1(A, b) =
N + 1. On the other hand, from (4.31), dim(W⊥

i + Ki+1(A, b)) = dimC
N = N .

Thus

dim(W⊥
i ∩ Ki+1(A, b)) = 1.

Since r i , rσ
i ∈ Ki+1(A, b) ∩ W⊥

i , two residual vectors r i , rσ
i lie in the same one-

dimensional subspace, which means that r i , rσ
i are collinear. ��

Theorem4.1 indicates that using the relationWn = Kn(AH, r∗
0), theBiCG residual

vector rn from Ax = b and the BiCG residual vector r(k)
n from (A + σk I )x(k) = b

are collinear, i.e.,

rn = π(k)
n r(k)

n .

Thus, following the derivation of the shifted CGmethod in Sect. 4.2.1, the algorithm
of the shifted BiCG method is obtained, which is listed in Algorithm 4.7.

Similarly, the BiCR method in Sect. 3.3.3 is developed to solve shifted linear
systems, which is referred to as the shifted BiCR method in [85].

4.4.2 The Shifted BiCGSTAB Method

The shifted BiCGSTABmethod and the shifted BiCGSTAB(�) method are proposed
in [67]. Since the derivation of the shifted BiCGSTAB(�) method is somewhat com-
plicated, the derivation of the shiftedBiCGSTABmethod is described,which is based
on the explanation in [140].

For the derivation of the shifted BiCGSTABmethod, we consider the seed system
Ax = b and the shifted system (A + σ I )xσ = b.

First of all, let us recall the BiCGSTAB method in Sect. 3.3.8. Let rn+1 be the
residual vector of the BiCGSTAB method. Then rn+1 and the other iterates tn , pn ,
xn are described by



178 4 Applications to Shifted Linear Systems

Algorithm 4.7 The shifted BiCG method

Input: Choose a seed system s ∈ S = {1, 2, . . . ,m} and set r(s)
0 = b, β

(s)
−1 = 0

Input: A and σs for k = 1, 2, . . . ,m
Input: x(k)

0 = p(k)
−1 = p∗(k)

−1 = 0, π(s,k)
0 = π

(s,k)
−1 = 1 for k = 1, 2, . . . ,m

Input: Choose r∗
0 ∈ C

N , e.g., r∗
0 = r0

Output: x(k)
n for k = 1, 2, . . . ,m

1: for n = 0, 1, . . ., until convergence do

2: p(s)
n = r(s)

n + β
(s)
n−1 p

(s)
n−1, p∗(s)

n = r∗(s)
n + β

(s)
n−1 p

∗(s)
n−1

3: α
(s)
n = (r∗(s)

n ,r(s)
n )

( p∗(s)
n ,A(s) p(s)

n )

4: x(s)
n+1 = x(s)

n + α
(s)
n p(s)

n
5: {Begin shifted system}
6: Run lines 6–15 of the shifted CG method.
7: {End shifted system}
8: r(s)

n+1 = r(s)
n − α

(s)
n A(s) p(s)

n , r∗(s)
n+1 = r∗(s)

n − αn A(s)H p∗(s)
n

9: β
(s)
n = (r∗(s)

n+1,r
(s)
n+1)

(r∗(s)
n ,r(s)

n )

10: end for

pn := Qn(A) pBiCGn = rn + βn−1( pn−1 − ζn−1A pn−1)

= rn + βn−1

[
pn−1 + ζn−1

αn−1
(tn−1 − rn−1)

]
,

tn := Qn(A)rBiCGn+1 = rn − αn A pn,

rn+1 := Qn+1(A)rBiCGn+1 = tn − ζn Atn,

xn+1 := xn + αn pn + ζn tn,

where rBiCGn+1 and pBiCGn are the BiCG residual vector at n + 1 iteration step and the
BiCG search direction at n iteration step respectively, and the polynomial Qn+1(z)
is defined by

Q0(λ) := 1, (4.32)

Qn+1(λ) := (1 − ζnλ)Qn(λ), n = 0, 1, . . . (4.33)

As for the BiCGSTAB method, ζn is determined so that ‖rn+1‖ is minimized.
Recall that the residual vector of the shifted BiCG method in Sect. 4.4.1 for (A +

σ I )xσ = b is written as

rσ,BiCG
n+1 = ξσ

n+1r
BiCG
n+1 , ξσ

n+1 ∈ C.

Here, from (4.14), the scalar ξσ
n+1 is defined by ξσ

n+1 := (πσ
n+1)

−1 for all n, and thus
we have
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ξσ
n+1 = 1(

1 + βn−1

αn−1
αn + αnσ

)
πσ
n − βn−1

αn−1
αnπ

σ
n−1

= 1(
1 + βn−1

αn−1
αn + αnσ

)
(ξσ

n )−1 − βn−1

αn−1
αn(ξ

σ
n−1)

−1

= ξσ
n ξσ

n−1αn−1

(1 + αnσ) ξσ
n−1αn−1 + αnβn−1(ξ

σ
n−1 − ξσ

n )
, (4.34)

where ξσ−1 = ξσ
0 = 1.

We are now ready to describe the shifted BiCGSTABmethod. The residual vector
of the shifted BiCGSTAB method is defined by

rσ,STAB
n+1 := Qσ

n+1(A)rσ,BiCG
n+1 ,

where Qσ
n+1(λ) are recursively defined as

Qσ
n+1(λ) := [1 − ζ σ

n (λ + σ)
]
Qσ

n (λ), n = 0, 1, . . . (4.35)

with Qσ
0 (λ) := 1. Here, ζ σ

n is determined so that the shifted BiCGSTAB residual and
the BiCGSTAB residual are colinear, i.e.,

rσ,STAB
n+1 = cn rSTABn+1 , cn ∈ C.

To this end, ζ σ
n is determined so that

Qσ
n+1(λ) = τσ

n+1Qn+1(λ), τ σ
n+1 ∈ C. (4.36)

Then, the residual vector of the shifted BiCGSTAB method is defined and written as

rσ,STAB
n+1 : = Qσ

n+1(A)rσ,BiCG
n+1

= τσ
n+1Qn+1(A)ξσ

n+1r
BiCG
n+1

= τσ
n+1ξ

σ
n+1Qn+1(A)rBiCGn+1

= τσ
n+1ξ

σ
n+1r

STAB
n+1 . (4.37)

In what follows, the parameters τσ
n+1, ξ

σ
n+1 in (4.37) are determined. It follows from

(4.33), (4.35), and (4.36) that

τσ
n+1(1 − ζnλ)Qn(λ)︸ ︷︷ ︸

Qσ
n+1(λ)

= [1 − ζ σ
n (λ + σ)

]
τσ
n Qn(λ)︸ ︷︷ ︸
Qσ

n (λ)

. (4.38)

Comparing the coefficients on both sides of (4.38) yields
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ζnτ
σ
n+1 = ζ σ

n τσ
n , τ σ

n+1 = (1 − ζ σ
n σ)τσ

n ,

from which, we obtain

τσ
n+1 = τσ

n

1 + ζnσ
, ζ σ

n = ζn

1 + ζnσ
, (4.39)

where τσ
0 = 1 from the relation (4.36) and Qσ

0 (λ) = Q0(λ) = 1. The shifted
BiCGSTAB iterates for (A + σ I )xσ = b are now given by

pσ
n := Qσ

n (A) pσ,BiCG
n = rσ

n + βσ
n−1

[
pσ
n−1 + ζ σ

n−1

ασ
n−1

(tσn−1 − rσ
n−1)

]

= τσ
n ξσ

n rn + βσ
n−1

[
pσ
n−1 + ζ σ

n−1

ασ
n−1

τσ
n−1(ξ

σ
n t

σ
n−1 − ξσ

n−1rn−1)

]
, (4.40)

tσn := Qσ
n (A)rσ,BiCG

n+1 = τσ
n ξσ

n+1Qn rBiCGn+1 = τσ
n ξσ

n+1 tn, (4.41)

rσ
n+1 := Qσ

n+1(A)rσ,BiCG
n+1 = τσ

n+1ξ
σ
n+1Qn+1rBiCGn+1 = τσ

n+1ξ
σ
n+1r

STAB
n+1 , (4.42)

xσ
n+1 := xσ

n + ασ
n pσ

n + ζ σ
n t

σ
n . (4.43)

From (4.34), (4.39), (4.40)–(4.43), the shifted BiCGSTAB method is obtained, and
the algorithm is written in Algorithm 4.8.

4.4.3 The Shifted GMRES Method

In this subsection, the shifted GMRES method [43] is derived. To this end, we
consider applying the GMRESmethod to the shifted linear systems (A + σ I )x = b.
For simplicity, the initial guess is set to x0 = 0. Then the GMRES method finds an
approximate solution over the following Krylov subspace:

xσ
n ∈ Kn(A + σ I, b). (4.44)

It follows from the shift-invariance property (4.4) that we have Kn(A + σ I, b) =
Kn(A, b). Thus when using the Arnoldi process, the orthonormal basis vectors of
Kn(A + σ I, b) are equivalent to those of Kn(A, b), i.e., Vn in Sect. 1.9.1. Then,
(4.44) and the corresponding residual are written as

xσ
n = Vn yn, yn ∈ C

n
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Algorithm 4.8 The shifted BiCGSTAB method
Input: x0 = 0, p−1 = 0, r0 = b, β−1 = 0
Input: Choose r∗

0 ∈ C
N , e.g., r∗

0 = r0
Input: x(k)

0 = 0, p(k)
0 = b, β(k)

−1 = 0, α(k)
−1 = ξ

(k)
−1 = ξ

(k)
0 = τ

(k)
0 = 1 for k = 1, 2, . . . ,m

Output: x(k)
n

1: for n = 0, 1, . . . do
2: pn = rn + βn−1( pn−1 − ζn−1A pn−1)

3: αn = (r∗
0,rn )

(r∗
0,A pn )

4: tn = rn − αn A pn
5: ζn = (Atn ,tn )

(Atn ,Atn )
6: xn+1 = xn + αn pn + ζn tn
7: rn+1 = tn − ζn Atn
8: βn = αn

ζn
× (r∗

0,rn+1)

(r∗
0,rn )

9: {Begin shifted system}
10: for k = 1, 2, . . . ,m do

11: ξ
(k)
n+1 = ξ

(k)
n ξ

(k)
n−1αn−1

(1+αnσ)ξ
(k)
n−1αn−1+αnβn−1

(
ξ

(k)
n−1−ξ

(k)
n

)

12: α
(k)
n = ξ

(k)
n+1

ξ
(k)
n

αk

13: ζ
(k)
n = ζn

1+ζnσ

14: x(k)
n+1 = x(k)

n + α
(k)
n p(k)

n + ζ
(k)
n t(k)n

15: τ
(k)
n+1 = τ

(k)
n

1+ζnσ

16: β
(k)
n =

(
ξ

(k)
n+1

ξ
(k)
n

)2

βk

17: p(k)
n+1 = τ

(k)
n+1ξ

(k)
n+1rn+1 + β

(k)
n

[
p(k)
n + ζ

(k)
n

α
(k)
n

τ
(k)
n

(
ξ

(k)
n+1 t

(k)
n − ξ

(k)
n rn

)]

18: end for
19: {End shifted system}
20: end for

and

rσ
n = b − (A + σ I )xσ

n

= ‖b‖Vn+1e1 − AVn yn − σVn yn

= ‖b‖Vn+1e1 − Vn+1Hn+1,n yn − σVn+1

[
yn
0

]

= ‖b‖Vn+1e1 − Vn+1Hn+1,n yn − σVn+1

[
In
0	
]
yn

= Vn+1

[
‖b‖e1 −

(
Hn+1,n +

[
σ In
0	
])

yn

]

= Vn+1
(‖b‖e1 − Hσ

n+1,n yn
)
,
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where In is the n × n identity matrix and Hσ
n+1,n is a so-called shifted Hessenberg

matrix whose elements are (Hσ
n+1,n)i, j = (Hn+1,n)i, j for i �= j and (Hσ

n+1,n)i, j =
(Hn+1,n)i, j + σ for i = j . Then similar to (3.63), the residual norm can beminimized
by solving

yσ
n := arg min

y∈Cn
‖βe1 − Hσ

n+1,n y‖.

The above least-squares problems can be efficiently solved by Givens rotations that
are described in Sect. 3.1.3. Using yσ

n , the approximate solution is now given by

xσ
n = Vn yσ

n .

If the coefficient matrix A is Hermitian and σ ∈ R, then the shifted GMRES method
reduces to the shifted MINRES method in Sect. 4.2.3. The algorithm of the shifted
GMRES method is written in Algorithm 4.9.

Algorithm 4.9 The shifted GMRES method
Input: σk (k = 1, 2, . . . ,m)

Output: x(k)
n (k = 1, 2, . . . ,m)

1: g = (‖b‖, 0, . . . , 0)	, v1 = b/‖b‖
2: for n = 1, 2, . . . do
3: (Arnoldi process)
4: t = Avn
5: for i = 1, 2, . . . , n do
6: hi,n = (vi , t)
7: t = t − hi,nvi
8: end for
9: hn+1,n = ‖t‖
10: vn+1 = t/hn+1,n
11: {Begin shifted system}
12: h(k)

i,n = hi,n for i �= n

13: h(k)
n,n = hn,n + σk

14: for k = 1, 2, . . . ,m do
15: {Givens rotations}
16: for i = 1, 2, . . . , n − 1 do

17:

[
h(k)
i,n

h(k)
i+1,n

]
=
[

c(k)
i s(k)

i

−s(k)
i c(k)

i

][
h(k)
i,n

h(k)
i+1,n

]

18: end for

19: c(k)
n = |h(k)

n,n |√
|h(k)

n,n |2+|h(k)
n+1,n |2

20: sn = h(k)
n+1,n

h(k)
n,n

cn

21: h(k)
n,n = c(k)

n h(k)
n,n + s(k)

n h(k)
n+1,n

22: h(k)
n+1,n = 0

23:

[
g(k)
n

g(k)
n+1

]
=
[

c(k)
n s(k)

n

−s(k)
n c(k)

n

][
g(k)
n
0

]

24: (Check convergence)
25: if |g(k)

n+1|/‖b‖ ≤ ε, then

26: x(k)
n = Vn

(
H (k)
n

)−1
g(k)

27: end if
28: end for
29: {End shifted system}
30: end for

The differences between the GMRESmethod and the shifted GMRESmethod are
the initial guess x0 = 0 and line 13 in Algorithm 4.9 which corresponds to producing
Hσ

n+1,n . Note that after Givens rotations Hn becomes the upper triangular matrix, and
thus c(k) := (H (k)

n )−1g in line 26 can easily be obtained by solving H (k)
n c(k) = g.

Asmentioned in Sect. 3.3.5, the GMRESmethod is not practical when the number
of iterations is large, due to growing memory requirement and computational costs.
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Instead, the restarted GMRES method is useful in practice, and was described in
Algorithm 3.17. For the same reason, the shifted GMRES method is not practical
when the number of iterations is large. It is therefore natural to consider the restarted
version for the shifted linear systems. However, if we use the idea of Algorithm 3.17,
then we face a difficulty in that after the restart the initial residual vectors r(i)

0 and r( j)
0

are, in general, not colinear any longer, and thus we cannot share the basis vectors
of Krylov subspaces for solving shifted linear systems.

Frommer and Gräsner [68] nicely circumvented the difficulty. In what follows,
the idea and the corresponding algorithm are described. Let rn be the residual vector
of the GMRES method for Ax = b. Then they consider forcing the residual vector
rσ
n for the shifted system (A + σ I )xσ = b to become collinear with rn , i.e., find the

approximate solution xσ = xσ
0 + Vn yσ

n such that

rσ
n = βn rn.

rn is written as

rn = b − Axn = Vn+1zn+1,

where zn+1 := ‖r0‖e1 − Hn+1,n yn . We now have the following equation:

rσ
n = βn rn ⇔ b − Aσ xσ

n = βnVn+1zn+1

⇔ b − Aσ (xσ
0 + Vn yσ

n ) = βnVn+1zn+1

⇔ β0r0 − AσVn yσ
n = βnVn+1zn+1

⇔ β0r0 − Vn+1H
σ
n+1,n y

σ
n = βnVn+1zn+1

⇔ β0r0 = Vn+1(βn zn+1 + Hσ
n+1,n y

σ
n )

⇔ Vn+1(H
σ
n+1,n y

σ
n + βn zn+1) = β0r0

⇔ Vn+1(H
σ
n+1,n y

σ
n + βn zn+1) = β0‖r0‖Vn+1e1

⇔ Hσ
n+1,n y

σ
n + βn zn+1 = β0‖r0‖e1,

from which βn and yσ
n are determined by solving the following (n + 1) × (n + 1)

linear systems:

[
Hσ

n+1,n zn+1
] [ yσ

n
βn

]
= β0‖r0‖e1. (4.45)

After the restart, the new initial residual vectors r0(= rn), rσ
0 (= rσ

n ) become
collinear. Thus we can use Krylov subspace Kn(A, b) for Ax = b to solve shifted
linear systems (A + σ I )xσ = bσ .

The algorithm of the restarted shifted GMRESmethod is given in Algorithm 4.10.
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Note that from the relation ‖r(k)
n ‖ = ‖β(k)

n rn‖ one can check the convergence of
‖r(k)

n ‖ of Algorithm 4.10 by monitoring |β(k)
n | × ‖rn‖. For further developments of

the (restarted) shifted GMRES method, see [55, 105, 115, 175], and the references
therein.

The full orthogonalization method (FOM) [149] is an extension of the CGmethod
to solving non-Hermitian linear systems. As well as the CG method, the residual
vector rFOMn of the FOM satisfies

rFOMn (∈ Kn+1(A, b)) ⊥ Kn(A, b).

Algorithm 4.10 The restarted shifted GMRES method
Input: σk (k = 1, 2, . . . ,m)

Input: x0 ∈ C
N

Input: Set x(k)
0 ∈ C

N such that r(k)
0 = β

(k)
0 r0, e.g., x0 = x(k)

0 = 0 for all k.

Output: x(k)
n (k = 1, 2, . . . ,m)

1: r0 = b − Ax0, β = ‖r0‖
2: Run the Arnoldi process in Algorithm 1.8 with v1 = r0/β.
3: Compute yn such that ‖βe1 − Hn+1,n yn‖ is minimized.
4: xn = x0 + Vn yn , zn+1 = βe1 − Hn+1,n yn
5: {Shifted systems}
6: for k = 1, 2, . . . ,m do

7: H (k)
n+1,n = Hn+1,n +

[
σk In
0	
]

8: Solve
[
H (k)
n+1,n zn+1

] [ y(k)
n

β
(k)
n

]
= β

(k)
0 βe1.

9: x(k)
n = x(k)

0 + Vm y(k)
m

10: end for
11: if not convergence then
12: Set x0 = xn , x

(k)
0 = x(k)

n , β(k)
0 = β

(k)
n , and go to line 1.

13: end if

When the FOM is applied to shifted linear systems, we have

rσ,FOM
n (∈ Kn+1(A + σ I, b)) ⊥ Kn(A + σ I, b).

Then from the shift invariance property Kn(A + σ I, b) = Kn(A, b), it follows that

rFOMn , rσ,FOM
n ∈ Kn+1(A, b) ∩ Kn(A, b)⊥.

From (4.5), the two residual vectors rFOMn , rσ,FOM
n belong to a one-dimensional

subspace. Thus the residual vectors applied to Ax = b and (A + σ I )xσ = b are
collinear. This implies that we do not need to consider the trick (4.45) for keeping
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collinearity when considering the restart, since the residual vectors are collinear at
each iteration step. For the details of the restarted shifted FOM, see [158]. Further
development of the restarted shifted FOM, see [55, 112], and the references therein.

4.4.4 The Shifted IDR(s) Method

The IDR(s)method in Sect. 3.3.9 is extended to solving shifted linear systems and the
algorithm is referred to as the shifted IDR(s) method [48]. Prior to the derivation of
the shifted IDR(s) method, a variant of the IDR theorem (Theorem 3.4) is described
next.

Corollary 4.1 ([48]) Let r(i)
0 (i = 1, . . . ,m) be collinear to each other, G(i)

0 =
Kn(A + σi I, r

(i)
0 ), S be a subspace of Rn, and define sequences of subspaces G(i)

j as

G(i)
j =

[
I − ω

(i)
j (A + σi I )

]
(G(i)

j−1 ∩ S), ω
(i)
j �= 0, j = 1, 2, . . . ,

then it holds that G(1)
j = G(2)

j = · · · = G(m)
j .

Corollary 4.1 implies that if we consider solving the following linear system (seed
system) and shifted linear system:

Ax = b, (A + σ I )xσ = b,

then the collinear approach, as described in the shifted BiCGSTAB method, r i =
πσ
i r

σ
i is promising, since r i = 0 and πσ

i �= 0 lead to rσ
i = 0. Here r i is the i th

residual vector of the original linear system (seed system) Ax = b and rσ
i is the i th

residual vector of the shifted linear system (A + σ I )xσ = b.We nowdescribe how to
compute rσ

k+1 from the information rk+1 when r i = πσ
i r

σ
i (π

σ
i ∈ C, i = 0, 1, . . . , k).

From the initial step of the IDR(s) method in Algorithm 3.24, the initial residual
vectors of the seed system are given as

rk+1 = rk − ωk Ark, (k = 0, . . . , s − 1). (4.46)

Similar to (4.46), the initial residual vectors of the shifted system are as follows:

rσ
k+1 = rσ

k − ωσ
k (A + σ I )rσ

k = (1 − σωσ
k )rσ

k − ωσ
k Ar

σ
k , (4.47)

where the parameters ωσ
k ∈ C are unknown.

Substituting the relations r i = πσ
i r

σ
i (i = 0, . . . , k) into (4.46) yields

rσ
k+1 = πσ

k

πσ
k+1

rσ
k − ωk

πσ
k

πσ
k+1

Arσ
k . (4.48)
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From the relations r i = πσ
i r

σ
i , (4.46) and residual polynomial Ri (0) = 1, r i =

Ri (A)r0, it follows that {
πσ
k = Rk(−σ),

πσ
k+1 = πσ

k + ωkσπσ
k .

Thus, parameter πσ
k+1 in (4.48) can be obtained when πσ

k is computed.
Comparing the coefficients of (4.47) and (4.48), we obtainωσ

k = ωkπ
σ
k /πσ

k+1. The
corresponding approximate solution of the shifted system is written as

xσ
k+1 = xσ

k + ωσ
k r

σ
k . (4.49)

Next, we describe the derivation process of rσ
k+1 by using rk+1 in the main step

of the IDR(s) method in Algorithm 3.24. From (3.110) and (3.111), vk and rk+1 of
the IDR(s) method are written as

vk = rk −
s∑

l=1

γl�rk−l = (1 − γ1)rk +
s−1∑
l=1

(γl − γl+1)vrk−l + γs rk−s, (4.50)

rk+1 = (I − ω j A)vk . (4.51)

It follows from (4.50) and (4.51) that we obtain

rk+1 = (I − ω j A)

(
(1 − γ1)rk +

s−1∑
l=1

(γl − γl+1)rk−l + γs rk−s

)
. (4.52)

Residual vectors of the shifted system in the same form of (4.52) are defined as
follows:

rσk+1 =
(
I − ωσ

j (A + σ I )
)⎛⎝(1 − γ σ

1 )rσk +
s−1∑
l=1

(γ σ
l − γ σ

l+1)r
σ
k−l + γ σ

s rσk−s

⎞
⎠

=
(
I −

ωσ
j

1 − σωσ
j
A

)
(1 − σωσ

j )

⎛
⎝(1 − γ σ

1 )rσk +
s−1∑
l=1

(γ σ
l − γ σ

l+1)r
σ
k−l + γ σ

s rσk−s

⎞
⎠ ,

(4.53)

where parameters ωσ
j , γ

σ
1 , . . . , γ σ

s ∈ C are unknown. Substituting r i = πσ
i r

σ
i (i =

0, 1, . . . , k + 1) into (4.52) yields

rσ
k+1 = (I − ω j A)

(
(1 − γ1)

πσ
k

πσ
k+1

rσ
k +

s−1∑
l=1

(γl − γl+1)
πσ
k−l

πσ
k+1

rσ
k−l + γs

πσ
k−s

πσ
k+1

rσ
k−s

)
.

(4.54)



4.4 Shifted Non-Hermitian Linear Systems 187

It follows from (4.52), r i = πσ
i r

σ
i (i = 0, 1, . . . , k + 1), and Ri (0) = 1 that we

obtain πσ
k+1 as follows:

πσ
k+1 = (1 + ω jσ)

(
(1 − γ1)π

σ
k +

s−1∑
l=1

(γl − γl+1)π
σ
k−l + γsπ

σ
k−s

)
. (4.55)

Comparing the corresponding coefficients of (4.53) and (4.54) gives

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ωσ
j

1−σωσ
j

= ω j ,

1 − γ σ
1 = 1−γ1

1−σωσ
j
× πσ

k
πσ
k+1

,

γ σ
l − γ σ

l+1 = γl−γl+1

1−σωσ
j

× πσ
k−l

πσ
k+1

,

γ σ
s = γs

1−σωσ
j
× πσ

k−s

πσ
k+1

(4.56)

for l = 1, 2, . . . , s − 1. From (4.56), parameters ωσ
k , γ σ

1 , . . . , γ σ
s are determined as

⎧⎪⎪⎨
⎪⎪⎩

ωσ
j = ω j

1+σω j
,

γ σ
1 = 1 − (1 − γ1)(1 + σω j )

πσ
k

πσ
k+1

,

γ σ
l+1 = γ σ

l − (γl − γl+1)(1 + σω j )
πσ
k−l

πσ
k+1

(4.57)

for l = 1, 2, . . . , s − 1.
Using the relation rσ

k+1 = b − (A + σ I )xσ
k+1, the approximate solutions xσ

k+1 can
be derived from (4.53) as

xσ
k+1 = xσ

k + ωσ
j v

σ
k −

s∑
l=1

γ σ
l �xσ

k−l, (4.58)

where vσ
k = rσ

k −∑s
l=1 γ σ

l �rσ
k−l . For practical computation, one can express vσ

k by
the residual vectors rk−s, . . . , rk of the seed system.

All the steps above give the shifted IDR(s) method as described in Algorithm
4.11.
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Algorithm 4.11 The shifted IDR(s) method (Seed system: (A + σ f I )x = b)

Input: x(i)
0 = 0, r0 = b, P ∈ C

n×s , π( f,i)
0 = 1, σi for i = 1, . . . ,m

Output: x(i) for i = 1, . . . ,m
1: for k = 0, 1, . . . , s − 1 do
2: v = (A + σ f I )rk , ω = vHrk/vHv
3: �X (:, k + 1) = ωrk , �R(:, k + 1) = −ωv

4: x( f )
k+1 = x( f )

k + �X (:, k + 1), rk+1 = rk + �R(:, k + 1)
5: (Iteration for shifted system)
6: for i(�= f ) = 1, 2, . . . ,m do
7: if ‖r(i)

k ‖ > ε‖b‖ then

8: π
( f,i)
k+1 = π

( f,i)
k + ω(σi − σ f )π

( f,i)
k , ω( f,i) = ω

1+ω(σi−σ f )

9: x(i)
k+1 = x(i)

k + ω( f,i)

π
( f,i)
k

rk

10: end if
11: end for
12: end for
13: j = 1, k = s, M = PH�R, h = PHrk
14: while stopping criterion is not satisfied do
15: for l = 0, 1, . . . , s do
16: Solve c from Mc = h
17: q = −�Rc, v = rk + q
18: if l = 0 then
19: t = (A + σ f I )v, ω = tHv/tH t
20: �R(:, j) = q − ωt , �X (:, j) = −�X c+ ωv

21: else
22: �X (:, j) = −�X c+ ωv, �R(:, j) = −(A + σ f I )�X (:, j)
23: end if
24: rk+1 = rk + �R(:, j), x( f )

k+1 = x( f )
k + �X (:, j)

25: δm = PH�R(:, j), M(:, j) = δm, h = h + δm
26: (Iteration for shifted system)
27: γ1 = c j−1, γ2 = c j−2, . . . , γ j−1 = c1
28: γ j = cs , γ j+2 = cs−1, . . . , γs = c j
29: for i(�= f ) = 1, 2, . . . ,m do
30: if ‖r(i)

k ‖ > ε‖b‖ then
31: αi = 1 + ω(σi − σ f )

32: π
( f,i)
k+1 = αi

(
(1 − γ1)π

( f,i)
k +

s−1∑
g=1

(γg − γg+1)π
( f,i)
k−g + γsπ

( f,i)
k−s

)

33: γ
( f,i)
1 = 1 − αi (1 − γ1)π

( f,i)
k /π

( f,i)
k+1

34: γ
( f,i)
g+1 = γ

( f,i)
g − (γg − γg+1)αiπ

( f,i)
k−g /π

( f,i)
k+1 (g = 1, . . . , s − 1)

35: x(i)
k+1 = x(i)

k + ωv/π
( f,i)
k+1 −

s∑
g=1

γ
( f,i)
g (x(i)

k+1−g − x(i)
k−g)

36: end if
37: end for
38: k = k + 1, j = j + 1
39: j = ( j − 1)%s + 1 (%: modulo operation, i.e. a%n = r , where a = mn + r .)
40: end for
41: end while



Chapter 5
Applications to Matrix Functions

The square root of a positive number received attention in the ancient world. Indeed,
an approximation to

√
2 is found in the Yale Babylonian Collection YBC 7289 clay

tablet, which was created between 1800 BC and 1600 BC.
On the other hand, the notion of matrix functions such as matrix square root is

relatively new: the notion of the square root of a matrix was found by Cayley in 1858
[33], and a definition of matrix functions was given by Sylvester in 1883 [180].

Nowadays,matrix functions arise inmany scientific fields such as particle physics,
quantum information, and control theory, thus efficient numerical algorithms have
been developed by many researchers.

In this chapter, the definition of matrix functions is described, and then numerical
algorithms of matrix functions are described such as matrix square root, matrix pth
root, matrix exponential, matrix logarithm, and matrix trigonometric function. We
will see that Krylov subspace methods or shifted Krylov subspace methods can be
useful for computing specific elements of the largematrix functions. The best-known
book on matrix functions is Higham’s book [97]. In what follows, the explanations
of matrix functions are based on [36, 97, 154], and the size of matrix A is n-by-n.

5.1 Jordan Canonical Form

Among some equivalent definitions ofmatrix functions, we adopt the definition using
Jordan canonical form. In this section, Jordan canonical form is explained.

Definition 5.1 (Jordan block) The followingm × m square matrix is referred to as
a Jordan block:

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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Jk =

⎡
⎢⎢⎢⎢⎣

λk 1

λk
. . .

. . . 1
λk

⎤
⎥⎥⎥⎥⎦

∈ C
m×m,

where λk ∈ C. Since Jk is the upper triangular matrix, all the eigenvalues of Jk are
the same as the diagonal elements, i.e., λk .

Definition 5.2 (Jordanmatrix)The direct sumof Jordan blocks J1 ∈ C
m1×m1 , J2 ∈

C
m2×m2 , . . . , Jp ∈ C

mp×mp is given by

J = diag(J1, J2, . . . , Jp) =

⎡
⎢⎢⎢⎣

J1
J2

. . .

Jp

⎤
⎥⎥⎥⎦ ∈ C

n×n . (5.1)

The matrix is referred to as a Jordan matrix. Here, n = m1 + m2 + · · · + mp,
and the symbol diag(J1, J2, . . . , Jp) denotes a matrix whose diagonal blocks are
J1, J2, . . . , Jp.

Example 1 Let p = 3, m1 = 2, m2 = 1, m3 = 3, λ1 = 1, λ2 = λ3 = 2. Then n =
m1 + m2 + m3 = 6, and we have the following 6 × 6 Jordan matrix:

J = diag(J1, J2, J3) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 1 0
0 0 0 0 2 1
0 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Theorem 5.1 (Jordan canonical form) A square matrix A ∈ C
n×n is similar to a

Jordan matrix, i.e., for any square matrix A, there exists a nonsingular matrix Z
such that

Z−1AZ = J.

The form A = Z J Z−1 is referred to as the Jordan canonical form of A.

Example 2 The following matrix is similar to the Jordan matrix J in Example 1.
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A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 1 −1 −2 −2 −1
1 2 2 1 2 1

−3 −3 −4 −3 −5 −3
4 0 3 5 4 2
4 4 7 4 8 4

−3 −2 −5 −3 −5 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Indeed, we see that Z−1AZ = J , where

Z =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 0
0 1 −1 0 1 −1
0 −1 2 0 −2 1

−1 0 0 2 0 −1
0 1 −2 0 3 −2
0 −1 1 −1 −2 4

⎤
⎥⎥⎥⎥⎥⎥⎦

, Z−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 1 1 2 1 1
1 3 2 1 1 1
1 2 3 1 2 1
2 1 1 2 1 1
1 1 2 1 2 1
1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Among several definitions of matrix functions, a definition using Jordan canonical
form in Theorem 5.1 is adopted in the next section.

5.2 Definition and Properties of Matrix Functions

The set of all the eigenvalues of matrix A is called the spectrum of A. The definition
of a function on the spectrum of a matrix is given as follows.

Definition 5.3 (function on the spectrum of a matrix) Let λ1, λ2, . . . , λs be dis-
tinct eigenvalues of matrix A, and let ni be the size of a Jordan block with respect to
eigenvalue λi of A. If there exist the following values:

f (λi ),
d

dx
f (λi ), . . . ,

dni−1

dxni−1
f (λi ) (i = 1, 2, . . . , s),

then f (x) is called a function on the spectrum of matrix A.

In what follows, we use the symbol f (i)(x) instead of di

dxi f (x).

Example 3 Let A be matrix J in Example 1. Then the number of distinct eigenval-
ues is s = 2 since λ1 = λ2 = 1 and λ3 = 2. The maximum sizes of Jordan blocks
corresponding to λ1 = λ2 = 1 and λ3 = 2 are n1 = 2 and n2 = 3. The spectrum of
matrix A is {λ1, λ3}.We now give an example of a function on the spectrum ofmatrix
A. Let f (x) = x−1. Then f (x) is a function on the spectrum of matrix A, because
f (1)(x) = −x−2, f (2)(x) = 2x−3 and there exist the values of the functions on the
spectrum as follows: f (λ1) = 1, f (1)(λ1) = −1, f (λ3) = 1/2, f (1)(λ3) = −1/4,
and f (2)(λ3) = 1/4.

Amatrix function of A can be defined by using Jordan canonical form in Theorem
5.1 and a function on the spectrum of a matrix in Definition 5.3 as follows:
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Definition 5.4 (Matrix function) Let f (x) be a function on the spectrum of matrix
A ∈ C

n×n and A = Z J Z−1 be Jordan canonical form of A. Then, matrix function
f (A) = f (Z J Z−1) is defined as follows:

f (A) = Zdiag( f (J1), f (J2), . . . , f (Jp))Z
−1.

Here f (Jk) is the following mk × mk matrix:

f (Jk) =

⎡
⎢⎢⎢⎢⎣

f (λk)
f (1)(λk )

1! · · · f (mk−1)(λk )

(mk−1)!
f (λk)

. . .
...

. . . f (1)(λk )

1!
f (λk)

⎤
⎥⎥⎥⎥⎦

∈ C
mk×mk ,

and mk × mk is the size of Jordan block corresponding to eigenvalue λk .
It follows from Definition 5.4 that when λk is an eigenvalue of matrix A, the

eigenvalue of matrix function f (A) is f (λk).
In particular, when matrix A is diagonalizable, the Jordan blocks are diag-

onal matrices Dk for k = 1, 2, . . . , p. Then it follows from f (A) = Zdiag(D1,

D2, . . . , Dp)Z−1 that f (A) and A have the same eigenvectors.

Example 4 Let A be matrix J in Example 1 and let f (x) = x−1. Jordan canonical
form of A is given by A = Z J Z−1, where Z is the identity matrix. Then f (A) =
f (Z J Z−1) = f (J ) and thus from λ1 = λ2 = 1, λ3 = 2 and Definition 5.4, we have

f (A) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f (λ1)
f (1)(λ1)

1! 0 0 0 0
0 f (λ1) 0 0 0 0
0 0 f (λ2) 0 0 0

0 0 0 f (λ3)
f (1)(λ3)

1!
f (2)(λ3)

2!
0 0 0 0 f (λ3)

f (1)(λ3)

1!
0 0 0 0 0 f (λ3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2−1 −4−1 8−1

0 0 0 0 2−1 −4−1

0 0 0 0 0 2−1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

It is easy to see that f (A) is the inverse of matrix A, i.e., A−1 was derived from the
definition of the matrix function f (A).
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Example 5 We consider other examples of matrix functions of A. Let

A =
⎡
⎣

−1 6 −9
4 −4 12
3 −5 11

⎤
⎦ .

Then the Jordan canonical form is given by

A = Z J Z−1,

where

Z−1AZ = J =
⎡
⎣
2 1 0
0 2 1
0 0 2

⎤
⎦

and

Z =
⎡
⎣

3 0 −1
0 2 1

−1 1 1

⎤
⎦ , Z−1 =

⎡
⎣

1 −1 2
−1 2 −3
2 −3 6

⎤
⎦ .

Using these matrices, A1/2 corresponding to f (x) = x1/2 is given by

A1/2 = Z

⎡
⎢⎣

√
2 1

2
√
2

− 1
16

√
2

0
√
2 1

2
√
2

0 0
√
2

⎤
⎥⎦ Z−1.

It is easy to see that A1/2A1/2 = A.
The last example is a matrix exponential function of A. The matrix exponential

function eA corresponding to f (x) = ex is given by

eA = Z

⎡
⎣
e2 e2 e2

2
0 e2 e2

0 0 e2

⎤
⎦ Z−1.

Notice that computing Jordan canonical form is numerically unstable. These
examples, therefore, are not for practical computations.

We enumerate some properties of matrix functions. For details see, e.g., [97].

Theorem 5.2 (Properties of matrix functions) Let f (x) be a function on the spec-
trum of matrix A. Then:

(1) A f (A) = f (A)A.
(2) X A = AX ⇒ X f (A) = f (A)X.



194 5 Applications to Matrix Functions

(3) f (A�) = f (A)�.
(4) f (X AX−1) = X f (A)X−1.
(5) If λk is an eivenvalue of A, then f (λk) is an eigenvalue of f (A).

Let f (x) and g(x) be functions on the spectrum of matrix A. Then:

(6) If ( f + g)(x) := f (x) + g(x), then ( f + g)(A) = f (A) + g(A).
(7) If ( f g)(x) := f (x)g(x), then ( f g)(A) = f (A)g(A).

Using Definition 5.3, it follows that

(8) f (A) = g(A) i f and only i f f (λi ) = g(λi ), . . . , f (ni−1)(λi ) = g(ni−1)(λi )

(i = 1, 2, . . . , s).

From Definition 5.4, we can define A1/n , eA, sin A, cos A, log A that correspond
to elementary functions x1/n , ex , sin x , cos x , log x . However, since numerically
computing the Jordan canonical form is quite unstable, it is not recommended to
computematrix functions via the Jordan canonical form.Therefore,many researchers
have devised numerically stable algorithms for matrix functions.

In what follows, some numerical algorithms are described for computing matrix
functions. We will see that the notion of a Krylov subspace is useful for computing
some of the matrix functions.

5.3 Matrix Square Root and Matrix pth Root

5.3.1 Matrix Square Root

Square roots of real number a > 0 are a1/2 and −a1/2, and the principal square root
is a1/2. The notion of the principal square root is extended to complex numbers as
follows: let z be a complex number, and for z = reiθ (r > 0,−π < θ < π), we
define z1/2 = r1/2eiθ/2. This is called the principal square root of z.

Now we consider the case of matrix square roots and define the principal square
root of A. X is called a square root of A if X2 = A. The square roots of a matrix
differ from square roots of complex or real numbers in that there may be infinitely
many square roots. For example, let

S1 =
[
1 0
0 1

]
, S2 =

[−1 0
0 −1

]
, S(θ) =

[
cos θ sin θ

sin θ − cos θ

]
.

Then S21 = S22 = S(θ)2 = I for any θ . These are square roots of the identity
matrix. Thus this is an example for which there are infinitely many square roots.

While there are infinitely many square roots, there is a unique square root whose
eigenvalues lie in the right half-plane of the complex plane. The unique square root
is called the principal matrix square root. In the above example, S1 is the principal
matrix square root of the identity matrix I .

The next theorem presents the notion of the principal matrix square root.
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Theorem 5.3 (principal matrix square root) Let A be a complex square matrix
whose eigenvalues (λk �= 0) do not lie in the negative real axis of the complex plane.
Then there exists a unique square root of A such that all the eigenvalues of the square
root lie in the right half-plane of the complex plane.

In Theorem 5.3, the uniquematrix square root is referred to as the principal matrix
square root of A, and denoted by A1/2.

In what follows, numerical algorithms, a direct method, and an iterative method
are described for the (principal) matrix square root.

First, a well-known direct method based on the Schur decomposition is described.
The Schur decomposition is to decompose matrix A as QT QH, where T is an
upper triangular matrix, Q is a unitary matrix. If we can compute U := T 1/2, then
(QUQH)2 = QU 2QH = QT QH = A. Thus the (principal) matrix square root is
given by A1/2 = QUQH. Since U is also an upper tridiagonal matrix, U can be
obtained by sequentially solvingU 2 = T . The resulting algorithm is shown in Algo-
rithm 5.1. Here (i, j) element of matrix T (and U ) is denoted by ti j (and ui j ).

Algorithm 5.1 (Direct method) The Schur method for X = A1/2

1: Compute the Schur decomposition of A, i.e., A = QT QH.
2: for i = 1, 2, . . . , n do
3: uii = t1/2i i
4: end for
5: for j = 2, 3, . . . , n do
6: for i = j − 1, j − 2, . . . , 1 do
7: ui j = 1

uii+u j j
(ti j − ∑ j−1

k=i+1 uikuk j )

8: end for
9: end for
10: X = QUQH

Assume that matrix A satisfies the condition in Theorem 5.3. Then from line 3 in
Algorithm 5.1, we see that uii = t1/2i i (i = 1, 2, . . . , n) and uii is the principal square
root of complex number tii . From the assumption of matrix A, all the uii ’s lie in the
right half-plane of the complex plane. Thus uii + u j j �= 0, which is the denominator
in line 7 in Algorithm 5.1. Thus Algorithm 5.1 never suffers from breakdown.

Next, some iterativemethods are described. The iterativemethods can be regarded
as Newton’s method (Newton–Raphson method) for X2 = A. We now give a well-
known derivation of Newton’s method for matrix square roots.

Let Xk be an approximate solution of A1/2 and let E be the corresponding error
matrix such that Xk + E = A1/2. If we can obtain E so that (Xk + E)2 = (A1/2)2 ⇔
X2
k + EXk + XkE + E2 = A, then we have Xk + E = A1/2. But it may be more

difficult to solve the original problem since there are additional terms EXk + XkE .
On the other hand, from the assumption that Xk ≈ A1/2, we can expect that E ≈ O
(zeromatrix). Thus instead of considering the correction equation above, we consider
obtaining Ek from X2

k + Ek Xk + XkEk = A, which is a Sylvester equation in (2.59).
Then we have the following Newton’s method:
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1. Set an initial guess X0,
2. For k = 1, 2, . . . , until convergence,
3. Solve Ek Xk + XkEk = A − X2

k to obtain Ek ,
4. Xk+1 = Xk + Ek .
5. End

If we choose an initial guess X0 such that AX0 = X0A, then the Sylvester equation
is simplified. By the choice, it can be shown that Ek Xk = XkEk . Then from Ek =
(1/2)X−1

k (A − X2
k ) = (1/2)(X−1

k A − Xk), it follows that Xk + Ek = (1/2)(Xk +
X−1
k A). We now describe Newton’s method for the matrix square root in Algo-

rithm 5.2.
For the details of the above derivation and a derivation based on Fréchet derivative,

see [96].

Algorithm 5.2 (Iterative method) Newton’s method for X = A1/2

1: Choose X0 such that AX0 = X0A, e.g., X0 = I .
2: for k = 0, 1, . . . , until convergence do
3: Xk+1 = 1

2 (Xk + X−1
k A)

4: end for

Let A be a matrix satisfying the condition in Theorem 5.3. If all the eigenvalues
of A1/2X0 lie in the right-half plane of the complex plane, then Xk quadratically
converges to the matrix square root A1/2 [97, p.140].

In Algorithm 5.2, there is a restriction for the choice of an initial guess, i.e.,
AX0 = X0A. The usual choice is X0 = A or X0 = I . Sincematrix polynomial c0 I +
c1A + c2A2 + · · · + cn An and A commute, it is natural to choose X0(= c0 I + c1A +
c2A2 + · · · + cn An) such that the norm of the residual ‖X2

0 − A‖ is minimized. An
approximateminimization using aGröbner basis and a low degreematrix polynomial
is proposed in [132].

A numerically stable variant of Algorithm 5.2 is the incremental Newton (IN)
iteration [101] that is described in Algorithm 5.3.

Algorithm 5.3 (Iterative method) The IN method for X = A1/2

1: X0 = A; E0 = 1
2 (I − A)

2: for k = 0, 1, . . . , until convergence do
3: Xk+1 = Xk + Ek
4: Ek+1 = − 1

2 Ek X
−1
k+1Ek

5: end for

A feature of Algorithm 5.3 is that matrix A does not appear in the main iteration,
i.e., line 3. Though Algorithm 5.3 is more numerically stable than Algorithm 5.2,
additional matrix–matrix multiplications are required. The computational cost of
Algorithm 5.3 is about 7/4 times higher than that of Algorithm 5.2 per iteration step.
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5.3.2 Matrix pth Root

In this section, direct and iterative methods are described for solving matrix pth
roots.

A matrix X such that X p = A is called a matrix pth root. As described in
Sect. 5.3.1, there may be infinitely many matrix square roots. Among them, there
is the principal matrix square root that is characterized in Theorem 5.3. Similarly,
the notion of the principal matrix pth root is given as follows:

Theorem 5.4 (principal matrix pth root) Let A be a complex square matrix whose
eigenvalues (λk �= 0) do not lie in the negative real axis of the complex plane. Then
there exists a unique pth root of A such that all the eigenvalues of the pth root lie in
sector area {z ∈ C : −π/p < arg(z) < π/p}.

The unique matrix pth root is called the principal matrix pth root of A and is
denoted by A1/p. If p = 2, then Theorem 5.4 is equivalent to Theorem 5.3.

In what follows, direct methods for A1/p are described. The Schur method is a
direct method based on the Schur decomposition. After the Schur decomposition of
matrix A (A = QT QH), it follows that A1/p = QT 1/pQH. For obtaining T 1/p, let
U := T 1/p. Since U is an upper tridiagonal matrix, U p is also an upper tridiagonal
matrix. Then, all we have to do is to solve U p = T . The resulting algorithm is
summarized in Algorithm 5.4.

Algorithm 5.4 (Direct method) Schur method for X = A1/p

1: Compute Schur decomposition of A = QT QH.
2: for j = 1, 2, . . . , n do
3: u j j = t1/pj j , v(1)

j j = 1, v(k+2)
j j = uk+1

j j (k = 0, 1, . . . , p − 2)
4: for i = j − 1, j − 2, . . . , 1 do
5: for k = 0, 1, . . . , p − 2 do
6: wk+2 = ∑ j−1

�=i+1 ui�v
(k+2)
�j

7: end for
8: ui j = (ti j − ∑p−2

k=0 v
(p−k−1)
i i wk+2)/(

∑p−1
k=0 v

(p−k)
i i v

(k+1)
j j )

9: for k = 0, 1, . . . , p − 2 do
10: v

(k+2)
i j = ∑k

�=0 v
(k−�+1)
i i ui jv

(�+1)
j j + ∑k−1

�=0 v
(k−�)
i i w�+2

11: end for
12: end for
13: end for
14: X = QUQH

As for iterative methods, Algorithms 5.5 and 5.6 are known as extensions of
Algorithms 5.2 and 5.3, respectively.
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Algorithm 5.5 (Iterative method) Newton’s method for A1/p

1: Set p, and choose X0 such that AX0 = X0A, e.g., X0 = A.
2: for k = 0, 1, . . . , until convergence do
3: Xk+1 = 1

p

[
(p − 1)Xk + X1−p

k A
]

4: end for

The computational cost of Algorithm 5.6 is higher than Algorithm 5.5. On the
other hand, it is known in [102] that Algorithm 5.6 has numerical stability. For other
useful variants of Newton’s method, see, e.g., [102, Eqs. (3.6), (3.9)]. A cost-efficient
variant of Algorithm 5.6 having numerical stability is found in [187].

Algorithm 5.6 (Iterative method) The incremental Newton’s method for A1/p

1: Set p, X0 = I , E0 = 1
p (A − I ).

2: for k = 0, 1, . . . , until convergence do
3: Xk+1 = Xk + Ek , Fk = Xk X

−1
k+1

4: Ek+1 = − 1
p Ek

[
X−1
k+1 I + 2X−1

k+1Fk + · · · + (p − 1)X−1
k+1F

p−2
k

]
Ek

5: end for

5.4 Matrix Exponential Function

As seen in Definition 5.4, the matrix exponential function is defined by the Jordan
canonical form. On the other hand, the following equivalent definition is useful for
computing the matrix function:

eA := I + A + 1

2! A
2 + 1

3! A
3 + · · · . (5.2)

The series converges for any square matrix A ∈ C
n×n . In this section, numerical

algorithms for matrix exponential functions are described.
Fundamental properties of matrix functions are summarized in Theorem 5.5.

These properties are easily proved from the definition in (5.2)

Theorem 5.5 (Properties of matrix exponential functions) For A, B ∈ C
n×n:

(1) eO = I , where O is the zero matrix;
(2) eAeB = eA+B if AB = BA;
(3) eAe−A = I , (eA)−1 = e−A;
(4) eX AX−1 = XeAX−1, where X is a nonsingular matrix;

(5) eA
H = (eA)H.

From (5) in Theorem 5.5, matrix exponential function eA is Hermitian if A is
Hermitian. From (3) and (5) in Theorem 5.5, matrix exponential function eA is
unitary, i.e., (eA)HeA = e−AeA = I if A is skew-Hermitian (AH = −A).
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From 2) in Theorem 5.5 with A = aC and B = bC for scalar values a and b, we
have eaCebC = e(a+b)C . Here, if a = 1 and b = −1, then we have eCe−C = e0C =
eO = I that corresponds to 3) in Theorem 5.5.

5.4.1 Numerical Algorithms for Matrix Exponential
Functions

One of the simplest ways to approximately compute matrix exponential functions
is to truncate the series in (5.2), i.e., I + A + 1

2! A
2 + 1

3! A
3 + · · · + 1

m! A
m . If all the

eigenvalues of matrix A are close to zero, then the truncation error may be small for
small n. The above approach is, however, inefficient for a matrix A with no such
distribution of the eigenvalues of A.

A better and simple way to compute matrix exponential functions is to consider
eA/s instead of eA. We see that (eA/s)s = eA for s ≥ 1, and the all eigenvalues of A/s
are s times smaller than the eigenvalues of A. Then truncating the following series:

eA/s = I + 1

1!s A + 1

2!s2 A
2 + 1

3!s3 A
3 + · · · (5.3)

yields

Fr,s = I + 1

1!s A + 1

2!s2 A
2 + 1

3!s3 A
3 + · · · + 1

r !sr A
r , (5.4)

which is an approximation to (Fr,s)s ≈ eA. Then, the following property holds:1

Theorem 5.6 ([179]) Let A ∈ C
n×n and Fr,s be the truncation given in (5.4). Then

‖eA − (Fr,s)
s‖ ≤ ‖A‖r+1e‖A‖

sr (r + 1)! , (5.5)

where ‖ · ‖ is any matrix norm that is submultiplicative.2

From the right-hand side of Theorem 5.6, The truncation error can be estimated
by computing ‖A‖ or its upper bound. For example, we consider the case s = 2m .
Assume that ‖A‖ = 10. Then if we use r = 8, m = 9, s = 2m , the right-hand side
of (5.5) is about 1.29 × 10−14, which means that it is possible to determine s and r
such that the truncation error is less than a given tolerance, if ‖A‖ is estimated.When
‖A‖ is a Frobenius norm, then it is easy to compute the norm by the definition of a
Frobenius norm. When ‖A‖ is a matrix 2-norm, the maximum singular value of A is
needed, which can also be easily estimated by the Golub–Kahan bidiagonalization
process (Algorithm 3.29).

1 In [179], Theorem 5.6 is stated on Banach algebra, which is a more general result.
2 See (Nm4) in Section 1.1.2 for the term “submultiplicative”.



200 5 Applications to Matrix Functions

A more cost-efficient method is as follows: instead of computing (5.4), we use
the Padé approximant to eA/s and compute sth power of the approximant. The Padé
approximant Rp,q(A) to matrix exponential function eA is given below:

Rp,q(A) = [Dp,q(A)]−1Np,q(A), (5.6)

where

Np,q(A) =
p∑

j=0

n j A
j , n j = (p + q − j)!

(p + q)! × p!
j !(p − j)! ,

Dp,q(A) =
q∑
j=0

d j (−A) j , d j = (p + q − j)!
(p + q)! × q!

j !(q − j)! .

When approximating the matrix exponential, it is recommended to use the diago-
nal Padé approximant, i.e., p = q. From eA = [eA/2m ]2m ≈ [Rq,q(A/2m)]2m , we need
to choose two parameters q and m. If ‖A‖/2m ≤ 1/2, then

[Rq,q(A/2m)]2m = eA+E ,
‖E‖
‖A‖ ≤ 8

[‖A‖
2m

]2q
(q!)2

(2q)!(2q + 1)! .

For the details, see [133, p.12]. The inequality leads to optimum parameters q
and m such that q + m is minimized under the condition that the truncation error
holds ‖E‖/‖A‖ ≤ ε for a given tolerance ε. The optimum parameters for a tolerance
ε = 10−15 with respect to ‖A‖ are given in Table5.1. For related studies, see [8, 98].

If Schur decomposition A = QT QH is computed, then it follows from (5.2) that

eA = eQT QH = QeT QH. Thus all we have to do is to compute eT using (diagonal)
Padé approximant.

In particular,when A isHermitian,T becomes adiagonalmatrix.Letλ1, λ2, . . . , λn

be the diagonal elements of T . Then the matrix exponential function can be com-
puted by

eA = Q

⎡
⎢⎣
eλ1

. . .

eλn

⎤
⎥⎦ QH. (5.7)

Further, if A is diagonalizable, i.e., A = XDX−1 for a nonsingular matrix X and
a diagonal matrix D, then we have eA = XeDX−1, where eD is the same form as
in (5.7). On the other hand, if the condition number X is high, this approach can be
numerically unstable.

Table 5.1 Optimum parameters q and m in Rq,q (A/2m) satisfying the error tolerance ε = 10−15.

‖A‖ 10−3 10−2 10−1 1 10 102 103 104 105 106

q 3 3 4 6 6 6 6 6 6 6

m 0 0 0 1 5 8 11 15 18 21
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5.4.2 Multiplication of a Matrix Exponential Function
and a Vector

We consider the following linear ordinary differential equation:

dx(t)

dt
= Ax(t) + f (t), x(0) = x0, (5.8)

where A ∈ C
n×n , x, f ∈ C

n , t ∈ R. The solution can be given by using matrix expo-
nential functions as follows:

x(t) = et Ax0 +
∫ t

0
e(t−τ)A f (τ ) dτ. (5.9)

We see that in (5.9) there are multiplications of matrix exponential functions and
vectors. In particular, if f (t) = 0, then the solution is written as x(t) = et Ax0. This
explicit form of the solution means that we know the solution at an arbitrary time t
if the multiplications are obtained.

Ifmatrix exponential functions have already been computed, then all we have to do
is to compute the matrix–vector multiplication whose computational cost is of order
n2,where n is amatrix of size n × n. On the other hand, computing the cost of amatrix
exponential function may be of order n3 even if matrix A is sparse. Thus computing
matrix exponential functions is inefficient, when it comes to computing the solution
of (5.8). Note that the solution only requires the result of the multiplication of a
matrix exponential functions and a vector. In such a case, an approximation to the
multiplication using Krylov subspace is useful, which is described below.

Since matrix exponential function et A is defined by the series (5.2), it is natural to
usematrix polynomials pm(A) of degreem to approximate et A. Themultiplication of
amatrix polynomial pm(A) and avector belongs toKrylov subspaceKm(A, x0). Thus
the optimal approximation is given by solving the following least-squares problem:

min
xm∈Km (A,x0)

‖et Ax0 − xm‖. (5.10)

Let Vm be a matrix whose columns are orthonormalized basis vectors of Km

(A, x0). Then, any vector x ∈ Km(A, x0) can bewritten as x = Vm y, where y ∈ C
m .

Thus (5.10) is equivalent to

min
y∈Cm

‖et Ax0 − Vm y‖.

The solution is y = VH
m et Ax0, and thus the solution of (5.10) is given by

(x(t) ≈) xm = VmV
H
m et Ax0. (5.11)



202 5 Applications to Matrix Functions

In what follows, we consider using the Arnoldi process in Section 1.9.1 to com-
pute basis vectors of Km(A, x0) and give an approximate solution of (5.11). From
the Arnoldi process in Section 1.9.1, it follows from x0 = ‖x0‖Vme1 that we obtain
xm = ‖x0‖Vm(V H

m et AVm)e1,where e1 = [1, 0, . . . , 0]�. Furthermore, using the rela-
tion V H

m AVm = Hm (Hessenberg matrix) in (1.39), we consider an approximation

VH
m et AVm ≈ etV

H
m AVm = et Hm . Then we have

xm = ‖x0‖Vm(VH
m et AVm)e1 ≈ ‖x0‖Vme

t Hm e1. (5.12)

et Hm e1 is the multiplication of an m × m small matrix exponential function and a
vector, whose computational costs are of O(m2). This comes from the fact that the
multiplication of the Padé approximant (to et Hm ) and a vector requires H−1

m v, i.e.,
solving linear systems Hm z = v, whose computational cost is of O(m2).

If matrix A is Hermitian, a suitable choice of m for satisfying a given error
tolerance is provided by using Theorem 5.7.

Theorem 5.7 ([99], Theorem 2) Let A be Hermitian and all the eigenvalues lie in
the interval [−4ρ, 0]. Then the error of (5.12) is given by

‖et Ax0 − ‖x0‖2Vme
t Hm e1‖ ≤

{
c · e −m2

5ρt (
√
4ρt ≤ m ≤ 2ρt),

c · 1
ρteρt · ( eρt

m

)m
(2ρt ≤ m),

where c = 10‖x0‖.
In practice, first estimate theminimum eigenvalue λmin of A and set ρ = −λmin/4.

Then, the dimension of Krylov subspacem is chosen so that the upper bound error in
Theorem 5.7 is less than the given tolerance, e.g., 10−12. The usefulness of the error
bound is shown in [139], together with devising a practical computation avoiding the
loss of orthogonality regarding the basis vectors of Krylov subspaces and an efficient
method of parallel computation.

5.5 Matrix Trigonometric Functions

Here we consider matrix trigonometric functions: matrix sine function sin(A) and
matrix cosine function cos(A). sin(x) and cos(x) can be expanded as

sin(x) = x − 1

3! x
3 + 1

5! x
5 − 1

7! x
7 + · · · ,

cos(x) = 1 − 1

2! x
2 + 1

4! x
4 − 1

6! x
6 + · · · .

sin(A) and cos(A) are defined for any A ∈ C
n×n by using the above expansions as

described below:
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sin(A) = A − 1

3! A
3 + 1

5! A
5 − 1

7! A
7 + · · · ,

cos(A) = I − 1

2! A
2 + 1

4! A
4 − 1

6! A
6 + · · · .

Below are the fundamental properties of sin(A) and cos(A).

Theorem 5.8 (Some properties of sin(A) and cos(A)) The following facts hold
true for A, B ∈ C

n×n:

(1) ei A = cos(A) + i sin(A);
(2) sin(A) = (ei A − e−i A)/2i ;
(3) cos(A) = (ei A + e−i A)/2;
(4) sin(−A) = − sin(A), cos(−A) = cos(A);
(5) sin(A)2 + cos(A)2 = I ;
(6) sin(A ± B) = sin(A) cos(B) ± cos(A) sin(B) if AB = BA;
(7) cos(A ± B) = cos(A) cos(B) ∓ sin(A) sin(B) if AB = BA.

(2) and (3) of Theorem 5.8 can be derived from (1) of Theorem 5.8. From (2) and
(3), sin(A) and cos(A) can be obtained by matrix exponential functions. If A is a real
matrix, it follows from 1) of Theorem 5.8 that cos(A) corresponds to the real part of
ei A, and sin(A) corresponds to the imaginary part of ei A. From this, Algorithm 5.7
is obtained for computing sin(A) and cos(A) as described in Algorithm 5.7.

Algorithm 5.7 Computation of S = sin(A) and C = cos(A)

1: Compute X = ei A.
2: if A is a real matrix then
3: S = Im(X) (imaginary part of A), C = Re(X) (real part of A)
4: end if
5: if A is a complex matrix then
6: S = 1

2i (X − X−1), C = 1
2 (X + X−1)

7: end if

5.6 Matrix Logarithm

A matrix X satisfying eX = A for A ∈ C
n×n is referred to as a matrix logarithm.

Recall that the notion of the principal matrix square root is described in Theorem 5.3.
Similarly, the notion of the principal matrix logarithm is described in Theorem 5.9.

Theorem 5.9 (Principal matrix logarithm) Let A be a complex square matrix
whose eigenvalues (λk �= 0) do not lie in the negative real axis of the complex plane.
Then there exists a unique matrix logarithm of A such that all the eigenvalues of the
square root lie in the strip {z ∈ C : −π < Im(z) < π}.
The unique matrix in Theorem 5.9 is referred to as the principal matrix logarithm of
A, denoted by log(A). Below are some properties of log(A).
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Theorem 5.10 (Some properties of log(A)) Let A be a complex square matrix
whose eigenvalues (λk �= 0) do not lie in the negative real axis of the complex
plane. Then, for−1 ≤ α ≤ 1wehave log(Aα) = α log(A). In particular, log(A−1) =
− log(A), log(A1/2) = (1/2) log(A).

For the proof of Theorem 5.10, see the proof of [97, Theorem 11.2].
In what follows, some numerical algorithms for computing log(A) are described.

When matrix A satisfies ρ(A − I ) < 13, log(A) can be expanded as follows:

log(A) = log(I + (A − I )) = (A − I ) − 1

2
(A − I )2 + 1

3
(A − I )3 − 1

4
(A − I )4 + · · · ,

(5.13)
which is theNeumann series, see also Section 3.5.3. If A does not satisfyρ(A − I ) <

1, we cannot use (5.13) for approximately computing log(A). Even in this case, the
expansion can be useful after the following modifications: it follows from Theorem
5.10 that for a natural number k we have

log(A) = k log(A1/k),

and A1/k gets closer to the identity matrix I as k gets larger. Thus all we have to do
is to find k from (5.13) such that the following series is convergent:

log(A1/k) = log(I + (A1/k − I ))

= (A1/k − I ) − 1

2
(A1/k − I )2 + 1

3
(A1/k − I )3 + · · · . (5.14)

In practice, set k = 2m , and for the right-hand side of (5.14) we use the Padé
approximant to log(1 + x). Below are some examples of the diagonal Padé approx-
imant to log(I + X):

R1,1(X) = (2I + X)−1(2X),

R2,2(X) = (6I + 6X + X2)−1(6X + 3X2),

R3,3(X) = (60I + 90X + 36X2 + 3X3)−1(60X + 60X2 + 11X3).

The algorithm is listed in Algorithm 5.8. For the matrix 2m th root, see Sect. 5.3.2.
For an improvement of Algorithm 5.8, see [9].

Algorithm 5.8 Computation of log(A)

1: Set a natural number m such that ρ(A1/2m − I ) < 1.
2: X = A1/2m − I
3: Y = Rq,q (X) (the diagonal Padé aproximant)
4: log(A) ≈ 2mY

3 ρ(X) = |λmax| is the spectral radius of X , see Section 1.6.4.
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Numerical algorithms based on Newton’s method are listed in Algorithms 5.9 and
5.10. Under a certain condition, Algorithm 5.9 shows a locally quadratic convergence
to log(A), and Algorithm 5.10 shows a locally cubic convergence to log(A).

Algorithm 5.9 Iterative method 1 for X = log(A)

1: Choose X0 such that AX0 = X0A, e.g., X0 = A.
2: for k = 0, 1, . . . , until convergence do
3: Xk+1 = Xk − I + e−Xk A
4: end for

Algorithm 5.10 Iterative method 2 for X = log(A)

1: Choose X0 such that AX0 = X0A, e.g., X0 = A.
2: for k = 0, 1, . . . , until convergence do
3: Xk+1 = Xk + 1

2

(
e−Xk A − A−1eXk

)
4: end for

Let Y = e−Xk A in Algorithm 5.10. Then from 3) of Theorem 5.5 we have
Y−1 = A−1eXk , and thus we obtain Xk+1 = Xk + (Y − Y−1)/2. This implies that
the computational cost of Algorithm 5.10 is about the sum of computational costs of
Algorithm 5.9 and Y−1. Since the cost of Y−1 is relatively much smaller than that of
the matrix exponential function, the cost of Algorithm 5.9 is nearly equal to that of
Algorithm 5.10. From this, Algorithm 5.10 will be faster than Algorithm 5.9 since
Algorithm 5.10 shows a cubic convergence.

When matrix A is Hermitian positive definite, the Schur decomposition of A
corresponds to the eigen-decomposition A = QDQH, where Q is a unitary matrix
and D is a diagonal matrix whose diagonal elements are eigenvalues λi of A, and

thus eX = A ⇔ eX = QDQH ⇔ QHeX Q = D ⇔ eQ
HXQ = D. Let M = QHXQ.

ThenM satisfying eM = D can bewritten asM = diag(log(λ1), . . . , log(λn)). From
the definition of M , we have X (= log(A)) = QMQH, leading to the following com-
putation of log(A):

log(A) = Q

⎡
⎢⎣
log(λ1)

. . .

log(λn)

⎤
⎥⎦ QH.

In general, if matrix A satisfies the assumption in Theorem 5.9 and diagonalizable
(i.e., A = V DV−1), then it may be possible to compute log(A) by

log(A) = V

⎡
⎢⎣
log(λ1)

. . .

log(λn)

⎤
⎥⎦ V−1.
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However, if V is ill-conditioned, then this approach is not recommended due to
numerical instability of the computation of V−1.

If matrix A is large and sparse, and if we need specific elements of log(A),
computing the following integration (e.g., [97, Theorem 11.1]) may be a method of
choice:

log(A) = (A − I )
∫ 1

0
[t (A − I ) + I ]−1 dt. (5.15)

Applying the j th unit vector e j to (5.15) from the right yields

log(A)e j = (A − I )
∫ 1

0
[t (A − I ) + I ]−1 e j dt. (5.16)

This means that computing the right-hand side of (5.16) yields the i th column
vector of log(A). Now, let x(t) = [t (A − I ) + I ]−1 e j . Then we have

[t (A − I ) + I ] x(t) = e j ,

which are (continuous) shifted linear systems for t . For the numerical quadrature, if
t is discretized as t1, t2, . . . , tm , then we need to solve

[ti (A − I ) + I ] x(i) = e j for i = 1, 2, . . . ,m. (5.17)

For ti �= 0, the equations can be rewritten as

[
A + (t−1

i − 1)I
]
x̃(i) = e j for i = 1, 2, . . . ,m, (5.18)

where x̃(i) = ti x(i). Therefore, computing specific elements of the matrix logarithm
via a quadrature formula is an important application for shifted Krylov subspace
methods in Chap. 4.

Among many numerical quadratures, the double exponential (DE) formula [183]
is regarded as one of the most successful methods, especially if the integrand has
endpoint (near) singularities. For the developments of the DE formula, see, e.g.,
[192].

Using the DE formula for computing matrix functions was first considered in
[188]. In what follows, the DE formula for the matrix logarithm is described. Apply-
ing variable transformation u = 2t − 1 to (5.15) yields

log(A) = (A − I )
∫ 1

−1
[(1 + u)(A − I ) + 2I ]−1 du. (5.19)
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Then, using the DE transformation u = tanh(sinh(x)) gives

log(A) = (A − I )
∫ ∞

−∞
FDE(x) dx, (5.20)

where

FDE(x) := cosh(x)sech2(sinh(x)) [(1 + tanh(sinh(x)))(A − I ) + 2I ]−1 . (5.21)

Note that the matrix (1 + tanh(sinh(x)))(A − I ) + 2I in FDE is nonsingular for any
x ∈ (−∞,∞).

An algorithm for computing log(A) the DE formula is given in Algorithm 5.11.
For the theoretical details of Algorithm 5.11, see [188].

From line 16 of Algorithm 5.11, vector (A − I )T e j is the j th column of log(A),
and from lines 3 and 15 we need to solve the following equations:

Algorithm 5.11 Computation of log(A) based on the DE formula
1: Input: A ∈ R

n×n , m ∈ N, ε > 0 a tolerance for the interval truncation error
2: Output: X ≈ log(A)

3: Set FDE(x) = cosh(x)sech2(sinh(x)) [(1 + tanh(sinh(x)))(A − I ) + 2I ]−1.
4: Compute ‖A − I‖, ‖A−1‖, and ρ(A).
5: θ = | log(ρ(A))|
6: εmax = 3

θ

‖A − I‖‖A−1‖
1 + ‖A−1‖

7: if ε ≥ εmax then
8: ε ← εmax/2
9: end if

10: a = min

{
θε

3‖A − I‖ ,
1

2‖A − I‖
}

11: b = max

{
1 − θε

3‖A − I‖‖A−1‖ ,
2‖A−1‖

2‖A−1‖ + 1

}

12: l = arsinh(artanh(2a − 1))
13: r = arsinh(artanh(2b − 1))
14: h = (r − l)/(m − 1)

15: T = h

2
(FDE(l) + FDE(r)) + h

m−2∑
i=1

FDE(l + ih)

16: X = (A − I )T

[(1 + tanh(sinh(l + ih)))(A − I ) + 2I ] x = e j for i = 0, 1, . . . ,m − 1,

which can also be rewritten as shifted linear systems. For the rewrite, see (5.17) and
(5.18). Thus, if matrix A is large and sparse, (shifted) Krylov subspace methods are
attractive to use.
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5.7 Matrix Fractional Power

Matrix fractional power can be defined by using log(A) as follows:

Aα = exp(α log(A)), (5.22)

where 0 < α < 1. The condition 0 < α < 1 looks to be too restrictive, but it is
satisfactory in practice. In fact, if one wants to compute A2.3, then A2.3 can be
decomposed by A2.3 = A2A0.3. Therefore, the problem is how to compute A0.3 that
corresponds to (5.22) with α = 0.3.

Computing Aα via the definition in (5.22) requires two matrix functions: a matrix
logarithm and a matrix exponential function. On the other hand, these matrix func-
tions do not appear in the following integral form:

Aα = sin(απ)

απ
A

∫ ∞

0
(t1/α I + A)−1 dt (0 < α < 1). (5.23)

Application of the DE formula to (5.23) is considered in [186] as described next:

Aα =
∫ ∞

−∞
FDE(x) dx, (5.24)

where

FDE(x) = t ′(x)F(t (x)), F(t) = sin(απ)

απ
A(t1/α I + A)−1. (5.25)

The algorithm for computing Aα by the DE formula is described in Algorithm
5.12. For the theoretical details of Algorithm 5.12, see [186].

Algorithm 5.12 m-point DE formula for computing Aα

1: Input A ∈ R
n×n , α ∈ (0, 1), ε > 0, m

2: l, r = GetInterval(A, α, ε)

3: Set F̃DE(x) := exp(απ sinh(x)/2) cosh(x)
[
exp(π sinh(x)/2)I + A

]−1.
4: h = (r − l)/(m − 1)
5: T = h[F̃DE(l) + F̃DE(r)]/2 + h

∑m−2
k=1 F̃DE(l + kh)

6: Output sin(απ)AT/2 ≈ Aα

7:
8: function GetInterval(A, α, ε)
9: Compute ‖A‖, ‖A−1‖.
10: a1 = [απ(1 + α)ε]/[4 sin(απ)(1 + 2α)], a2 = (2‖A−1‖)−α

11: a = min{a1, a2}
12: b1 = [π(1 − α)(2 − α)ε]α/(α−1)/[4 sin(απ)(3 − 2α)‖A‖]α/(α−1), b2 = (2‖A‖)α
13: b = max{b1, b2}
14: l = asinh(2 log(a)/απ), r = asinh(2 log(b)/απ)

15: return l, r
16: end function
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From Algorithm 5.12, the j th column of computed Aα is (sin(απ)AT/2)e j .
Therefore, from line 5 the F̃DE(l + ih)e j ’s must be computed using the following
equations:

eαπ sinh(l+ih)/2 cosh(l + ih)
(
eπ sinh(l+ih)/2 I + A

)
x(i) = e j for i = 0, 1, . . . ,m − 1.

Similar to (5.17) and (5.18), the equations can be rewritten as shifted linear sys-
tems. Thus, if matrix A is large and sparse, using (shifted) Krylov subspace methods
will be a method of choice.



Software

The emphasis of this book is on algorithm design, and the detailed history of the
Krylov subspace methods is omitted. For those who would like to know the history
in detail, the book by Gérard Meurant and Jurjen Duintjer Tebbens [129] is highly
recommended, and provides a detailed history with more than a thousand references
and Matlab/Octave functions of Krylov subspace methods that come in handy for
many users.

For the convenience of possible users ofKrylov subspacemethods, some available
software packages are listed below.

• Fortran 90 (CCGPACK 2.0 by Piotr J. Flatau)
https://code.google.com/archive/p/conjugate-gradient-lib/
→ downloads → ccgpak2_0.zip
User manual https://arxiv.org/abs/1208.4869
COCR, CSYM, BiCGSTAB(�), GPBiCG(m, �), BiCOR and others are available.

• Fortran 90 (Kω)
Kω: an open-source library for the shifted Krylov subspace methods
https://www.pasums.issp.u-tokyo.ac.jp/komega/en/
Shifted CG, Shifted COCG, Shifted BiCG are available.

• GNU Octave (version 6.4.0)
https://octave.org/doc/v6.4.0/Specialized-Solvers.html#Specialized-Solvers
CG, CR, BiCG, QMR, CGS, BiCGSTAB, GMRES, and others are available.

• Julia (IterativeSolvers.jl)
https://iterativesolvers.julialinearalgebra.org/dev/
CG, MINRES, GMRES, IDR(s), BiCGSTAB(�) are available.

• Python (SciPy 1.8.0)
https://docs.scipy.org/doc/scipy/reference/sparse.linalg.html
CG,MINRES, BiCG,QMR,CGS, BiCGSTAB,GMRES, and others are available.
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