Springer Series in Computational Mathematics 60

Krylov Subspace
Methods

for Linear
Systems

@ Springer



Springer Series in Computational Mathematics

Volume 60

Series Editors

Randolph E. Bank, Department of Mathematics, University of California
San Diego, La Jolla, CA, USA

Wolfgang Hackbusch, Max-Planck-Institut fiir Mathematik in den
Naturwissenschaften, Leipzig, Germany

Josef Stoer, Institut fiir Mathematik, University of Wiirzburg, Wiirzburg, Germany

Harry Yserentant, Institut fiir Mathematik, Technische Universitit Berlin, Berlin,
Germany



This is basically a numerical analysis series in which high-level monographs are
published.

We develop this series aiming at having more publications in it which are closer
to applications. There are several volumes in the series which are linked to some
mathematical software.

This is a list of all titles published in this series: https://www.springer.com/series/
797 7detailsPage=titles


https://www.springer.com/series/797?detailsPage=titles

Tomohiro Sogabe

Krylov Subspace Methods
for Linear Systems

Principles of Algorithms

@ Springer



Tomohiro Sogabe

Department of Applied Physics
Nagoya University

Nagoya, Japan

ISSN 0179-3632 ISSN 2198-3712 (electronic)
Springer Series in Computational Mathematics
ISBN 978-981-19-8531-7 ISBN 978-981-19-8532-4 (eBook)

https://doi.org/10.1007/978-981-19-8532-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore


https://doi.org/10.1007/978-981-19-8532-4

Preface

In many fields of scientific computing and data science, we frequently face the
problem of solving large and sparse linear systems of the form Ax = b, which is
one of the most time-consuming parts of all computations. From this fact, many
researchers have devoted themselves to developing efficient numerical algorithms
for solving the linear systems, and Krylov subspace methods are nowadays popular
numerical algorithms and are known as one of the top ten algorithms of the twentieth
century, others including fast Fourier transform and Quick Sort [39]. Though the basic
theory was established in the twentieth century, Krylov subspace methods have been
developed by mathematicians, engineers, physicists, and many others.

There are many excellent books on Krylov subspace methods, including those by:

Owe Axelsson, 1994 [10],

Richard Barrett et al., 1994 [18],

Wolfgang Hackbusch, 1994 [92],

Are Magnus Bruaset, 1995 [29],

Riidiger Weiss, 1996 [203],

Anne Greenbaum, 1997 [81],

Yousef Saad, 2003 [151],

Henk A. van der Vorst, 2003 [196],

Jorg Liesen and Zden€k Strakos, 2012 [122],

Gérard Meurant and Jurjen Duintjer Tebbens, 2020 [129].

In [129], detailed historical notes of Krylov subspace methods are described,
which form a masterpiece (around 700 pages) of Krylov subspace methods for non-
Hermitian linear systems. The features of this book are listed as follows:

(1) Many applications of linear systems from computational science and data
science;

(2) Krylov subspace methods for complex symmetric linear systems such as the
COCG method and the COCR method;

(3) Krylov subspace methods for non-Hermitian linear systems such as the BiCR
method, the GPBiCG method, and the (block) IDR(s) method;



vi Preface

(4) Krylov subspace methods for shifted linear systems such as the shifted IDR(s)
method;
(5) Matrix functions as applications of shifted linear systems.

Feature (1) corresponds to Chap. 2, and linear systems are derived from
various applications: partial differential equations (finite difference discretization
methods and the finite element method); computational physics: condensed matter
physics (computation of Green’s function) and lattice quantum chromodynamics
(Wilson fermion matrix); machine learning (least-squares problems); matrix equa-
tions (Sylvester-type matrix equations); optimization (Hessian matrix over Euclidean
space and Riemannian manifold using tensor computation notations).

Features (2) and (3) correspond to Chap. 3. In this chapter, Krylov subspace
methods are classified into three groups: Hermitian linear systems, complex
symmetric linear systems, and non-Hermitian linear systems. For Hermitian linear
systems, the CG method is derived from the matrix form of the Lanczos process, the
CR method is derived from the CG method, and the MINRES method is derived from
the Lanczos process. For complex symmetric linear systems, the COCG method, the
COCR method, and the QMR_SYM method are described as extensions of the CG
method, the CR method, and the MINRES method, respectively. For non-Hermitian
linear systems, the BiCG method, the BiCR method, and the QMR method are
described as extensions of the CG method, the CR method, and the MINRES method,
respectively. The detailed derivations of the GPBiCG method and the (block) IDR(s)
method, one of the features of this book, are described in this chapter. In addition,
some preconditioning techniques are briefly described.

Feature (4) corresponds to Chap. 4. In this chapter, Krylov subspace methods for
shifted linear systems are classified into three groups: Hermitian, complex symmetric,
and non-Hermitian linear systems. The detailed derivations of these algorithms are
described systematically.

Feature (5) corresponds to Chap. 5. If one needs a large matrix function, then
Krylov subspace methods and Krylov subspace methods for shifted linear systems
are methods of choice since these algorithms can produce any element of the matrix
function. The definitions of matrix functions and well-known algorithms for matrix
functions are also described.

An additional feature of this book is that there are no numerical experiments except
some typical numerical examples for further understanding the convergence behavior
of Krylov subspace methods. The convergence of Krylov subspace methods depends
highly on the coefficient matrix, and the best algorithm changes if the coefficient
matrix changes. So, if the reader wants to solve linear systems, I recommend the
reader to apply several Krylov subspace methods (including the BICGSTAB method
and the GMRES method) to their problem and choose the best one among them.

This book is suitable for anyone who studied linear algebra and needs to solve
large and sparse linear systems. I hope this book is helpful for the reader to understand
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the principles and properties of Krylov subspace methods and to correctly use Krylov
subspace methods to solve their problems.

Nagoya, Japan Tomohiro Sogabe
September 2022
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Chapter 1 ®)
Introduction to Numerical Methods oo
for Solving Linear Systems

Abstract Numerical methods for solving linear systems are classified into two
groups: direct methods and iterative methods. Direct methods solve linear systems
within a finite number of arithmetic operations, and the best-known direct method is
the LU decomposition. Iterative methods produce a sequence of approximate solu-
tions, and the iterative methods are roughly classified into stationary iterative methods
and Krylov subspace methods. Multigrid methods also fall into an important class of
iterative methods. This chapter aims to describe the principles of the direct methods,
the stationary iterative methods, and a brief introduction to the theory of Krylov
subspace methods. A brief explanation of multigrid methods is also given.

1.1 Linear Systems

In this book, we consider linear systems of the following form:
Ax = b, (1.1)

where A € CV*N b € C, and the coefficient matrix A is assumed to be nonsingular,
i.e., there exists the inverse of A.

Let X be an approximate solution of linear systems (1.1). Then a quantitative way
to know the distance between the solution x and the approximate solution X is to
compute a vector norm of x — X. Further, a quantitative way to measure the distance
between two matrices A, B is given by a matrix norm of A — B. The definitions
of a vector norm and a matrix norm are described in the next two subsections. The
explanations are based on [170], and for the details of numerical linear algebra, see
[45, 79, 107, 191].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 1
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2 1 Introduction to Numerical Methods for Solving Linear Systems

1.1.1 Vector Norm

The length of the vector x := (x1, x2) " € R?is given by (x + x3)/2. The norm is
the extension of the notion of the “length” and, the map || - || : R* — R is called a
vector norm if for all x, y € R", a € R, the map satisfies the following rules:!

(NVD) x> 0; x| =04 x =0, (Positivity)
(NV2)  loex || = || ||, (Homogeneity)
(NV3) llx + yll < llxll + [yl (Triangle inequality)

For example, a p-norm (p > 1) is defined by
1
lxllp := (x1]” + |xal” + -+ |xa|P) 7.

For p = 1, 2, 00, the vector p-norm is written as

o llx|li =7 Ixil, ]
o x| =L, %) (= vVxTx),

o Xl = max |xi .

Let A be a symmetric positive definite matrix, i.e., A is symmetric and all the
eigenvalues are positive. Then | x|, := x| Ax is called an A-norm of x; this will be
used in Section 3.1.1.

Let X be an approximate solution of linear systems (1.1). Then |x — X[, is the
distance between the exact solution and approximate solution of (1.1).

Throughout this book, unless otherwise stated, the symbol || - || means 2-norm,
pe, - =1" 12

1.1.2 Matrix Norm

Similar to the definition of vector norm, matrix norm is defined as follows: a map
| -] : R"™*" — R is called a matrix norm if for all A, B € R™*", o € R the map
satisfies the following three items:

(Nm1) |JA||=0; ||JAl =0« A= 0, (O : zero matrix) (Positivity)
(Nm2) [laAll = |a|l|A]l, (Homogeneity)
(Nm3) [|A+ B| < [[All+ B (Triangle inequality)

In addition, if the matrix norm satisfies

(Nm4) ||AB| < [[AllIBIl, AeR™™, BeR"™,

In general, given a vector space V, amap || - || : V — R is called a norm if the map satisfies
(Nv1)=(Nv3) forallx,y € V,a € K(K =R or C).
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then the matrix norm is called submultiplicative. Note that in some books the map
satisfying (Nm1)—(Nm4) is also called a matrix norm. As an example of a submul-
tiplicative matrix norm, the following subordinate matrix norm is widely used:?

_ IAx|l,
lAll, := sup . 1.2)
x#0 ”x”p
If p=1,2,00, ||All, is given as follows:
o Al =max; 3, layl,
o ||Al, = \/maximum eigenvalue of AT A,
o ||Allcc = max; Z,;:l laijl.
A Frobenius norm is also submultiplicative:
m n
o Alp:= | > > layl>
i=1 j=1
Let ay,...,a, be the column vectors of matrix A € R™*", and let a =
la],...,a]]T, ie., all the columns are connected to get one long vector a. Then,

the Frobenius norm of A equals the 2-norm of a, i.e., ||A|lr = |a]|>.
The max norm of the form

| Allmax = ma}x laj
i,

is not submultiplicative. For example, consider a 2-by-2 matrix A with all the ele-
ments being 1. Then ||AA|max = | A% lmax = 2 and || A||lmax || Allmax = 1. Thus the
max norm does not hold (Nm4) because ||AA ||max > || Allmax || A || max-

Some properties of the matrix norm are given next.

Theorem 1.1 The following properties hold true:

(D NAx[, = Al lxl,,  [Ax|l2 < [Allellx]2,
@) 1ABl, < IAlplIBlp, IIABlle < Al Bllr,
(3) I1QAQI2 = llAll2, I1QAQIF = lIAllF.

Here, Q and Q are orthogonal matrices.’

Theorem 1.2 Let A be an n x n matrix. Then,

(1) n721All2 < 1Al < n'2||All,
@) n72)All2 < 1Al < n'2IAll,

3) n7 Al < 1Al < nllAlloo,

@ Al < 1Ale < n' 2 All.

2 “sup” can be replaced with “max”.

3 A real square matrix Q is called an orthogonal matrix if 9T Q = I, where I is the identity matrix.
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1.2 Condition Number

Consider Ax = b; if the matrix A and right-hand side vector b are slightly changed,
then by how much will the solution be changed? To answer this question, let AA
and Ab be perturbations of A and b. Then the change of the solution denoted by Ax
satisfies the following relation:

(A+ AA)(x + Ax) = b+ Ab.
Using Ax = b gives
Ax = A7'[-AA(x + Ax) + Ab).

Using Theorem 1.1-(1) and the triangle inequality (Nv3), the p-norm of x can be
evaluated by

IAx], < IA7 1, (IAAlllx + Axll, + [ AB],).

Thus, we have

[ Ax| _ [AA] | AB||
— <Al NA7, Ly L . (1.3)
Ix + Ax|l, 1A,  IlAll,lx + Ax]l,

Here,
kp(A) = [lAILIA7, (1.4

is called the p-norm condition number. Inequality (1.3) implies that if the condition
number is large, the computed approximate solution may be far from the exact
solution. Note that this fact does not depend on what algorithms are used for solving
linear systems.

If the condition number is large, then the linear systems are called ill-conditioned.
We will see in Chap. 3 that the condition number also affects the speed of convergence
of Krylov subspace methods.

In this book, we often use a 2-norm condition number «,(A) that will be simply
denoted by « or cond(A).

1.3 Direct Methods

For simplicity of presentation, we only consider the case Ax = b where A € R
and b € R”. In Sect. 1.3.1, the LU decomposition is introduced to solve linear sys-
tems, and then in Sect.1.3.2 the LU decomposition with pivoting techniques is
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explained, which is numerically stable and widely used in practice. A way to improve
the accuracy of the approximate solution is described in Sect. 1.3.3.

1.3.1 LU Decomposition

Let A be a square matrix. Then the LU decomposition of A is achieved by decompos-
ing A into the multiplication of a lower triangular matrix L and an upper triangular
matrix U of the form

A=1LU, (1.5)

where
Iy Uiy -+ Uiy

lnl e lnn Unn

The blanks in matrices L and U mean that all the corresponding elements are
zero.

If the diagonal elements of L or U are one, then the LU decomposition is uniquely
determined. The LU decomposition with [;; = 1 for all i is referred to as Doolittle’s
method, and the one with u;; = 1 for all i is referred to as Crout’s method. Once we
obtain the LU decomposition of A, it is easy to obtain the solution x of the linear
systems via

A=LU, Ly=b, Ux=y. (1.6)

To be specific, forward substitution:

i—1

1 .
yl:l— bl—Zl”yj (l=1,,l’l)
ii j=1

gives y, and then back substitution

1 n
X = — yi—Zuinj (l:n,,l)

Uii
b j=i+1

yields the solution x, where y; = b/l and x, = y,/Upn,.

The necessary and sufficient condition for the existence of the LU decomposition
is that all the leading principal minors* are not zero. Below are some examples of
cases where the LU decomposition exists.

4 Using MATLAB notation, “all the leading principal minors” of A are defined by det(A(1:1,1:1)),
det(A(1:2,1:2)), ..., det(A(1:n,1:n)).
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1. Strictly diagonally dominant matrix: |a;;| > Z#i la;jl (1 <i <n).

2. M-matrix: a;; <0 (i # j) and all the elements of A~ are non-negative.

3. Symmetric part of matrix A € R"*" is positive definite. The term “symmetric
part” means (A + AT)/2 and the term “positive definite” means v " Av > 0 for
any nonzero vector v. For any square matrix A, matrix A can be written as the sum
of the symmetric part (A + AT)/2 and the skew symmetric part (A — AT)/2.

The algorithm of the LU decomposition (Doolittle’s method) is shown in Algo-
rithm 1.1, which produces L and U such that A = LU.

Algorithm 1.1 The LU decomposition

Input: an n x n matrix A
Output: a unit lower triangular matrix L and an upper triangular matrix U
l:fori=1,...,ndo

2. aji=aji/a; (j=i+1,....n)

3: forj=i+1,...,ndo

4. ajx = ajk —aj X daig (k=i+1,...,n)
5:  end for

6: end for

72[,'1':1 (i:l,...,n)

8: lij=ay (i>])

9:ujj =a;; (<))

1.3.2 LU Decomposition with Pivoting

The LU decomposition may not exist for some A. For example, consider

01
A= (01).
Then it is easy to see that the LU decomposition (Algorithm 1.1) fails due to zero
division by a;; = 0. On the other hand, if the first row and the second row are

swapped, i.e.,
01\ /01 23
PA:(IO) (23)=(01)’

then the LU decomposition does not fail, and we have the LU decomposition of the
form

PA=LU,
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(1) 0= ()

This technique is called pivoting.
The LU decomposition with the partial pivoting is shown in Algorithm 1.2. Here,
the term “partial” pivoting corresponds to lines 2—6 of Algorithm 1.2.

where

Algorithm 1.2 The LU decomposition with partial pivoting

Input: an n x n matrix A and the n x n identity matrix P(= 1)

Output: a unit lower triangular matrix L and an upper triangular matrix U
Output: a permutation matrix P

l:fori=1,...,ndo

2:  Find the maximum element a,; from {|a;;|, ..., las;|}.
3: Swapa;jandayjforj=1,...,n.

4: if i # n then

5: Swap ith row and p;th row of matrix P.

6: endif

7. aji=ajifai; (j=i+1,...,n)

8 forj=i+1,...,ndo

9: ajx =ajr—aj Xap (k=i+1,...,n)

10:  end for

11: end for

12:0;; =1 (=1,...,n)
13: ljj =a;; (> )
14: ujj =a;; (<))

Algorithm 1.2 produces L, U, and permutation matrix P such that
PA=LU.

Unlike the LU decomposition, the LU decomposition with the partial pivoting never
suffers from breakdown (zero-division).

Next, the LU decomposition with the complete pivoting is shown in Algorithm
1.3. The term “complete” pivoting corresponds to lines 2—-8 of Algorithm 1.3.

Notice that at the ith step, the partial pivoting finds the maximum value from
{lakil : k € {i,...,n}} and the complete pivoting finds the maximum value from
{lak:| <k, 1 e{i,...,n}}.

Algorithm 1.3 produces decomposed matrices L and U and permutation matrices
P and Q such that

PAQ = LU.

The LU decomposition with partial pivoting is usually used, and if the accuracy of
the decomposition is not satisfactory, then the complete pivoting may be used.
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Algorithm 1.3 The LU decomposition with complete pivoting

Input: an n x n matrix A and the n x n identity matrices P(= 1), Q(=I)
Output: a unit lower triangular matrix L and an upper triangular matrix U
Output: permutation matrices P, Q

l:fori=1,...,ndo

2:  Find the maximum element a4, from {|ay| :i <k <n, i <[l <n}.
3: Swapa;jandayjforj=1,...,n.

4. Swapaj;andajg forj =1,...,n.

5:  if i # n then

6: Swap ith row and p;th row of matrix P.

7: Swap ith column and g;th row of matrix P.

8: endif

9: aji =ajl'/a,‘,' (G=i+1,...,n)
10: forj=i+1,...,ndo

11: ajx = ajk —aj X aig k=i+1,...,n)
12:  end for
13: end for

4: ;=1 (=1,...,n)
15: lij =a;j (> ))
16: ujj = aij (<))

If we need to solve the set of linear systems of the form
Ax,' =bi, i = 1,2,...,m,

then the LU decomposition is very attractive because once we obtain L and U, then
all we have to do is to conduct forward and back substitutions, see the explanation
after (1.6).

1.3.3 Iterative Refinement

In this subsection, we consider the case where the approximate solution ¥ of the
linear systems (1.1) by the LU decomposition is not accurate enough.

In such a case, we can obtain the exact solution x if we know the correction vector
Ax suchthatx = ¥ + Ax. Itis easy to see that the correction vector Ax corresponds
to the solution of the following linear systems:

AAx =, (1.7)

where r := b — AX. After solving (1.7) to obtain an approximate solution AX of
(1.7), the corrected approximate solution ¥ + AX is expected to be better in accuracy
than x. This process can be repeated until the required accuracy is obtained, which
is called iterative refinement. The algorithm of the iterative refinement is shown in
Algorithm 1.4.
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Algorithm 1.4 Iterative refinement for Ax = b

Input: A, b, and an approximate solution X for Ax = b
Output: a refined approximate solution x

1: Compute r = b — Ax using “double” precision arithmetic.
2: Solve AAx = r to obtain the approximate solution Ax.

3: Update ¥ = ¥ + AX.

4: Repeat steps 1-3 until required accuracy is obtained.

If the LU decomposition is used for Ax = b, then it is easy to obtain the approx-
imate solution AX because one can reuse the decomposed factors L and U, and thus
only forward and back substitutions are required.

Notice that “‘double” precision arithmetic at step 1 in Algorithm 1.4 means that if
we use single precision arithmetic, then compute r = b — AX using double precision
arithmetic, and if we use double precision arithmetic, then compute it using quadruple
precision arithmetic.

Algorithm 1.4 can be interpreted as Newton’s method by letting f(x) := b — Ax
and applying Newton’s method to f(x) = 0.

1.4 Direct Methods for Symmetric Linear Systems

When matrix A is symmetric, Cholesky decomposition and LDL" decomposition are
efficient direct methods that are variants of the LU decomposition. As a preliminary,
let us define the notion of positive definite:

1. Positive Definite
Matrix A is called positive definite if x T Ax > 0 for all x # 0.

2. Symmetric Positive Definite
Matrix A is called symmetric positive definite if positive definite matrix A is
symmetric.

It is known that matrix A is symmetric positive definite if and only if all the
eigenvalues of symmetric matrix A are positive.

1.4.1 Cholesky Decomposition

If matrix A is symmetric positive definite, there exists a lower triangular matrix L
such that

A=LLT".
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The decomposition is referred to as Cholesky decomposition. The algorithm of
the Cholesky decomposition is shown in Algorithm 1.5.

Algorithm 1.5 Cholesky decomposition

Input: A
Output: L
l:fori=1,...,ndo

. 172
21 l,‘,’ = (a,',' — ;c:ll ltzk)

3 for j=i+1,...,ndo

4: lj,' = (aj,- — Z;(;ll ljk X l,‘k)/l,'i
5:  end for

6: end for

The computational cost of the Cholesky decomposition is about half of that of the
LU decomposition because of the use of the symmetric property.

It is known that from the positive definiteness of A the Cholesky decomposition
never suffers from breakdown and does not need the pivoting technique as described
in Sect. 1.3.2.

1.4.2 LDLT Decomposition

When symmetric matrix A is not positive definite, then the Cholesky decomposition
cannot be used. On the other hand, if all the leading principal minors are non-negative,
then there exists a diagonal matrix D (i.e., all the off-diagonal elements are zero) and
a unit lower triangular matrix L (i.e., lower triangular matrix with all its diagonal
elements being one) such that

A=LDL".

The decomposition is referred to as LDLT decomposition (or modified Cholesky
decomposition) whose algorithm is shown in Algorithm 1.6.

Algorithm 1.6 LDLT decomposition

Input: A

Output: L, D

l: fori =2,...,ndo

2: forj=1,...,i—1do

3 l,‘j :(aij_z:/{;lllik lek Xdkk)/djj
4:  end for _

50 di = ai — YA\ X dik

6: end for
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Algorithm 1.6 produces diagonal elements of diagonal matrix D, and /;; for lower
triangular matrix L with [;; = 1 for all i. Unlike the Cholesky decomposition, the
square root does not appear in the LDLT decomposition.

The LDLT decomposition is not only useful for solving linear systems but also
gives a rough distribution of the eigenvalues of symmetric matrix A. To see this,
let S be a nonsingular matrix, then Sylvester’s law of inertia ensures that the num-
ber of positive/zero/negative eigenvalues of symmetric matrix A is the same as that
of positive/zero/negative eigenvalues of SAS". Thus, if we have A = LDLT, then
the number of positive/zero/negative diagonal elements tells us the number of posi-
tive/zero/negative eigenvalues of A.

Further, we can know the number of eigenvalues on a given closed interval
[o1, 02] by computing LDLT factorizations of A — 011 = L, D1LlT and A — o] =
LD, L; . To be specific, let ny(> 0) be the number of nonnegative diagonal ele-

ments of D; and let n(2>0) be the number of positive diagonal elements of D,. Then
the number of eigenvalues on the closed interval [o7, 03] is given by n(}zO) — nfo).

The fact is useful for the kth (generalized) eigenvalue problem:
Ax = ABx, (1.8)

where A is symmetric and B is symmetric positive definite. It is known that all the
eigenvalues are real numbers, and thus they can be writtenas A} < Ap < --- < )¢ <

- < Ay. The kth (generalized) eigenvalue problem is to find A, and the correspond-
ing eigenvector of (1.8). The generalized eigenvalue problem (1.8) is equivalent to
the following shifted problem:

(A —0B)x = (A — 0)Bx. (1.9)

Since B is symmetric positive definite, B has the Cholesky decomposition, i.e.,
B = LBL;. Thus from (1.9) we have

L;'(A—0B)Ly ¥ = (A — 0)X,

where x = L;x. Now, let D be the diagonal matrix of the LDLT decomposition of
(A — oB). Then,

L'LDLTL,;"% = (. —0)% & GDG'% = (h — o)X,

where G = L;l L. This indicates that using Sylvester’s law of inertia, the number of
positive (or negative) diagonal elements of D equals the number of the eigenvalues
that are greater (or less) than o . Thus, if the number of negative diagonal elements of
D is, e.g., 10, then we can know that the eigenvalue A closest to o with the condition
A < o is the 10th eigenvalue, i.e., A = X1o. Based on this idea, together with several
accelerating techniques, an algorithm to obtain the kth eigenvalue and eigenvector of
the (generalized) eigenvalue problems was proposed in [120]. For the kth eigenvalue
problems, see also [156].
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1.5 Direct Methods for Large and Sparse Linear Systems

Consider the following matrix:

1 -1

—_—

(1.10)

— e DN
—o o |

0
1
0

o~

If the number of zeros in a matrix is relatively large, then the matrix is called
sparse. Conversely, if the number of zeros in a matrix is relatively small, it is called
dense.

Applying the LU decomposition (Algorithm 1.1) to (1.10) yields

1 2 -1 -1 -1

2 321212
A=LU=11h13 1 4/31/3
121/31/4 1 5/4

For the lower part of A, we see that a3p = a4y = as3 = 0 but the corresponding
lower part of L, we have l3, = l4p = l43 # 0. Similarly, for the upper part of A, we
see that ays = axy = a3y = 0 but ur3 = uyg = uzy # 0 for the upper part of U. The
nonzero elements in L and U are called fill-ins if the elements in the original matrix
A are zero but the corresponding elements in L and U are not zero.

The fill-ins can be a bottleneck to computing the LU decomposition when matrix
A is large and sparse. For a large and sparse matrix, we usually only use nonzero
elements and do not store zero elements in memory. However, after the LU decom-
position, the L and U may become dense, i.e., at worst n? elements should be stored
in the memory. This indicates that if the matrix size n is n =1,000,000 and we use
real and double precision arithmetic, then we need n> x 8 &~ 8 Terabytes of memory.
If n =10,000,000, then a computer with 800 Terabytes of memory is required.

As we will see in Chap. 2, matrices arising from scientific computing are often
large and sparse. Thus, for solving large and sparse linear systems by the LU decom-
position, it is of prime importance to reduce the fill-ins. In what follows, the key idea
to reduce the fill-ins is described.

The key idea is to permute some rows and columns of sparse matrix A to reduce
fill-ins, and then apply the LU decomposition to the permuted matrix. To be specific,
we apply the LU decomposition to P A Q, where P and Q are prescribed permutation
matrices. Then we solve

PAQy = Pb

to obtain the solution x = Qy. Here, P and Q are chosen so that the number of
fill-ins of L and U are small as possible.
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Below is an example to reduce fill-ins of A in (1.10). Consider

0001

0010

P=2=10100

1000

Then, from (1.10) it follows that

1 0 01

0 1 01

PAO=119 0 11

-1 -1-12

PAQ=LU =

oo
=R )
=R )
[ e

In this case, fortunately, fill-ins do not occur. The result is memory-efficient by storing
only nonzero elements in memory.

Although it is difficult to choose optimal permutation matrices P and Q so that
the number of fill-ins is minimum, approximate optimization methods have been
developed. Well-known methods are the minimum degree method and the reverse
Cuthill-McKee method. For the references of these methods see Section 3.5.5. For
the details of sparse direct methods, see, e.g., [44].

1.6 Stationary Iterative Methods

Stationary iterative methods produce approximate solutions by the following recur-
rences:

Xir1 = f(xp), k=0,1,... (1.11)

with a prescribed initial guess x( for Ax = b. Here the vector-valued function f is
defined by
f»)=M"'Ny+M'b, (1.12)

where M is anonsingular matrix and N is a matrix such that matrix A in (1.1) satisfies
A =M — N. The solution x corresponds to a fixed—point of f, i.e., x = f(x).
Therefore, the stationary iterative methods can be regarded as iterative methods
finding the fixed—point of f via the recurrences in (1.11). Since f does not depend
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Table 1.1 Classification of three stationary iterative methods

M N
The Jacobi method D —(L+U)
The Gauss—Seidel method D+ L -U
The SOR method (D+wl)/w N=[1-w)D —-wU]/w

on the number of iterations k, the iterative methods are called “stationary”. From
(1.11) and (1.12), the iterates x| are written as

X1 =M '"Nxy+M'b (1.13)

fork=0,1,....

Stationary iterative methods are used for solving large and sparse linear systems
because unlike the direct methods such as the LU decomposition, we do not need
to consider fill-ins and only need to store nonzero elements of the coefficient matrix
and some working vectors in memory for computing the approximate solutions.

In what follows, the best-known stationary iterative methods are described, i.e., the
Jacobi method, the Gauss—Seidel (GS) method, and the Successive Over-Relaxation
(SOR) method. Let A = (a;;) be the coefficient matrix for Ax = b, and

L = (a;j), a;j=0fori < j,
D = (a;j), a;j =0fori # j,
U = (a;j), a;;=0fori > j.

Then we have
A=L+D+U.

L, D, and U are referred to as the strictly lower triangular matrix, diagonal matrix,
and strictly upper triangular matrix.

Choices of M and N using L, D, and U yield the Jacobi, GS, and SOR methods.
Table 1.1 shows the choices for the representative stationary iterative methods.

1.6.1 The Jacobi Method

From (1.13) and Table 1.1, the iterates x; of the Jacobi method are given as follows:

Xip1 = —D"Y L+ U)xi + D 'b.
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In practice, x4 is computed by the following recurrence relation:

1
k+1) _ L RGN 9]
i a aij b Za,]xj Zal‘]xj (119
j<i j>i
fori =1,2,...,n, where xi(k) and b; are the ith element of x; and b respectively,

and the symbol ), _; and }°;_; denotes 23;11 and ) _, . respectively.

1.6.2 The Gauss—Seidel Method

From (1.13) and Table 1.1, the iterates x; of the Gauss—Seidel (GS) method are given
as follows:

Xpp1=—(D+L)'Uxy + (D +L)"'b.

A derivation of the GS method is given below. Let us reconsider the Jacobi method.
When xi(kH) of the Jacobi method is computed by (1.14), x{kH), o x D have

v X
already been computed, which can be regarded as new information. Thus, a faster
. . . (k+1)
convergence may be expected if we use the new information )

aijx; instead
of the old information ) _ i

j<i J
which is written as follows:

ajj xj(.k). This is the key idea of the Gauss—Seidel method,

1
(k+1) __ o kD) 9]
X; = —aii b; E ajjXx; E ajjx; (1.15)

j<i j>i

fori=1,2,...,n.

1.6.3 The SOR Method

From (1.13) and Table 1.1, the iterates x; of the SOR method are given as follows:

1 T 1
Xpr) = |:—(D+wl)] {—[(1—w)D—wU]}xk+|:—(D+a)L):| b
w w w
=D+ wl) '[(1-w)D —oUlxy+ (D +wlL) 'wb,

or equivalently x4, of the SOR method is given by solving the following linear
systems:
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(D + wLl)xir1 =[(1 — @)D — oUlx; 4+ wb.

The element-wise iterates of the SOR method are described below:

gD = 1 b; — Zaijxj('kH) - Zaijx;k) ,
dii j<i j>i

xi(k+1) _ xi(k) n w(xi(kJrl) _ xi(k))

fori = 1,2, ..., n. Fromthis, itis easy to see that the SOR method is a one-parameter
generalization of the Gauss—Seidel method since the right-hand side of the first
equation is the same as the Gauss—Seidel method (1.15). If = 1, the SOR method
reduces to the Gauss—Seidel method. It is known that the necessary condition for
convergence is 0 < w < 2.

When A is symmetric, the symmetric SOR (SSOR) method is also well known,
since it can be used as a preconditioner for Krylov subspace methods to solve sym-
metric linear systems. For the SSOR preconditioner, see Section 3.5.4. The iterates
of the SSOR method are given as follows:

(D 4+ wl)x; =[(1 —w)D — wUlx; + wb,
(D + oU)x, =[(1 —w)D — wL]X; + wb.

For the SSOR method, M and N in (1.13) are given by

1
Mssor = m(D+a>L)D—1(D+wU), (1.16)

Nssor = ;[(1 —w)D —wL]D7'[(1 — w)D — oU]. (1.17)
w2 —w)

Since A is symmetric, we have U = L. Thus, it follows from (1.16) and (1.17) that
Mssor and Nssor are symmetric.

Many basic results of the SOR method including the SSOR method are summa-
rized in [93]. For recent developments of the SOR methods, see, e.g., [128, 130,
131] and the references therein. In [131], an adaptive SOR method is proposed based
on a novel connection between the SOR method and discrete gradient methods for
gradient systems in [130], which gives a geometric view of the SOR method.

1.6.4 Convergence of the Stationary Iterative Methods

A remarkable property of the stationary iterative methods is that we can estimate the
rate of error reduction by computing || M ~IN||, where || - || is a subordinate matrix
norm (1.2). To see this, from (1.13) and the relation Ax =b < x = M~ 'Nx +
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M~'b, the error is given by

€i+1 =X — Xj41
=M 'Nx +M7'b) — (M 'Nx; + M~ 'b)
= M_lN(x — X)
=M 'Ney. (1.18)

Thus the norm of the error is given by
lexill < 1M~ N [lexll.

The rate of the reduction of the error s || M~ N ||, which shows linear convergence.
Let A; (i =1,...,n) be the eigenvalues of an n-by-n matrix G and let p(G) =
max{|Ai], ..., |As|}. Then, p(G) is referred to as the spectral radius of G. It is easy
to see from (1.18) and the Jordan decomposition of M~ N that the necessary and
sufficient condition of the convergence for an arbitrary initial guess is

p(M7'N) < 1. (1.19)

In what follows, the best-known fact for satisfying (1.19) is described.

Definition 1.1 (Regular splitting) A = M — N is called regular splitting if M~ >
O and N > 0O, i.e., all the elements of M~! and N are greater than or equal to zero.

Theorem 1.3 If A = M — N is regular splitting, then
oM™'N) <1 A > 0.

Proof We first show p(M~'N) <1 = A"'> 0.Let G := M~'N and A; be the
eigenvalues of G. Then, the eigenvalues of I — G are nonzeros (i.e., nonsingular),
because the eigenvalues of I — G are 1 — A;, and |A;| < 1 from the assumption
p(G) < 1.Since M and I — G are nonsingular, A = M (I — G) is also nonsingular,
i.e., there exists A~!. Since p(G) < 1, we have

A= -6G)"'"M'=(I+G+G*+-- )M

Since A = M — N is assumed to be regular splitting, G > O and M~! > O.Thus
A7'> 0.

Next, we show the converse. Since A = M — N is regular splitting, M~' > O
and N > O. Thus G > O. It follows from the Perron—Frobenius theorem that there
exists a nonnegative eigenvector x > 0 such that Gx = p(G)x. It is easy to see that
A™'N = (I — G)~'G, and thus we have

A Nx = (I — G)'ox = LG
1 —p(G)
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Since A™' > O and N > O, we have A~'Nx > 0. This implies p(G)/(1 —
p(G)) > 0, which means (0 <)p(G) < 1. Since there exists (/ — G)~!, we have
p(G) # L. U

For further convergence theorems of the stationary iterative methods, see, e.g., an
excellent book by Varga [200].

The stationary iterative methods can also be used as a preconditioner for Krylov
subspace methods in Section 3.5.4.

1.7 Multigrid Methods

Multigrid methods fall into a class of iterative methods that have been developed for
solving linear systems arising from elliptic partial differential equations. Multigrid
methods find a good approximate solution of the linear systems from the informa-
tion of some rough approximate solutions of smaller linear systems (arising from
hierarchical coarser meshes) and an accurate approximate solution of the smallest
linear systems (arising from the coarsest mesh). For obtaining the rough approxi-
mate solutions, stationary iterative methods (especially the Gauss—Seidel method)
are often used, which are called smoothers. The name smoother comes from the fact
that the Gauss—Seidel method damps quickly the high frequency components of the
error or residuals for the linear systems, and the multigrid methods make the most
of this property.

The notable feature of the multigrid methods is that the convergence rate does not
depend on the mesh size, though stationary iterative methods and Krylov subspace
methods do. The multigrid methods are later extended to solving other linear systems
arising from not only elliptic ones but other models.

Multigrid methods are the subject of active research, and there are many excellent
books on multigrid methods, some of them by:

Hackbusch [91],
Wesseling [204],
Bramble [27],

Briggs et al. [28],
Trottenberg et al.[193],
Lottes [125].

Wolfgang Hackbusch’s book presents not only the basic concepts of multigrid
methods using simple one-dimensional differential equations but also describes algo-
rithms, their program codes, and detailed convergence analysis. James Lottes’s book
focuses mainly on algebraic multigrid methods.
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1.8 Krylov Subspace Methods

Krylov subspace methods have a long history, dating from the mid-20th century, and
the best-known method is the Conjugate Gradient (CG) method by Hestenes and
Stiefel.’

Krylov subspace methods are iterative methods for solving linear systems (1.1)
by utilizing Krylov subspace as defined next.

Definition 1.2 (Krylov subspace) Let vectors v, Av, ..., A" 1y € CN be linearly
independent, then

Ka(A,v) ={cov+ciAv+ -+ +c,1 A" vt co, 01, ..., i1 €C) (1.20)
(= span{v, Av, ..., A" 'v})

is called an (n dimensional) Krylov subspace.

The dimension of £, (A, v) depends on v, and the largest dimension with respect
to a given v is known as the grade of a Krylov subspace, as defined next.

Definition 1.3 (Grade of Krylov subspace) The smallest number n such that
dim(K,, (A, v)) = dim(K,.+1 (A, v)) (1.21)

is called the grade of A with respect to v.

Consider Ax = b and let m be the grade of A with respect to ry := b — Axy,
where x is an initial guess to the solution of Ax = b. Then

dim(KC,, (A, ro)) = dim(KC,, 11 (A, rp)).
This means that there exist ¢, ¢y, ..., ¢,—1 such that
A"ro = coro + clArg+ -+ cm1 A" ry.
Multiplying the equation by A~' yields
A" Ve = oA ro + c1Fo + 2 Arg + - - + C 1 AT 2.

Since A™'rg = A='(b — Ax() = x — x, the solution can be written as

1
X =Xx9+ — (—c1r0 — CArg — - — Cm_lAm_er + Am_lro)
Co

5 After the proposal of the CG method, Stiefel proposed the Conjugate Residual (CR) method in
1955, and he is also known for the Stiefel manifold that is an extension of the unit circle.
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if ¢ # 0. Let z,,, := (—Clro — = cm_IA’"_zro + Am_lro) /C(). Then, z,, € Iy,
(A, ry), which means that the solution x satisfies

X =X0+Zm» Zm eICm(A7"0)~

From this we see that the solution x belongs to the affine space x( + /C,, (A, ry).
This fact leads to a natural idea to compute approximate solution x,, over the affine
space x,, € xo + IC,,(A, rg), or equivalently

X, = X0+ Zn, anICn(Aer)
forn =1, 2,....1f z, is appropriately determined, then this approach gives the exact
solution at m iteration steps, which is the basis of Krylov subspace methods.

Now the framework of Krylov subspace methods is described below. Let xy € CV
be an initial guess, and letry := b — Ax be the corresponding residual vector. Then,
Krylov subspace methods produce the nth approximate solution over the following
affine space:

Krylov subspace condition
Xp =X0+Zn, Zn EICI‘I(A7 r0)~ (122)
Then, the corresponding residual vector r,, is given by
rn:=b—Ax, =ro— Az,, r, € Kut1(A, ro). (1.23)

Since x, cannot be uniquely determined by utilizing the condition (1.22) above,

one of the following conditions needs to be imposed for obtaining the unique approx-

imate solution:

Ritz—Galerkin approach

r, LIC,(A, rg). (1.24)

Petrov—Galerkin approach
r, LW, cCV, dim(W,) =n. (1.25)

Minimal residual approach
rueri e 10 Al (120

The Petrov—Galerkin approach includes the Ritz—Galerkin approach and the min-
imal residual approach as described below.
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Proposition 1.1 The following statements holds true:

e The Ritz—Galerkin approach (1.24) is the Petrov—Galerkin approach (1.25) with
the choice

W, = K:n(A’ rO)'

o The minimal residual approach (1.26) is the Petrov—Galerkin approach (1.25) with
the choice

W, = AK, (A, 1), (1.27)

where AK, (A, rg) := {ZZ:, CkAvg i cC1,C,y ..., Ch € (C}, and vy, vy, ..., v,are
the basis vectors of K,,(A, rg).

Proof 1t is obvious for the Ritz—Galerkin approach, so the equivalence of (1.26)
and (1.27) will only be proved. Let V,, = [vy, v3,..., v,] be an N-by-n matrix
whose column vectors vy, v,, ..., v, are the basis vectors of C,(A, rp). Then
Zy € Ky(A, ro) in (1.22) can be written as K, (A, r0) 3 2, = Y 4 CkVk = ViCn,
where ¢, = [ci, 2, ..., c,]" € C". Substitution of z, = V,c, into (1.23) yields

r,=ryg— AV,c,. (1.28)

Note that if r, L Avg(k=1,2,...,n), then it holds that r, L AK, (A, ro)
because it is easy to see that r, L ZZ:I cyAvy for all ¢; € C. The condition
r, L Avg(k=1,2,...,n) is equivalent to (AV)Hr, =0 (:=1[0,...,0]"), and
thus it follows from (1.28) that 0 = (AV,)"r, = (AV,)Hr¢ — (AV,)HAV,c,. Thus,
the vector ¢ is determined by

¢ = [(AV)RAV, 171 (AV,) r. (1.29)

We now show that ¢, is the solution of the minimization problem (1.26). Since
the minimized solution of ||b — Ax,||? is the same as that of (1.26), we consider

. 2 . 2
min b — Ax,||” = min ||rg — AV,c,|l
X, €x0+1C, (A,ro) c,eC
= mi(él (ro — AVye)H(ro — AV,c,). (1.30)
c,cCr

The following decomposition is useful for finding the solution of (1.30):

ld — Mx|> = (d — Mx)"(d — Mx) = f(x) +c, (1.31)
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Table 1.2 Krylov subspace methods for Hermitian linear systems

Ritz—Galerkin approach Minimal residual approach
CG MINRES, CR

Table 1.3 Some Krylov subspace methods for non-Hermitian linear systems

Ritz—Galerkin approach Petrov—Galerkin approach Minimal residual approach
FOM BiCG, BiCR GMRES, GCR
where

fx) = MEMx — MEDEMEM) ' (MM x — MPd),
c=—d"MMm M) 'M"d + d"d.

If M is column full rank, then M M is Hermitian positive definite,® and thus f(x) >
0. This means the minimization of (1.31) is achieved by minimizing f(x). It is easy
to see that

x = MMy~ MUd (1.32)

gives f(x) =0, which is the solution of the minimization problem of (1.31).
Letting x = (MU M)~' M"d with M = AV, and d = r yields the same result as in
(1.29). 0

Remark 1 The equation (1.31) is also useful for solving the following minimization:

min ||@ — wb|| (1.33)
weC

because setting d =a, M = b, x = w in (1.32) yields the solution of (1.33) as
follows:

bla

= —. 1.34

D (1.34)

The result will be used for Krylov subspace methods in Chap. 3.

Now, the relationship among representative Krylov subspace methods and three
approaches (1.24)—(1.26) is described in Tables 1.2 and 1.3.

6 Matrix G € C¥*¥ is called Hermitian positive definite if G is Hermitian and ¥HGv > 0 for all
v(# 0) € CV, or equivalently, all the eigenvalues of Hermitian matrix G are positive. From this, it
follows that if G is Hermitian positive definite, then G~! is also Hermitian positive definite. For
the positive definiteness, see also Sect. 1.4.
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The relationship among Krylov subspace methods for Hermitian and non-
Hermitian linear systems is as follows: the BiCG method and the FOM are extensions
of the CG method; the GMRES method is an extension of the MINRES method; the
BiCR method and the GCR method are extensions of the CR method. The details of
these Krylov subspace methods are described in Chap. 3.

1.9 Orthogonalization Methods for Krylov Subspaces

For satisfying Ritz—Galerkin or Petrov—Galerkin or minimal residual approaches
in Sect. 1.8, constructing basis vectors of Krylov subspace is required. For a non-
Hermitian matrix, the Arnoldi and the bi-Lanczos processes are used for Krylov
subspace basis vectors. For a complex symmetric matrix, the complex symmetric
Lanczos process is used, and for a Hermitian matrix, the Lanczos process is used.

The Arnoldi process produces orthonormal basis vectors of Krylov subspace
KC,.(A, v). The Arnoldi process never suffers from breakdown (i.e., zero-division),
but the computational costs grow linearly as n increases. The bi-Lanczos process pro-
duces bi-orthogonal basis vectors of the Krylov subspace. The computational costs
do not grow linearly as n increases and thus the costs are less than those of the Arnoldi
method. However, it may suffer from breakdown, and near breakdown will lead to
loss of orthogonality in the basis vectors. The complex symmetric Lanczos process
and the Lanczos process are special cases of the bi-Lanczos process. In particular,
since the Lanczos process is also a special case of the Arnoldi process, the Lanczos
process has favorable features of the Arnoldi process and the bi-Lanczos process,
i.e., the Lanczos process generates orthonormal basis vectors and the computational
costs do not grow linearly as n increases.

In the following subsections, these methods are described, together with algo-
rithms and matrix representations that will be used for the derivations of Krylov
subspace methods.

1.9.1 The Arnoldi Process

The Arnoldi process produces orthogonalized basis vectors of Krylov subspace
K. (A, v), i.e., the basis vectors vy, vy, ..., v, satisfy

(vi,v;) =6,

where (x, y) := xHy = ZlN:l X;y; is the standard dot product and §; ; is the Kro-
necker delta, i.e., §; ; = 1ifi = jand §; ; =0if i # j.

For simplicity, consider producing orthonormal vectors of /C, (A, v) for the case
n = 3, i.e., producing vy, v,, v3 from span{v, Av, A%v).
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A method to obtain orthonormal vectors from span{v, Av, sz} is to use the
Gram—Schmidt process, which computes v, v,, and v3 as follows:

vV =210,
vy = 22(Av — c1vy),

v3 = 23(A%v — dyv; — davy).

Here z; (i = 1,2, 3) are scalar values for satisfying the normalizations ||v;| =
1. Scalar value c; is determined so that v; and v, are orthogonal, i.e., (v{, v2) =
0. Similarly, scalar values d; and d, are determined so that v3 L v, and v3 L v,
i.e., (vy, v3) = (vy, v3) = 0. However, it is known that this approach is numerically
unstable, since the angle between A”v and A”~'v may be close to zero for large n,
leading to severe cancellation. In fact, under a suitable condition, A” v converges to an
eigenvector of A whose eigenvalue is the maximum in magnitude among eigenvalues
of A.

The Arnoldi process slightly modifies the (classical) Gram-Schmidt process as
follows:

v =210, (1.35)
vy = 22(Av; — c1vy), (1.36)
v3 = z3(Avy — d\v; — dhv2). (1.37)

Unlike the Gram—Schmidt process, A”v is not computed. In the following, the scalar
values are determined. Letz; = 1/(v, v)/? € R, orequivalently 1/ v||. Then ||v; | =
1 because ||v| = (z1v, z;v)/? = (z%(v, )2 = z,(v, v)"/2 = 1. Next consider
determining c¢; such that (v{, v;) =0, i.e.,

0= (vy,v2)
= (v1, 22(Av — 1))

= 22((v1, Avy) — c1(v1, v1)) = 22((v1, Avy) — ).

Thus ¢; = (vy, Avy), and z; is determined by ||vz|| = 1,i.e.,z0 = 1/||Av; — civ4]l.
Similarly, scaler values d;, d, in (1.37) are determined by (v, v3) = (v2, v3) =0,
and z3 is determined by ||v3]| = 1.

The Arnoldi process (classical Gram—Schmidt type) is given in Algorithm 1.7
and a more accurate variant of the Arnoldi process (modified Gram—Schmidt type)
is described in Algorithm 1.8.

The Arnoldi process can be expressed in matrix form. As an example, we consider
a matrix form of the recurrences (1.36) and (1.37). From (1.36) and (1.37) we have

—1
Avy =z, vy + vy,

Avy = 23_103 +divy + dyvy,
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Algorithm 1.7 The Arnoldi process of classical Gram—Schmidt type

Input: Non-Hermitian matrix A € CV*V and choose v; such that ||v;|| = 1
Output: vy, vy,..., vy

l:forn=1,2,..., N—1do

20 hipy =, Av,), i=12,...,n

3: i4)n+1 = Av, — Z?:l hi.nvi
4 hpyin :~||’~)n+l |

5: VUntl

6:

Untl = Ingin

end for

Algorithm 1.8 The Arnoldi process of modified Gram—Schmidt type

Input: Non-Hermitian matrix A € C¥*V and choose v; such that [v;|| = 1
Output: vy, vy,..., vy
l:forn=1,2,..., N—1do
2: t = Av,

3: fori=1,2,...,ndo
4 hin = (v, t)

5: t=1t—hi,v;

6: end for

7: hn+l,n = ”t”

8 vy = mﬁ

9: end for

or equivalently

C1 d1
Alvy, vl =[v1,v2,v3] | 25" da
0 z;'

Note that A[v, v,] = [Av|, Av,]. Similarly, the matrix form of Algorithm 1.7 (or
Algorithm 1.8) can be obtained as described next.

Let V,, be the N x n matrix whose columns are the first n orthonormal vectors
given in Algorithm 1.7 (or Algorithm 1.8), i.e.,

Vn:[vla vz,...,vn], VnHVn:Ina

and H, 11, the (n + 1) x n Hessenberg matrix with entries h; ; =0 fori > j+1,
and H, the n x n Hessenberg matrix as follows:

[ Ry b Ry by |
hai hap -+~ hop1 hay

HnJrl,n =

hn,n—l hn.n
hn+1,n_
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and

hn,n—l hn,n

where h; ;’s are scalar values that are produced by Algorithm 1.7 (or Algorithm 1.8).
Then, we have

AV, = VVH—lHn-‘rl,n =V,H, + hn+1,nvn+le;’ (1.38)

where e, = (0,0, ...,0, )T € R". From the above matrix form and VnH V., =1,,
we obtain the relation of the form

H, = VHAV,. (1.39)

If A is Hermitian, from H? = (VHEAV)H = VHARY, = VHAV, = H, we see
that the Hessenberg matrix H, is Hermitian. Thus, in this case, H, is a tridiagonal
matrix. This means that if A is Hermitian, the Arnoldi process has a short-term
recurrences relation, which leads to the Lanczos process. The details of the Lanczos
process will be described in Sect. 1.9.4.

1.9.2 The Bi-Lanczos Process

The bi-Lanczos process is an algorithm for obtaining a bi-orthogonal basis of
K, (A, vg) with short-term recurrences. Although the process does not generate
orthonormal basis vectors, it plays an important role in solving linear systems with
low memory requirements. The algorithm is given in Algorithm 1.9.

If breakdown does not occur, Algorithm 1.9 generates bi-orthogonal basis vectors
of the two Krylov subspaces such that

(w;, v;) =6; ;,

where K, (A, v1) = span{vy, ..., v,} and K, (A", w,) = span{w;, ..., w,}.
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Algorithm 1.9 The bi-Lanczos process

Input: Non-Hermitian matrix A € CV*V and choose v and wy such that (vo, wo) # 0
Input: vi = vo/|lvoll, wi = wo/(wo, v1)

Output: vy, vy, ..., vy and wi, wy, ..., Wy

l:forn=1,2,...,N—1do

2: ay = (wy, Avy),

3: ij}’l+l = Av, — v, — Bu_1V5—1

4 a)n+l =A w, — oW, — Yn—1Wp—1
50 Yo = lVpll

6: Vny1 = Vnt1/Vn

70 Bp = Wy, ”nil)

8: Wp41 = ﬁ)n+l/ﬁn

9: end for

Similar to the Arnoldi process, the bi-Lanczos process can also be written in matrix
form. Let T, , be the (n + 1) x n tridiagonal matrix whose entries are recurrence
coefficients of the bi-Lanczos process, i.e.,

ar B o B
P S L= 1
Prt ' Bu-1
Ynct (;: Ya—1 On
Then from the bi-Lanczos process, we have
AVy = Va1 Tuiin = VaTy + Vavarre, (1.40)

H H H,, & T
A Wn = Wn+1Tn+1,n = WnTn + Iannﬂen .

From the above expression and W,f{ V. = I,, we readily obtain the formula 7, =
W,IHAV,,.

1.9.3 The Complex Symmetric Lanczos Process

The complex symmetric Lanczos process is a special case for the bi-Lanczos process
(Algorithm 1.9) when the coefficient matrix is complex symmetric, i.e., A = AT #
AHIf A is complex symmetric, we can readily derive the process from Algorithm
1.9 by setting wy = vy, and the resulting algorithm is given in Algorithm 1.10.

If breakdown does not occur, Algorithm 1.10 generates conjugate orthogonal basis
vectors of the Krylov subspace such that
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Algorithm 1.10 The complex symmetric Lanczos process (note: (@, b) = a ' b)

Input: Complex symmetric matrix A € CN*N and choose v; such that (v1,v1) #0
Input: v; =v/(vy, 1)1)1/2

Output: vy, vy,..., vy

l:forn=1,2,..., N—1do

2: oy = (v, Avy)

3 Ut =7Avn —apVy — Bu—1Vn—1

4 /3n = (f)n+l7 '~)n+l)l/2

S: Upyl = 1~In-%—l/.Bn

6: end for

(vi, vj) = &;j,

where K, (A, v;) = span{vy, ..., v,}.

Similar to the Arnoldi process and the bi-Lanczos process, Algorithm 1.10 can
also be written in matrix form. Let 7,4 , be the (n + 1) x n tridiagonal matrix whose
entries are recurrence coefficients of the complex symmetric Lanczos process, i.e.,

o b o B
Bn-1 Z: B (Zl
Then from Algorithm 1.10, we have
AVy = Vo1 Torn = Va T + Buvasre, . (1.41)

From the above, we see that T,, is also complex symmetric, i.e., T, = T, # TH.

1.9.4 The Lanczos Process

The Lanczos process is the Arnoldi process specialized to the case where A is Her-
mitian. Since H,, is both Hermitian and Hessenberg, it is tridiagonal. This means that
in the inner loop of the Arnoldi process (Algorithm 1.7), the summation from 1 to n
can be replaced by n — 1 to n. Therefore, instead of the (n 4 1)-term recurrence at
step n, the Lanczos process only requires a three-term recurrence. As a result of this
amazing property, each step of the Lanczos process is much more concise than the
corresponding step of the Arnoldi process or the bi-Lanczos process. The Lanczos
process is listed in Algorithm 1.11.
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Algorithm 1.11 The Lanczos process

Input: Hermitian matrix A € CV*N and choose v; such that ||v;| = 1
Input: 8o =0,v9 =0
Output: vy, vy,..., 0y

l:forn=1,2,..., N—1do

2: oy = (v, Avy)

3 Vpt1 = AV — €0y — Bu—1Vp—1
4 Bn = (f’n+1~ '~)r1+1)1/2

RHE SIS ﬁn+l//3n
6: end for

We can readily derive the Lanczos process from the Arnoldi process or the bi-
Lanczos process with setting wy = vy. If breakdown does not occur, the above algo-
rithm generates an orthonormal basis of K, (A, v;) such that

(v, v)) =65,
where K, (A, v;) = span{vy, ..., v,}.
Similar to the Arnoldi process and the bi-Lanczos process, the Lanczos process

can also be written in matrix form. Let 7,,1; , be the (n + 1) x n tridiagonal matrix
whose entries are recurrence coefficients of the Lanczos process, i.e.,

ay Bi

a1 B
nn=| L= | Pr
ﬁn;l IBXI;I e B
8, Bu-1 o
Then from the Lanczos process, we have
AVy = Va1 Tuin = VT + Buvapre, - (1.42)

From the above expression and VnH V. = I,, wereadily obtain the following formula:
T, = VHAV,. (1.43)

We see that 7, is also Hermitian (more precisely, real symmetric). The Lanczos
process is used for solving Hermitian linear systems.



Chapter 2 ®)
Some Applications to Computational e
Science and Data Science

Abstract Linear systems of the form Ax = b arise in a rich variety of applications
such as computational science and data science. For computational science, phys-
ical phenomena are often described as partial differential equations. For solving
partial differential equations, the finite-difference methods and the finite element
method are widely used, leading to a problem of solving linear systems. Large-scale
electronic structure calculation for condensed matter physics and lattice quantum
chromodynamics for particle physics require solving large-scale linear systems. For
data science, regression and classification are fundamental tasks that also require
solving linear systems. Minimizing or maximizing functions is one of the most
important optimization problems, which requires solving linear systems when New-
ton’s method is used. We will see in this chapter how the linear systems arise in these
applications by using simple and concrete examples.

2.1 Partial Differential Equations

In this section, the finite difference method and the finite element method are
described using some partial differential equations, and we will see that the more
accurate solution we need, the larger the linear systems we need to solve.

2.1.1 Finite Difference Methods

This subsection describes the finite difference methods using several simple partial
differential equations. The notion of tensor products is also explained, which comes
in handy to describe the coefficient matrix of the linear systems arising from the
finite difference discretization of the partial differential equations. First of all, a
mathematical preliminary is given next.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 31
T. Sogabe, Krylov Subspace Methods for Linear Systems,

Springer Series in Computational Mathematics 60,
https://doi.org/10.1007/978-981-19-8532-4_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-8532-4_2&domain=pdf
https://doi.org/10.1007/978-981-19-8532-4_2

32 2 Some Applications to Computational Science and Data Science
2.1.1.1 Preliminary
This subsection describes several formulas for approximating derivatives f'(x), f” (x)

of a smooth function f (x) at x using f (x), f(x — h), and f (x + 1) withO < h < 1.
Consider how to approximate f”(x). The Taylor series of f (x) is given by

1 1
fu440=f@)+f@yp%aﬂ@m2+§ﬁ”um3+u-. 2.1)
Then, f’(x) is written as

FOt+h) —f@) 1

’ " 1 n
fx)= s Egum—ﬁfmﬁ—m
_fat h;l —f(x) Lo,

O(-) is the big O notation. Roughly speaking, O (k) in this case means that —% " (x)
h— %f "(x)h? — - - can be written as ch for a suitable constant value ¢ as i — 0.
The approximation to f’(x) by the recurrence

faHER—f)
oy~ T

! 2.2
I A 2.2
is referred to as the forward difference. The accuracy of the forward difference is of

order h. A similar approximation

J@ —fx—h

')~ 7

(2.3)

is referred to as the backward difference. The accuracy of the backward difference
is also of order 4. For a more accurate formula, it follows from (2.1) that we have

Ja+h—fx=h

_ ! 2
o =f () +O00),

from which, we have

pon S+ h) —fx—h)
(x) ~ ,

f 2h

(2.4)

and this is referred to as the central difference for the first derivative of f (x), whose
accuracy is of order A2

We now consider approximating the second derivative f”(x). From the Taylor
series (2.1) of f (x + h) and f (x — h), we have

F+h) = 2f @) +f(x —h) =f"()h* + Oh?).
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Thus

Jx+h) =2f () +fx—h)

i +0().

) =
The following approximation

A AR Al

- 2.5)

f" )

is referred to as the central difference for the second derivative of f (x), whose accu-
racy is of order 4.

2.1.1.2 Example 1 (Symmetric Matrix)
Consider the Laplace equation of the form

Uy +tyy =0, (x,y) € (0,1) x (0, 1),
ux,y) =gk, y), (xy €r,

where I" is the boundary of (0, 1) x (0, 1). To be specific, the boundary condi-
tionis givenby u(0,y) = g(0, y),u(l,y) = g(1,y),u(x,0) = g(x,0),and u(x, 1) =
g(x, 1).

We now approximately solve the Laplace equation by using central difference
(2.5). To this end, an equispaced grid of N x N points in (0, 1) x (0, 1) is used. The
case N = 3 (h = 1/4) is shown in Fig.2.1.

Fig. 2.1 Mesh grid on the y
region for example 1 (the
Laplace equation) h=1/4
—_ @D
h { 814 |824 &34

8oz (U |Ug Uy (843

8o2 Uy |Us |Ug |84z

8oy (U Uy Uy |84y
©0 80 820 830




34 2 Some Applications to Computational Science and Data Science

In the following, we use the mesh in Fig. 2.1 and we will see how linear systems
are obtained. Central difference (2.5) for approximating u,, and u,, is given by

1

Uy (X, y) & ﬁ(u(x +h,y) = 2u(x,y) + ulx — h, y)), (2.6)
1

Uy (X, y) & ﬁ(u(x, y+h) = 2u(x,y) +ulx,y — h)). 2.7)

It is convenient to introduce an abbreviated notation u; ; = u(x;, y;). Then we obtain
the following five-point formula:

1
Upe (Xi, ¥) + Uy (X, y)) = ﬁ(um,j Fuiyy—dup+uije +uijor),  (2.8)

where u(x;, y;) = g(x;, y;) on the boundary. Let uy := u(xi, y1), us := u(x, y2),...,
uy 1= u(x3,y3) and g;; := u(x;, y;) on the boundary. Then from Fig.2.1 and (2.8),
unknowns uy, U, . .., ug have the following relations:

uy + go1 — 4uy +ug +g10=0,
uz 4+ uy —4up +us + g20 =0,
84,1 +uy —4uz +us + g30 =0,
us + go2 — 4ug +u7 +u; =0,

843+ ug —4ug + g34 +ug =0.

The corresponding matrix form is

T—4 1 0|1 0 0|0 0 07[u retol T O7 Teul [0
1 =4 1|0 1 0[0 0 0 ||u 2.0 0 0 0
01 —-40 0 1|10 0 O u3 £3.0 0 0 84,1
1 0 0(—41 O|1 0O O Uy 0 0 80,2 0
01 0|1 -41({0 1 O us |=—| 0 |—-] O |—=] O |—=] O
00 1[0 1 —41 0 1 ug 0 0 0 84,2
00 0[1 0 0[—41 0 |[|u 0 814 80,3 0
00 00 1 O|1 —41 ug 0 82,4 0 0
Lo 0 0|0 0 1|0 1 —4] Lugl L O] Legal LOJT Lessl
—_——
A x b
(2.9)
By solving the linear systems, we obtain the approximate solution uy, .. ., ug on the
mesh grid.

The matrix of the linear systems (2.9) has a special nonzero structure, which
can be rewritten in a simple form using Kronecker product. Let A(= {a;}) and B
are matrices. Then, the symbol A ® B is called the Kronecker product (or Tensor
product), defined by
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ayB ---ai,B
AQB = Do . (2.10)

auB - a,B
Below is an example for A, B being 2-by-2 matrices:

aibi anbiz|apbiy anbis

A®B— ay1B|a;,B _ | @ubai anby|anby annby
az1BaxnB ax by azibrz|axnbiy anbiy
ax by ax1bxn|anby anbin
Now, let
-2 1 0 100
M=|1-211{, I=]010
0 1 =2 001

Then, the coefficient matrix A in (2.9) can be written as
A=1IQM+MQI. (2.11)
The size of the matrix A is 3> x 3%. In general, N x N grid yields an N2 x N2
matrix, which can be very large and symmetric. Krylov subspace methods for sym-

metric linear systems are described in Sect.3.1.
Finally, some properties of the Kronecker product are listed below.

Theorem 2.1 The Kronecker product has the following properties:

(1) ForAeC™" Be(Cr4,C e C™,
A®B®C=AQBRC).
(2) ForA,B e C™", C e CP¥4,
A+B®C=AQC+BQC.
(3) ForA e C™" B, C e CP*4,
A®(B+C)=A®B+AQRC.
(4) Force C,A e C™" B e Cr*,
(cA) ® B=A® (cB) = c(A® B).

(5) ForA e C™" B e CP*14,
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A® B =A% @ B!
(6) For A e C™", B e CP*,CeC™,DeCr,
(A® B)(C ® D) = (AC) ® (BD).

Proof We only give a proof of (6). The (i, k) block element of A ® B is a; B,
and the (k, j) block element of C ® D is ¢, ;D. Thus the (7, j) block element of
(A® B)(C ® D) is given as

n

(A®B)(C®D));j =Y (aixB)(ck,;D) = (Z a,-,kck,,) BD
k=1

k=1
= (AC)ijBD = ((AC) ® (BD))i,,

which concludes the proof. O

Note that (i, j) “block” element is not a scalar but a matrix. For example, consider
the following 2-by-2 block matrices of the form

A Ap By B2
A= , B= .
[A21 A22 B21 B22
Then the (1,1) block element of A is matrix Ay, and the (1,2) block element of B
is matrix Bj,. Furthermore, we can calculate AB as if the submatrices A; ; and B, ;
are scalars when the matrix multiplication A; ;B; x is defined. For example, The (1,1)

block element of AB is given by A 1B1; + A12Bs;.
From Theorem 2.1-(6), the following properties hold true.

Corollary 2.1 Let A and B be invertible matrices. Then
A®B '=A"'@B .

Proof From Theorem 2.1-(6), wehave (A~™' ® B-)Y(A® B) = (A"'A) ® (B™'B) =
I ® I, which is the Kronecker product of the two identity matrices. It is easy to see
that the Kronecker product of the two identity matrices is the identity matrix. ]

Corollary 2.2 Let pfA) and p;B) be eigenvectors of A and B, and the corresponding

eigenvalues are ka) and )\](»B). Then an eigenvector of A @ B is pEA) ® p(B), and the

corresponding eigenvalue is AEA)A;B), ie.,

ueB (P op”) =14 (b ©p”).

Proof From Theorem 2.1-(4) and (6), we have
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“e5 (pEA) ®p;B)) = (AP,(-A)) ® (Bpj(.B)) = A (plgA) ®pj§3)> ,

which concludes the proof. O

Corollary 2.3 Using the same notations as in Corollary 2.2, it follows that
uel+1eB) (p" op”) =" +4") (p" @ p”).

where 1 is the identity matrix.

The matrix A ® I + I ® B is referred to as a Kronecker sum (or Tensor sum).

It follows from Corollary 2.3 that eigenvectors and eigenvalues of matrix A in
(2.11) can be given by (p; ® p;, Ai + 4;), where p; and 2; is the eigenvector and
eigenvalue of M. This indicates that matrix A in (2.11) is not invertible if and only
if there exist 7, j such that A; = —A;. Thus, the distribution of eigenvalues of much
smaller matrices M than A determines whether matrix A is invertible or not.

In general, the Kronecker product does not commute, i.e.,

A®B #B®A,

where A € C™*", B € CP*4. However, there are permutation matrices P, € R
and P,,; € R"?*"¥ such that

P, (A® B)P,; = B®A.

We describe this fact in detail as given next.

Theorem 2.2 Let P,,,, € R™*"™ be a matrix of the form

En)' En)' ... (Ew)]
| ET ED)T BT

mn —

: : . : , (2.12)
(Eml)—r (EmZ)T s (Emn)—r

where E; j € R™" is a matrix whose (i, j) element is one and the other elements are
zeros. Then,

PngPT =P,

nm nm

and for A € C™", B € CP*4,

P,, A®B) P,y =B®A. (2.13)
—_— T
mpxmp MPXN4  ngxng

If A and B are square matrices (i.e, m =n, p = q),
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P! (A®B)P,, = B®A.

mp

Proof We give a proof of (2.13). The (i, j) block element of P, , in (2.12) is EUT.,
and Ej; can be factorized as

—eel
Ej =eie; ,

where e; is the ith unit vector, i.e., the ith element is one, and the others are zeros.
Let a;; and b;; be the (i, j) elements of A and B. Then, from (2.12), the (i, j) block
element of P;nrp (A ® B)P,, is calculated as

(P;p(A ® B)an). = ZEki(akeB)Eg = Zake (EwBEj;)
y .0

k.t
= Zakg (ekeiTBeje[T) = Zau (ekb,-je;gr)
k.t k.t

= b,‘j Zakg (ekeg) = b,j ZakgEkg = bUA
k.t k.l
= (B®A)y,

which concludes the proof. (]

2.1.1.3 Example 2 (Complex Symmetric Matrix)

We consider the following boundary value problem:

gy + Uy + 07U = 0, (x,y) € (0, 7) x (0, 7),

Uy|ymo = iy/O2 — % CcoS %, Neumann Condition (1),

Ugl—z — iy/0? = Juli—x =0, Radiation Condition,

Uy|y—o = 0, Neumann Condition (2),
uly—y =0, Dirichlet Condition.

The elliptic partial differential equation is known as the Helmholtz equation, see,
e.g., [19]. For simplicity, we use a 3-by-3 mesh grid as shown in Figs.2.2 and 2.3.

Similar to Example 1 in the previous section, applying (2.6)—(2.8) to the Helmholtz
equation yields

— ”i+1,j — ui—],j —I— (4 — hzaz)uilj — ui,j+l — Mi,j—l = 0 (214)

Considering Eq. (2.14) over the mesh points given in Fig.2.3 leads to the following
six equations:
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Fig. 2.2 Mesh points on the y
region
Dirichlet condition (7, 77)
z |% Uy U
£ 2
s
=
£ |t Us Ug £
X
©0) u, u, Uy

Neumann condition (2)

Fig. 2.3 Mesh points on the y
region satisfying the

boundary conditions (n.7)

&8s & 8o

&s u, U U, &
& 0o u, u, U, & *
*8 *g *8;
—ur — g4 —us — g1 + (4 — WPoHu; =0,
—uz —uy —us — go + (4 — h*o?u, =0,
—gs —up — g — g3+ (4 — h?oHuz =0, (2.15)

—Us — 8¢ — 88 — U + (4 — hzoz)u4 =0,
—ug — s — go — Uz + (4 — W20 )us = 0,
—g7 —us — g0 — Uz + (4 — h*oH)uz = 0,

wherem =Uup = M(O, 0),u2 =Up = u(h, O),M3 =Uzl = M(Zh, 0),144 = U =
u(0, h), us :==upp = u(h, h), ug :=uzp =u(2h, h) and h = mn/2. Here g;’s for
k=1,...,101n Fig.2.3 can be computed by considering the four boundary condi-
tions as follows: first, from Neumann Condition (2) it follows that

M4—81_M5—82_M6—g3_0
2h 2 20

and thus

81 = U4, 82 =1Us5, 3= Us-

Second, from Neumann Condition (1), we have
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- 0 — 1 &
1 (0,00~ 28 _idcos (=), w0 h)~B 5 —igeos(=x2).
2h 2 2h 2 2
or equivalently,
. . h
g4 = up — 2idh, g¢ = us — 2idhcos 1)

where d = /0% — 1/4. Third, from the Radiation Condition we obtain

85 — Uy . g7 — Us
—iduz =
2h 2h

—idug =0
or equivalently,
g5 = uy + 2idhuz, g7 = us + 2idhus.
Finally, it follows from the Dirichlet Condition that gg, g9 and g satisfy

88 = g0 = g0 =0.

Substituting g1, g2, . . ., g10 into the six equations (2.15) yields the following linear
systems:
a =2 0o -2 0 0 u f
-1 a -1 0 -2 0 up 0
0—-2a—-idh 0O 0 =2 us | |0
-1 0 0 a =2 0 ug | | fa ] (2.16)
0 —1 0O -1 a -1 Us 0
0o 0 -1 0 —2a—idh| | ug 0

where a = /02 —1/4, fi = —2idh, and f; = —2idhcos(h/4). The coefficient
matrix of the linear systems (2.16) is not symmetric. By scaling each equation,
we obtain symmetric linear systems of the form

a/4d —1/2 0 —1/2 0 0 u fi/4
—1/2 a/2 —1/2 0 -1 0 up 0
0 —-1/2@@—idh)/4 0 O —1/2 us | _ 0 2.17)
—-1/2 0 0 a/2 —1 0 Uy fa/2 17
0 —1 0 -1 a -1 us 0
0 0 —1/2 0 —1l(@@—idh)/2| | ues 0

The coefficient matrix of the form (2.17) is non-Hermitian but symmetric, i.e., com-
plex symmetric. Krylov subspace methods for solving complex symmetric linear
systems are described in Sect.3.2.
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2.1.14 Example 3 (Nonsymmetric Matrix)
Consider the following three-dimensional partial differential equation:

[a- (VxV)+b-V+clux,y,z) =gk, y,2), in ,
u(x,y,z) =0, on Q.

Here, €2 is the cubic domain, i.e., (0, 1) x (0, 1) x (0, 1) and 9<2 is the boundary.

The symbol “*” denotes element-wise multiplication. Equivalently, the operator a -
(V% V)+b-V + cis rewritten as

02 92 32

0 0 0
+ + t+bi—+b—+bs—+c
X 0z

Moz TP T B2 T dy

witha = [a1, a2, a3]", b = [b1, by, b3]", and ¢ = [c1, ¢2, c3] .
Using central difference (2.5) for the second derivative of u yields

a

At (x, y, 7) & h—;(u(x +h,y, 2) — 2u(x,y, 2) +ulx — h, y,2)),
a

ity (X, y, 7) A h—ﬁ(u(x, y+h2) —2u(x,y,2) +ulx,y — h,2)),

a
asu (x, y,2) ~ h—i(u(x, v,z +h) —2u(x,y,2) + ulx,y,z — h)).

Similarly, using central difference (2.4) for the first derivative of u gives

b

bruy(x, y,2) ~ 2—;1(u<x +hy,2) —ulx — h,y,2)),
b

baity (x, y, 2) ~ ﬁ(u(x, y+h2) —ulx,y —h,2)),
b

b (x, y,2) ~ ﬁ(u(x, V.24 h) —ulx, v,z — h)).

Considering an (N + 1) x (N + 1) x (N + 1) grid, together with the central differ-
ences above, leads to

[a' (V*V)+b V+C]u(x,y,z)
ap bl
A ﬁ(uiﬂ,j,k —2u; 5 +ui—1j k) + E(uiﬂ,j,k — Ui—1jk) + Cljjk
ar b2
+ ﬁ(uiﬁ],k —2uijp + Uijo1x) + E(“i,ﬂrl,k — Uij1k)
as 3
+ ﬁ(ui,j,k-q—l —2u;jx +uijr—1) + E(ui,j,k-ﬁ—l — Ujjk—1),

where h = 1/(N + 1). Since u = 0 on the boundary. Following Sect.2.1.1.2, we
have
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UNRINQA+INIBRQIn+CQRINQIy)u =g, (2.18)

where Iy is the N-by-N identity matrix, each element of # and g corresponds to
u(xi, yi, z;) and g(x;, yi, z;), and

A P
== — cly,
h2 1 " 2 N
B= 2+ 2y
_h2 1 2h 21
o= Sy By
R op?
Here, M| and M, are defined by
-2 1 0 1
1 =21 -10 1
Ml = s M2 = .. .. ..
1 =21 -101
1 -2 —-10

M, and M, are N-by-N (tridiagonal Toeplitz) matrices, and blanks in the matrices
are zeros.

The size of linear systems (2.18) is N> x N3.If N = 100, which is an equispaced
grid with & ~ 0.01, then the size of the matrix is a million. If N = 1000, then the
size is now a billion! Therefore, efficient numerical solvers for solving very large
(and sparse) linear systems are required for a well approximate solution to the partial
differential equation.

The matrix in (2.18) is (real) nonsymmetric if b # 0. Krylov subspace methods
for nonsymmetric (non-Hermitian) linear systems are described in Sect. 3.3.

2.1.2 The Finite Element Method

In the previous section, we have seen that a finite difference approximation to (partial)
derivatives yields linear recurrence relations, leading to linear systems by using the
recurrence relations. The approximate solution corresponds to the values of given
grid points, which are the elements of the solution vector for the linear systems. In
this section, the Finite Element Method (FEM, hereafter) is introduced, and we will
see how linear systems are obtained through a simple example. The advantages of
the FEM over the finite difference method are (i) square (or rectangular) grid points
on the domain are not necessarily needed, and thus it is suitable for not only square
or rectangular but other various domains; (ii) there are many mathematical results
for the error analysis based on functional analysis.
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Fig. 2.4 The domain and the

boundary of the Poisson Egs.

(2.19)-(2.21) Boundary
I'=I' ol

n:unit normal vector

In this section, we consider applying the FEM to the following Poisson equation:

—Aulx,y)=f, (x,y) €, (2.19)

culx,y) =g, (x,y) € I';, Dirichlet Condition, (2.20)
0

. a—u(x, y) =0, (x,y) € I',, Neumann Condition, 2.21)
n

where A := 3?/9x> 4+ 3%/0y?. The domain and the boundary with the boundary
conditions are illustrated in Fig.2.4. In the following, the explanations are based on
[118, 170].

2.1.3 Weak Form

In this section, an integral equation called the weak form is derived from the Poisson
equation.
Consider integrating (2.19) multiplied by an arbitrary function over the domain €2:

—/vAu dQ=fvfdQ. (2.22)
Q Q

If we can find a function u that satisfies (2.22) for all v, then u is the solution of
(2.19). The FEM tries to find the solution « that satisfies (2.22) instead of solving
(2.19), which differs from the finite difference methods. Here, function v is referred
to as the test function or the weight function.

Now, in order to simplify the mathematical formulas, let v be an arbitrary smooth
function but v = 0 on I';. Applying the Gauss—Green theorem to the left-hand side
of (2.22), the integration by parts yields
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d
/ vAudQ = / va—u dr" — / Vv.-VudQ (the Gauss—Green theorem)
Q r Q

n
3 3
=/ v—udF1+/ v—”dr2—/w.wa9
r on I on Q
__ / Yy . Vi . (2.23)
Q

Here we used the assumption v = 0 on '} and Neumann condition (2.21) on I', i.e.,
% =0on Fz
Substituting (2.23) into (2.22) gives

[Vv~VudQ:/vfd§2.
Q Q

Thus all we have to do is to find u such that

av 8u ov du
// (ax ax " dy ay>d’“dy‘ // f dxdy. (2.24)

The equation does not have the second-order derivative, whereas the original Eq.
(2.19) does. In other words, the condition of differentiability of u in (2.24) looks to
be weak. Therefore, (2.24) is referred to as the weak form.

As seen in (2.24), the weak form is the integral over the whole domain. Now
consider that the whole domain is divided into finite elements e;, i.e., Q2 = U}_,¢;
and e; Ne; = ) for i # j. Then we have

av 8u ov ou
// <8x ax  dy ay> xdy = // vf dxdy (2.25)

fori =1,2,...,n An example of the domain decomposition by triangle elements
is shown in Fig.2.5. In the next section, we will see how linear systems are obtained
from (2.25).

2.1.4 Derivation of Linear Systems

Let finite elements e; in (2.25) be triangular, see Fig.2.5. Each node of the triangular
element e¢; is given the position and a number, and the node numbers of the triangle
are given clockwise, see Fig.2.6. As seen in Fig. 2.6, the position of node i is (x;, y;)
fori=1,2,3.



2.1 Partial Differential Equations 45

Fig. 2.5 The domain n:unit normal vector
decomposition by triangular
finite elements

Fig. 2.6 The numbering of 3 (x5, v3)
triangular finite elements

(x, ) (X, ¥,)

Now we introduce the following vector-valued function:

-1

hi(x,y) 111 1
hix,y) = | @, y) | = | x1 02 x3 x|, (2.26)
h3(x,y) Yiy2ys y

and let  be an approximate function to the solution function u over the triangular
domain such that % is a linear function of x, y with u(x;, y;) = u; fori = 1,2, 3. Then
U is given by

111\

~ T .

u=~h ue_(lxy) X1 X2 X3 u |. 2.27)
Y1 Y23 u3

Confirming equalities u(x;, y;) = u; for 1 < i < 3isleft as an exercise for the reader.

Now substituting % into the left integrand in (2.25) and choosing v as the same
form of @1, i.e., v = h'v, with v, := (v1, v, v3) " gives

ovou 0Ovou d d 0 0

o + o _ 9 :h—hTue + —v;rh—

dxdox dydy  Ox ax ay ay

a 0 d . 0
=v)| —h—h"+ —h—h" |u,,
dx 0x dy dy

h'u,
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where we used the relation 2 'v, = th. Here, from (2.26), it follows that

-1

oh 111 0 1 (Y23 by
h, = —=[x1xx3 ll==|v—n]|=1|b], (2.28)
0x D
i Y2 y3 0 yi—» b3
oh 111\ /0 | (r—x c
hy = — =X X2 X3 0] =— X1 — X3 =|C|, (229)
dy D
Y1 y2y3 1 X3 — X &)
where D is defined by

111
D :=det | x1 xp x3
y1Y2y3

D is twice the area of the triangle. Since h, and k, do not depend on x, y, the left
side of (2.25) is calculated as follows:

v o v o
// vow, oo dxdy—vT(hhT—i-hhT)ug/ dxdy
8x8x dy dy e

L (hch] +hyh[)D
=y —FFF
¢ 2
= veTAeue.

Ue

Here, ff dxdy is the area of triangle e;, i.e., D/2. Matrix A, is a 3 x 3 symmetric

matrix whose (i, j) element, a(e) is given by

ayf = _(bibj + cicj), (2.30)

1]

from (2.28) and (2.29). The right-hand side of (2.25) is written as

f'l(e) ffe,»‘fohl d.xdy fOD 1
fo= (10 ] = [ [ heaxay | =22 1) (2.31)
3(6) ffgifohz dxdy 1

where we used f (x, y) = fy (constant function) for simplicity. Then, we have

/f f dady = v f,



2.1 Partial Differential Equations 47

On calculating the right-hand side of (2.31), the integrand #; (1 <i <3) is a
triangular pyramid with the height being 1 and the area of the base being D /2. Thus
the volume of the triangle pyramid is (D/2) - 1-1/3 = D/6.

From this, the left-hand side and the right-hand side of (2.25) are approximated
by

v Adtte, V. f.. (2.32)
The above process is the derivation of (2.32) regarding a small area e;. Considering all
the linear systems for all ¢;’s together with boundary conditions leads to large linear
systems. By solving the large linear systems, the approximate solution u; on each
node can be obtained. In the next subsection, we will see how large linear systems
can be obtained.

2.1.5 Example

As an example of the previous subsection, we consider Poisson Eq. (2.19) on the
(0, 1) x (0, 1) square domain €2 in Fig.2.7, and we will see how linear systems are
obtained.

We first decompose the square domain in Fig.2.7 into eight triangles in Fig.2.8.
Next, calculate (2.32) for A, and f, in each triangle element in Fig. 2.8, and finally,
combine all the information, leading to linear systems.

In what follows, we calculate (2.32) for A, and f,. We see from Fig. 2.8 that there
are two kinds of triangles, i.e., type I for ell, e_%, eg, e; and type II for eg, eff, eg, eg,
leading to two types of linear systems corresponding to (2.8). The details of the two
triangles are shown in Fig.2.9.

For the type I triangle, it follows from (2.28), (2.29), and recalling D being twice
the area of the triangle (i.e., D = h?), we have

Fig. 2.7 The (0,1) x (0, 1) Yy
square domain ou
-0
0
? (1)
u ou
220 80
ox Q ox
(0.0) "



48 2 Some Applications to Computational Science and Data Science

Fig. 2.8 Triangle mesh y
h
7 Al . Al 2
6 8
I I h
és €
4 )i R )i ©
e, e,
I I
€ &
1 2 3 ¥
Fig. 2.9 Two types of h
triangles @) ©)
11
e
h h
—>
@ h @ @
bl 1 —h C1 1 —h
by | = n hl, |a]|= 7 0
b3 0 (6] h
Then, from (2.30) and (2.31), we obtain
2 —1-1 2 (1
1 h
Aa==|—-11 0], fu =fo— 1], (2.33)
10 1 6\
which correspond to (2.32).
Similarly, for the type II triangle, we have
Zl | 0 c 1 —hh
2 = _2 ) (&) = _2 B
b3 h —h C3 h 0
and thus
1 -1 0 2 1
1 h
An=—-|-12 —-1], feuzfoT 1]. (2.34)
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Table 2.1 Relation between local node numbers and global node numbers.

Element ell ‘ 6121 ‘ eg ‘ eg ‘ eg ‘ eg ‘ e% ‘ eg
Node number of triangle ‘Whole node numbers

element

1 1 2 2 3 4 5 5

2 2 5 3

3 4 4 5 5 7 7 8 8

In the following, we explain how to combine all the information to obtain linear
systems. In order to combine them, it is required to relate global node numbers 1-9
in Fig. 2.8 with local node numbers 1, 2, and 3 in Fig. 2.9, and the resulting table is
shown in Table2.1. Finally, linear systems are derived as follows. We first consider
triangle element e{. From (2.33) and Table 2.1, we have

2 -1 -1
1 h?
Ae‘, :E —1 1 01]2. felzfo?
-1 0 1/4 1
1 2 4

and by using the information we construct the following matrix and right-hand side:

()
|
[y
|
[a—y
o

N =

[=NeoNoBoNoNoNoRol o)
[eNeoNoBoNoloNoRol o)
[=NeoNeoBoNoNoNoNeN o)
[eNeoloBoNeoBoNeol=N )
[eNeoNeoBoNoloNoRol o)
[=NeoNeoBoNoNoNoNel o)
O 00 N N AR W N

OO OO O = O =
O 00 N O R W N =

N O OO OO OO -
[eNeoNeBoNe) =k

3 4 5 6 7 89

for the linear systems. We next consider triangle element ). From (2.34) and
Table 2.1, we have

A S R e (1) 2
Aegzi -1 2 —1 5, feu:? 1 5
0 -1 1) 4 1/ 4

2 5 4
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and adding the information to the aforementioned matrix and the right-hand side

yields

2 -1 0-1 0 000 0\1 1\ 1
-1 200 -10000]2 212
0O 00O O0OO0OOOO0O|3 013

(|1 002 -1000O0]/|4 foli? 214

3 0 -10-12000O0|s, . 1]5
0 00 O0 O O0O0OO]|s 0]e
0 00O O0OO0OO0OOO0]|7 0]7
0 00O O O0O0OOO0O]S8 0] 38
0O 00O O0OO0O0OO0OTO0O/9 0/ 9
1 2 3 4 5 6 7 89

11

and similarly for the remaining elements €}, €}, ..., ef, we finally have

2 -1 0 -1 0 0 O 0 O u; 1
-1 4 -1 0 =2 0 0 O O up 3
0 -1 2 0 0 -1 0 0 O u3 2
1|-t 0 0 4 -2 0 -1 0 O Uy fol? 3
3 0 -2 0 -2 8 -2 0 -2 0 us| = "¢" 6
0 0O -1 0 -2 4 0 0 -1 Ug 3
0 o 0 -1 0 0 2 -1 0 uy 2
0 O 0 0 -2 0 -1 4 -1 ug 3
0 o 0 0 0 -1 0 -1 2 Uy 1

The linear systems do not include the information of Dirichlet condition (u(x, 0) =
0 for x € [0, 1]). It follows from Figs.2.7 and 2.8 that the following condition is
required for satisfying the Dirichlet condition:

uy =uy =uz =0.

Thus, removing the first three rows from the linear systems and substituting u;
up = uz = 0 into the resulting linear systems yields:

4 20 -10 0 Uy 3
28 20 -20 us 6
110240 0—1|{u | _foh* |3
21-10 0 2 -10 w |~ 6 |2 (2.35)
0 20 —1 4 —1 || us 3
0 0—-10—12 Uy 1

By solving the linear systems we have ug, us, . .., ug.
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Finally, we compare the approximate solution with the exact solution. The exact
solution of the Poisson equation is u(x, y) = foy — %foyz. When fy = 1, the values
of uy, us, ug for the exact solution are 0.375 and u7, ug, uy are 0.5. Solving linear
systems (2.35) with fy = 1 and h = % yields uq =~ 0.381, us ~ 0.375, ug ~ 0.369
and u; =~ 0.524, ug ~ 0.500, ug ~ 0.476.

If a more accurate approximate solution is required, the number of nodes should
be increased. From the above derivation, we see that the size of the linear systems is
almost the same as the number of the whole nodes.

2.2 Computational Physics

2.2.1 Large-Scale Electronic Structure Calculation

Molecular dynamics simulations in large scale systems can be efficiently computed
by using the one-body density matrix p, which is based on the fact that any physical
quantity (X) can be obtained by

(X)) =Tr (pX) = /f o, r)X @, r) drdr

and the corresponding discretization form is written as
> X
ij

It is important to note here that if X is a short-range operator, we only need the short-
range behavior of the density matrix. As an extreme example, if X is a diagonal matrix
(i.e., off-diagonal elements are zeros), then we only need the diagonal element of the
density matrix because Zi’j PiXji = Zi piiXii, leading to very efficient computation.

In what follows, we explain the density matrix p in detail. It is known that the
(i,j) element of the density matrix p is given by

T e CH) g 2.36
pi=——[ Im if KT €, (2.36)

where f(x) is the Fermi distribution function, u is a chemical potential that may
be determined so that the total number of electrons equals the sum of the diagonal
elements of the density matrix. Here, G;;(¢) is the (7, j) element of the following
matrix:

G(e) =[(e +i8) —H]™", (2.37)
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where i is the unit imaginary number, § is an (infinitely) small positive number
(6 — 04),and [ and H are the identity matrix and a Hamiltonian matrix. The matrix
G is referred to as Green’s function. The (i, j) element of the Hamiltonian matrix H
may be given by the following real space integration:

—h
Hy = /fi(r) (%A + V(f))fj(r) dr,

where m and h are the mass of the electron and the (reduced) Planck constant, A is
the Laplacian. f;(r)’s are prescribed functions that are linearly independent. V (r) is a
prescribed function regarding the interactions between electrons and nuclei. For the
details, see, e.g., [184, 190] and the references therein.

We now describe how linear systems arise from the above computation. Let e; be
the ith unit vector. Then from (2.37), the (i, j) element of G (¢) is calculated by

Gii(e) = e/ [(e +i8)] —H] 'e;.
Therefore, letting x; = [(¢ + i§)] — H]'e; yields
[(e +i8)] — Hlx; = e,

which is a linear system.

In computational physics, the Hamiltonian matrix H is Hermitian or real sym-
metric. If H is real symmetric, the coefficient matrix (e 4+ i6)] — H is complex
symmetric. Furthermore, for computing the integration in (2.36), a suitable numer-
ical quadrature formula is used, which requires G;;(e) for k = 1,2, ..., m. Thus,
for computing the (i, j) element of the density matrix p;;, we need to solve linear
systems of the form

A+oDx =b, k=12 ...m,

where A := il — H,b := ejand o} := €. These are known as shifted linear systems,
which are efficiently solved by Krylov subspace methods by utilizing the shift-
invariance of Krylov subspace. Krylov subspace methods for shifted linear systems
are described in Chap. 4.

2.2.2 Lattice Quantum Chromodynamics

Quantum chromodynamics (QCD) is the theory of the strong interaction between
quarks and gluons, and lattice QCD is a non-perturbative approach to solving QCD,
where the theory is formulated on a lattice in space and time.

It is known that the most time-consuming part of lattice QCD is solving linear
systems



2.2 Computational Physics 53
Ax =b,

which are often written as Ay = ¢ and the solution is used for obtaining quark
propagators. For the details of the quark propagators including a summary of lattice
QCD,; see, e.g., [69]. In the following, we describe the structure of the Wilson fermion
matrix A.

The Wilson fermion matrix is written as A =1 — kD, where I is the identity
matrix, and « is a real nonnegative parameter, referred to as the hopping parameter.
Matrix D is called the hopping matrix. We now explain the structure of the hopping
matrix.

Let us consider a four-dimensional hypercubic lattice which can be regarded as
an equispaced grid of the hypercube. Each grid point can be written as a vector x
such that

x € Q= {(x1,x,X3,x4) : X1,X%,x3, %4 €{1,2,...,N}}.

For simplicity, we assume that x;, x», x3, x4 run from 1 to the same number N. Then
it is easy to see that the number of elements of €2 is N*.
Using x,y € 2, the hopping matrix D is written by block matrix from

4
D(x;y) = Z {[(14 — V) ® Uu(x)] Sx,y—eu + [(14 +v)® U:l(x - e/l.)] 8x,y+e“ }

pn=1

(2.38)

Here, 0y , is the Kronecker delta, i.e., 6y, = lifx =y and 8, , = 0ifx #y. D(x;y)
is a small matrix of the size 12 x 12 and the hopping matrix D is given as follows:

D11 Dip -+ Dyy4
Dy1 Dap -+ Dy ya

D41 Dysp o Dya y4
r D,1,1,1;1,1,1, 1) D(1,1,1,1;1,1,1,2) D(,1,1,1;N,N,N,N)
D(,1,1,2;1,1,1, 1) D(,1,1,2;1,1,1,2) --- D1,1,1,2;N,N,N,N)

LDW,N,N,N;1,1,1,1) DN,N,N,N;1,1,1,2) --- DN,N,N,N;N,N,N,N)

The size of the hopping matrix D is thus 12N* x 12N*. If N = 64, then the number
of unknowns for the linear systems is about 200 million! The size grows much
more rapidly than that arising from the discretization of three-dimensional partial
differential equations in Sect.2.1.1.4.
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The details of (2.38) are explained as follows: 4 is the 4-by-4 identity matrix, Jy ,
is a function (8 : R* x R* — R), where Oy =0ifx #y,and 6,y = 1ifx = y. The
symbol e, is the transpose of the wth unit vector, or equivalently the pth row of the
4 x 4 identity matrix /4. For each u, the symbol y,, is a matrix given by

Y1 =O'y®0'x, V2=Gy®ay, V3 =O'y®o—z, y4=01®127

where I, is the 2-by-2 identity matrix, and oy, oy, and o, are the Pauli matrices, i.e.,

_fo1 o N
“=11ol> “Tlio|" “T|o-1]"

Finally, for each p and x, the symbol U, (x)(= U, ([x1, x2, x3, x4]) forp = 1,2, 3,4
belongs to SU(3), i.e., a 3-by-3 unitary matrix whose determinant is one. U, (x)
corresponds to the background gauge field. U, (x) is called “cold” if U, (x) = I3 and
“hot” if the U, (x) € SU(3) is randomly chosen.

Below are some examples for D(x,y) when N = 2:

D =D1,1,1,1;1,1,1,1) = O,
Dy, =D, 1,1, 1: 1,1, 1,2) = (I4 — ya) @ Us([1, 1, 1, 1]),
Di3=D(1,1,1,1;1,1,2, 1) = (s —y3) ® Us([1, 1, 1, 1]),
Dy4s=D(1,1,1,1;1,1,2,2) = O,
D s=D(1,1,1,1; 1,2, 1, 1) = (I4 — y2) @ Ux([1, 1, 1, 1]),
Di¢=D(1,1,1,1;1,2,1,2) = O,
D ;=D(1,1,1,1;1,2,2,1) = O,
Dys=D(1,1,1,1;1,2,2,2) = O,
Dio=D1,1,1,152,1,1,1) = (L —y1) ® Ui ([1, 1, 1, 1]),

Dy =D(1,1,1,2;1, 1,1, 1) = (Is + ya) ® U([1, 1, 1, 1]),
D,»=D(1,1,1,2;1,1,1,2) = 0O,
D,;=D(1,1,1,2;1,1,2,1) = 0O,
Dyy=D(1,1,1,2;1,1,2,2) = (I, — y3) ® Us([1, 1, 1, 2]),

Dis16 =D(2,2,2,2;2,2,2,2]) = O.

Note that Dy = (Is + y4) ® U'([1,1,1,2] — e4) = (s + ya) @ U;N([1, 1, 1, 1]).
Matrix D is neither symmetric nor Hermitian, but it has a hidden symmetry as
described next. Let
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Vs =0, ® L.

Then, the hopping matrix D has the following property:
I'sD = D"Ts, (2.39)

where ['s=Iy+ ® y5 ® I5. This property is known as ys-symmetric (or ys-Hermitian).
From Theorem 2.1-(5), matrix ys is real symmetric and matrix I's5 is also real sym-
metric, and thus we have I's = 1"? . Then, we can rewrite (2.39) as

I'sD = (['sD)!.

This means that I's D is Hermitian. From Corollary 2.1, we have I's’ =1 1;41 ® y5_l ®
Iy - Iys ® s ® Iy = I's. Thus we have another representation of (2.39):

['sDI's = DH. (2.40)

Now, let us confirm (2.40) for N = 2. Let P = y5 ® I5. Then the (i, j) block
element of D is

P Dyy - Diye | | P
(I'sDTs);; = ) .
i P | D61 -+ Disis Pl
[ PD\ P --- PD; P

| PDi61P -+ PDis16P |/

= PD, ;P.

As an example, consider (i,j) = (1,2). Then, from Theorem 2.1-(5) and (6), it
follows that

(I'sDI's)1,2 = PD; 2P
= (s L) [Us— ya) @ Us((1, 1, 1, 1D] (5 ® I3)
=ys(ls — ya)ys @ Us([1, 1, 1, 1])
= (14 - V5V4V5) & U4([17 ]’ 19 1])
=+ y) @Us([1,1,1,1])
= [+ @ ul@, 1,1, 1p]"
= [+ @Ul@, 1,1, 1)]"

_ pH
=D5;.
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Similarly, we can confirm that (I'sDI's); ; = Dfl- for the other i, j’s. Thus we see that
(2.40) holds true for the case N = 2.

In lattice QCD, there is a need to compute some small eigenvalues in magnitude.
In this case, the shift-and-invert Lanczos (Arnoldi) method may be used. The method
requires solving linear systems at each iteration. See [12] for algorithms to compute
eigenvalue problems. A thick-restart Lanczos type method for eigenvalue problems
arising in lattice QCD was proposed in [108].

2.3 Machine Learning

Linear systems arise in the field of machine learning. In this section, through two
examples: least-squares regression and least-squares classification, we will see the
importance of linear systems.

2.3.1 Least-squares Regression

In this subsection, we consider one of the simplest supervised learning: least-squares
learning. Given training data set (x;,y;) (i = 1,...,n) and a function fy(x). Then
the least-squares learning learns a parameter # € R”™ such that the following error
function is minimized:

JO) =Y i — o). (2.41)

i=1
If fy (x) is given by the linear combination of functions f (x), . . ., f,,(x) of the form
Jo(x) = 01f1(x) + 62f2(x) + Oyfin (), (2.42)

then the error function (2.41) is rewritten as!
J(6)=lly—M6|3, (2.43)

Wherey = [ylvyZv cee 7yn]T» 0= (61,62, ..., Qm]Ts and

'In this section, we explicitly describe the 2-norm as || - ||2. In machine learning, 1-norm || - ||;
is also used, especially for obtaining a sparse solution of the least-squares problems of the form
ly — M85+ 1161
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Fig. 2.10 The plot of the 1
given data set
0.5
ok
-0.5

fileD) HLGxey) <o fin(xp)
fi(x2) fo(x2) ... fin(x2)

fl (xn) fZ(xn) .. fm(xn)

For simplicity, column vectors of M are assumed to be linearly independent. For
minimizing the error function (2.43), the following decomposition is useful:

J@)=ly—M6|;=(@y—-M6)"(y—Mb)
=vg (M M) vg—MTY)TMTM) "M y)+yy. (2.44)

Herevg = M "y — M "M #. Since the columns of M are linearly independent, M " M
is a symmetric positive definite matrix, i.e., all the eigenvalues are positive, or equiv-
alently x"M "Mx > 0 for all nonzero vectors x. From this, J(#) is minimized if
vg =0,ie., My — M M@ = 0. Thus we need to solve the following linear sys-
tems:

M™MO=MTy. (2.45)

As a numerical example, consider y = (1/2) sin(x) + €, where € is a noise. We
generated a data set (training data set) with (xq, x2, ..., x¢3) = (0,0.1,0.2,...,6.2)
and (y1,¥2,...,¥63) = (¥(0), ¥(0.1), y(0.2), ..., y(6.2)). The visualization of the
data is shown in Fig. 2.10.

Next, we consider (2.42). For the basis functions fi (x), f>(x),..., fn(x), we use

sin 2kx (k : even)
— 2 )
St = {cos %kx (k : odd).

The unknown vector @ of the model function (2.42) is given by solving linear systems
(2.45), and the plots of fp(x) with m = 5 and m = 10 are shown in Fig.2.11.
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1 1

-1 -1
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(a) The number of basis functions m = 5. (b) The number of basis functions m = 10.

Fig. 2.11 The plots of fp (x) in (2.42) withm = 5 and m = 10

From Fig.2.11a, the function fy (x) with m = 5 is robust against the noise. On the
other hand, the function with m = 10 seems to try to fit the data with the given noise.
This phenomenon is known as overfitting.

In what follows, one remedy for the overfitting is introduced, which also requires
solving (parameterized) linear systems. We now consider the following constrained
minimization problem of the form

min [ly — M @[3 subject to [|8]|3 < R. (2.46)
If R is infinite, the minimization problem is equivalent to (2.43).
In order to solve (2.46), the dual problem is useful. Let f (@) = |y — M 0||§ and
g2(0) = ||0||% — R, then (2.46) can be rewritten as
moinf(O) subject to g(f) < 0. (2.47)
Here we introduce the Lagrange function with A > 0:
L@, %) :=f(0) + 1g(0).

Since A > 0 and g(#) < 0, we obtain

max L6, )) = {f(a) (if (6) < 0).
#=0 +oo (otherwise).

Thus (2.47) is equivalent to

minmax L(#, 1).
0 1>0
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We now consider the following dual problem:

max min L(@, 1). (2.48)
A>0 0

If f and g are convex, and certain conditions are satisfied, we have

max min L(#, A) = minmax L(0, 1),
=0 6 0 >0

which is called the strong duality. This is related to the Lagrangian duality theory;
see [26] for the details.
The optimization problem (2.48) reads

max moinL(0, %) <« max moin ly —M0|3+ 11015 — R). (2.49)

Similar to (2.44), the error function can be decomposed as

ly —MO15 + 11015 — B)
=wyg (M ™M +A)"'wyg — M Ty) " MM +2D)"'MTy+yTy — AR,

where wg =M Ty — (M "M + AI)@. Since A > 0, matrix M "M + Al is symmetric
positive definite. Thus @ can be obtained by solving the following linear systems:

M™ +21)0 =M Ty. (2.50)
Let #()) be the solution of the linear systems (2.50). Then (2.48) is equivalent to

max L(# (L), A).
>0

For approximately solving the above maximization problem, one may set 0 < A; <
Ay < --- < A, and then compute

maX{L(o()"l)v )\'l)s L(o()\'z)ﬂ )"2)7 LR ] L(e()"m)v )\m)}~
In this case, we need (1), 0(X,), ..., 0(A,),i.e.,
MM +0D00)=MTy k=1,2,...,m. (2.51)

Equations (2.51) are known as shifted linear systems. Krylov subspace methods for
solving shifted linear systems are described in Chap. 4.

Here, we show below a numerical example whose data is the same as in Fig. 2.10.
Solving linear systems (2.50) with a given A yields the unknown vector 8 of the model
function (2.42). The plot of fp(x) with m = 10 and A = 1.0 is shown in Fig.2.12b.
For reference and convenience, Fig.2.11b is shown again in Fig. 2.12a.
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1 1

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
(a) m = 10. (b)ym =10, =1.0.

Fig. 2.12 The plots of fy(x) in (2.42) with m = 10 and m = 10 with . = 1.0

In Fig.2.12b, we see the result is now robust against the noise and thus seems to
avoid the overfitting that is seen in Fig.2.12a.

2.3.2 Least-squares Classification

In this subsection, least-squares probabilistic classification [178] (see also [148] for
the summary) is described.

LetX c RYand) = {1, 2, ..., ¢}, where ¢ is the number of classes. The problem
of the classification is to classify x € X into classes y € ), based on a given dataset
(training dataset) (x;,y;) € X x Y fori = 1,2, ..., n. Here (x;, y;) means that the
data x; € X belongs to the class y; € ).

The probabilistic pattern recognition is to estimate the class-posterior probability
p(ylx) from the training data {(x;, y;)}7_,. Once p(y|x) is obtained, new data x can
be classified by

y = argmax p(ylx).
ye{l,2,....c}

Let p(x) be the marginal density of x with p(x) > 0 for all x. Then the class-posterior
probability p(y|x) is written as

px,y)
px)

pOlx) = (2.52)

since p(x, y) = p(y|x)p(x) and the assumption p(x) > 0.
The least-squares probabilistic classification uses the following linear model
q(ylx; 8) for the class-posterior probability p(y|x):



2.3 Machine Learning 61

. \T , : :
qol:09) =0 f() = 0fi0) + 0 K@)+ + 0.0, (253)
where ) = [Gl(y), Oz(y), e G;y)]-r, andfi(x) (i =1, ..., b) are the given basis func-
tions, e.g.,
x — x;l3
() = K(x,x)) = exp [ — X ¥il2 ) | 2.54
fix) = K(x, x;) eXP< T (2.54)

Here K (x, x;) is known as the Gaussian kernel and h is a scalar parameter that is set
by users.

Parameter #© is determined by approximately minimizing the following least
squares error:

1

J,(0) = 3 / (qOlx; 09)) — pylx))’ p(x) dx.

Jy (0 )Y can be rewritten as

J,(0Y) = % f q(ylx; 09)*p(x) dx — f q(ylx; 0)p(yx)p(x) dx + ¢

1
=3 f q(ylx; 09)*p(x) dx — / q(ylx; 0)p(x, y) dx + ¢

1
=3 f q(ylx; 09)*p(x) dx — / qlx; 0)p(p(xly) dx +¢,  (2.55)

where ¢ = (1/2) fp(y|x)2p(x) dx, and (2.52) was used in the second equation.
By using the average of the training data (xy, y;), (X2, ¥2), - .., (X5, Y»), we have
the following approximation:

1 n
n i=1

: 1 : 1 :
/ g 0°)pGIp(xly) de ~ — 3 7 gk 09)p() ~ ~ 3 7 q(rkei; 0).

Y iyi=y =y

In the last approximation, we used p(y) ~ n,/n, where n, is the number of training
data that belong to the class y € ). Note that the symbol Zi:y/_:y means the sum over
i such that y; = y for the given class y € ).

Using this approximation to (2.55) together with regularization term (A/2n)
1012, see also (2.49), we have the following new minimization problem:

. 1 & 1 A
1O = =3 a0l 090" — = 3 Ol 8) + - 16V15, (2.56)
i=1

Lyi=y
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where the constant ¢ was omitted because it does not affect the minimization problem.

Let (M);; = f;(x;). Then from (2.53), approximate error function (2.56) can be
rewritten as

J.0) = L o0y Tare0 — loooTMTp(y) 4 g Tem 2.57)
Y 2n n 2n ’
where p© is a vector whose ith element p*” is defined by

® _ 1 (fy; =y),
' 0 (fy; #y).

Similar to the previous subsection, (2.57) can be decomposed as

A 1 1

7,09 = > (MTp(y)_Gg(V))T G (MTpY — GO — Z—p(y)TMG_lMTp(y),
n n

where G = M "M + Al. If columns of M are linearly independent, then G is sym-
metric positive definite for all A > 0. Thus J, (0 (y)) is minimized when M Tp(y) —
G0Y = 0, which leads to

M™™ + 100V =M Tp©. (2.58)

After obtaining the solution of 8 o) ,we have (2.53). Then, the following normalization
gives the approximated class probability:

5010 max (0, g(ylx; )
P = - =—.
> 5 max(0, g(lx; 6%))

In what follows, a simple numerical example is illustrated to see how the least-squares
probabilistic classification works. We use the training data as given in Fig.2.13a,
where there are two classes: o denotes class y = 1 and x denotes class y = 2. From
(2.53) and (2.54), the following model is used:

qolx; 09) = Y 0P K (x. x)).

iyi=y

This means that we will obtain two function g(y|x; 8%”) for y = 1 and y = 2, after
solving two linear systems (2.58) fory = 1 and y = 2.

The result of the least-squares probabilistic classification is given in Fig.2.13,
where the number of samples n = 60, and the two parameters A in (2.56) and & in
254)are A =0.1and h = 1.
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(a) Training samples of two classes. (b) The class-posterior probabilities.

Fig. 2.13 The result of the least-squares probabilistic classification

Fig.2.13a shows the distribution of two classes of samples as mentioned before,
and Fig. 2.13bis the corresponding result. From Fig. 2.13b, we see that the probability
of the point x = 0 that belongs to class 1 (y = 1) is about 50%, i.e.,p(y = 1|x = 0) =
0.5.

2.4 Matrix Equations

Consider the following matrix equation:
AX +XB=_C, (2.59)

where A and B are m-by-m and n-by-n matrices. The matrix equation is known as the
Sylvester equation, which arises in the field of control theory. The Sylvester equation
also arises in a derivation of Newton’s method for computing the matrix square root,
see Sect.5.3.1.

The Sylvester equation can be transformed into linear systems of the form M x = c,
and in what follows, we will see the connection between the Sylvester equation in
(2.59) and linear systems Mx = c.

Let G be an n-by-m matrix whose column vectors are written as g, g2, - - -, -
Then, matrix G is written as G = [gy, &, - . .., &,,]- We now define vec operator.
The vec operator is a map from C"" to C"", and vec(G) is written as

81
vec(G)=|  |. (2.60)

&m

Some properties of the vec operator are listed next.
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Theorem 2.3 Let X € C™", A; € C™™, B; € C™", and Py, be a permutation
matrix given in Theorem 2.2. Then,

(1) vec(AXBy + - +AXBy) = (B] ® A1 + - -+ + B] ® Ap)vec(X),
2) vec(XT) = P,,,vec(X).

Proof We first give a proof of (2). From the definition of P,,, in Theorem 2.2,

EN" L EWDT] [
P,.vec(X) = : :

’

(Eml)—r e (Emn)—r Xn
and thus the kth block element of P,,,vec(X) is given by

Xk1

n n n n
T T .
(Punvec(X ) = D Ejx; = ) Epx; =) ejefx; =) exy=| : |,
j=1 j=1 j=1

=1 Xkn
which is the kth column of X 7. Therefore,

(Pmnvec(x))l
P,.vec(X) = : =vec(X ).
(Ppnvec(X))n
Next, we give a proof of (1). Since vec(X + Y) = vec(X) + vec(Y), itis sufficient
to prove vec(AXB) = (B" ® A)vec(X). Let M = XB and M = [m,, ..., m,], then
AM = [Am,, ...,Am,]. Thus

Am1 m
vec(AXB) = vecAM) = | : | =1 ®A4)| : | =U, ®A)vecM), (2.61)

Am,, my
and the vec(M ) is calculated as

vec(XB) = vec((BTXT)T) = anvec(BTXT) =P, ® BT)vec(XT)
= Pun(ln ® BN)Pyyvec(X) = P,,,(In ® BT)P,vec(X)
- (BT ® I,")VCC(X).

The last equation holds from (2.13), and this result together with (2.61) yields
vec(AXB) = (I, ® A)vec(XB) = (I, ® A)(B" ® I,,)vec(X) = (B" ® A)vec(X).

The last equation follows from Theorem 2.1-(6), which concludes the proof. (]
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We are now ready to describe a relation between the Sylvester equation and linear
systems. Applying Theorem 2.3-(1) to Sylvester Eq. (2.59) yields

vec(AX 4+ XB) = vec(C) & [(I, ® A) + (BT ® I,,)] vec(X) = vec(C),
—— ———

M x c

where I, is the m-by-m identity matrix.
Here we consider a slightly modified matrix equation of the form

AX +XTB=C.

The matrix is referred to as the T-congruence Sylvester equation. Applying the vec
operator and using Theorem 2.3-(2) yields

AX + X "B = C & vec(AX + X "B) = vec(C)
< vec(AX) + vec(XTB) = vec(C)
& vee(l, @ A)vec(X) + (B' ® I,)vec(X ') = vec(C)
& (I, ® Ayvec(X) + (B" & Iy)Pynvec(X) = vec(C)
& [, @A) + (BT ® 1)) Pyl vec(X) = vec(C) .
—_— ——

M X c

Therefore, the T-congruence Sylvester equation is also equivalent to linear systems
of the form Mx = c.

2.5 Optimization

Consider unconstrained optimization problems of the form

min f (x), (2.62)

xeR”

where f'(x) is a smooth function. Unless function f (x) has a special structure, e.g.,
a convex function, it is in general difficult to find the solution of the minimization
problems. In order to find the solution, as is known in standard calculus, the critical
points, x. such that Vf (x.) = 0, are usually important.

In this section, Newton’s method is introduced over a Euclidean space and a
Riemannian manifold (Grassmann manifold) to obtain the critical points, and we
will see how linear systems arise in each iteration step of Newton’s method. As a
preliminary, tensor notations are introduced in the next subsection. We will see that
tensor notations enable us to describe the Taylor series systematically and concisely.
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2.5.1 Tensor Notations

A matrix denoted by A is a two-dimensional array that has (i, j) elements, which are

written as (A);; or a;;. A tensor denoted by A is a multidimensional array that has,

for a three-dimensional array, (i, j, k) elements, which are written as (A);jx or ajj.
More generally, an Nth-order tensor (or an N-way tensor) A is an N -dimensional

array whose iy, iz, . . ., iy elements are written as (A);, ,..iy OF di, i,...iy- 1f all the
elements a;, ;, ..y € R with i1, ip, ..., iy running from i; =i =--- =iy =1to
iW=1I11,ip=1D05,...,iy =1y, then A € RItxhxxly

Given two tensors X', ) € RIxkxxIv and a scalar value o € R, tensor addition
and scalar multiplication are defined by

(X A Wi, iy = Xivsinyin T Vivsinsoin s @X iy in, iy = Ay i, iy -

A tensor—matrix multiplication, or n-mode product, is defined next. Let X €
RIxBxxIv and U € R?*!, The n-mode product of X and U is defined as

(X X0 Ui, i visroomine = D it Koo W -

For a third-order tensor,
I
(X x1 U)jiniy = E Xk iz iz Uji ks
k=1
4!
(X x2U)jy i = E Xiy iy Wik
k=1

I
(X x3 Uiy = E Xiy iz kU k-
k=1

From the definition, it is easy to see
(X x1A) x, B=(X x5 B) x1 A. (2.63)
Thus, one may write
X x| A %X, B,

and more generally X' x| A} X3 Ay X3 -+ Xy Ay. If X is a matrix (rewritten as X,
instead of X'), (2.63) is equivalent to

(AX)BT = A(XBT).
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Thus, in standard linear algebra, the parentheses are omitted, i.e., AXBT. The singular
value decomposition of matrix X is U XV, where U and V are unitary matrices
and X is a diagonal matrix whose diagonal elements are (X);; = o; > 0. Then using
tensor notations, the singular value decomposition of X can be rewritten as

X=USV' =X x,U x, V.

A more general product is a contracted product (-, -), which is the following map:

<. '>1 | . Rllx~~»xl,,,><J1><-~><JN X Rllx~~»xl,,,><l(l><~»><l(p
’ ey L om -

N Rllx~~»><]N><K1><~~><Kp
In
<va>1 ..... m;l,..., E E it seeesift oo Vit seeosin .
=1 in=1

More generally, some examples of contracted products of two tensors are given next.
For X € RN *Lxb and ) € RY1>/2>/3>4 below is an example of contracted products
of the two tensors.

L L
(X, V1325 = Z Zxk,iz,l X Yji ks
k=1 I=1
where we assumed /; = J; and I3 = J3. Another example is as follows:

I I

(&, y1224_22xk1u X Yjvkjs 1>

k=1 I=1

where we assumed I} = J, and I, = J4.

2.5.2 Newton’s Method on Euclidean Space

For a smooth functionf (x) withx € R”, the mode-n product of a tensor and a vector (a
matrix having only one column) is useful for describing the Taylor series of f (x + h)
at x:

fax+h) =f@ + %[f(”(x)] x1 h (2.64)

1 1
+ 5[f<2>(x)] x1h x,h+ §[f(3)(x)] xihxoh x3h+---,
. ' (2.65)
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where

P, = %f(x), FPw] e R,

2
fx), [FP@)]eR™,
8)6,' 3)6,‘2

1
3

F®@, =

3) c Ruxnxn
Frr f@x), @] ,

i3

)i =

for iy, i, i3, ... € {1,2,...,n}. The vector f(V(x) is the gradient of f(x), i.e.,
FDV (@) = VF(x). The matrix f® (x) is called a Hessian matrix, which is denoted
by H (x). With this notation, the Taylor series (2.65) can be rewritten as

1 1
f@+h)=f@) +h"Vfx) + EhTH(xm + §[f<3)(x)] xihxohxsh+---.
' (2.66)

We now consider finding a local minimizer x* that locally minimizes f (x). Let x,,
be an approximate minimizer of f (x) (i.e., x, =~ x*). Then, the original problem is
transformed into finding a correction vector k so that f (x; + k) is minimized.

Newton’s method finds a correction vector h such that x; + kA minimizes not
f (x;. + h) but the quadratic approximation of f (x; + h), i.e.,

min q(h), q(k) = () + 1T Vf () + %hTHm)h.

If H(x;) is positive definite, the minimizer of g(h) is unique and is given by the
solution of Vg(h) = 0. Since Vq(h) = Vf (x;) + H (x;)h, the correction vector k at
the kth iteration step, denoted by hy, can be obtained by solving linear systems of
the form

H (x)he = —Vf (xi). (2.67)

After solving (2.67), we obtain a new approximate minimizer x4 (= x; + hy). At
each iteration k, we need to solve the linear systems (2.67).

2.5.3 Newton’s Method on Riemannian Manifold

Similar to the previous section, linear systems also arise in minimization problems
over Riemannian manifolds when we consider Newton’s method over Riemannian
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manifolds. As an example, we consider an optimization problem over the Grassmann
manifold, which is an example of Riemannian manifolds.
We consider the following minimization problems

min f(X), (2.68)

X eRmp

where f is assumed to be a smooth function. Using vec operator (2.60), the function
in (2.68) is equivalent to f (x¥), where X = vec(X ). Thus the minimization problem
(2.68) is essentially the same as (2.62).

If X satisfies the condition X TX = I,, then the minimization problem (2.68) can
be written as

min f(X), (2.69)
X eSt(p,n)

where St(p, n) = {X e R : XX = I,} (p < n) and St(p, n) is referred to as the
Stiefel manifold. The condition X TX = I, means that all the column vectors x; (i =
1,...,p) of X are orthonormal, i.e., x; x; = 0 fori # j and x'x; = 1 fori = j.

We now further assume that the function f has the following property:

fXQ) =f(X) (2.70)

for any orthogonal matrix Q € RP*P. This property leads to difficulty in solving the
minimization problem. To be specific, let X; be an approximate minimizer of f (X)
and let X4 be the next iterate given by X; Q) for some orthogonal matrix Q. Then
the iterate X4 is not an improved approximate solution because the value of the
objective function does not change. In order to avoid such a situation, one promising
approach is that for a given X; € St(p, n) we regard the set [X;] := {X;Q : 0TQ =
I,} as one element. Then the next iterate [ Xz, ](# [Xi]) is meaningful because X; 1|
can avoid the situation f(X;) = f (Xx+1) caused by Xz 41 = X Ox.

In general, the set Grass(p, n) := {[X] : X € St(p, n)} is referred to as the Grass-
mann manifold. The approach mentioned above corresponds to considering the fol-
lowing minimization problem:

fy), (2.71)

min
[Y]eGrass(p,n)

instead of considering (2.69) with (2.70). In numerical computation, the following
approximate solutions are produced: Xy € [Yp], X; € [Y1], ..., i.e., representatives
of the equivalence class [Y;] fork =0, 1,....

The minimization problem (2.71) can be regarded as an unconstrained minimiza-
tion problem over the Grassmann manifold. Similar to (2.67), Newton’s method over
the Grassmann manifold requires us to solve the following linear systems (Newton-
Grassmann equation):
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Y9 (YOIYi L G — Gy, of (V) = =Y,[ of (Y, (2.72)
~—————
(n—p)xp
where Y, € St(p, n), Y3, € St(n — p, n) whose column vectors are orthogonal to the
column vectors of ¥}, and the unknown matrix to be solved is C, € R®”*?_ Here

the (i, j) elements of 3f (Y) € R™P (Y € R™P) and 3°f (Y)[Z] € R™P (Z € R"™P)
are given by

0]
(af(Y)hf==5;jf(Y%
ij

n )4 82
X (N[ZDy = Y )
0% (VIZD)y ggay,jaymf( ) X 2

We now use a fourth-order tensor G € R"*?>*"*? whose (i, j, k, [) element is defined
by

2

0y 0y

@i = f(Y)

Then, 8f (Y;)[Z] can be regarded as the following contracted product of G and Z:

3 YOIYe  Cl = (G, Z)3.412 -

For the contracted product, see Sect.2.5.1.

After obtaining Cy by solving (2.72), one may think the next iterate is Y;4; =
Y1 Cr. However, in general, Y; | C; does not belong to the Grassmann manifold.
Therefore Y, Cy needs to be mapped to the Grassmann manifold, and the geometri-
cally suitable map is referred to as retraction. The next iterate Y is the matrix over
the Grassmann manifold that is obtained from Y} C; by using one of the retractions.
For the details of optimization over matrix manifolds, see [3, 56, 155].

2.5.3.1 Example

As an example, we consider minimizing the following Rayleigh quotient on the
Grassman manifold:

1
i Y), Y) = —tr(Y TAY),
meéﬂﬂ@,n)ﬂ ), f) 3 1( )

where ¥ € R™? and A € R™". Let Q € RP*? be an orthogonal matrix. Then,
f(YQ) = u((YQ)TAYQ)/2 = tr(QTY TAYQ)/2 = te(Y TAYQQ ") /2 = tr(Y TAY)/

2 = f(Y). Thus we consider {YQ e R™” : QTQ = I,} as one element (i.e., equiv-
alence class), which is denoted by [Y]. In what follows, we calculate 9f (Y) and
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8%f (Y)[Z]. The (i, j) element of 3f (Y) can be calculated as follows:

@f (V) = f(Y) ——t (YTAY) = Zyk,mmymk
yij 2 Yij k.lm
1 0 1 aylk 8ymk
= = am m am mi + am
2y, & YikAimYmk = 2}% oy ImYmk le;,)’lk I oy

1 9y 1 dyij
=3 Xm: 3y,-j AimYmj + 5 Xl:ylﬂlu 3)’1’]' =3 ;azmymj + ) Xl:yljalz
1 1
= E Zaimymj + 5 Zal—}—ylj
m !
1 1 4
= E(AY)zj + E(A Y)j.
Here we used the symbol “T” for scalar value YI;E» which means yj. The notation is
convenient if one calculates the (i, j) element of AT B. From the definition of matrix—
matrix multiplications, we have (AB); = >, aiby;. Using the notation, for the (i, ;)
element of A" B, we have (ATB);; = Y, aj by = > axbyj.
Since A = AT, it follows that

af (Y) =AY. (2.73)

Next, the (i, j) element of 3%f (Y)[Z] is given by

ad
PF[Z))y = Y = —(— Y)
@’ fMIZ)y = Za,,a (V) x 2 kz,layv gy (1)) x

Z o, (% Z AmYml + % Z akTm)’ml) X Zu
l] m m
OYm OYm
Z(ZMV—ZMQ)Z

1+ 1
= ; 5% + 5 ik ki

LT
(E(A Z)j+ = (AZ),]>
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Since A = AT, we obtain
3%f (Y)[Z] = AZ. (2.74)
Substituting (2.73) and (2.74) into Newton—Grassmann Eq. (2.72) yields
(Y AY 1) Cr — Cr(Y AYy) = Y, AY;, (2.75)
where C is an unknown matrix to be solved. This is the Sylvester equation as described
in (2.59).

After obtaining C by solving (2.75), the next iterate Y is, for example, given
by Yi+1 = Ok, where O is the (thin) QR factorization of Yy Cy.



Chapter 3 ®)
Classification and Theory of Krylov oo
Subspace Methods

Abstract Krylov subspace methods are roughly classified into three groups: ones
for Hermitian linear systems, for complex symmetric linear systems, and for non-
Hermitian linear systems. Non-Hermitian linear systems include complex symmetric
linear systems since a complex symmetric matrix is non-Hermitian and symmetric.
Krylov subspace methods for complex symmetric linear systems use the symmetry
of the coefficient matrix, leading to more efficient Krylov subspace methods than
ones for non-Hermitian linear systems. This chapter also presents preconditioning
techniques to boost the speed of convergence of Krylov subspace methods.

3.1 Hermitian Linear Systems

In this section, we give derivations of the Conjugate Gradient (CG) method, the
Conjugate Residual (CR) method, and the Minimal Residual (MINRES) method.
These methods are used for the case where matrix A is Hermitian (or real symmetric).
The CG method is usually used for the case where A is a Hermitian positive definite
matrix, and the CR method and the MINRES method are used for a Hermitian
(indefinite) matrix. In exact precision arithmetic, the CR method and the MINRES
method produce the same approximate solutions. We will see that these methods find
the best approximate solutions at each iteration step. To be specific, the CG method
for a Hermitian positive definite matrix finds the best approximate solution such that
a weighted norm of the error is minimized. On the other hand, the CR method and
the MINRES method find the best approximate solution such that the 2-norm of the
residual is minimized.

3.1.1 The Conjugate Gradient (CG) Method

The CG method [95] was proposed by Hestenes (1906-1991) and Stiefel (1909—
1978) in 1952, and is the best-known Krylov subspace method. In exact precision
arithmetic, as well as other Krylov subspace methods the CG method produces the
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exact solution within finite iteration steps. This means that the CG method has two
features: a direct method as in Sect. 1.3 and an iterative method as in Sect. 1.6. For
the chronological history of the development of the CG method, see an excellent
review by Golub and O’Leary [80].

In what follows, the CG method is derived from the Lanczos process (Algorithm
1.11). From (1.42), the Lanczos process in matrix form is given by

ARn =Rn+lTn+l,na (31)
where
Rl’l := [rOarh""rn—]]?
[ to0  ton 7
—Olo_1 11
Tn+1,n - —(xl_] tn—Z,n—l s
T Z‘n—l,n—l
L =,
ri_1, Ar
feo1k = e, 4rg) hk=1,2,....,n—1),
(re—1,re—1)
ry, Ar
Tk = u, (k=0,1,...,n—1).
(re, reo)

Here, the scaling parameters (o4 ’s) have not been determined yet. Let x; be the kth
approximate solution of Ax = b such that x;’s satisfy the following equation:

R, =[b—Axo,b — Ax,, ..., b —Ax, ] =b1] — AX,,

where 1, :=[1,1,...,1]"T e R" and X,, := [x0, X1, ..., X,_1]. Notice that R, is the
matrix given in (3.1). Then, it follows that
AR, = Ry Tupin = 01,y — AXuy ) Toi1
&Ry =AT" 01, — AXy D Tuiin = X1, Topin — Xupi Do (32)

Now we use the condition lnTHT,,H,,, = [0, 0, ..., 0] todetermine scaling parameters
oy, 1.e., a(jl =10 and oz,;ll = tr—1k—1 + tr—2x—1 for k =2,3,..., n. Then, the

condition and (3.2) yield
Rn - _Xn+1Tn+1,n» (33)

where the matrix 7, , in (3.1) is rewritten as
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T = -1 .
nt+ln —0 . h—2.n—1

T, —1
S0, 1 — 201
—1

L _anfl -

and the matrix 7,4 , has the following LDU decomposition:
1 -1 1 a1
Tiw=| . . . ' G4

e Olnfll‘nfl,n
n—1 1

L D! U

where Lis the n + 1-by-n lower bidiagonal matrix, D~ is the n-by-n diagonal matrix,
and U is the n-by-n upper bidiagonal matrix. Thus, we obtain

R, = —X,. LD7'U. (3.5)
We now define P,(= [py,p;, - .- Pp_1l) = R,U~'. Then, (3.5) can be rewritten as
P,D=X,+1(-L), (3.6)
which is equivalent to
Xpp1 =Xk +opr, k=0,1,...,n—1. (3.7)
The relation between ry = b — Ax; and (3.7) yields
Pyl =T —aAp,, k=0,1,...,n—1. (3.8)

The definition P, = R,U~! leads to P,U = R,,, which is equivalent to

Po = 10, 3.9)
Py =rc+ Bi-ipi_, k=1,2,...,n—1, (3.10)
where Br_1 = —o_1tk—1 k-

As described above, computing o requires Ary because o = (# x + tk,l,k)*l,
which means two matrix—vector multiplications are required per iteration step, i.e.,
Ary and Ap,, if we use the iterates (3.7)—(3.10). In what follows, we will see that Ary,
is not required. To see this, first we derive a computational formula for ¢.
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From (3.1), (3.4), and the definition of P,, it follows that
AP, = R, LD,
This leads to
PUAP,D = UMRUR, L. (3.11)

Since R, = [ro, 71, ..., r,—1] in (3.1) is generated by the Lanczos process, we have
r?rj = 0 for i # j. In matrix form, this means (i, j) elements of RY'R,,; is zero for
i # j. This fact yields that the (k + 1,k + 1) element of U MRUR, 1L in (3.11) is
rkHrk because L and U ~H are the lower triangular matrices with all the diagonals being
one. Thus from the (k + 1, k 4+ 1) element in (3.11), we havepkHApkozk = r}jrk, or

JH
= A (3.12)
Py APy

Since A is Hermitian, oy is a real number for all k, which will be later used for
deriving the computational formula for gy.
Next, we give a computational formula for §;. From (3.1), it follows that

RYAR, = R\Rys1 Ts1.- (3.13)

The (k 4 1, k) element of RIAR,, is ri'Ar_;. As seen in (3.11), RIR,1 is a matrix
whose (k, k) elements are r?ﬁlrk, (fork = 1,2..., nandthe other elements are zero.
From this, itis seen that the (k + 1, k) element of RE R, Ty 1 n isFRT, X (—ote—1) ™"
Thus we obtain rkHArk_l = r,ljrk x (—ag_1)~". Because ay_; is a real number as
mentioned before, r,?Ark_l is also a real number. Thus r,?Ark_l = (r,tIArk_l)H =
rit AYr, =rl' | Ar. From this fact it follows that rf' | Arp = rire x (—ay—1) 7.
Recalling Br_1 = —otx—1tk—1 & yields

H H H
FoTk r,_ Ary I

Bi1 =~ 11k = (3.14)

H H =
I A rie rlljflrk—]

From (3.7)—(3.10), (3.12), and (3.14), the algorithm of the CG method is obtained,
which is listed in Algorithm 3.1.
Properties of the CG method are described in Proposition 3.1.

Proposition 3.1 Let p,, r, be the vectors in the CG method, then:

L. (rir) =0 fori#j,
2. (p,Ap) =0 fori#j.

Proof The first property readily follows from the fact that (3.1) is obtained from the
Lanczos process. For the second property, it follows from (3.11) that we have
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Algorithm 3.1 The CG method
Input: xo € CN, B-1=0,p_1=0,rg=b — Axyp

Output: x,
1: forn =0, 1,2, ..., until convergence do

2: Py =Tn +,8n—1pn—1

(rn.rn)

3 =00,

4 Xpp1 =X+ anp,
5: Fnt1 =Ty _anApn
o = s
7: end for

Plap, = UMRIR, . \LD™".

P,IL'IAPn is Hermitian because A is Hermitian. Thus, U ’I'IRnI”IRnJrlLD’1 is Hermitian.
Since the (i, j) element RIR,, is zero for i # j, matrix U HRUR, LD~ is a lower
triangular matrix. This means that P,]fAPn is a Hermitian and lower triangular matrix.
Thus PHAP, is a diagonal matrix, which is equivalent to the second property. ([

From Proposition 3.1, we have the following properties of the CG method:
Corollary 3.1 Let p,, and r, be the vectors in the CG method, then:

L. rn 1 Icn(Aa r())7
2. Ap, L Ku(A,ro).

Proof From (3.8)and (3.9), wehaver; = ry — apAry. This means that span{ry, r|} =
K2 (A, ro). Similarly, span{rg,ry, ..., r,—1} = K,(A, ro). From the first property of

Proposition 3.1, it follows thatr, L ro,ry, ..., r,—1. Thusr, L KC,(A, ro). Next, from
(3.8) and the first property of Proposition 3.1, it follows that Ap,, = (r,, — rp+1) /0, L
ro,ry, ..., -1, and thus Ap, L IC, (A, ro). |

From the proof of Corollary 3.1, it is easy to see that
r, € ICn-H (Aa rO)a Py € Kn-H (A’ rO)’ X, —Xo € ,Cn(A’ rO)- (315)

If the coefficient matrix A is a Hermitian (or real symmetric) positive definite
matrix, then the CG method produces the optimal approximate solution in terms of
A-norm of the error as described below.

Theorem 3.1 LetAx = b be Hermitian positive definite linear systems. Then the CG
method produces approximate solutions such that A-norm of the error is minimized:

min e
B L lleallas

where |le,|la = (enHAen)l/ 2 and e, = x — x,, is the error of the nth approximate solu-
tion of the CG method.
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Proof Since A is Hermitian positive definite, the Cholesky decomposition exists,
i.e., A= LL". (The Cholesky decomposition for a real symmetric positive definite
matrix is described in Sect. 1.4.1.) Recall that the approximate solutions of the CG
method satisfy

X, =X0+2n, Zn€ ICn(Aer)9

where z,, is determined by r, L IC, (A, ry), see Corollary 3.1. Let V, be a matrix
whose column vectors correspond to orthonormalized basis vectors of K, (A, rg).
Then,

x, =x0+ Vy,, y,€C", (3.16)
where y,, is determined by V,f'lrn = 0. From (3.16) and e,, = x — x,,, it follows that
en=¢e0— Vo,
where y, is determined by VHLIMe, =0 since Vr, =0 and r, =b — Ax, =

Ax — Ax,, = Ae, = LIMe,. Here we used the Cholesky decomposition A = LIH,
Equivalently, we have

LMe, = LMey — [MV,y,,

where y, is determined by (L"V,)H e, = 0. This means that the CG method finds
approximate solutions such that

min ||Le,]|, (3.17)
y,eC

because (L7V,)H L e, = 0 is equivalent to the normal equation (L V,)}(LHV,)y, =
(LAV,)HLHe,. The minimization (3.17) is equivalent to

. H
min  [[L7,l|.
x,€x0+1C, (A,ro)

Since ||L%e, ||> = (L"e,)"(L"e,) = e!LLMe, = elAe,, we finally have

min  [leyla,
x,€x0+1C, (A,ro)

which concludes the proof. (]

Theorem 3.1 shows an optimality of the CG method. On the other hand, we cannot
see how fast the CG method converges. To see the convergence rate later, the matrix
polynomial representation of the CG method is described. The residual vector r,, and
the auxiliary vector p,, of the CG method can be expressed by using two polynomials
R, and P,
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ry =R11(A)r07 P =P11(A)r07 (318)

where R, (1) denotes Lanczos polynomials, which satisfy the following three-term
recurrence relations:

Ro(A) = 1, (3.19)
Ri(A) = (I —apgA)Ro(A), (3.20)
Ry(%) = (1 f oy ocn_lx) Ro_1(M)
Op—2
- 5”*2%_11%”_2(,\), n=2,3,..., (3.21)
Op—2

where R,(0) = 1. R, and P, satisfy the following two-term recurrences:

Ro(A) =1, Po(A) =1, (3.22)
R,(A\) =Ry—1 () — a1 AP, 1 (M), (3.23)
Py(A) = Ry(A) + BuiPaoi(V) n=1,2,... (3.24)

The rate of the convergence of the CG method is described in Theorem 3.2.

Theorem 3.2 The A-norm of the error of the CG method satisfies

—1\"
lenlls < 2(%) leolla. (3.25)

where « is the condition number of A.

Proof Since the residual vector of the CG method can be described as r, = R(A)ry
and r, = Ae,,, we obtain e,, = R,,(A)eg. From (3.25) it follows that

llealla = IIR.(A)eglla = ngr; lpn(A)eolla,

n n

where P, is the set of polynomials of degree n with Py = 1.

Using the diagonalization of Hermitian positive definite matrix A, we have
A = PDPY with unitary matrix P and diagonal matrix D whose diagonal elements
are eigenvalues of A. Let A'/? = PD'/?PH_ where D'/? is a diagonal matrix whose
diagonal elements are square roots of eigenvalues of A. Note that all the eigen-
values of A are positive and A'/? is Hermitian, i.e., (A'/?)H = A2, We see that
A'2AY2 = pp'2pHpp!/2pH = pp!/2p!/2pH = pDPH = A. Then we have
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llealla = min [|p,(A)eolla,

n€Fn

= min V (pu(A)eg)HA(p,(A)ep)

= min V (Pa(A)eg) (A2 HAI2 (p, (A)eo)

Pn€

= min VA2, (A)en) T (A12p, (A)ey)
Pn€Fn

= min |A"?p.(A)eo].
Pn€Py

Using A = PDP" and A'/? = PD'/2P! yields
llealla = min |A"?p,(A)eoll = min |PD'2P p,(PDP%)ey||
Pn€Py Pn€Py

= min ||PD"?*PHPp,(D)Pey|| = min ||PD'?p,(D)P ey
Pn€Pn Pn€Py

= m17131 | Pp, (D)D" PHeq | = mln ||Pp (D)PHPD'?PHey |
Pn€Fn Pn€

= min ||Pp,(D)PHA ?e,|

Pn€Fn

< min ||Pp.(D)P"|[|A" e
Pn€Py

= min ||p,(D)lllleolla
Pn€Pn

= min _max  [p,(A;)] x [leolla.
PAEPA i=1

Thus, we have

€nlla .
lle. | < min max .
leolla ~ pucPui=12,..N

Let a be the smallest eigenvalue and b be the largest eigenvalue of A. Then all
the eigenvalues A; belong to the closed interval [a, b]. Thus we have the following
inequalities:

”en”A .
< min max Xi)| < min max A
leolls = mn _max 1P ()l < mip max |p,()]-

The solution of the min-max problem can be rewritten using Chebyshev polynomials
as follows:

21— b a
1T (==
min max |pn(A)| = max —,
Pn€Py A€la,b A€la,b] Tn( e )
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where
T, (x) = [<x+ 1)n+( — V- 1)] for x| > 1. (3.26)

: 2A—b—a :
Erom the property of Chebyshev polynomials, |7,,(#5=-)| < 1, from which we
ave

min max [p,(A)| <

Pa€P rela.b] |Tn(;b_j,”)| T (D1

where ¥ = b/a is the condition number of A. Using (3.26) yields

1 2 2
min max |p,(1)| < 7 7w = 7
pn€P, A€la,b) T, ( )| (ﬁ—l) 4 (ﬁ+1) <ﬁ+1)
Vit Vi—1 Vi—1
_, Vi —1\"
S\ +1)
which concludes the proof. O

Theorem 3.2 indicates that the speed of convergence of the CG method depends
on the condition number of the coefficient matrix A, i.e., the smaller the condition
number is, the faster the CG method converges. It is therefore natural to consider the
following equivalent linear systems:

Ax=b & AX = b,

so that the condition number of A is much smaller than that of A, and then apply
the CG method not to Ax = b but to the transformed linear systems A% = b. The
resulting algorithm is called the preconditioned (PCG) method. The technique to
construct A is called preconditioning, which will be discussed in Sect. 3.5.

We now describe the algorithm of the preconditioned CG method. Let A ~ K =
LIM. Then A = L~'AL™M is expected to be close to the identity matrix whose con-
dition number is one. We now consider applying the CG method to the following
transformed linear system

A% =b,
where A = L~'AL™H % = [Hx, and b = L~'b. Then, the CG method for A% = b is

expected to converge much faster than the CG method for Ax = b. From Algorithm
3.1, the iterates of the CG method for Ax = b are written as
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ﬁn = ;n + ﬁn—lﬁn—l7
_ (P, )
By AB,)

Xpnt1 = Xp + anPy,

Op

Fpy1 =1, — OlnApn’
o (i'n+1»;n+l)

= )
Using the following rewrites:
¥=I% p=1" F=L"r
we have

=L+ B L7, =L 4 Buop
L 'r,, L'y LR, 1)
T (W, LTALFIRp) T (@, Ap,)
Xpy] = L_HLHxn + oz,,L_HLH w =Xn +a,p,,
Fpo1 =LL7'r, — a, LLT' AL IRp =1, — a,Ap,,
g, = (Lt L7rgy) _ LML gy, Fagr)
(L-HL-1r,, rp) (L-HL-1r,, 1)

oy

Since K~! = L7HL~!, we have the PCG method that is described in Algorithm 3.2.

Algorithm 3.2 The preconditioned CG method
Input: xo € (CN, B_1 = O,p_l =0,rg =b — Axyg

Output: x,
1: forn =0,1, 2, ..., until convergence do
2: Py :K_lrn+ﬂn—1pnfl

— Kl

%n = "%, Ap,)

3

4 xpp1=x,+ APy

5: T+l =rnl_anApn
— K rustturl)

6 o= (K=ry,ry)

7: end for

Some notes on the CG method are listed next.

1. From Theorem 3.1, in exact precision arithmetic, the CG method finds the exact
solution within N iteration steps.

2. We can still use the CG method even if the coefficient matrix is not positive
definite. In this case, the optimality in Theorem 3.1 does not hold anymore,
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and the CG method may suffer from breakdown, i.e., zero division, because
@,,Ap,) > 0 for any p, # 0 does not hold anymore, see line 3 of Algorithm
3.1. In practice, breakdown (zero division) does not occur, but near breakdown
may occur, i.e., (p,, Ap,) = 0, leading to numerical instability.

3. In exact precision arithmetic, the CG method for Hermitian indefinite matrices
also finds the exact solution within N iteration steps if breakdown does not occur.

In the next two subsections, the CR method and the MINRES method for Hermi-
tian linear systems are described.

3.1.2 The Conjugate Residual (CR) Method

The Conjugate Residual (CR) method [177] was proposed by in 1955 Stiefel, who
is one of the authors of the CG method. The feature of the CR method is that it has
optimality in terms of the residual norm, which will be described later.

It is possible to derive the CR method like the derivation of the CG method, but
here we give a concise derivation of the CR method using the algorithm of the CG
method. A drawback of the derivation here is that A is assumed to be Hermitian
positive definite, whereas the CR method can be used for Hermitian indefinite linear
systems. On the other hand, we will see the derivation is much simpler than that of
the CG method. A derivation of the CR method similar to that of the CG method
can be found in Sect. 3.2.2 by restricting the derivation of the COCR method for
complex symmetric linear systems to that for real symmetric ones.

We now derive the CR method from the CG method. If A is Hermitian positive
definite, then there exists a square root of A: the Cholesky factorization of A, see
Sect. 1.4.1,is obtained as LLH, and L can be decomposed as U X VH by using singular
value decomposition.! Then, we have

[N

A=LI" = wevhyvzul = us?uf = usut)yWwsut) = Az4:.
Thus, the square root of A is A? = USUY. Here, we show that if A is Hermitian
positive definite, then the algorithm of the CR method is obtained by applying the
CG method to the following linear systems:

AF = A2h, ¥ =A’x. (3.27)

It follows from the algorithm of the CG method that

! U and V are unitary matrices, and T is a diagonal matrix whose diagonal elements are nonnegative.
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ﬁn = ;n + ﬁn—lﬁn—l7
(;11, ;n)
B AP,

Xnt1 = Xy +app,,

o, =

ny1 =r, — OlnAPn,

_ (;rH—la ;n+1)

=G

The residual vector of the original system Ax =b is r, =b — Ax,, and then
from (3.27) we have r, = Ab — AX, = A%(b —Ax,) = A%rn. Substituting 7, =
A%rn, P, = A%pn, and X, = A%xn into the above recurrences, we have the algorithm
of the CR method (Algorithm 3.3).

Algorithm 3.3 The CR method

Input: x € CN, - = 0,p_1=0,r0 =b — Axp
Output: x,

1: forn =0, 1, 2, ..., until convergence do

2: p,=r,+ ,anlpn—l

Apn = Ar, + ,Bn—lApn—l
(rp,Arp)

%n = Tp,.Ap,)
Xpil = Xp +opp,

3
4
5:
6: Fnt1 =Ty _anApn
7
8:

— i1, Arag1)
: n (rn,Ary)
end for

From line 7 of Algorithm 3.3, the CR method may suffer from breakdown if
Hermitian matrix A is indefinite, i.e., (r,, Ar,) = 0.

By induction, it can be shown that the CR method generates iterates r;, p; that
satisfy

(ri,Arj) =0 fori #j, (3.28)
(Ap;, Ap;) =0 fori #j. (3.29)

Comparing the two properties ((3.28) and (3.29)) and those of the CG method, the
CR method finds approximate solutions such that

Xn =X0+2Zn, Zn € Ku(A, 1o),
where z,, is determined by r, L AK, (A, ro)(:= K,,(A, Ary)), or equivalently

X, =x0+ Vo, y,€C"
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where y, is determined by (AV,)r, = 0. Following the proof of Theorem 3.1, we
have

min llen 2.
x,€x0+1C, (A,ro)

Since [le, |13, = el!A%e, = (Ae,)"Ae, = rilr, = ||r,||?, the CR method finds approx-
imate solutions such that

min [l7 1l
xp,€x0+1C, (A ro)

Therefore, the CR method produces the optimal approximate solution in terms of the
residual norm.

Similar to the derivation of the preconditioned CG method, the preconditioned
CR method can be derived from applying the CR method to the transformed linear
systems A% =b. The resulting algorithm is described in Algorithm 3.4.

Algorithm 3.4 The preconditioned CR method

Input: xo € CV, 81 =0,p_, =0,rg = b — Axg
Output: x,
1: forn=0,1,2,...,until convergence do
2 p,= K_lr" + Bu-1Pn—1
© (Ap, = AK~'ry + Bus1Ap, 1)
_ (K7, AK ")
T @,k 'Ap,)

Oy

3

4

50 Xpr1 =X+ (e77) 2%

6: I'ny1 =TIy — O5}1Apn

7 (K_lrn+l :K_lrn_anK_lApn)
_ K 'y, AR )

8 ﬂn - (K='ry, AK=1r,)

9: end for

Note that lines 3 and 7 in Algorithm 3.4 are added for reducing the number of
matrix—vector multiplications of the form Av and solving linear systems of the form
Kv = w. In fact, at each iteration, it seems that we need to compute

Ap,, K 'rp, AKT'r), K'(Ap,).

But from lines 3 and 7, we do not need to compute Ap, and K s, except K ~Iry
at the first iteration step. Thus, essentially we only need to compute the following
form:

Av, K “ly

at each iteration step. Here, v := K ~lr,41 is obtained by line 7 and w := Ap,, is
obtained by line 3.
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3.1.3 The Minimal Residual (MINRES) Method

The Minimal Residual (MINRES) method [143] was proposed by Paige and Saunders
in 1975. The MINRES method generates x,, that minimizes ||b — Ax,, || over the affine
space xo + K,,(A, ry). Therefore, in exact precision arithmetic, the MINRES method
and the CR method produce the same approximate solutions. The minimization can
be achieved by using the Lanczos process.

Here, we give a derivation process of the MINRES method. Let V, be the
orthonormal basis of K,,(A4, ry). The MINRES method finds x,, over the affine space
xo+ KA, rp), ie.,

x,=x0+Vy, ¥y,€C. (3.30)
The corresponding residual vector is given by
r,=ro—AV,y,.
From the matrix form of the Lanczos process in (1.42), it follows that
rn =10 = Vo1 Tor1,n¥ = Varr1(Ber — Tog1.0¥),
where B := ||ro||. The 2-norm of the residual vector is written as
I7all = 11Vit1(Ber = Ty )l
= Vas1(Ber — Tt )WVt (Ber — Tt y,)
= J(Ber = Tty )MV Vi (Ber — Tugiv,)

= J/(Ber — Tuur ) (Ber — Tiry,)
= ||Ber — Tnr1.n¥ull-

The MINRES method finds approximate solutions such that the 2-norm of the residual
vector is minimized, i.e., y,, is chosen such that

¥, = argmin [|Be; — Tyr . (3.31)
yeCr

By solving the least-squares problem in (3.31) using a Givens rotation that is one of
the unitary matrices, the MINRES method is obtained.

In the following, we describe how Givens rotations work for solving (3.31). For
simplicity, we consider the case n = 4 for solving it. Se; — T’ 4y is written as
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B 1t "
0 1 1) 13 Vs
Ber —Ts4y =10 — 133 133 134 .
Y3
0 143 t44 y
0 I54 4

where t;; = t;, 1 <i,j < 4. Let G| be a matrix of the Givens rotation, i.e.,

c1 S1
—El (6]
. 551 _ 1531
G| = 1 with ¢ = # §1 = —Ci1,
1 Vit ? + e ? al

and s is obtained by the conjugate of s;. There is one exception: set 51 =5 = 1
if 111 = 0. Then, G, is a unitary matrix, and thus ||Be; — T,41 91l = |G1(Ber —
T,+1..y)|l. This leads to

(1) 1) (1) (D
8 Iy fy I3
[0 POICY N
2 2 b v
Gi(Bey — T5,4y) = 0 - 13 133 134 s ,
0 143 tas Va
0 Is4

where gél) = —518. Next, let G, be a unitary matrix defined by

1
[y (1)
Z . ! — 132
G, = —852 C2 with ¢, = ﬁ, Sy = (—DC2.
1
1 VB 1P + It 22

There is one exception: set s, = 5, = 1 if télz) = 0. Then, G, and G,G are unitary
matrices, and thus ||fe; — Ty41..]| = 1G2G1(Ber — Tuy1,,y) - This leads to

(1) 1 (1) (1)
8 Ity b3
@) 2 0,0 Y1
2, 2 1y byl |y,
G2Gi(Ber —Tsay) = | g7 | — 13 17 fNE
0 ta3 taa | |y,
0 Is4

where géz) = (—1)%5,5, 8. Similarly, using G; and G4, we finally obtain
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) ¢)) (l) (1)

8%2) it 3 tb) oy

1

e EE= T
Os(Ber —Tsay) = | g3 | — 15y ’§4)

@ @ | |3

4 Laa | | vs

L85
. g, Ry
= g;s):| [OT:|J’4»

where Q4 = G4G3G,G and g(s) = (—1)*5,4535,51 8. Hence, we obtain y, by solving
the following equation:

Ryy, = 84 (3.32)
using backward substitution. It is interesting to see that we can obtain the value

of minycc: [|Be; — Ts 4y|l without solving the equation Rsy, = g4, since the value
satisfies

lrall = mm |Ber — Ts4yll = mir} 104(Ber — Ts.4y) ||

[l

=|g 55) .
Thus, | géS) | corresponds to the residual norm of r4, and this can be used as a stopping
criterion. To obtain the approximate solution, it follows from (3.30) and (3.32) that

x4 =x0+ VaR}'g,. (3.33)

Here, we introduce a matrix Py := V4R;1 with columns [p, p,, p3, p4]- Then, from
[P, P2, P3,Ps]Rs = [v1, V2, v3, v4], we have the following recurrences:

P =w/t, (3.34)
Py =2 —11p /153, (3.35)

= (3 — 113p1 — 13 P2 /157, (3.36)
pa= s —150p, — 15 /1S (3.37)

From (3.33), x4 = xo + P18, = xo + Z?:l gp; and thus

xi=xi1+gp;, i=1...,4, (3.38)
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where g; is the ith element of g,. The approximate solutions x;, . . ., x4 of the MIN-
RES method are obtained by (3.38) with the recurrences (3.34)—(3.37).

The derivation for the case n = 4 can be easily generalized to the nth iteration
step, leading to Algorithm 3.5. From Algorithm 3.5, the MINRES method never
suffers from breakdown since 8, # 0 unless v,,.; = 0.

Algorithm 3.5 The MINRES method
Input: xo € CV, o =0,vo =0,ryg = b — Axg

Output: x,
1:g=(roll 0, ..., 07T, vi =ro/lrol 14: cF%
2: forn=1,2,... do 53— @” L
3:  (Lanczos process) CoS= g o
4: o, = (v, Avy) 16:  tyn = Cutyn + Sntutin
50 V1 = Avy — oV — Bu—1Van—1 17: ty41, =0
6 Bu= (f’n+1,‘~’n+1)l/2 18: &n :| _ |: Cn Sn:| |:gn]
70 V1 = Vg1 /Bn ’ 8n+1 —Sncn| |0
8ty =PBu-1, tan =0y 19:  (Update x,)
9: tit1.n = Bn 20: Pn=0n—th24Py_2
10:  (Givens rotations) 21: = In—1,nPpn—1)/tnn
11: fori=max{l,n—2},...,n—1do 220 xp =Xn—1+ &Py
1. tin | _[ e s tin 23: fCheck convergence)

’ titl.n —58i i || tit1.n 24: if |gu411/1IB]l < €, then stop
13:  end for 25: end for

As mentioned above, the MINRES method never suffers from breakdown. Paige
and Saunders also proposed the SYMMLQ method in [143], which is a variant of
the CG method, to avoid breakdown for Hermitian indefinite linear systems. A brief
explanation is given next.

Recall that the approximate solution x,, of the CG method is given by

xl’[ = xO + Vn_yns
rp, =ro— Vn+1Tn+1,nyn = n+1(ﬂel - Tn+1,nyn)a

where y,, is determined by r,, L IC,(A, ro) (see Corollary 3.1), i.e., VHr, = 0. This
yields

Ty, = Bei, (3.39)

where T, is the tridiagonal matrix obtained by removing the last row of 7,4 ,. The
CG method is obtained by the LDLF decomposition of Ty, i.e.,

T, = LDLH,

where L is a unit lower bidiagonal matrix and D is a diagonal matrix. If A is Hermitian
positive definite, T, is also Hermitian positive definite. Thus this decomposition never
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suffers from breakdown. On the other hand, when A is indefinite, LDLY of T, may
not be obtained due to breakdown.

In order to circumvent the problem, Paige and Saunders proposed to use the LQO
factorization of T, i.e.,

Tn = Lnan QyI;IQn =1,

where L, is a lower triangular matrix and the decomposition is obtained by Givens
rotations. Thus the decomposition is free from breakdown. The resulting algorithm
is known as the SYMMLQ method. When the coefficient matrix A is Hermitian
positive definite, the SYMMLQ method gives the same result as the CG method in
exact precision arithmetic, and for indefinite cases, the SYMMLQ method succeeded
in avoiding breakdown when solving (3.39).

For a brief historical note including the relation between the SYMMLQ method
and (less-known) Fridman’s method of 1962, see Sect.2.4 in [160].

Another important remedy is “composite step” technique by Bank and Chan [16]
and similar techniques (hyperbolic pairs) in [58, 126]. The key idea of the composite
step is decomposing T, in (3.39) into

T, = LDL",
where L is a unit lower block bidiagonal matrix and D is a block diagonal matrix

whose block is of size 1 x 1 or2 x 2, i.e.,

D,
D = t. ) .
Dy,
where D; is a scalar or a 2 x 2 matrix. This decomposition is also free from break-

down, see, e.g., [16, Theorem 2.2]. An algorithmic explanation of the composite step
technique (the composite step BiCG method) is described in Sect. 3.3.2.

3.2 Complex Symmetric Linear Systems

In this section, we consider complex symmetric linear systems of the form
Ax =0,
where A is complex symmetric, i.e., A= AT and A # AH. Note that complex sym-

metric matrix A is not Hermitian. Below is an example of a complex symmetric
matrix:
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C[t+i2+i
A_[Z—H 3 }

For applications of complex symmetric linear systems, see the Helmholtz equation
in Sect. 2.1.1.3 and a large-scale electronic structure calculation in Sect.2.2.1.

This section describes the COCG method, the COCR method, and the QMR_SYM
method for solving complex symmetric linear systems. These methods reduce to the
CG method, the CR method, and the MINRES method if these methods are applied
to real symmetric linear systems. Other Krylov subspace methods and applications
for complex symmetric linear systems, see, e.g., [1, 30, 37, 40, 83, 84, 124, 141]
and the references therein.

3.2.1 The Conjugate Orthogonal Conjugate Gradient
(COCG) Method

The COCG method [197] is the best-known method for solving complex symmetric
linear systems. The algorithm can be formally derived by the CG method with the
change of the dot product (a, b) into (@, b). Here @ denotes the complex conjugate of
a. With this rewrite, the algorithm of the COCG method is described in Algorithm 3.6.

Algorithm 3.6 The COCG method (note: (@, b) = a'b)
Input: xo e CV, 81 =0,p_, =0,rg = b — Ax

Output: x,
I: forn=0,1, 2, ..., until convergence do

20 py=rnt PPy
3 an= g
4: Xpt+1 = Xn + opp,
51 Fugy1l =rn —anAp,
6
7:

15T n+1)

@
PoBe =TT
end for

The residual vector r,, of the COCG method satisfies the following relation:
ry 4 ’Cn(Av r0)7

where IC, (A, ry) := K, (A, o). From Algorithm 3.6, it is easy to see that if matrix A
is a real symmetric matrix, then the COCG method is the same as the CG method.
The preconditioned COCG method is described in Algorithm 3.7.
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Algorithm 3.7 The preconditioned COCG method (note: (@, b) = a'b)
Input: xo € CN.oro=b —Axo,p_; =0,8_1=0

Output: x,
1: forn =0, 1,2, ..., until convergence do
2 py=K'ra+ Bu-ipy

——1_
_ & Fwrw
3w =G A,
4 xpp1=x,+ oanPy,
5: rpp1 =1y — oAp,
6
7

——1_
Bn = K FuyiIng1)
n — ——1_
(K Fn,rn)
: end for

3.2.2 The Conjugate Orthogonal Conjugate Residual
(COCR) Method

The COCR method [171] is also a Krylov subspace method for solving complex
symmetric linear systems. The algorithm can be formally derived by the CR method
with the change of the dot product (a, b) into (a, b). The COCR method produces
approximate solutions such that the residual vector satisfies

r, LAK,(A, ry),

where AKC,,(A, ry) := ZICn (Z , Fo). From this, if matrix A is real symmetric, the COCR
method is identical to the CR method. This indicates that if A is complex symmetric
and is close to the real matrix, then it can be expected that the residual 2-norm tends
to decrease almost monotonically or tends to show smooth convergence behavior.

In what follows, the COCR method is derived. To begin with, the conjugate A-
orthogonalization process is introduced in Algorithm 3.8.

Algorithm 3.8 The conjugate A-orthogonalization process without normalization
(note: (@, b) = a'b)

Input: vo =ro =b — Axo

Input: 190 = (Avo, Avy)/(vo, Avp)

Input: v = —ap(Avo — f0,0v0)

L: 10,0 = (AViAv1)/(V1, Av1)

2: vy = —ao(Avy — f0,0v1)

3:forn=1,2,...,.N —1do

4: tn—l,n =7(Avn—1vAvn)/(vn—lsAvn—l)

5: Ihn = (Avy, Avy) [ (W, Avy)

6: Vn+l = 705}1(Avn - tn,nvn - tn—l.nvn—l)
7: end for

Similar to the Lanczos process (Algorithm 1.11), the vectors v;’s of Algorithm
3.8 satisfy the following relations:
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In what follows, the COCR method is derived from Algorithm 3.8. Letry := b — Ax
be the initial residual vector for a given initial guess x(. Then, Algorithm 3.8 can be

span{vy, vy, ..

i, Avj)) =0 fori #j.

expressed in the following matrix form:

L] vl’l} = ’Cl’l(AﬂrO)a

foo lo1
-1
— 1,1
A[r(),r], .. ~arn71] = [rOvrla cee vrnflvrn] —al_l w2 n-1
R/x R»x+l *.
. tn—l,n—l
L =01
Tutin
Ary_1,A Ary Ary . .
where t;_; ; = A=LA andy, , = WA Erom the above matrix form, we obtain
’ (Fy—1,Arg_1) ’ (Fy,Ary)

ARn = Rn+]Tn+l,n- (341)
Since the matrix R, is generated by Algorithm 3.8, it follows from A-orthogonal prop-
erty (3.40) that we have RnTAR,Z = D, where D, is an n-by-n diagonal matrix. The
scalar parameters o, . . . , ®,—1 still remain unknown. We show that if we determine
the scalar parameters such that approximate solutions xy, . .., X,_1 can be extracted
from the information of ry, ..., r,—1, then we obtain the algorithm of the COCR

method.
LetX, := [xo,...,x,—1]and 1be[l,...,1]". Then R, := [ro,F1, ..., rn_1] and
X, are related as follows:
R, =[b—Axo,b — Ax,,...,b — Ax, ] = b1] — AX,. (3.42)

Substituting (3.42) into (3.41) yields
AR, = (b1, | — AXyy )T i1n
Then,
Rn = (xl;,r+1 - Xn+1)Tn+1,n»
where x is the exact solution of the linear system Ax = b. If the condition of the form

xl,;rJr]TnJrl,n = On (343)
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holds, then R, = —X,,+1T,+1,,. The relation R, = —X,,4+1T,+;, implies that the
approximate solution vectors can be obtained by residual vectors. Conversely, if
the relationship does not hold, the approximate solution vectors cannot be obtained
by residual vectors.

Since unknown parameters oy, . . . , @,— in T, , have not yet been determined,
we determine the parameters so that (3.43) holds. This leads to

—1
oy = 10,0,

o' =tux+hok, 1<k<n-—1.

Substituting the above recurrence into 7,1 ,, we have

o fo,1
—a ()[1_ — 101
T = -1
ntln —0 h—2n—1
o, 1 — tnle,nfl
L -, .
Then, T, , can be factorized as follows:
1 » 1 apto, |
)
-1 . 1

Tn+l,n = .

1 Ol_l T Op—2lp—2 n—1

—1

_ pWM —1pU)
_BnJrl,nQn Bn .

1

From (3.41) and the above factorization, we obtain
AR, = Ry1Tye1 0 = Run1BY, 2, ' BV, (3.44)
Here, P, := R,(B\"))~!. From (3.44), it follows that
AP, = AR,(BV)"" = R, 1BY, " (3.45)
The above matrix forms are equivalent to the following recurrences:
re=ri1 —a_1Ap,_, 1<k=<n (3.46)

From P, = R,(B\"))~! it follows that

P =T+ B—ipi_1, 1=<k=<n, (3.47)
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where fBr_) := —og_1tx—1 k. We now give the computational formulas of the approx-
imate solutions. From (3.45),

AP, = R, B, 2!

= (1" — AX,. )BT, ;"

_ (L) -1

- _AX’H‘]BVL-H,nQn .
Thus, we obtain

L
Py = X1 (=B, ),
and it is equivalent to

Xy =X 1+ 1pr_y, 1<k=n (3.48)

Now, we give more practical computational formulas of o and ;. From (3.41), it
follows that

(AR)] AR, = R AR, 1Ty 1 1.

Fromthe (k + 1, k) element of the above relation, we have (A, Ary_;) = _0‘1:1 T,
Ary). Thus from By_; = —o_1tx—1 .4, We obtain

(Fe1. Aris1) (ARG Arey)  (Fegrs Are)
(AFy41, Ary) (Fr, Ary) (Fy, Ary)

B = —oti k1 = (3.49)

Here, we used the relation (¥, Aryy1) = (Frs1, Ary) because
(Fer Areg1) = Fe, Aregn) | = (rf Are) | = Fepr, ATre) = Fgr, Are). - (3.50)
From (3.45) and recalling P, = R,(B{"))~1, it follows that

(APn)TAPn = (APn)TRn-ﬁ-lB,(f;)]'nQ;l = (BflU))iTRIARn_HBELIJF)LHQJI.

(BU)~T is alower triangular matrix, and A-orthogonal property (3.40) indicates that
the off-diagonal elements of RIAR,ZH are zeros. From this, (AP,) AP, is a lower
triangular matrix of the form

do
* -

(APn)TAPn = ' s

* oo % d,
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where d;, = (ry, rk)ozk_l. Thus, we obtain

7 A
oy = T Ard (3.51)
(Api. Apy)

Moreover, since (AP,)TAP, is complex symmetric, we have

dO dO % ... %
(APn)TAPn: kT, _ .t . ,

: -. .'. -. *

% ... % dn—l dn—l

which means (AP,)"AP, = diag(dy, ..., d,—1). Thus p; and p; are conjugate A*-
orthogonal, i.e.,

(Ap;, Apj)) =0 fori#j.

From (3.46)—(3.51), we obtain the algorithm of the COCR method, which is listed
in Algorithm 3.9.

Algorithm 3.9 The COCR method (note: (@, b) = a'b)

Input: xo € CN, B-1=0,p_1=0,r0=b — Axyp
Output: x,
1: forn=0,1,2,..., until convergence do
20 py=rn+ Bu-1Pni
i Ap, = Ary + Bu—1Ap,_y

3
— (TwAry)
4= (Ap,.Ap,)
51 Xpp1 =Xp +oyup,
6:  rpy1 =r, — a,Ap,
_ Tnt1,Arn41)
T B = TR
8: end for

When the COCR method is applied to the linear systems K; 'AK; "% = K;'b
(X = K| x), the preconditioned COCR method can be obtained by the following
rewrites:

- ~ - —1
.= K/ %, p,=K\p, =K 'r,

where A ~ K = K| K lT . Then, we have the preconditioned COCR method which is
described in Algorithm 3.10.
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Algorithm 3.10 The preconditioned COCR method (note: (@, b) = a'b)

Input: xo € CN.oro=b —Axo,p_; =0,8_1=0
Output: x,
1: forn =0, 1,2, ..., until convergence do
2 py=K'ra+ Bu-ipy
© (Ap, =AK7'ry + Buo1Ap, )
_ & 'FAKry
© (4p,.K~'Ap,)

Op

3

4

5 Xn+1 = X +app,

6. rpp1 =1y —aAp,

7: (K*lrml =K 'r, —a,K"'Ap,)
T -1

8 — (K Tuy1,AK” rag1)

P (K "FrAK1ry)
9: end for

Note that lines 3 and 7 in Algorithm 3.10 are added for reducing the number of
matrix—vector multiplications of the form Av and solving linear systems of the form
Kv = w, which is the same technique as described in the preconditioned CR method
in Sect. 3.1.2.

3.2.3 The Quasi-Minimal Residual (QOMR_SYM) Method

The QMR_SYM method [61] that is named in van der Vorst’s book [196, p.112]
is also a well-known Krylov subspace method for solving complex symmetric lin-
ear systems, which can be derived from the complex symmetric Lanczos process
described in Sect. 1.9.3.

This subsection describes the derivation process of the QMR_SYM method. Let
V, be an N-by-n matrix whose column vectors are produced by the complex sym-
metric Lanczos process (Algorithm 1.10). Then, the QMR_SYM method finds an
approximate solution from

x,=x0+Vyy,, y,€C". (3.52)

Here, y,, is to be determined by a condition as described later. Note that x,, lies in the
affine space xo + /C,,(A, o). The corresponding residual vector is

r, =ro—AV,y,.

From the matrix form of the complex symmetric Lanczos process (1.41), it follows
that

rhn=rog— Vn+lTn+l,Vlyn = n+l(,3el - Tn+1,nyn)
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with B := ||ry|. The above derivation process is similar to that of the MINRES
method in Sect. 3.1.3. The difference is that if we choose y, such that the norm of
the residual is minimized as well as the MINRES method, then it may lead to a large
amount of computational costs since

I7all = 1Vas1(Ber = Tusrny ) Il # 1(Ber = Togrny ) s (3.53)

due to the fact that V:_IH Viu+1 # 1. This means that we need to minimize ||V,+1(Be; —
Tht1.0y,) | if we try to obtain a minimal residual approximate solution. As a result,
the computational costs and memory requirements grow as the number of iterations
increases.

The QMR_SYM method, therefore, is designed not by the minimal residual

approach but by a quasi-minimal residual approach, i.e., choosing y, such that
Yy, = argmin [[Be; — Ty (3.54)
yeCr

The resulting vector Be; — 7,1y, is referred to as a quasi-residual vector. Here,
we note that if V,, satisfies the relation V,fIV,, = I, then the above choice leads to
the minimization of the residual norm. Since A is complex symmetric, in general V,
does not satisfy the relation V1V, = I, except some special cases: one of the special
cases is given in [61], which has the form

A=B+iol, B=B' eR"™ o eR.
To achieve the minimization (3.54), Givens rotations described in Sect. 3.1.3 play an

important role. Multiplying Be; — T,+1 ,y by Givens rotations Q,, = G,, - - - G such
that Q'Q, = I, and

R,
QnTn+1,n = |:0T] s

we have
. . g R,
min ||Be; — T, = min "ol — R 3.55
min [|fe; = Tyl = min [gm] [OT}y (3.55)
where
8,
= ne
|:gn+l] PQuer

and R, is an upper triangular matrix. Thus, we have y, = R, 'g, as the solution
of (3.55), from which, together with (3.52), we obtain the approximate solution
X, =Xxo+ V,.R; 1 g,,- Similar to the MINRES method, introducing P, := V,R;; 1 gives
a three-term recurrence relation. Then, we have a more practical formula of x,,:
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xizxi—l+gipi5 i:1,...,n,

where g; and p; are the ith element of g, and the ith column of P, respectively. The
complete algorithm of the QMR_SYM method is described in Algorithm 3.11.

Unlike the MINRES method, the residual norm ||r,|| is not obtained from (3.55)
due to the relation (3.53). Thus the problem is how to compute ||, | for evaluating
the quality of approximate solutions. One simple solution is to compute ||b — Ax,||,
which requires an additional matrix—vector multiplication per iteration. On the other
hand, it is possible to circumvent the computation of the matrix—vector multiplica-
tion. The technique is given next. Similar to the MINRES method, the approximate
solutions of the QMR_SYM method are given by

1
P, = _(vn —th—2uPp_2 — tn—l,npn—l)a

tyn

Xp = Xn—1+ &Py
Since r,, = b — Ax,,, we have
T'n =Tn_1 = &uAP,-
Here, Ap,, can be updated by

1
Apn = _(Avn - tn72,nApn—2 - tnfl,nApn—l)'

n,n

Since Av,, is computed by the complex symmetric Lanczos process, we can compute
the residual 2-norm ||r,, || without the direct computation of ||b — Ax,||, leading to
a cost-efficient evaluation of ||r,|| to check the convergence. These recurrences are
added to lines 24-26 in Algorithm 3.11.

3.3 Non-Hermitian Linear Systems

Let us recall that the CG method and the CR method (or the MINRES method) have
the following two favorable properties:

1. The residual vectors satisfy Ritz-Galerkin approach (1.24) or minimal residual
approach (1.26).
2. The residual vectors are generated by short-term recurrences.

As described in Sect. 3.1, the first property determines the optimality of approxi-
mate solutions, and the second property plays an important role in keeping the com-
putational costs and memory requirements constant at each iteration step. Recalling
that the Ritz—Galerkin approach (1.24) is for the CG method, and the minimal residual
approach (1.26) is for the CR method and the MINRES method.
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Algorithm 3.11 The QMR_SYM method (note: (@, b) = a'b)
Input: xo € CV, Bo=0,vo =p_1 =py=0,r0 =b — Axg

Output: x,

1: g = (Iroll, 0,..., 00T, vi =ro/lIroll 150 5, = g,

2:forn=1,2,... do 16:  ty = Cutun + Snintin

3:  (Complex symmetric Lanczos process) 170 tyy1,=0

4 an = (Vp, Avp) . &n Cn Sn||&n

50 Vpl =7AV,, — anVn — Pn—1Vn—1 18: |:gn+l] = [75;1 Cn] |:0]

6: By = g1, Puy)'? 19:  (Update x,,)

7o Va1 = Vuy1/Bn 20: pp= Wn — th—21Pp_2

8: In—1n = Bn-1, Inn = Qp 21: - ln—l,npn—l)/tnﬁ

9: Inyin = Bn 22: xp=xp—1+ &nPy

10:  (Givens rotations) 23:  (Check convergence)

11: fori=max{l,n—2},...,n—1do 24: Ap, = (Avy — ty—2.4AP,_>

12 [ tin } _ [ ¢ Si] [ i ] 25: — tn—1,nAPy— 1) /tn
titln —=Si ¢i| [ ti+1,n 260 ry =ru—1 — 8nAP,

13:  end for ol 27: if |lr,ll/11B]| < €, then stop

14 o= —~—— 28: end for

Here, a question arises: are there Krylov subspace methods satisfying both the
properties for non-Hermitian linear systems? The answer is negative, which was
proved in [57] and known as the Faber—Manteuffel theorem. More concretely, if
matrix A has the form

A=¢%3lcl+G) (¢c>0,0<¢ <2m, B'G'B=0),

then algorithms satisfying the both properties can be constructed. For the details, see
[57] and Greenbaum’s book [81, Chap. 6]. See also [121] and the references therein.

For solving non-Hermitian linear systems, one may consider the following trans-
formed linear systems:

AlAx = AYp. (3.56)

If A is nonsingular, then A"A is Hermitian positive definite. Thus the CG method can
be applied to the transformed linear systems. However, the condition number of A"A
may be twice as large as the condition number of the original matrix A. Hence, from
Theorem 3.2, the speed of convergence may be slow. Furthermore, if the condition
number is very large, then it follows from the error analysis (1.3), the accuracy of
an obtained approximate solution may be very low. Note that the error analysis (1.3)
does not depend on numerical algorithms for solving linear systems. This means that
the accuracy of an approximate solution computed by any numerical algorithm may
become low.
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On the other hand, if the condition number AHA is not so large, there are cases
where applying the CG method to (3.56) is a method of choice. In fact, if A is a
unitary matrix, then AHA = I, which indicates that the CG method gives the solution
within only one iteration. Thus, we can guess that this approach is particularly useful
for the case where A is close to a unitary matrix. Well-known algorithms in this
approach are the CGNE method and the CGNR method, which will be described in
Sect. 3.4.1.

In what follows, Krylov subspace methods for non-Hermitian linear systems are
derived. We will see that the BiCG method, the BiCR method, and the QMR method
can be regarded as extensions of the CG method, the CR method, and the MINRES
method respectively, and these are based on the bi-Lanczos process (or a bi-Lanczos-
like process), and the GMRES method can be regarded as an extension of the MIN-
RES method, and the GMRES method is based on the Arnoldi process. We will also
see how the BiCG method has been improved via product-type Krylov subspace
methods and the IDR(s) method.

3.3.1 The Bi-Conjugate Gradient (BiCG) Method

Similar to the derivation process of the CG method in Sect. 3.1.1, the BiCG method
[58, 119] can be derived by the bi-Lanczos process in Section 1.9.2.

In this subsection, we give a concise way of the derivation to see that the BiCG
method for non-Hermitian linear systems can be derived from the preconditioned
COCG method (Algorithm 3.7). First, we consider the following 2N x 2N complex
symmetric linear system:

|:A0T g} [i*:| = |:bé*:| , or A¥ = b. (3.57)

We can see from the system (3.57) that it is mathematically equivalent to
Ax=b and AT¥ =b (& AVx* = b%).

If we apply the algorithm of COCG with the preconditioner

M= [? é} I : identity matrix, (3.58)

to (3.57), then the resulting algorithm at the nth iteration step can be written as
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~COCG 1 COCG ~COCG
pn M + lgn an 1>

(M —1 ~COCG , ;ZOCG)

& = ~COCG COCG
@, Ap )
~COCG ~COCG ~COCG
xn+l =X, +o Py
~COCG ~COCG COCG
n+1 — =r, a,,Ap ’
15€0CG  zcocG
ﬂ _ (M Fot1 5 Vol )
n —

(M ]~COCG ;;ZOCG)

Substituting M (= M) of (3.58) and the vectors

—%
~ X, ~ r, ~
xEOCG = [_:] , I'ZOCG = |:_::| , p::ZocG — I:pn:|
Xy r, Py

into the previous recurrences, and using the following results:

o~ CO0CG ~ =T r
(M~ 1j:c0CG COCG) [* T] |:F*i|

n

_r rn+r r

n'n
=r r,,—i—(r )T
=(rn,r,,)+rn rn
= 2(";5,",1)

oG S ~ - Ap,
(p;OCG,A EOCG)’ — [((pn)'l' n)'l'] [A‘g)—*]
= p))"Ap, +p, APy,

= @)"Ap, + @ AP,
=2(p}. Ap,).

we readily obtain the algorithm of BiCG for solving non-Hermitian linear sys-
tems described in Algorithm 3.12. If matrix A is real non-symmetric, the afore-
mentioned derivation process corresponds to the derivation in van der Vorst’s book
[196, Chap.7], where the BiCG method for real non-symmetric linear systems is
derived from the CG method.

It can be seen from Algorithm 3.12 that the choice rf; = ry reduces to the CG
method if the coefficient matrix A is Hermitian.

Similar to the CG iterates as shown in Proposition 3.1, the BiCG iterates have the
following relations:

Proposition 3.2 Let p,, r, be the vectors in the BiCG method. Then,

1. f,r) =0 fori#j,
2. (p;,Ap)) =0 fori#j.
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Algorithm 3.12 The BiCG method
Input: xo € C¥, 1 =0,p_; =p*, = 0,19 = b — Axg
Input: Choose rj; € CN,eg., r§=rop

Output: x,

1: forn=20,1,2,...,untl convergence do

2: Py :rn+,8n—1pnfl’ p;: :r:_'_ﬂn—lpz_]
(rysTn)

3= AP,

4 Xp+1 = Xp + P, q
S5t rup1 =1, — aAp,, r;:+| :rz_anA P;‘;
6 B, = (1 Pnt1)

: N )

7: end for

From Proposition 3.2, the following properties hold true:

Corollary 3.2 Let p,,, r, be the vectors in the BiCG method. Then,

1. r, L K,(AR 7)),
2. Ap, L K, (A", r}).

In what follows, we give the other computational formulas for «, and 8, of
the BiCG method, which will be used to derive the product-type Krylov subspace
methods in Section 3.3.8.

Since r; € K41 (AH, r}), the vector r;; can be written as

r = (AN 4 ot AN 4 e

zZ

= (AN 2z, z € KA 1),
From the above equation and Corollary 3.2, it follows that
(r:, rn) = (Cn(AH)nra +z, rn) = Cn((AH)nr(};a rn) + (Z, rn)
= Cn((AH)nraa ry)
(5}, Ap,) = (ca(A™)'rs +2, Ap,) = c,(A™)'r5, Ap,) + (z, Ap,)
= ca((A™)'r5, Ap,).

Thus, «,, of the BiCG method (Algorithm 3.12) can be rewritten as

@) (AT )
= = . 3.59
= pr Apy) (AT Ap,) S

Similarly, we give the other computational formulas for 8,,. From Corollary 3.2, two
vectors (AM)'r € K1 (A™, 1) and Ap,,, | are orthogonal, and thus
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0= (A", Ap,y1)
= ((A"Y'r}, Ar,iy + BuAD,)
= ((A")'ry, Arpr) + Bu((AY)'r, Ap,)
= (AN"ry ras1) + Bu((AN)'r5, Ap,),

which immediately leads to

P _ AN )
! (A%yrs, Ap,)

Using (3.59) together with the above result yields

(AN e, rag1)

3.60
(A5, ry) (360

Bn = —a,

3.3.2 The Composite Step Bi-Conjugate Gradient (CSBiCG)
Method

From the algorithm of the BiCG method (Algorithm 3.12), there are two kinds of
possible (near) breakdown:

1. pp = (r},r,) = 0forr, # 0 (Lanczos breakdown),
2. 0, = (p}, Ap,) = 0 (pivot breakdown).

The Lanczos breakdown can be circumvented by the look-ahead Lanczos process in
[145, 189]. Bank and Chan focused on the pivot breakdown and proposed the Com-
posite Step Bi-Conjugate Gradient (CSBiCG) method to cure the pivot breakdown
[16, 17] under the assumption that the Lanczos breakdown does not occur. Below is
a brief explanation of the algorithm that is based on [17].

If o, = 0, thenr,y 1 =r, — (pn/0u)Ap, andr,_ , =r; — (0, /E,l)AHpZ cannot be
obtained. Consider auxiliary vectors:

Znt+1 = Oply — IOnApn,
— — AH
Z:_H =0y — pnA p:
Then, z,41 and z}, | exist even if 0, = 0, and z,,11 and z},; belong to K, 12(A, ro)
and KC,.12 (AM, %) respectively. The composite step technique then considers r,,;» and
r;,, as follows:

Fpnyp =1y — C]Apn - C2Azn+ls

*

* g s AH % * A H
rn+2 =r, _CIA D, _C2A zn+1’
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where ¢y, ¢3, cf, c5 are determined so that

.2 L span{p;, Z:+1}»
r;kH-Z 1 Span{pnv Zn+l}a

e, Fuy2,py) = a2, 25y ) = Fhyp, ) = (55 Zay1) = 0. Similarly, let

pn+2 =Tpp2 + len + dZZnJrlv
* _ % %k * %
Pri2 =Tppp +dip, +d37,44,

and d,, d», df, d} are determined so that

Apn+2 1 SPan{PZv z:+1}’
Alpr L span{p,. zus1)-

Then, it is shown in [17, Theorem 4.4] that (r}, ;) = ;.“,Apj) = 0 fori # j, which
means that the composite step residual vector r,, 4, and Ap, ,, satisfies

Furar L Kui2 (AR, 1), Ao L K2 (AR, 7).

which are the same properties that the BiCG method has, see Corollary 3.2. The
resulting algorithm is described in Algorithm 3.13.

From Algorithm 3.13, the number of matrix—vector multiplications is the same as
that of the BiCG method. The composite step techniques are used for other Krylov
subspace methods [35, 113].

At each step in Algorithm 3.13, one needs to choose a 1 x 1 step (BiCG
step) or a 2 x 2 step (composite step). In [17], the following choice is proposed:

1 if [|zyg1 || < [I7all |ow| then

2: 1 x 1step

3: else

4 Vnyo = |18, — py?é-n-&-lqn - 9n+lpy21yn+1 l
5. if vpalowl < llzns1 |l |8,] then
6

7

8

2 x 2 step
else
1 x 1 step
9: end if
10: end if

This choice leads to not only avoiding (near) pivot breakdowns but also some smooth-
ing of the convergence history in residual norms.
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Algorithm 3.13 The Composite Step BiCG method

Input: xo € CV,rg = b — Axg

Input: Choose rjj € CN, eg.ry=ro

Output: x,

l: pg=ro, py=r}

2: g9 =Apy, ¢;=A"p;

3: po = (r§. r0)

n=0

while until convergence do
Oop = (PZv qn)
Zn+1 = Onl'n — Pnqy, Z:Jrl = Enr;: - ﬁnqz
Yn+1 = Azp11, y;+1 :AHZ:_H
Ont1 = (Z:+1’Zn+l)

0: Cnp1 = (ZZ+19yn+l)

11: if 1 x 1 step then

12: o = pp/on

o9 X® NNk

13: Pl = Ont1/0}

14: Brn+r1 = Put1/0n

15: Xp+1 = Xp + app),

16: Tyl =TIy — 0nq,, rZH =r—uug;

17: Pyt = Zntr1/0n + 13n+117n, PZ_H = Z:_H/gn + E,,pr,

18: Gnt1 =Yng1/0n + Bnt14y, qZ-H :y:+1/3n + But14)
19: n=n+1

20:  endif

21:  if 2 x 2 step then

22: Oy = Un{nJrlp,% - 9,%+1

23: ap = §n+1p3/8na Opt+1 = n+lp3/8n

24: Xpt2 = Xp + APy + Qnp1Zn41

25: T2 =Ty — gy — Ui 1Yyt s "Z+2 =T, — Ongy — Tnp1Ynii

26: Pnt2 = (T s Tnt2)

2T But1 = Put2/Pns  Bnt2 = Pnt+20n/Ont1 B .

28: Pny2 =Tni2 + Bu+1Py + Bn+2zn+1, PZ+2 = I‘;+2 + ﬁn+1pz + :811+2Z:;+1

29: 9ni2 = Apn+2v q:+2 = AHpj;Lz
30: n=n+2

31:  endif

32: end while

The following theorem shows the best approximation result of the (composite
step) BiCG method:

Theorem 3.3 ([16]) Consider applying the (composite step) BiCG method to real
nonsymmetric linear systems with initial guess xo = 0 and ri; = ro. Suppose that for
allv,w € RY we have

-
lw Av| < Tv[lIwll,
where I is a constant independent of v and w. Further, suppose that for those steps

in the (composite step) BiCG method in which we compute an approximation x,,, we
have
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inf sup wlAy > 8, >8> 0.
vek,(A,rg) welC,l(AT,ra)
vi= Iwli<1

Then

—x,| <(1+T/5) inf —|.
e —x,ll < (L+T/8) _inf Jlx —v]

n(A,ro

Theorem 3.3 is a simplified result of Theorem 4.1 in [16]. From Theorem 3.3, we
see that the (composite step) BiCG method produces an approximate solution close
to the best approximate solution in error norm when I'/§ is close to 0.

3.3.3 The Bi-Conjugate Residual (BiCR) Method

The BiCR method [169] is an extension of the CR method to non-Hermitian linear
systems.2 In this subsection, we show that the BiICR method can be derived from the
preconditioned COCR method in Algorithm 3.10. When we apply the algorithm of
the COCR method with the preconditioner (3.58) to (3.57), the resulting algorithm
at the nth iteration step can be written as

~COCR 7 — 1 =COCR ~COCR
p, =M r, + ,3n71P,,71 ,
(M,IFEOCR’AM71;.IC10CR)

A ~COCR a7 1 A =COCR
(Ap,”", M =1 Ap,>™)
~COCR ~COCR ~COCR
xn+l = xn + anpn ’

Ay

~COCR ~COCR

_ _ A ~COCR
F, =T, o,Ap

n ’

7 —15COCR 3 a7 —1 =COCR
B M AM TR )
n = .

(M,l;,ZOCR’ AM,IFEOCR)

Substituting M ~' (= M) of (3.58) and the vectors

—k
~ X ~ r ~
szCR = |:_:j| , r,ClOCR = I:_zil , p;OCR = |:pn]
X, r, Py

into the previous recurrences, and using the following results:

2 The method was mentioned in the unpublished paper [38] by Chronopulous and Ma in 1989, and
Dr. Chronopulous emailed the author about this fact on Apr. 6th, 2020.
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(M,l;,COCR AM ~COCR) — [F*TI‘T] |:Ar,1 i|

= ?ZTAr,, + rZAT?’,;
=rMAr, + () ATE)T
= (r},Ar,) + rZHArn
= 2(r, Ar,)

n’

and

(APCOCR, ) —IA'“EOCR) [(AP,,) (AT_*) ] [ATﬁ::|
Ap
=(Ap,)'A'p, + (AP} Ap,
. (pTATAT—*)T + (A Pn)HApn
= (A"p})"Ap, + (A"p’. Ap,)
= 2(A"p}. Ap,).

we readily obtain the algorithm of the BiCR method for solving non-Hermitian linear
systems.

Algorithm 3.14 The BiCR method
Input: xo € CV, _; = 0,p_|=p", =0,rg=>b—Axg
Input: Choose rfy € CV, e.g.,r§ =ro
Output: x,
I: forn=0,1,2,...,until convergence do
20 py=rn+Bu1Pp_1, Py =T} + /Sn—lP:_1
3: Ap, =Ary + Bu—14Ap,_;
4 (ry,Ary)
: = @piap,)
50 Xy =X+ (o7 2%
6.
7
8

oy

I'ny1 =7r-y — anApnv rz+1 = r: - E,,AHPZ
B, = (1 Arng1)

. nT (L Ary)

: end for

Similar to Proposition 3.2, BiCR iterates hold the following properties:
Proposition 3.3 Let p,, r, be the vectors in the BiCR method. Then,

1. rf,Ar;)) =0 fori#j,
2. (AMpf,Ap) =0 fori#j.

If the coefficient matrix A is Hermitian or real symmetric, the choice r§j =rg
reduces to the CR method that generates optimal approximate solutions in terms of
residual 2-norms. Thus, if A is close to Hermitian or real symmetric, it is expected
that the BiCR method has smooth convergence behavior and generates near minimal
residual solutions.
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Fig. 3.1 Convergence histories of BiCG and BiCR for ) = by = b3 = 0.1

To see this, we consider nonsymmetric linear systems (2.18) with parameters N =
20, a; = a; = a3 = 1, two different numbers b = b, = b3 = 0.1 (near symmetric
matrix) and b = b, = b3 = 10 (far symmetric matrix), and ¢ = 700. The horizontal
axis is the number of matrix—vector multiplications. The stopping criterion used for
the BiCG method and the BiCR method is ||, ||/||b] < 10~'°.

The results for by = b, = b3 = 0.1 (near symmetric matrix) are shown in Fig.
3.1. We see from Fig. 3.1 that the BiCR method shows much smoother convergence
behavior than the BiCG method.

The results for by = b, = b3 = 0.1 (far symmetric matrix) are shown in Fig. 3.2.
From Fig. 3.2, the BiCG method and the BiCR method have similar convergence
behavior, and the BiCR method does not show smooth convergence behavior.

3.3.4 The Quasi-Minimal Residual (QMR) Method

In this subsection, we describe the idea of the Quasi-Minimal Residual (QMR)
method [66]. The derivation process of the QMR method is almost the same as
that of the QMR_SYM method in Sect. 3.2.3. The main difference is the use not
of the complex symmetric Lanczos process but the bi-Lanczos process. Let V,, be
the bi-orthogonal basis of /C,(A, ry) via the bi-Lanczos process given in Algorithm
1.9. Then, the QMR method finds an approximate solution x,, such that x,, lies in the
affine space xo + IC,,(A, rp), i.e.,
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Fig. 3.2 Convergence histories of BiCG and BiCR for b; = by = b3 = 10
x,=x0+Vyy,, y,eC".
The corresponding residual vector is given by
r,=ro—AV,y,.
From the matrix form of the bi-Lanczos process (1.40), it follows that
rn =10 — Va1 Tur1.0y, = Var1(Ber — Tug1.0,),
where 8 := ||ro||. The above derivation process is very similar to that of the MINRES

method; however, in this case, if we choose y, such that the norm of the residual is
minimized, then it may lead to a large amount of computational costs and memory
requirement as described in Sect. 3.2.3. Similar to the QMR_SYM method, the QMR
method chooses y,, such that

y, ;= argmin ||fe; — T4 ny|l- (3.61)
yeCr

The minimization problem can be solved efficiently by Givens rotations. Following
the solution of (3.31) and Sect. 3.2.3, the QMR method is obtained and the algorithm
is described in Algorithm 3.15.

Finally, one should note that Algorithm 3.15, as well as the BiCG method and
the BiCR method, has a possibility of breakdown (zero division). In finite precision
arithmetic, such breakdown is very rare; however, near breakdown may occur, and
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Algorithm 3.15 The QMR method
Input: xo € (CN,ﬂo =0,%9=0,vo=0,wyg=0,rg =b — Axy

Output: x,
1: g = (lIroll, 0,..., 0T, vi = ro/lIrol 16: 5, = ",
2:forn=1,2,... do 17: tyn = Calnn + Snlnt1.n
3:  (Bi-Lanczos process) 18 fyt1a=0
4 o, = (wy, Avy), &n Cn Sn||&n

Loy _ _ 19: = -
50 Va1 = Avy — oV — Bu—1Va—1 Sn+1 —8n Cn 0
6:  Wpt1 =~AHwn — UpWn — Yn—1Wn—1 20:  (Update x,)
7o ¥n = a2 21t py = n — ta—2.Pp—2,
8 Wyl =~vn+1/yn 22: — tn—1Pp—1)/t,n
9 Bu = Wnt1, Var1) 23: Xy =Xu—1+ gnPp
10: Wnt1 = Wni 1./ By 24:  (Check convergence)
11:  (Givens rotations) 25:  Ap, = (Avy, — ty_2.nAp,_»
12:  fori=max{l,n—2},...,n—1do 26: — ta—1,0AP_1)/tan
13: |: tin i| _ |: ci Si] |: tin ] 27: f‘n =Tr,—1 — 8nAp,

lit1n —Si Ci | | ti+1,n 28:  if ||rall/11B]l < €, then stop

14:  end for 29: end for

. — 0 wal
15: ¢, = =

A ‘tn,rz‘2+|tn+l.u"

this causes numerical instability. Hence, to avoid the (near) breakdown problem, the
QMR method in [66] uses the look-ahead Lanczos process, which was proposed by
Taylor [189] and Parlett et al. [145].

3.3.5 The Generalized Minimal Residual (GMRES) Method

The derivation process of the GMRES method [152] is closely related to the MINRES
method in Sect. 3.1.3. The GMRES method generates x,, that minimizes ||b — Ax,,||
over the affine space xo + /C,,(A, rp). This can efficiently be achieved by using the
Arnoldi process in Section 1.9.1. Now, we give the derivation process of the GMRES
method.

Let V, be an N-by-n matrix whose columns are the orthonormal basis vectors
of IC,(A, ro) by the Arnoldi process. Then, since x, lies in the affine space xy +
K.(A, rp), we have

x,=x0+Vwy,, ¥,€C"
The corresponding residual vector is written as
r,=ro—AV,y,.

From the matrix representation of the Arnoldi process in (1.38) it follows that
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rh, = n-H(ﬂel - Hn-‘rl.nyn)’ (362)

where 8 := ||ro||. Since Vn}_{H

residual vector is given by

Vus1 = Li41, 1.e., the identity matrix, the 2-norm of the

Irnll = IVap1(Ber — Hyprny,) | = [1Ber — Hugr.ny,ll-

Hence, the 2-norm of the residual vector can be minimized by choosingy,, as follows:
Y, = argmin [[fe; — Hyy1ny|l- (3.63)
yE(C”

The vector y, can be obtained by using Givens rotations. Following the solution of
(3.31), the GMRES method is obtained. Now, we describe the algorithm of GMRES
in Algorithm 3.16, which is based on the Arnoldi process of modified Gram—Schmidt
type (Algorithm 1.8).

Algorithm 3.16 The GMRES method of modified Gram-Schmidt type
Input: xo € cN, ro=b — Ax

Output: x, i
1: g = (Iroll. 0..... 0T, vi =ro/llro] 150 o= gt
2:forn=1,2,... do h ‘1”"1' Flhatial
3:  (Arnoldi process) 16: 5, = ﬁcn
4 t=Ay, 170 hyn = cphpn + Suhntin
5: fori=1,2,...,ndo 18 hpy1n =0
6: hi,n =, 1) 19: 8n _ Cn Sn||&n
7. t=t—hj,v; ’ gn+1 —Sn Cn 0
8: end for 20:  (Check convergence)
9 g1 = |l 21: if |gu411/1Ib]l < €, then
10: vur1 =t/ hyein 22: X, =x0+V,H g
11:  (Givens rotations) 23:  endif
12: fori=1,2,...,n—1do 24: end for
h; ci S hi

13: nn — i 1 nn

[hi+l,n] [_Si Ci] [hi+1,n]
14:  end for

Note that computing ¢ := H, 'g in line 22 of Algorithm 3.16 corresponds to
solving linear systems of the form H,c = g. After Givens rotations, H,, becomes not
a Hessenberg but an upper triangular matrix. Thus the linear systems can easily be
solved by the back substitution as described in (1.6).

In what follows, the convergence analysis of the GMRES method is described.

Proposition 3.4 Let A be an N-by-N diagonalizable matrix, i.e., A = X AX ™" with
A =diag{Ai, ..., An}, and let v, be the m-step GMRES residual vector. Then

rall < € (XDenllroll,
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where k(X) = |IX|I1X " and

(n) _ :
€= min max A
peP, p(0)=1i=1,...N PGl

Here, P, denotes the set of all polynomials of degree at most m.

Proof The GMRES method finds an approximate solution x,, such that

min llrall.
x,€x0+KC, (A 1)

Since r, € K,11(A, rg), the GMRES residual vector can be written in the matrix
polynomial formr, = (I 4+ c;A + A% + -+ - + c,AMry, so that ¢;’s are determined
by minimizing ||r,||, or equivalently r,, = pﬁl()pt) (A)ry with pf,‘)p[) (0) =1, and p,(f)pl) is

determined by minimizing ||r,|, i.e.,

min A)rpl|.
e lpn(A)ro ||

Therefore, for any p € P, and p(0) = 1, the residual 2-norm ||r,|| can be bounded
by

Irall = 1P (Arol|

< Ipa(Aroll
= [ Xp(A)X 1o
< IX X~ Hpa (M) ol

= c(X) max_[p,(x)llrol

Since the above inequality holds for any p € [P, and p(0) = 1, we have

rl <«X min max Ai r
Irall < )(pewo):l” _____ I ,)|) Irol

= k(X)enllroll,

which concludes the proof. U

From Proposition 3.4, if the condition number of X is small, the value of €, depends
highly on the speed of convergence. Further, if the condition number of X is small
and eigenvalues are well clustered, the GMRES method shows good convergence
behavior. If matrix A is symmetric, then the condition number of X is 1. Therefore the
convergence of the GMRES method (or the MINRES method) depends only on the
distribution of eigenvalues. By using an upper bound of €, the convergence behavior
can be estimated without using all the eigenvalues. For the details, see an excellent
book by Saad [151, pp. 206-207].
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Nice features of the GMRES method are that the GMRES method never suffers
from breakdown, and the residual 2-norm decreases monotonically and has the opti-
mality regarding the residual 2-norm, unlike Krylov subspace methods based on the
BiCG method and the BiCR method. On the other hand, a drawback of the GMRES
method is that the computational costs and memory requirement of the GMRES
method increase linearly with the number of iterations. For example, if the number
of iterations is 10000, then an N x 10000 matrix needs to be stored and the size of
the least—squares problem in (3.63) is 10001 x 10000. To overcome the drawback, a
restarted version of the GMRES method is proposed, which is described in Algorithm
3.17.

The idea of the restarted GMRES method denoted by GMRES(m) is that we run
the GMRES method until the prescribed maximum iteration number m is reached,
and then we restart the GMRES method using the initial guess as the approximate
solution produced by the previous GMRES method at the mth iteration step.

Algorithm 3.17 The GMRES (1) method

Input: Initial guess xo € CV and restart number m

Output: x,,

1: Run m iterations of the GMRES method (Algorithm 3.16) with x¢ and produce x,,.
2: while convergence do

3:  Setxy = xp.

4:  Run m iterations of the GMRES method (Algorithm 3.16) with x¢ and produce x,,.
5: end while

Consider the restart frequency m of the GMRES(m) method as fixed. This means
that we apply the m-step GMRES method to the linear systems repeatedly until
convergence. On the other hand, an unfixed restart frequency means that we run the
GMRES(m;) and then run the GMRES(m,) method, the GMRES(723) method, and
so on, until convergence. If m; = my = --- = m then this corresponds to the fixed
restart frequency.

Efficient ways for determining my for k = 1,2, ... are studied in [117] and by
some authors, e.g., [14, 137, 176, 211].

Another important development of the GMRES method is augmentation. There
are two approaches to the augmentation: one is to use previous approximate solu-
tions, e.g., the LGMRES method [15]; another is to use approximate eigenvectors
corresponding to small eigenvalues in magnitude, e.g., the GMRES-E method [134].
The basic ideas of the LGMRES method and the GMRES-E method are described
next.

The group of m iteration steps (e.g., lines 3 and 4 in Algorithm 3.17) is called a
cycle, and the approximate solution of the LGMRES method after the jth cycle is
denoted by x%. Let z® := xY™" — xY™?_ Then for a given /, the LGMRES method
finds an approximate solution in the following way:
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Jj—1
xg = x00 g AT+ Y agaax®,
k=j—1

where q,(,]ll 1(A) is a polynomial of degree m — 1, and «; ; (A)’s are polynomials of
degree k. These polynomials are determined by minimizing the residual 2-norm of
x,,U,). For the related algorithms, see, e.g., [13, 103, 104, 106].

The approximate solution of the GMRES-E method after the jth cycle is denoted
by xf,’;), and p](f) is an approximate eigenvector (Harmonic Ritz vectors) that corre-
sponds to the kth smallest approximate eigenvalue (Harmonic Ritz value) in magni-
tude. Then, for a given p the GMRES-E method finds an approximate solution in the

following way:

p

o - »

x) =x07 4+ g0 @i+ > Bap .
k=1

where q,(ill(A) is a polynomial of degree m — 1, and B; ;(A)’s are polynomials of
degree k. These polynomials are determined by minimizing the residual 2-norm of
x,(’n). For the related algorithms, see, e.g., [11, 135]. By combining the LGMRES
method and the GMRES-E method, the LGMRES-E method using a switching con-
troller is proposed in [31]. Roughly speaking, the switching rule is to choose the
LGMRES method while good convergence appears and to choose the GMRES-E
method when slow convergence is found.

The augmentation is not only for the GMRES method. In fact, frameworks of aug-
mentation and deflation for Krylov subspace methods including the BiCG method,
the BiCR method, and the other important Krylov space methods are developed in
[74, 89, 90].

Finally, we provide the result of a numerical example for the GMRES method
and the GMRES(m) method. Consider nonsymmetric linear systems (2.18) with
parameters N = 20,a; = a, = a3 = 1,by = b, = b3 = 1, and ¢ = 1. The result is
shown in Fig. 3.3, where the stopping criterion used for the GMRES method and the
GMRES(m) method is ||r,||/[|b]] < 107'°, and the horizontal axis is the number of
matrix—vector multiplications.

We see from Fig. 3.3 that the residual 2-norms of the GMRES method, the
GMRES(10) method, and the GMRES(20) method decrease monotonically, which
are theoretically guaranteed. In terms of the number of matrix—vector multipli-
cations, the GMRES method performs better than the restarted GMRES method
(GMRES((10), GMRES(20)). As for the GMRES method, the required number of
matrix—vector multiplications is the smallest of all, since it finds the best approxi-
mate solution over the Krylov subspace. On the other hand, as mentioned before,
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Fig. 3.3 Convergence histories of GMRES, GMRES(10), and GMRES(20)

the computational cost of the GMRES method grows linearly as the number of iter-
ations increases. This means that matrix—vector multiplications may not become the
most time-consuming parts when the required number of iterations is very large.
In terms of CPU time, the GMRES method required 0.39 sec., GMRES(10) 0.31
sec., GMRES(20) 0.26 sec.® Therefore, with respect to CPU time, the GMRES(20)
method was the best of all, which balanced the increasing computational costs and
the required number of iterations.

3.3.6 The Generalized Conjugate Residual (GCR) Method

The Generalized Conjugate Residual (GCR) method [54] is another Krylov solver
based on the Arnoldi process. In exact precision arithmetic, the GCR method pro-
duces the same approximate solution as the GMRES method. The algorithm is
obtained by the following Arnoldi process with the weight AHA and ry = b — Ax,:

3 Codes: GNU Octave version 6.2.0, OS: macOS Moterey version 12.2.1, CPU: Apple M1 pro.
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ro
sety, = —,
lroll 4v14
forn=1,2,..., do:

hi,n:(V[,Avn)AHA, i=1,2,...,n,

n
Pusr = Ay = ) hiavi, (3.64)
i=1
hn+1,n = ||‘~’n+1||AHAs
v
Yo = —4L (3.65)
hn+l,n
end
The process generates AP A-orthonormal vectors, i.e.,
i, AMAv)) = (Av;, Av)) = 6; .
Let V,, be a matrix whose columns are vy, v5, . .., v,. Then, the GCR method gener-

ates
x, =x9+ Vyy,

such that the residual 2-norm ||r, || is minimized. The corresponding residual vector
can be written as

n
r=ro—AV,y, =ro— Y _ yidvi. (3.66)

i=1
From the above relation, we have
rpn="rp—1— ynAvn~ (367)

Unknown parameters y; (i = 1, 2, ..., n) are determined by minimizing the residual
2-norm, i.e., from (3.66) this can be achieved by

vi = (Av;,r,), fori=1,2,...,n.
Since Av; is an orthonormal vector, we have
yi = (Avi,rg), fori=1,2,...,n

Here, we define the vector p,, :== —y,V,+1. Then, it follows from (3.64) that
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n

p,= —)’nAVn - Z(Via _ynAvn)AHAvi~ (368)

i=1
From (3.67) we have —y,Av,, = r, — r,—. Substituting this relation into (3.68) yields

Dp=Tn— Ty _Z(vi’rn_rn—l)AHAvi (3.69)

i=1
n n
=r, — Z(vi» rn)AHAVi - (rnl - Z(vis rnl)AHAvi) .
i=1 i=1

Since r,_; lies in IC,(A, rp), it can be expanded as r,,_; = Z?:I c;v;. Then,
n
Wi, Fpo1) g1, = Zci(vj, Vi) = ¢
i=1
because (v, v;) = §; ;. Thus we have
n
Fact = Y (i Fa 1) gHAVi- (3.70)
i=1

From (3.69) and (3.70), the vector p,, can be written as
Pu=Tu— Y (ViiTa) Vi (3.71)
i=1

On the other hand, p,, and v, are related by

Yy

n
[Vul

Py = —7=11AP,IVns1,

because it follows from the definition of p, and (3.65) that

p,= _Yn‘jn+1

_yn”f"nJrl ||AHAvn+1

= —YnV (Ai;n-Hv Af’n-H) Vit1

1 1
= _yn\/(__Apn’ __Apn) Vn+1
Yn Y

n

Yo
- - (Apn’Apn) Vit1-

[Vul
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Hence, using v, = —(|yn—1|/yn-1) X P_1/+/ AP,_1, AP,_1), We have the following
relations:

A T
YnAv, = (Avy, ro)Av, = _Appior) Po_i
Ap,_1,Ap,_)
Vi) gy = ~imp AT
DIARATE T (Api_y, Api_y)T !

Therefore, substituting the above results into (3.67) and (3.71), we have

(Ap,_1,10)
ry=ry1— —————AP,_1,
(Apnfl’Apnfl)

"\ (Ap;_,, Ary)
Pa=ra— Yy ——"p .
i1 (ApiflaAP,;])

Now, from the definition of p,, we have p,_, = cv, for a constant c¢. Thus p,_, is
AHA-orthogonal tovy,...,v,_1. From (3.66), it follows that

n—1

(APo_1:Ta-1) = (Ap,_1.70) = Y yi(Ap,_1, Avi) = (Ap, ;. 7).

i=1

Now, let us define o, and 8,1 ; as

A S
oy = M7 (3.72)
(Apnfl’Apnfl)
(Ap;_,, Ary,)
Buori = — (3.73)
(Ap;_1,Ap;_1)
Then, we have
Fn="ry—1— Oln—lAan ) (374)
Pu=Tut Y Buribi- (3.75)
i=1
From the recurrence relation of the residual vector, we obtain
Xp =Xp—1+ Op—1Py_1- (376)

To reduce the number of matrix—vector multiplications, use the following recur-
rences:
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Ap, =Ary+ Y BuriApi,. (3.77)

i=1

From (3.72)—(3.77), the algorithm of the GCR method is obtained in Algorithm 3.18.

Algorithm 3.18 The GCR method
Input: xg € CV, B_; =0,r9 =b — Axg,py =ro

Output: x,

1: forn =0, 1, 2, ..., until convergence do
. _ _(Ap,.r)

2 o= (Ap,.Ap,)

Xptl = Xp +opp,
Fntl =Ty _anApn

(Ap;_1,Arpi1) ,
P= — <1<
Pui (Ap;_1.Ap;—1)’ l=izn+l

3

4

5

6: Py =Tur1t Z?zll Bn.iPi—

T (APt = Arupt + X0 Buidpisy)
8: end for

The properties of the GCR method are given next.
Proposition 3.5 The GCR iterates hold the following properties:

(Gl) (Ap;,Ap) =0, i#],
(G2) (ri,Ap) =0, i>},
(G3) (ri,Ap;) = (ri, Ary),

(G4) (r;,Ar)) =0, i>j,

(GS5) (ri,Ap;)) = (ro,Apy), i>].

For the proof, see [54, Theorem 3.1].

From the above properties, we see that the previous derivation is based on the
property (G1). In exact precision arithmetic, the GCR method, as well as the GMRES
method, converges within at most N iterations. However, the GCR method has the
same shortcoming as the GMRES method in that the computational work and the
required memory increase with the number of iterations. Hence, a restarted version of
GCR which is referred to as the GCR(k) method was proposed in [54]. The algorithm
is described in Algorithm 3.19.

Another alternative is to keep only k-direction vectors:

min{k,n+1}

Put1 =Tt + Z /gn,ipi—1~

i=1

This method is known as the Orthomin method proposed by Vinsome [201]. Later the
Orthomin method was referred to as the Orthomin(k) method in [54]. The algorithm
of the Orthomin(k) method is described in Algorithm 3.20.
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Algorithm 3.19 The GCR(k) method

Input: xo € CN,rg = b — Axo, py = ro

Output: x;
1: forn =0, 1, ..., k until convergence do
. _ _(Ap,.r)
2 o= (Ap,.Ap,,)
30 xpp1=xp+ Dy
4: Fntl1 =Ty _anApn
(Api_y.Arpy1) .
50 Bui=-— (A;-,ll,Apriijll) , 1<i<n+1
1
6: Pnt1 =Tnt1 + 221:1 Bu.iPi—1
1
;3 EiAan = Arpp1 + 200 Buidpiy)
: end for
9: X0 = Xp41
10: repeat

Algorithm 3.20 The Orthomin(k) method

Input: xo € CV,rg = b — Axo, py = ro

Output: x,
I: forn=0,1,...,untl ||r,|| <€|b] do
. _ _(Ap,.r)
2 an =g
3 Xp+l = Xp +opp,
4 a1 =1y —anAp,
S fni= Gy, nok+2sisatl
in{k,n+1
6 Pup1=rnt1+ ZET( " ]/Sn,ipi—l
1
7 (APpp1 = Arngr + Y12 Buidpi1)
8: end for

The convergence analysis of the GCR method, the GCR(k) method, and the
Orthomin(k) method is given in Proposition 3.6.

Proposition 3.6 Let M be the symmetric part of A € RV*N and let R be the skew-
symmetric partofA,i.e,M = (A+AT)/2,R = (A — A)7 /2. IfM is positive definite,
then {r,} that are the sequence of residuals generated by the GCR method, the GCR(k)
method, or the Orthomin(k) method satisfy

Domin(M)? 2
Irall < (1= === lIroll
Amax (ATA)

and

)"min(M)z :
Irall < (1 - 2) Iroll,
)\min (M))‘-max(M) + p(R)

where Amin(M) and Amax (M) are the minimum and maximum eigenvalues of the
symmetric positive definite matrix M, and p(R) is the spectral radius of R.

See (1.19) for the spectral radius. For the proof, see [54, Theorem 4.4].
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We can see from Proposition 3.6 that if A is close to I, then the three methods
converge fast since Amin(M) = Apax (M) = 1 and R = O.

3.3.7 The Full Orthogonalization Method (FOM)

The FOM [149] is a generalization of the CG method. As well as the CG method,
the FOM finds approximate solutions such that

X, =X0+2n, Zn€ ’C”(A, rO),
r, L K,(A, rg).

The FOM uses the Arnoldi method in Sect. 1.9.1 to produce the orthonormal basis
vectors of /C, (A, rg). Thus the residual vector r, has the same form as (3.62), i.e.,

Iy = Vari1(Ber — Hup10y,).- (3.78)

The difference between the GMRES method and the FOM is that the GMRES method
finds y,, such that the 2-norm of the residual vector ||r, | is minimized, and the FOM
finds y, such that the residual vector is orthogonal to the n dimensional Krylov
subspace r, L IC,(A, rg). Let v; be the ith column of V,, . Then

Vir, =0 v, =0fori=1,2,...,n

& rnH(clvl +cvy+ - +cw,) =0foralle; € C
&S, LKA ro).

Note that the statementv'r, = 0 < ril(civ) + cov2 + - - + ¢,¥,) = 0 canbe shown
by setting ¢; = 1 and ¢; = 0 for i # j. From this, finding y, such thatr, L KC,(A, rp)
is equivalent to determining y,, such that V!r, = 0. Then, from (3.78) it follows that

0=V, 'ty =V, Vir1(Ber — Hus1.9,) = et — Huny,.
Thus y, can be obtained by solving the following linear systems:

Hn,ﬂ.yn = /381'

Since H, , is a Hessenberg matrix, the linear systems can be solved by the LU
decomposition with the computational cost of O (n?). After the advent of the GMRES
method, the FOM became less attractive because, unlike the GMRES method, the
FOM may suffer from breakdown due to using the LU decomposition without piv-
oting. On the other hand, the FOM is still attractive to use for solving shifted linear
systems in Chap. 4, when considering the restart.



3.3 Non-Hermitian Linear Systems 123

3.3.8 Product-Type Krylov Subspace Methods

Asseenin Sect. 3.3.1, the BiCG method requires A for solving Ax = b. P. Sonneveld
found that squaring the BiCG polynomials leads to an algorithm without using the
information of A", and the resulting algorithm is known as the CGS method [173].
Though the convergence depends on linear systems, the CGS method is much faster
than the BiCG method when the BiCG method shows smooth convergence behav-
ior. However, the CGS method sometimes has much irregular convergence and may
suffer from loss of accuracy of the approximate solution or may diverge. H. A. van
der Vorst observed that squaring the BiCG polynomials can be replaced by the mul-
tiplication of degree-one minimum residual polynomials and the BiCG polynomial,
leading to the BICGSTAB method [195], which tends to have smoother conver-
gence behavior than the CGS method. M. H. Gutknecht proposed the multiplication
of degree-two minimum residual polynomials and the BiCG polynomials, which is
known as the BICGSTAB2 method [87]. G. L. G. Sleijpen and D. R. Fokkema pro-
posed the multiplication of degree-¢ minimal residual polynomials and the BiCG
polynomials, which is known as the BICGSTAB(¢) method [162]. S.-L. Zhang con-
structed a framework that includes the CGS method, the BICGSTAB method, and
the BICGSTAB2 method. In the framework, the GPBiCG method was proposed in
[212]. These methods are referred to as product-type methods (based on the Bi-CG
method) first named by S.-L. Zhang.

In this section, Zhang’s framework is explained, based on Zhang’s book in [72].
As seen in (3.18), the residual vector of the CG method can be written as the mul-
tiplication of Lanczos polynomials and the initial residual vector ry. Similarly, the
residual vector of the BiCG method can also be written as follows:

r,“ = Ry(A)ro,

n =

where
Ro(v) =1, Po(2) =1, (3.79)
Rn()\) = Rnfl()\) - Olnfl)VPthl()\)v (380)
Po(A) = Ry + BoiPoi(h) n=1,2,... (3.81)

The differences between the (matrix) polynomial representation of the CG method
and that of the BiCG method are «; and §; of the Lanczos polynomials. The nth
residual vector of product-type methods based on the BiCG method is defined by the
product of n degree polynomials and the nth residual vector of the BiCG method as
follows:

r, = H,(A)r2 = H,(A)R,(A)ry. (3.82)
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3.3.8.1 Restructuring of Residual Polynomials

S.-L. Zhang proposed H,, in (3.82) as the following three-term recurrence relations:

Hy(A) =1, (3.83)
Hy(2) := (1 = SoA)Ho(2), (3.84)
Hn()‘) = (1 + Nu—1 — {n—l)\)Hn—l ()") - nn—lHn—Z()")a n=273,... (385)

We see that H), is similar to the Lanczos polynomials (3.19)—(3.21).
In the following, H, is rewritten as the form of coupled two-term recurrence
relation. We introduce G,,_; as

H,_1(A) — H,(A
613y 1= Pt )

and we rewrite (3.85) as
—(Hy1 (V) — Hy(V) = =& AHy 1 (M) — 1 (Hyp 2 (M) — Hy 1 (1))

Then H,()) in (3.83)—(3.85) can be rewritten as

Hyx) =1, Go(d) = &o, (3.86)
H,(A) = Hy-1 (1) — AG (M), (3.87)
G,(A) = 0 Hy(A) +1,Gr1 (M), n=1,2,... (3.88)

3.3.8.2 Recurrence Formulas for the Iterates of the Product-Type
Methods

Since recurrence relations of R,,, P, H,, G, are already given in (3.79)—(3.81) and in
(3.86)—(3.88), the residual vector r,, 1 = H,,+1(A)R,+1(A)ry can be computed by the
previous residual vector r, = H,(A)R,(A)ry using the recurrence relations. In fact,
H, 1R, can be expanded as follows:

Hy 1 Ropr = HiRyyt — 1uAGpRyyy — SuAH, Ry (3.89)
— HoRy, — apAHoPy — AGnRos1, (3.90)

H,R,\ = H,R, — a,AH, P, (3.91)
AGuRyy2 = HyRyvt — Hy 1Ry — 0n i AH Py + 0 i AHp 11 Py, (3.92)
Hy1Pur = Hyi Rt + BulHu Py — Bud G Py, (3.93)
AH,P,y = AH,R, 1| + B,AH,P,, (3.94)
AG Py = $uAH, Py + 0y (Hy 1Ry — HuRy + B 1AG1Pp1), (3.95)

Gan+1 = ganRn + nnanan — a,AGLP,. (396)
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Let us define new auxiliary vectors as

tai= Hy(OPSS, 3, = AG, 1 (AP

n+1° n+1>
Py = Hy(A)p, e, wy = AH,(A)p,,
u, :=AG,A)p,°, z,:=G,(A)r,3.

Then, from (3.89)—(3.96) we have the following recurrence formulas:

Fopl =ty — 00y, — GAL,
=r, — Ap, — Azy,

ty =Ty — aAp,,
Yor1 =ty — Fugl — Qp Wy + 014D, 1,
Pni1 =Tu1 + Bu(p, — 1),

w, = At, + B,Ap,,,

U, = §Ap, + Natu1 — 1y + Bu—18n-1),

Zn = Culp & NnZn—1 — Qplly.
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(3.97)
(3.98)
(3.99)
(3.100)
(3.101)
(3.102)
(3.103)
(3.104)

Two recurrence relations, (3.97) and (3.98), are described for the residual vector
and the approximate solution. The first recurrence relation (3.97) will be used to
determine the two parameters ¢, and 7,, and the second recurrence relation (3.98)

can be used to obtain the approximate solution as follows:

Xnt1 = Xy + onp, =+ Zn.

3.3.8.3 Computations for o, and 8,

Since the coefficient of the highest-order term of H,, is (—1)" ]_[:ZOI i, we obtain

(rg, 1) = (Hy(A™rg, 1) = (( 1)"]‘[;) (A™)"rg, 1),
i=0

n—1

i=0

s, Ap,) = (H,(A™r}, ApP©) = (( n" 1_[ C:) (AM)"rs, ApPec).,

Thus, from (3.59) and (3.60) it follows that

(rzk)arn) ,3 _ a_n (rgyrm—l)
rs Apy) T L ()

oy =
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Table 3.1 Choices of ¢, and 7, for the product-type methods

CGS =0y, M= Po1 Qp
An—1
BiCGSTAB n = arg min ||[ry4qll, 7, =0
tneC
GPBICG {Zn, 1} = arg min [|r, 1 ||
Ensnn€C
BiCGSTAB2 BiCGSTAB parameters at even iterations
GPBiCG parameters at odd iterations

3.3.8.4 Implementation Details

Krylov subspace methods, such as the CGS method, the BiICGSTAB method, the
BiCGSTAB2 method, and the GPBiCG method, can be derived from Zhang’s frame-
work by determining the two parameters ¢, and 1,.. The relations among these Krylov
subspace methods and the parameters are listed in Table 3.1.

3.3.8.5 The Choice for the CGS Method

Setting ¢, = «, and 1, = (By—1/an—1), in recurrence relations (3.87) and (3.88)
yields the CGS method, i.e., the polynomials H,, and G, become the Lanczos poly-
nomials:

Hn()‘-) = Rn()‘-)’
Gn O‘) = anPn()‘«)'

This fact leads to the relation p,, — u,, = z,/,, since from the definitions of auxiliary
vectors we have

Py — Uy = H,(A)P,(A)ry — AG,(A)P,(A)rg
= R,(A)P,(A)ro — a,AP,(A)P,(A)ry
= (Ry(A) — 0, AP, (A))P,(A)ro
= Ry+1(A) Py (A)ro
= Py(A)Ry+1(A)ro

= Py(DrS
1

= — X Gu(A)r¥S
Un

1
= — X 2Z,.
o,
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Notice that¢,_; — r, = Az,,_; from (3.98) and (3.99). We use the recurrence for-
mula (3.98) to update r,, and then the auxiliary vectors ¢,,y,, and w, are not
required in the recurrence formulas (3.97)—(3.104). Now we introduce the following
auxiliary vectors:

ﬁn = A_lun/am Zn = Zn/an’
instead of u,, and z,,. By using the relation (1, Ap,) = (rg, u,/a,), the CGS method

can be obtained and the algorithm is described in Algorithm 3.21. Here %, and z,
were rewritten as u,, and z,,.

Algorithm 3.21 The CGS method

Input: xo € (CN, B_1=0,u_1=z_1=0,rg=b — Axyg
Input: Choose rjj € CN,eg., ry =ro
Output: x,
1: forn=0,1,... do
2: Dy :rn+,8nlenfl
DUy =p,+ Brn—1G@n—1 + Bu—1tn—1)

(r}rn)

%n = GF . Aun)
Zn = Py — AnAuy

3
4
5:
6:  Xpt1 =X, + oy, +24)
7.
8
9

Turl =Ty — AP, +24)
_ ("31"n+1)
Bn

: )
: end for

The residual vector of the CGS method is written as .1 = R,+1(A)R,+1 (A)rp.
The CGS method is short for the (Bi)CG squared method, which comes from the
term R,,11(A)R,+1 (A). From this, the CGS method is expected to converge as twice as
fast as the BiCG method. On the other hand, when the BiCG method shows irregular
convergence behavior as is often the case, the CGS method gives much irregular
convergence behavior, leading to much less accurate approximate solutions or no
convergence.

3.3.8.6 The Choice for the BiCGSTAB Method

If we choose 1, = 0 and ¢, such that the 2-norm of the residual vector ||r,+1| =
It — ¢,AtL,|| is minimized, then the BICGSTAB method is obtained. To achieve the
minimization, we choose ¢, such that the following property holds:

r,,+1 J_ Atn,

or equivalently it follows from (1.34) that
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A,

o= A ALy

Since 71, = 0, we obtain

u, = é‘nApn’ in = gntm

The algorithm of the BICGSTAB method is described in Algorithm 3.22.

The BiCGSTAB method is short for the BiCG stabilized method. Below is an
explanation of the meaning of the stabilization. Since n,, = 0, the recurrence relations
in (3.87) and (3.88) reduce to

H,(A) = Hym1(A) — G A1 (1) = (1 = 51 M H— 1 (1),
This means that the residual vector of the BICGSTAB method is given by
Fop1 = Hyp 1 (AR 1 (A)rg = (I — §,A)r<C.
This implies that since ¢, is chosen such that ||r,4|| is minimized, the residual

vector of the BiCG method is expected to be stabilized, i.e., the BICGSTAB method
is expected to have smoother convergence behavior than the BiCG method.

Algorithm 3.22 The BiCGSTAB method

Input: xo € CV,_; =0,p_, =0,rg = b — Ax
Input: Choose rjj € CN,eg., ry=ro

Output: x,

1: forn=0,1,... do

2: Pn =rn+:3n—1(pn—1 _Zn—lApn—l)

(ryrn)

3=
4 ty =r, — a,Ap,
_ (Atyty)
S I = i, Ay
6: Xyp1 =X, + Py + Cnln
’7.
8
9

Tur1 = by — GiALy,
Bu= % x (g rnt1)
nT g (rrn)

: end for

3.3.8.7 The Choice for the GPBiCG Method

For the GPBiCG method, two parameters 1, and ¢, are chosen by minimizing the 2-
norm of the residual vector ||r,,41 ]| = ||t, — 1y, — Aty ||. The following orthogonal
condition enables us to achieve the minimization:
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In+l J—Atnv Tn+1 J—yn,

or equivalently it follows from (1.31) and (1.32) with settingd = ¢,, M = [y,, At,],
X = [, &2]" that we have

é_ — (yn’ yn)(Atnv tn) - (.Ym tn)(Atnvyn)

" (AtnvAtn)(yn’ yn) - (yn7Atn)(Atnv yn) ’
_ (Atna Atn)(ynv tn) - (ynv Atn)(Atna tn)
Aty AL ) — O AL) (ALY,

The algorithm of the GPBiCG method is described in Algorithm 3.23. Note the
GPBiCG method uses two parameters ¢, and 1, for the minimization of the residual
2-norm, and the BICGSTAB method uses one parameter ¢, for the minimization of
the residual 2-norm and 7, = 0. From this, the GPBiCG method is expected to give
smoother convergence behavior than the BICGSTAB method.

n

Algorithm 3.23 The GPBiCG method

Input: xo e C¥, 1 =0,p_ =t 1 =u_y=w_ 1 =z.1=0,r0=b —Axo
Input: Choose rjj € CN,eg., ry=ro

Output: x,

1: forn=0,1,... do

2: Dy =Tn +,3n—1(pn—1 —Up—1)

. _ (g
3=y
4: Yo =tn—1 —Fyn — AWy +05nApn
5 ty=r,— a,Ap,
6: { _ 0n ) Aty tn) =y tn) (At Ly,)

: T (At Aty) (0¥ ) — 0, Al) (At y,)
7: _ (At Aty) (v, 80) — (0, Aln) (At 80)

© I @ AL 3= O Al Alry,)
8: if n =0 then

. _ (At —
9' ;-n ._ (Atn,Atn)V nn - 0
10:  endif
11: up =CnApn+77n(tn—l — Ty + Bu—1up—1)
12: zy = Culn + NnZn—1 — oulty

13: xpp1 =Xy +oup, + 20
14:  ryp1 =t — 0y, — CaAt,
15: ﬂn — % X M

(rgorn)

16:  w, = At, + B,Ap,
17: end for

From Zhang’s framework, the GPBiCG(m, £) method was proposed by Fujino
[71]. A unified generalization of the GPBiCG method and the BICGSTAB(£) method
was proposed by K. Aihara [4], which is referred to as the GPBiCGstab(L) method.
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Fig. 3.4 Convergence histories of CGS, BiCGSTAB, and GPBiCG for N = 20, ¢ = 300

3.3.8.8 Numerical Examples

In this subsection, some illustrative numerical examples are shown. We consider
nonsymmetric linear systems (2.18) with parameters N = 20, aj = a, = a3 =1,
by = by = by = 1, and two different parameters ¢ = 300 and ¢ = 900. The stopping
criterion used for all the Krylov subspace methods is ||r,,||/[|b] < 107'°.

The convergence histories of the CGS method, the BiICGSTAB method, and the
GPBiCG method are shown in Fig. 3.4 for ¢ = 300. The horizontal axis is not the
number of iterations but the number of matrix—vector multiplications. (The CGS
method, the BICGSTAB method, and the GPBiCG method require two matrix—vector
multiplications per iteration.)

FromFig. 3.4, the GPBiCG method converges faster than BiICGSTAB method, and
the CGS method is the best in terms of the number of matrix—vector multiplications,
or equivalently the number of iterations. On the other hand, the CGS method shows
irregular convergence behavior, which may lead to a loss of accuracy. The GPBiCG
method and the BICGSTAB method show relatively smooth convergence behavior,
which may be caused by local minimization of the residual 2-norms. In terms of
accuracy, the logl10 of the true relative residual 2-norms for the CGS method, the
BiCGSTAB method, and the GPBiCG method are -9.79, -10.50,—-10.17 respectively.
From which, all the methods produced sufficiently accurate approximate solutions.

Next, the convergence histories for ¢ = 900 are shown in Fig. 3.5. We see from
Fig. 3.5 that the CGS method shows much irregular convergence behavior and the
slowest convergence, and the GPBiCG method is the best in terms of the number
of matrix—vector multiplications. In terms of accuracy, the log10 of the true relative
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Fig. 3.5 Convergence histories of CGS, BiCGSTAB, and GPBiCG for N = 20, ¢ = 900

residual 2-norms for the CGS method, the BICGSTAB method, and the GPBiCG
method are —6.37, —10.03, —9.79 respectively. This means that the CGS method
suffers from a loss of accuracy of about four digits. This loss of accuracy is known
as a residual gap. Therefore, it is strongly recommended to check the true relative
residual 2-norm, i.e., ||b — Ax,||/||b|| (not ||r,||/||b]|!), after satisfying the stopping
criterion.

3.3.8.9 Other Related Methods

The QMR method in Sect. 3.3.4 requires the information of AP as well as the BiCG
method. Similar to the idea of the CGS method, R. W. Freund proposed a squared
variant of the QMR method referred to as the TFQMR (transpose-free QMR) method
[63], which tends to give smooth convergence behavior. Based on the BICGSTAB
method and the idea of the QMR method, the QMRCGSTAB method was proposed
in [34].

The BiCR method in Sect. 3.3.3 may give a smoother convergence behavior than
the BiCG method when the coefficient matrix A is close to Hermitian, since the BiCR
method with the choice rj; = ry becomes the CR method when A is Hermitian and
the residual 2-norm of the CR method monotonically decreases. Thus it is natural to
replace the product-type Krylov subspace methods based on the BiCG method with
those based on the BiCR method. In fact, the product-type methods based on the
BiCR method can be constructed, and the resulting algorithms (CRS, BiCRSTAB,
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GPBIiCR) are derived in [165]. K. Abe and G. L. G. Sleijpen independently proposed
product-type methods based on the BiCR method, see [2].

Y.-F. Jing et al. proposed an approach similar to the BiCR method called the
BiCOR method [114], and the product-type variants were proposed in [32].

3.3.9 Induced Dimension Reduction (IDR(s)) Method

The Induced Dimension Reduction (IDR) method was developed by Wesseling and
Sonneveld around 1979 [205]. The IDR method is mathematically equivalent to the
BiCGSTAB method, and the BICGSTAB method can be regarded as a stabilized
variant of the IDR method. It is written in the acknowledgements in [195] that
Sonneveld suggested that van der Vorst reconsiders Sonneveld’s IDR.

Though the IDR method was not given further attention, about 30years later,
Sonneveld and van Gijzen proposed an innovative algorithm called the IDR(s)
method [174]. In this section, the theory and the derivation of the IDR(s) method are
described. The derivation in this section looks to be redundant, but it makes it easier
to understand the principle of the IDR(s) method.

Theorem 3.4 (The IDR theorem [174] [205, p. 550]) Let A be any matrix in CN*V,
let vy be any nonzero vector in CV, and let Gy be the complete Krylov space, i.e.,
Go := Ky (A, vo). Let S denote any (proper) subspace of CN such that S and Gy do
not share a nontrivial invariant subspace,* and define the sequences G,j=12,...

as
gj = (I - a)jA)(gj_l N S), (3105)

where the w;’s are nonzero scalars. Then:

(1) GGGy forall j>O0.
(2) G; =1{0} forsomej<N.

Proof The proof is based on [174, Theorem 2.1].

The first statement is shown by induction. First, we show G| C Gy. From Gy =
K (A, vg), it follows that (I — w1A)Gy C Gy, because for a given v € (I — wA)Gy
we have

v = (I — w1A)(covo + c1Avg + - - - + ey 1AV 'vg)
= co(I — w1 Ao+ c1(I — 01 A)Avy + - - + ey_1(I — 0 A)AN "y,
= dovo + diAvo + - - - + dy 1 AN lvg + dyANvg
= dovo + d1Avo + - - - +dy_ 1AV g
€ Gp.

4 This means that S N Gy does not contain any eigenvector of A, and the trivial invariant subspace
is {0}.
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Thus we have G; C G, because
G1=U—-wA) (G NS) CU—wA)G C Go.

Next we show G;| C G; (i.e.,x € Gjy| = x € Gj)forallj > 0 using the assumption
G; C Gj—1. Let x € Gj11. Then x can be written as x = (/ — w;;1A)y for some y €
G; N'S. From the assumption G; C G;_, it follows thaty e GGNS C G;-1 NS, and
thus (/ — wjA)y € G;. Since y € G; and y — w;Ay € §;, we have Ay € G;, and thus
- (,()j+1A)y =X c gj.

The second statement is shown next. The property G;11 C G; means that dim(G;;1)
< dim(G)) or dim(Gj1) = dim(G;).

If GiNS # Gj, then dim(G;NS) < dim(G;) and thus we have dim(Gj;) <
dim(G;) because dim(G;+1) = dim(( — w;A)(G;NS)) < dim(G; N S) < dim(G)).

On the other hand, if GGNS =G, then G; C S, and we have Gy = (I —
wj+1A)(GNS) = (I — wj11A)G; C G;. (The last inclusion follows from the first
statement ;11 C G;.) Thisimplies AG; C G;, which means that G; is an invariant sub-
space of A. Recalling G; C Sand G; C GpleadstoG; C Gy N S. From the assumption
that Gy N'S do not share a nontrivial invariant subspace of A, the subspace G; is the
trivial invariant subspace of A4, i.e., G; = {0}.

Therefore either dim(Gj41) < dim(G;) or dim(G;) = 0 occurs, which indicates
that dim(Gy) = 0, i.e., Gy = {0} for some k < N. O

Corollary 3.3 Let S be a subspace of CY with dim(S) = N — s for a given s > 1.
IfGi_ 1 +S=C"and (I — wjA) is nonsingular, then

dim(G;) = dim(G;_;) — s. (3.106)

Proof Let W, W, be subspaces of CV (or a general vector space V). Then
it is well known in linear algebra that dim(W;) 4 dim(W,) = dim(W; + W,) +
dim(W; N W,). Let Wy = G;_y, W, = S. Then, from the assumption G;_| + S =
CV, we have dim(G;—; +8) = N. Thus dim(G;) = dim((/ — w;A)(Gi—1 N S)) =
dim(G;_1 N S) = dim(G;_1) + dim(S) — N = dim(G;_;) — s. a

Remark 3.1 From Corollary 3.3, if Gi_; +S=CV for i=1,2,...,n, then
dim(G,) = dim(Gy) — ns. Thus, if N /s is an integer and dim(Gy) = N, we have
dim(Gy/s) = 0, ie., Gy = {0}. This remark will be cited in Remark 3.2 for the
maximum required number of matrix—vector multiplications of the IDR(s) method.

3.3.9.1 The Derivation of the IDR(s) Method

The IDR(s) method with a given number s > 1 generates residual vectors rg, r, . . .
such that:

L Fis1) Tis+ D415 - o Fis+s €Gjn J=0,1,2,..;
2. The subspace S in (3.105) is chosen so that dimS = N — 5.
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For simplicity, we consider the case s = 2, i.e., the IDR(2) method. In this case, the
IDR(2) method produces the following residual vectors:

ro,ri,1r € Go, 13,r4,rs €Gy, rer1,13€ G, ...
Here we explain how to produce r3, r4,rs € G| from the given residual vectors
ro,ri, 1 € Gy. Since s = 2, it follows from Remark 3.1 that we need to choose
S such that dim(S) = N — 2. The standard choice is
S= spam{sl,sz}L (3.107)
with arbitrary linearly independent vectors s; and s, where the symbol L is the
orthogonal complement.
Now, let § = [s;, s2] € C¥*? with linearly independent vectors s; and s,. Then
for a vector v € CV, the following fact holds true:
y1Sesh=0. (3.108)
In what follows, we use the following definitions:
Ark =Tk — F, de = [Ark, Ark+]], Cp = (SHde)_l SHrk+2. (3109)
The following vector vg lies in Gy N S
Yo =r2—dR()Co€gomS. (3110)
In fact, vy € Gy because vy € span{r,, Ary, Ar;} with ry, Arg, Ar; € Gy from the
assumption rg, r1, 7> € G, and vy € S because it is easy to see SHvy = 0 and the
relation (3.108).
From (3.105), we can produce r; € G; by
r3 = (I — woA)vy € Gy, (3.111)
where w is usually chosen so that ||r3|| is minimized, i.e., wy = (Avg, vo)/(Avg, Avy).
In order to produce r4 € G, we need a vector v; such that vi € Gy N'S. To this
end, v; is constructed by using r3 and dR; as follows:
vi=r;—dRic; € GyNS.
From a similar discussion to that above, we see v; € Gy and v; € S. Thus, we have

ry = (I — C()()A)Vl (S Ql.

Similarly,
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Vo) =14 — dRzCQ S go 08, rs = ([ — Cl)()A)Vz S g1.

Now, we obtained r3, r4, s € G from the given residual vectors ry, 7|, r, € Gy. Sim-
ilarly, the following algorithm produces rg, r7,rs € G, fromrs, ry,rs € Gy:

3=rs—dRic3 € GINS, re=U—-wAy; G,
va=rs—dRics € GINS, rp=U—-wAys e,
vs=r;—dRscs € GiNS, rg=I—wA)ys € G,

where w1 is usually chosen so that ||rg|| is minimized, i.e., w; = (Avs, v3)/(Avs, Avs).

Now, we describe how to extract approximate solutions x3, x4, Xs from xg, X1, X>.
In what follows, we use the following definition:

Axy = Xpq1 — Xi,  dXg = [Axy, Axpqq].
Then from (3.110) and (3.111) x3 is obtained as follows:

r; = (I — wpA)vy = r, — dRocy — wpAvy
& b —Axz = b — Axy, — dRyco — wpAvg
& X3 =X —i—A*ldRoco + wovy
& x3 = X — dXpco + wovo.

Similarly,

x4 =x3 — dXic1 + wovy,

X5 = X4 — dXocr + wovs.
X, X7, Xg can be obtained as follows:

Xe = X5 — dX3¢3 + wv3,
X7 = X7 — dX4c4 + w1vs,
X3 = xg — dX5¢5 + wvs.

Finally, we describe how to determine initial residual vectors rg, ri, r, € Gy and
X0, X1, X>. These vectors are given as follows: we compute

ro :b—AX(),
ri = (I — coA)ry, x1 =x9 + coro,
rn=U—-cAr, x=x+cr,

where x is an arbitrary vector, and ¢y and c; are chosen so that ||r;|| and ||r;|| are
minimized.
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From the above discussion, the IDR(s) method with s = 2 can be easily gen-
eralized to the IDR(s) method with a general number s > 1, and the algorithm is
described in Algorithm 3.24. The symbol “AX (:, i)” means that the ith column of
matrix AX.

Algorithm 3.24 The IDR(s) method

Input: xo e CN, P e CV*5 s> 1
Output: x;
1: rop = b— AX()
(The other initial residuals rq, ..., r; € Go)
2:fori=1tosdo
v=Ari_|,w =

virio
yHy

3
4 AX (i) = wri—1, AR(:, i) = —wv

50 xi=xi—1+AX(C, i) =ri—1 + AR(, Q)
6: end for

Tij=1i=s

8: M = PHAR h = PHy;

9: while Il > ¢ do

1511
10: fork =0tosdo
11: Solve ¢ fromMc = h

12: q=—ARc
13: v=ri+q
14: if £ = 0 then

15: t= Av., w= iT‘t’

16: AR(:,j) =q — ot

17: AX(,j) = —AXc+ wv
18: else

19: AX(,J) = —AXc+ wv
20: AR(:,j) = —AAX (s, ))
21: end if

(Update approximate solutions x;)
22: riy1 =ri + AR(,))
23: Xip1 =X + AX(,))
24: Am = PHARC(:, j)
25: M, j) = Am
26: h=h+ Am
27: i=i+1l,j=j+1
28: j=G—1)%s+1 (%: modulo operation, i.e. a%n = r, where a = mn + r.)
29:  end for
30: end while

Remark 3.2 In order to produce residual vectors in G; from residual vectors in G;_i,
the IDR(s) method requires s + 1 matrix—vector multiplications. From Remark 3.1,
the residual vector in Gy is zero. Thus, in exact precision arithmetic, the number
of matrix—vector multiplications for the IDR(s) method is at most (s + 1) X N /s =
N + N /s to obtain the exact solution. Note that the number of matrix—vector mul-
tiplications for the product-type Krylov subspace methods in Sect. 3.3.8 is at most
2N.
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From the following remark, the IDR(s) method can be regarded as an extension of
the BICGSTAB method.

Remark 3.3 The IDR(1) method and the BICGSTAB method give the same residual
vectors at the even steps.

Remark 3.4 In terms of orthogonality, the IDR(s) method produces residual vectors
that belong to the following so-called Sonneveld subspace:

[y : v LB@A" )}, (3.112)

Here Q;(A) := H{:I (I — wiA),and B; (AH, 8) is a subspace of CV generated by using
Aand S :=[sy, ..., S], which is defined by

Bi(A", S) := IGi(AY, 51) 4 - -+ + KA, 5,).

Here the symbol “+” means the sum of subspaces.” B;(A", R%) will be redefined in
Definition 3.1 for block Krylov subspace methods. For the details of the view in
(3.112), see [161, 163].

We give a rough explanation of Remark 3.4 using the IDR(s) method with s = 2
for the two cases j = 1, 2 in (3.112). First we consider the case j = 1. From (3.105)
G, is generated by

G1=U—-wA)(GNS),
where S = spanf{sy, s> 1+, see also (3.107). Then, r € G; can be written as

r={—wAy, vegGy, v Lspan{sy,s,}.

Note thaty € Smeansv L span{s,, s,}. Since B; (A, S) = K, (A", s1) + K, (AH, 55)
= span{sy, s»}, we have

re{l —wAy :vLB @AY $H =A@y : v LB @AY S,

which corresponds to the case j = 1 in (3.112).
Next, we consider the case j = 2. G, is generated by

Gy = —A)G1NS).
Then a residual vector r € G, can be written as

r= - a)zA)lj, Ve gl, v L span{sl,sz}. (3.113)

5 Given two subspaces Wy and Wy, the sum of W; and W, is defined by W; + W, := {w| +wy :
wip € Wi, wy € Whl.
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Since v € G = (I — w1A)(Gy N S), the vector ¥ can be written as

v=(U—-wAy, veGy, v_Lspan{si,s,}. 3.114)
From (3.113) and (3.114), we have

r=U—- AU — wA)y, (3.115)
where
v = — wA)v L span{sy,s,}, v L span{sy,s;}.

Note that

(I — wA)v L span{sy, s;} < (I — i AMs; =0 (i=1,2)
sWI—wAls; =0 (i=1,2)
< v L span{(I — wA) sy, (I — w1A)8s,).

v L span{(I — w1 A)s;, I — w1A)s,} and v L span{s;, 5o} imply
v.lsy, vilsy, v J_AHsl, v J_AHsl.
Thus,

v L span{sl,AHsl,sz,AHsz}.
= span{s, AHsl} + span{s,, AHsz}
= K2 (A", s1) + K2 (A", 52)
= B, (A%, $).

Then, from (3.115), together with the above result, we have
F=(I— AU —wA)y, v LB ARYS), (3.116)
from which we obtain
Fe{h@y v LB @AY ). (3.117)

This corresponds to the case j = 2 in (3.112).

In what follows, some references related to the IDR(s) method are described. An
elegant explanation of the IDR(s) method is found in [88], where a visualization
of the IDR theorem in [88, Fig.3.1] is useful for intuitively understanding the IDR
theorem (Theorem 3.4). A more stable and accurate variant of the IDR(s) method
is proposed by the same authors in [199], and the IDR(s) method with the quasi-
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minimal residual strategy is proposed in [47]. Variants of the IDR(s) method with
partial orthonormalization is proposed in [209]. Extensions of the IDR(s) methods
using the idea of the BICGSTAB(£) method are known as the IDRstab method [164]
and the GBiCGSTAB(s, L) method [185]. Variants of the IDRstab method are found
in [5-7].

3.3.9.2 Numerical Example

In this subsection, typical convergence behavior of the IDR(s) method is shown by
one numerical experiment. We consider nonsymmetric linear systems (2.18) with
parameters N = 20, a; = ap = a3z = 1, by = b, = b3 = 1, and ¢ = 300. The stop-
ping criterion is ||r,||/[|b]| < 1071°.

The convergence histories of the IDR(s) method (s = 1, 2, 4) and the BiCGSTAB
method are shown in Fig. 3.6. The horizontal axis is the number of matrix—vector
multiplications.

From Fig. 3.6, we see that as the number of s in the IDR(s) method increases, the
required number of matrix—vector multiplications decreases. The IDR(4) method
and the IDR(2) method converge faster than the BICGSTAB method. In terms of
accuracy, the true relative residual 2-norms for the BICGSTAB method, the IDR(1)
method, the IDR(2) method, and the IDR(4) method are —10.50,-10.04,-10.2, -8.76.

10
- BICGSTAB
IDR(1)
— IDR(2)
5L — IDR(4)

Log10 of relative residual 2-norm

0 200 400 600 800 1000 1200 1400

Number of matrix-vector multiplications

Fig. 3.6 Convergence histories of BICGSTAB, IDR(1), IDR(2), and IDR(4)



140 3 Classification and Theory of Krylov Subspace Methods

3.3.10 Block Induced Dimension Reduction (Block IDR(s))
Method

The block IDR(s) method [46] is an extension of the IDR(s) method to solve the
block linear systems of the form

AX =B, (3.118)

where A € CV*N, B € CN>*™, and m is usually much less than N.
Prior to the theory of the block IDR(s) method, the framework of block Krylov
subspace methods is briefly described after the following definitions:

Definition 3.1 (Block Krylov subspace) Let V e CV*™ Then K, (4, V) Cc CN>*™
defined by

Ka(A, V) :={VCy+AVC, +-- -+ A" 'VC,_y : C,C,...,Cpuy € C™ "}
(= block span{V, AV, ..., A""'V})
is called the block Krylov subspace with respect to A and V.

Definition 3.2 (Sum of Krylov subspaces) Let V = [vy, v, ..., v,] € CN*" Then
B,(A, V) C CV is defined by

Bn(A’ V) = ’Cn(Aa V]) + K:n(Aa V2) +---+ ICn(A’ vm)
={Veo+AVe, + -+ +A"We, 1 e, €1y Cuy € c.
Definition 3.3 (Grade of block Krylov subspace) The smallest number n such that
dim(B,(A, V)) = dim(B,+1(A, V))

is called the block grade of A with respect to V, which is denoted by v(V, A).

Remark 3.5 Definitions 3.1 and 3.3 are extensions of Definitions 1.2 and 1.3. In
fact, if m = 1, these definitions are identical to Definitions 1.2 and 1.3.

We now describe the framework of the block Krylov subspace methods. Let
Xo € CV*S be an initial guess, and let Ry := B — AX, be the corresponding initial
residual matrix. Then, block Krylov subspace methods find the nth approximate
solution X,, as follows:

X, =Xo+2Z,, Z,¢ ICn(Aa RO)
The corresponding residual matrix is given by

R, =B — AX, = Ry — AZ, € Ky11(A, Ro).
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Determining Z, yields various block Krylov subspace methods, e.g.,

e The block CG method: R, 1 B,(A, Ry).
e The block COCG method: R, L B, (A, Ry).
e The block BiCG method: R, L 5, (A", Rp).

Here, R} is an initial shadow residual matrix,® and the symbol R, 1 B,(A, V) means
that all the column vectors of R, are orthogonal to B,(A, V).

Here, we give a brief history of the block Krylov subspace methods. In 1980,
O’Leary proposed the block BiCG method (and the block CG method) in [142]. In
1990, Vital proposed the block GMRES method in [202]. Block Krylov subspace
methods based on the QMR method were proposed in 1997 [65, 157]. In 2003,
Guennouni et al. proposed the block BICGSTAB method [86]. In 2011, Du et al.
proposed the block IDR(s) method [46]. For other block Krylov subspace methods,
see [153, 181, 182, 210].

Now we turn our attention to deriving the block IDR(s) method. The block IDR(s)
method is based on the following theorem (see [46]), which is a slight modification
of Theorem 3.4.

Theorem 3.5 Let A be any matrix in CV*N, let vy be any nonzero vector in CV,
and let Gy = By(r,.a)(A, Ro). Let S denote any (proper) subspace of CN such that S
and Gy do not share a nontrivial invariant subspace,7 and define the sequences Gj,
j=1,2,... as

g =U—-wA)(G-1NS), (3.119)

where the w;’s are nonzero scalars. Then:

(1) G; C Gj_y forall j>O0.
(2) G; = {0} for some j <N.

Proof The only difference between Theorems 3.4 and 3.5 is the definition of Gy,
i.e., Go = Kn (A, vp) or Gy = By(r,.4)(A, Ro). In the proof of Theorem 3.4-(1), Gy =
Kn (A, vg) is used only for proving G; C Gy. Thus, all we have to do is to prove
Gi C Go.From Gy = B,r,.4)(A, Ry), wehave (I — w1A)Gy C Go, because for a given
ve(d — a)lA)g() = - wlA)Bv(RU,A)(A’R()) we have

v=( — wA)(Roco + ARget + - + A" ROV Roe roay—1)
= (I — w1A)Roco + (I — w1 A)ARyet + -+ - + (I — 0 AA T Roe vy a)-1
= Rodo +ARod; + - + A"FoD 7 Rod g 4yt + A BN Rod ik, 1)

= Rodo + ARod; + - - - +AU(RO'A)71ROJV(RO,A)71
€ Go.

6 In practice, Rj; is usually set to R; = R or a random matrix.

7 This means that S N Gy does not contain any eigenvector of A, and the trivial invariant subspace
is {0}.
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Thus §1 = (I — w1A)(GoNS) C (I — w1A4)Gy C Go.
Theorem 3.5-(2) is shown by following the proof of Theorem 3.4-(2) and using
dimGy < N. ]

Similar to Corollary 3.3, we have the following fact:

Corollary 3.4 Let S be a subspace of CY withdim(S) = N — smfora givens, m >
LIfGi-1 + S = CN and (I — w;A) is nonsingular, then
dim(G;) = dim(G;_;) — sm.

The difference between Corollaries 3.3, 3.4 is the parameter m. The parameter m
corresponds to the size of the number of right-hand sides of AX = B, where B is an
N-by-m matrix.

In what follows, the block IDR(s) method is explained. The block IDR(s) method

generates residual matrices Ry = B — AX; fork =0, 1, ... such that:
1. all the column vectors of Rj41y, Rjis+1)+15 - - - » Rjs+1)+s belong to G; in (3.119)
forj=0,1,2,...;
2. the subspace S in (3.119) is chosen so that dimS = N — sm.
Let S = [s1,52, ..., 8g,] € C¥Y* Then, a standard choice of the subspace S is
as follows:
S = span{S}J‘ = span{sy, 52, . . .  Som) ™t

where all the column vectors of § € CV>**" are linearly independent, and thus it is
easy to see that dimS = N — sm.

We now briefly explain the block IDR(s) method with s = 2. For j = 0, 1, 2, the
block IDR(2) method produces the following residual matrices:

Ro,Ri,Ry, R3,R4,Rs, Re,R7,Rg,

where all the column vectors Ry, Ry, R, belong to Gy, all the column vectors R3, R4, Rs
belong to Gy, and all the column vectors R3, R4, R5 belong to G,.

In what follows, we describe how to obtain R3, R4, R5 from Ry, R, R, under the
assumption that all the column vectors of Ry, Ry, R belong to Gy. Similar to the
IDR(s) method, the following definitions are useful for the block IDR(s) method:

-1
ARy i= Resi — Re, dR™ := [AR, ARwy1], Cy = (SHde.) SHR 2.
(3.120)

All the column vectors of the following matrix Vj lie in Gy N S:

Vo =R, —dR®Cy, Im(Vy) CGoNS
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because all the column vectors of R, € CV*™ and dRy € CN*>" belong to G, from
the assumption that all the column vectors of Ry, Ry, R, belong to Gy, and all the
column vectors of Vj also belong to S from the relation S Hy, = 0, where O is the
2m x m zero matrix. Here Im(V}) is the image of Vj, i.e., the subspace spanned by
all the column vectors of V.

From (3.119), the residual matrix R3 whose column vectors belong to G, can be
produced by

Ry = (I — wpA)Vy, Im(R3) C Gy, (3.121)
where wy is usually chosen so that ||R3 || is minimized,? i.e.,

_ Te(T§'Vo)

=———" Ty :=AV,.
oIy 0

o
The Frobenius norm minimization follows from the following fact:
Proposition 3.7 Let V, W € C"™*". Then the following minimization problem:

min ||V — oW||g
weC

can be solved by

Tr(WHYV)
w=—".
Tr(WHW)

Proof LetV =[v,...,v,Jand W = [wy, ..., w,], then using

|41 Wi
vi=vece(V)=| : |, w:i=vec(W)=

Vn Whn
yields |V — oW || = |lv — wwl||. Thus from (1.34), the minimizer is

why — Tr(WHV)
wHw — Tr(WHW)’

w =

which concludes the proof. O

Similar to the derivation of r3 and r4 in the IDR(s) method, R3 and R, are obtained
as follows:

8 ForR = (rij) € CN*™ the symbol ||R||F := (Zf’:l Z]m:1 F,;jr,',j)l/z is called the Frobenius norm

of R, and for a square matrix A = (a; ;) € CN*N | the symbol Tr(A) := vazl a; ; is called the trace
of A.
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Vi =Ry —dRMCy, Im(V)) CGyNS,
Ry= (I — wA)V;, ImRy) C G,
Va =Ry —dR®C,, Im(Vy) CGoNS,
Rs = (I — wA)V2, Im(Rs) C Gi.

From the above calculations, we have residual matrices R, (k = 0, ..., 5) such that

Im(Ry) C Gy fork =0,1,2,
Im(R,) C G, fork =3,4,5.

Next, we describe how to obtain approximate solution matrices X3, X4, X5 from
X(), Xl , Xz. Let

AXp = Xps1 — Xeo dX® = [AXy, AXiq].
Then X3 is obtained as follows:

Ry = (I — wyA)Vo = Ry — dR®Cy — wpAV)
& B —AX; = B — AX; — dRICy — woAV)
& X3 =X, + A'dRBCy + wo Vo
& X3 = X; — dX0Co + woVo.

Similarly,

Xy =X; —dXBC + wyV),
Xs = Xy — dXMCy + V5.

We have described how to obtain R; and X; for k = 3,4, 5 from R; and X for
k =0, 1, 2 in the block IDR(s) method with s = 2. Following the above derivation,
we have the block IDR(s) method in Algorithm 3.25. Further, the preconditioned
version of the block IDR(s) method is shown in Algorithm 3.26. Note that the symbol
“B(:, £)” represents the £th column of matrix B, and the symbol “AX (:,im+ 1 :
(i + 1)m)” represents the (im + 1)th,(im + 2)th,. .., (i + 1)mth columns of matrix
AX.

Remark 3.6 From Corollary 3.4, the dimension reduction is usually sm, i.e., dim
(Gj) = dim(Gj—1) — sm and the block IDR(s) method requires m(s 4 1) matrix—
vector multiplications. Thus, in exact precision arithmetic, the total number of
matrix—vector multiplications for the block IDR(s) method is at most m(s 4 1) x
N/sm = N + N/s to obtain the exact solution matrix, which does not depend on
the block size m. Note that if the IDR(s) method is applied to AX =B (i.e.,
Ax; =b,,Ax, = b,, ..., Ax,, = b,,), then the required number of matrix—vector
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multiplications of the IDR(s) method is at most m(N + N /s), which is m times
larger than that of the block IDR(s) method.

From the following remark, the block IDR(s) method can be regarded as an exten-
sion of the block BICGSTAB method.

Remark 3.7 The block IDR(1) method and the block BICGSTAB method give the
same residual vectors at the even steps.

Algorithm 3.25 The block IDR(s) method

Input: Xy € CV*5, Ry = B — AXy, P € C™*5™

Output: X;

1: fori=0tos— 1do ;

2 V=AR,0=3md

3: AXC(CG,im+1: @G+ Dm) =R, ARC,im+1:({+ 1)m) = -V

4 Xy =Xi+AX(Cim+1: G+ Dm),Rix1 =R + ARG, im+1: (i + 1)m)

6:j=1,i=s

7: M = PHAR, H = PHR;

8: while maxee(1,2,...,m} M > e do
9: fork=0tosdo

10: Solve C from MC = H

11: 0 = —ARC,

12: V=R +0Q

13: if k = 0 then

H
14 T=AV,w= gg#;
15: ARG, j— Dm+1:jm) =0 — oT
16: AX(C,(G—Dm+1:jm)=—-AXC + oV
17: else
18: AX(C,G—1m+1:jm) = —-AXC + oV
19: ARG, G— Dm+1:jm) = —AAX (¢, G— Dm+1:jm)
20: end if

21: Riy1 =R+ ARG, — )m+1: jm)

22: Xit1 =X+ AX (¢, G— Dm+1:jm)

23: AM = PHARG, G — Dm+1:jm)

24 MG, G—Dm+1:jm) =AM

25: H=H+AM

26: i=i+1,j=j+1

27: j=G—1%s+1 (%: modulo operation, i.e. a%n = r, where a = mn + r.)
28:  end for

29: end while
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Algorithm 3.26 The preconditioned block IDR(s) method

Input: Xy € CV*5, Ry = B — AX,, P € C™¥™
Input: Xo = KXo (K: preconditioning matrix)

Output: X;
1: fori=0tos— 1 do
22 W=KR

3 Ve AW, 0 = Tr((Kl:l]V)HKl:llR;)
Tr((K; ' VHK'Y)
4: AX(C,im+1:G+ Dm) = wR;, ARG, im+1: (i + 1)m) = -0V
50 Xim1=Xi+AX(Cim+1: G+ 1)m),Riy1 =R+ ARG, im+1:({+ 1)m)
6: end for
T j=1i=s
8: M = PHAR, H = PHR,
9: while maxe(1,2,... m} ‘\llRBi((:‘..f))I‘Il: > e do
10: fork =0tosdo
11: Solve C from MC = H
12: 0 =—ARC
13: V=R +0Q
14: if k = 0 then

_ Tk 'DK]'Y)

15: T=AK""V, 0= Ll
Tr((K, 'K, 'T)
16: ARG, (j—Dm+1:jm) =0 — T
17: AX(C,G—Dm+1:jm) = —-AXC + oV
18: else
19: AX(C,(G—Dm+1:jm) = —-AXC + oV
20: ARG, (G—Dm+1:jm) = —AK'AX(, G — Dm+1: jm)
21: end if

22: Riy1 =Ri+ ARG, (j— Dm+1:jm)

23: Xit1 =Xi+ AX (¢, G— Dm+1:jm)

24: AM = PHARG, G— Dm+1:jm)

25: MG, G—Dm+1:jm) =AM

26: H=H+ AM

27: i=i+1,j=j+1

28: j=G—1%s+1 (%: modulo operation, i.e. a%n = r, where a = mn + r.)
29: end for

30: end while

31: X; = K7'X;

3.4 Other Krylov Subspace Methods

This section describes the Krylov subspace methods based on normal equations and
augmented linear systems: the CGNE method, the CGNR method, and the LSQR
method.
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3.4.1 Krylov Subspace Methods for Normal Equations

As described in the introduction in Sect. 3.3, we can apply the CG method to normal
equation (3.56) because AFA is Hermitian positive definite. In this subsection, the
details are described. Instead of non-Hermitian linear systems Ax = b, we consider
the following normal equations:

AfAx = AYp (3.122)
or
AARy = b, x = Ally. (3.123)

As mentioned before, it is natural to solve the normal equations by the CG method,
since AHA and AAP are Hermitian positive definite. If we apply the CG method
to (3.122), then we have the CGNR method (or the CGLS method) [95] given in
Algorithm 3.27.

Algorithm 3.27 The CGNR method
Input: xo € CV, 81 =0,p_, =0,rg = b — Axg

Output: x,
1: forn =0, 1, ..., until convergence do

2 p,= AHrn + Bn—1Pp—1

. _ @A"r.AMr)
3= (Ap,.Ap,)
4: Xp+1 = Xpn + 0P,
50 rpp1=ry —O{nAP,,

_ Ay AT )

6 = (AHr, ,AHr,)
7: end for

It readily follows from the algorithm of the CGNR method and Theorem 3.1
that the CGNR method minimizes the AHA-norm of the error, or the 2-norm of the
residual vector:

min lx — x|l 1y = min 7l
xnexo+KC,(AHA, AHr) x,exo+KC, (AHA AHry)

where r, := b — Ax,,.

On the other hand, if we apply the CG method to (3.123), then we have the CGNE
method [41] (or Craig’s method) given in Algorithm 3.28.

It readily follows from the algorithm of the CGNE method and (3.16) that the
CGNE method minimizes the AA"-norm of the error on the linear systems AA"y = b:

min Iy —yullaan-
Yn€yo+IC,(AAH b—aaHy )
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Algorithm 3.28 The CGNE method
Input: xo € CN, B-1=0,p_1=0,rg=b — Axyp

Output: x,
1: forn =0, 1, ..., until convergence do

2: P, = AHrn + ﬂn—lpn—l
. — rn.rn)

3= ®n-pn)

4 Xpp1 =X+ anp,

5. Fpt1 =1y — oAp,

o = )

7: end for

It follows from the above fact and y, = A~tx,, that the CGNE method generates x,,
such that

min ”y _yn”AAH
$n€y0+Kn(AAH b—aAHy )

= min A7 x — A7 x|, 41
A-Hyx,ea-Hxo1+1C,(AAH b—Ax)

= min b — x|
A-Hy,eaA-Hxo 4K, (AAH b—Ax)

= min llx — x|l
xnexo+AHKC, (AAH b—Axg)

= min llx — x,l,
xn€xo+K, (AHA, AHrg)

where ry := b — Axy. Thus, the CGNE method minimizes the 2-norm of the error
on the linear systems Ax = b.

The convergence of the CGNR method and the CGNE method performs very well
in some special cases [64, 138]. However, since the condition number of AHA (or
AAW) is twice that of A, these methods may show slow convergence from Theorem
3.2.

If the coefficient matrix is ill-conditioned, the LSQR method [144] is often pre-
ferred. This algorithm is based on the Golub—Kahan bidiagonalization process [78]
and the process is obtained by applying the Lanczos process to the following aug-
mented linear systems of the form

o] [d] =)

We write it as A¥ = b. The process begins with a unit vector:

o= 4] o)
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Let ho,1 := [|b]|. Then we have hoju; = b. For the first step, applying the Lanczos
process (Algorithm 1.11) to A yields

- ~ 0
Wy =Aw| —aw; = |:AHu1:|’

N 2 0
27 o] T AR | (AP

Using hy 1 := ||AHu, || gives
hy vy = Ay, (3.124)

For the second step, we have

- ~ Av, — Biu
W3=AW2—052W2—,31W1=|: ! Oﬂ] 1],

Wi = |:u21| — ; |:AV1 — h1'1u1i| .
0 |Avy — Ay qu | 0

Using hy | := ||Avy — hy 1u; ||, the equation on w3 is rewritten as
hz,]uz =AV1 —hl,lul. (3125)

For the third step, it follows that

- ~ 0
Wy = Aws — azw3 — fowy = |:AHu2 _ ﬁzm] ;

=[] ]
YTl |AHuy — hy vy || |[AM w2 — hyavi |

The equation on wy is rewritten as
hyovy = AMuy — hy vy (3.126)
by using hy, = |A 2, — hy1v1||. Hence, from (3.124)—(3.126), we have the fol-
lowing matrix form:
h
Avy = [uy, us] [h;:] < AV = UyBy 1,

hi1 ho

ﬂWMMZUMd[Oma

:| s Ay, = VlBL + hyave,
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where U, = [u;, u,], Vi, = vy, and BL = [hy,1, h2,1]. The above recurrences corre-
spond to the first few steps of the Golub—Kahan bidiagonalization process [78]. The
algorithm of the Golub—Kahan bidiagonalization process is described in Algorithm
3.29.

Algorithm 3.29 The Golub—Kahan bidiagonalization process

Input: A € CV*N p e CN
Output: u;,v; (i=1,2,...)

1: ho1 = |IB], w1 =b/ho
2: hiy = [ARuy |, vy = AHuy /by
3:forn=1,2,... do

T Uy =Av, — Ry nltn

4

50 hpgin = sl

6: w1 = ﬂn+l/hn+l,n

7. l7n+1 =AUy — hn+1,nvn
8

9

hn+l,n+l = ||‘~’n+l ”
D Vnkl = Vgt /g1 g
10: end for

The Golub—Kahan bidiagonalization process can be written in matrix form

Avn = Un+an+l,na (3127)

H T T
AUp1 = Van_Hﬂ + hn+1,n+lvn+len+1»

where

hi

— — |

Un -— [ula ey un]a V, = [vlv e 7vn]7 Bn+l,n -
hn,n

hn+1,n

It is clear from the bidiagonalization process that U, and V,, satisfy the following
properties:

viv, =viv, =1,. (3.128)
We are now ready for the derivation of the LSQR method. The LSQR method gen-
erates the nth approximate solution with V,, and xy = 0, i.e., x, = V,y,, where y is
determined by minimizing the 2-norm of the corresponding residual vector

r,=b—AV,y,. (3.129)

Substituting (3.127) into (3.129) leads to
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r, = b— Un+an+l,nyn
= Upy1(ho.1€1 — Buy1.ny,)-

From the property (3.128) it follows that

min [|r, || = min [lho.1e1 — By 1.u¥,l- (3.130)
Y. €C" y,€C

Hence, similar to the MINRES method in Sect. 3.1.3, the solution of y,, in (3.130) can
be obtained by using Givens rotations, and following the derivation of the MINRES
method, we have the LSQR algorithm described in Algorithm 3.30.

Algorithm 3.30 The LSQR method
Input: A € CV*V p e CV

Output: x,

1:x0:0, /’l()l = ||bH,u1 =b/h0,] 14: end for

2: hyy = [ATuy ), vy = ARuy /by 150 o= ——tlmal
3:forn=12,... do S Y el

4:  (G.-K. bidiagonalization process) 16: 5 = Thon ©

S5: Upy1 = Avy — hy iy 17: ity = Cnlnpn + Snlnt1.n

6:  hpt1n = llups1 |l 18 1, =0

7o Upg1 = Upsi/hpsin 19: |: &n :| _ |: Ci_l Sn:| |:gn:|
8 Yy :AHu,H_l — hyt1.0Vn 8n+1 —Sn Cn 0
9 hnttnt1 = [Vatl 20: (Update x,)

10: Vpt+1 = f}n+1/hn+1.il+l 21: pn= (e tn—l,npnfl)/tn,n
11:  (Givens rotations) 22 xp =Xp—1 + gnPy

12: fori=max{l,n—1},...,n—1do 23 (Check convergence)

. [ fim i| B |: ¢ Si:| |: lin :| 24:  if |gu+11/11b] < €, then stop.

tit1n =5i ¢i | | titin 25: end for

[S¥]

3.5 Preconditioning Techniques

The convergence rate of iterative methods depends strongly on the spectral property,
the distribution of the eigenvalues, of the coefficient matrix. It is therefore natural to
try to transform the original linear system into one having the same solution and a
more favorable spectral property. If K is a nonsingular matrix, the transformed linear
system

K '"Ax =K~ 'b (3.131)

has the same solution as that of the original one. Hence, we can obtain the solution of
the original linear system by applying Krylov subspace methods to the transformed
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linear system. The matrix K is called a preconditioner and a favorable preconditioner
satisfies the following properties:

e K'AXI
e K~!zis readily obtained for any vector z.

If A is Hermitian positive definite (h.p.d.), the transformed system (3.131) is not
useful in practice because the coefficient matrix K~'A is not h.p.d. any longer. To
preserve the h.p.d. structure of the coefficient matrix, we split the preconditioner into
K = K;K{! and then transform the linear system into

K 'AK TR (Kx) = K[7'B.

The above coefficient matrix K~ 'AK L " is h.p.d. Hence, Krylov subspace methods
for h.p.d. linear systems, e.g., the CG method, can be applied to it. If the coefficient
matrix A is non-Hermitian, then the corresponding preconditioning is

K 'AK; ' (Kox) = K 'D, (3.132)

where K = K;K,. The above form is called left and right preconditioning. When
K, =1, we have

AK'(Kx) = b. (3.133)

This preconditioning is referred to as right preconditioning, and when K, = I we
have (3.131), which is referred to as left preconditioning.

The right preconditioning is often used for the GMRES method and the GCR
method. In this case, these methods find approximate solutions such that the 2-norm
of the residuals for the original linear system Ax = b is minimized. On the other hand,
if the left preconditioning is used, then these methods find approximate solutions such
that the 2-norm of the residuals for the transformed linear system K ~'Ax = K~'b is
minimized.

For the overviews of preconditioning techniques, see, e.g., [20, 146]. See also pre-
conditioned algorithms of bi-Lanczos-type Krylov subspace methods [109]. Precon-
ditioned algorithms of Arnoldi-type Krylov subspace methods, the GMRES method
for singular linear systems, have been studied in [49, 94, 136, 206].

3.5.1 Incomplete Matrix Decomposition Preconditioners

Many preconditioners have been proposed in the last few decades of the 20th century.
Of various preconditioners, the best-known ones fall in a category of incomplete
factorizations of the coefficient matrix, which can be given in the form of A & K =
LU (with nonsingular triangular matrices L and U).



3.5 Preconditioning Techniques 153

One of the simplest incomplete factorizations is the D-ILU preconditioner that
was proposed by Pommerell (see, e.g., [147, pp.77-78]). The idea of this method
is given as follows: first, split the coefficient matrix into its diagonal, strictly lower
triangular, and strictly upper triangular parts asA = Dy + Ly + Uy; second, use K =
(D+L)D™'(D+Uy)as apreconditioner, where D is determined by diag(K) = Dy,
i.e., (K); = (Dy);; for all i. Hence, only the computation of D is required.

The algorithm of the D-ILU preconditioner is described in Algorithm 3.31, where
Ny(A) is the index set of nonzero elements of matrix A, i.e.,

No(A) :={(,)) : a;j # O}
After running Algorithm 3.31, we obtain dy, ds, . . ., dy. Then setting

d;!
D= ,
dy'

yields the D-ILU preconditioner of the form K = (D 4+ Ly)D~' (D + Uy).

Algorithm 3.31 The D-ILU decomposition

Input: A € C¥*V, Ny(A) (index set of nonzeros of A)
Output: D1 = diag(dy, da, . . ., dy)
l:fori=1,2,...,N do

2: d,‘ =4aj;

3: end for

4:fori=1,2,..., N do

5: d,' = l/d,'

6: forj=i+1,i+2,..., N do

7 if (,j) € No(A) and (j, i) € No(A), then d; = d; — a; ;d;a; ;
8: end for

9: end for

The implementation of the preconditioned Krylov subspace methods is explained
next. D-ILU preconditioned Krylov subspace methods need to compute the multi-
plication of K~! and a vector v, i.e., w = K~'v = (D + Uy)"'D(D + Ls)"'v, and
the vector w is computed as follows:

1. solve (D + Ly)y = v by forward substitution;
2. compute z = Dy;
3. solve (D + Us)w = z by back substitution.

Note that since the D-ILU preconditioner explicitly contains the off-diagonal parts
of the original matrix, Eisenstat’s trick [53] (see also Section 3.5.4) can be used to
give a more efficient implementation of the D-ILU preconditioned Krylov subspace
methods.
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One of the most well-known and powerful incomplete LU decompositions is given
by Meijerink and van der Vorst [127]. This factorization is referred to as ILU(0), and
the explanation is given next.

The ILU(0) preconditioner is based on the LU decomposition of A as described
in Algorithm 1.1. Algorithm 3.32 is a slightly modified version of Algorithm 1.1 for
ease of presentation of the ILU(0) preconditioner.

The input in Algorithm 3.32 is A as described below.

ai aip - AN
ary azp - Asn

any,1 adNy2 - -- adN N

and the output is a; j, where

A=LU,
with
1 apayp - - aiN
a
L = 2,1 s U =
: ‘e AN-IN
ayi - ayn-1 1 ay N

Notice that the input a; ; is the original matrix and the output g, ; is overwritten for
the matrices L and U.

Algorithm 3.32 The LU decomposition (a slightly modified version of Algorithm
1.1)
l: fori=2,3,..., N do
2: fork=1,2,...,i—1do

aj k= ajk/axk

forj=k+1,k+2,...,Ndo

Aij = Gij — Qi X Ay
end for
end for

end for

A

The ILU(0) preconditioner is the LU decomposition in Algorithm 3.32 without
computing (Z, j) elementif (i, j) ¢ No(A). The algorithm of the ILU(0O) preconditioner
is described in Algorithm 3.33.

From Algorithm 3.33, the number of nonzeros in the factorized matrix is usually
the same as that in the original matrix. Hence, the upper and lower matrices of the
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Algorithm 3.33 The ILU(0) preconditioner

l:fori=2,3,..., N do
2: fork=1,2,...,i—1do

3 [if G k) € No(A), then |a; i = a; i fax &

4: forj=k+1,k+2,..., N do

5: [if (i.j) € No(A), then | ai; = aij — ik x aij
6: end for

7:  end for

8: end for

ILU(0) preconditioner are sparse matrices when A is a sparse matrix. This fact is
important in terms of both memory and computational costs.

As an extension of the ILU(0) preconditioner, the ILU(p) preconditioner is also
proposed in the same paper [127], where p denotes the level of fill-in. The definition
of the level of fill-in is given as follows: let the initial level of fill-in in position (i, j)
for a; ; # 0 be zero, and let the initial level of fill-in in position (i, j) for a;; = 0 be
oo. Then the level of fill-in in position (i, j) is defined by

Level; := min
1 <k<min{i,j}

{Levely + Levely; + 1}. (3.134)

For example, consider

[« x000%x000]
*x%x000%x00
Ox%xx000x%0
00x%x%x000 %
A=1000%%%x000], (3.135)
*000x%x%x00
0x000=x%xx%x0
00%x000 % * %
(000000 * x|

where the symbol “*” is nonzero. Since the nonzero elements of A have level zero
and the zeros in A have level co, we have the following matrix whose elements are
levels of fill-in:
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0 0 0ocoocooo 0 o0
000 0 0ocococcoo 0 oo
0000 0 0 0occoooo 0
ocvoooo 0 0 0 ocooooo
0 ocococococo 0 0 0 coo0
o0 0 cooooo 0 0 0 o0
0o 0 coocooo 0 0 0

[0 0 cocoo0 0 0o 00 0]

oo 0 cooooo 0 0_

(3.136)

Applying (3.134) to (3.136), we have the following matrix whose level of the (i, j)

position is 1:

d88<cdd88co
o~ Rooco
RoocoB o
oocooc@@ @~
cocoo@d 3~ 3
co@@—~o8 838

go-238ocoog
c-83oo0828
~28ocoog 828

Applying (3.134) to the above matrix, we can determine the (i, ;) element with

Level; = 2.

MR oocoB v~ oO
oocooc@@ru—~o
cocoocBdrw—oQ R
cogw—oBR3

2880888 o0o
B Ro—~BRooco

Bo~rnwd oo
o~ oocooB R
~wgoocog gy

Applying (3.134) to the above matrix, all the levels of fill-in are determined and the

matrix is given by
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[0 0 0o oo o000 o000 00]
0 0 0ocoool 0 coo0
000 0 0021 0 o0
0000003210
cooooco 0 003 21 |, (3.137)
012300032
001230003
o001 23000
00000 0123 0 0|

Let N,(A) be the index set that corresponds to Level; < p, i.e.,
N,(A) :={(i,)) : Level; <p}.
For example, from (3.137), N,(A) of (3.135) with p =1, 2, 3 is given as follows:

Ni(A) = No(A) U{(2,6), (3,7),(4,8), (5,9, (6,2), (7, 3), (8,4), (9,5)},
N2(A) = Ni(A) U{3,6), (4,7), (5,8),(6,9), (6,3),(7,4), (8,5), (9,0)},
N3(A) = Nr(A) U {(4,6),(5,7),(6,8),(7,9),(6,4), (7,5), (8,6), (9, D}

The ILU(p) preconditioner is the LU decomposition in Algorithm 3.32 without
computing the (i, j) element if (i, ) ¢ N,(A). Now, the algorithm of the ILU(p)
preconditioner is given in Algorithm 3.34.

Algorithm 3.34 The ILU(p) preconditioner
l:fori=2,3,...,Ndo
2: fork=1,2,...,i—1do

30 [if k) € Np(A). then | aix = aie/a i

4: forj=k+1,k+2,..., N do

5: ‘ if (i,)) € NP(A), then ‘a,“j =4ajj —ajk X
6: end for

7:  end for

8: end for

Another successful variant of ILU is an ILU with a threshold approach proposed
by Saad [150]. This factorization is referred to as ILUT(p,t), where p is used for
saving memory and t is a criterion for dropping elements, i.e., forcing the small
elements to be zero in magnitude.
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3.5.2 Approximate Inverse Preconditioners

In the previous preconditioners, their performance depends on how close to A the
product of the factorized matrices LU is. Here, we describe another criterion for a
good preconditioner. That is how close to A~! the preconditioning matrix is. Based
on the criterion, Grote and Huckle [82] attempt to minimize the following Frobenius
norm:

min || — AK|[g,
K

where |AllF = /Y j aizj. Since the above minimization can be written as

mKin [e1 — Ak, e, — Ak,, ..., ey —AkN]

)

F

we have N independent least-squares problems

rrllcin lle; — Ak;l|, i=1,...,N.
i

Hence, the construction of this preconditioner is very suitable for parallel computing.
Another outstanding idea for approximate inverses was given by Benzi and Tima
[24]. This idea is finding nonsingular matrices V and W such that

wHAV = D. (3.138)

Then, it follows from (WHAV)™! = V-1A~!W—H = D! that the inverse of the
matrix A is given as

A~ = vD 'wH.,

Since the equation (3.138) implies (w;, Av;) = Ofori # j, V and W are computed by
an A-biorthogonalization process. The algorithm, referred to as the Sparse Approx-
imate Inverse (AINV) preconditioner, is given in Algorithm 3.35. In the algorithm,
a; and ¢; denote the ith column of A and A¥ respectively. From Algorithm 3.35, we
see that the algorithm uses a MGS-style A-biorthogonalization process and is used
for non-Hermitian matrices. For Hermitian and normal matrices, the corresponding
approximate inverse preconditioners have been developed, see [21, 22].
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3.5.3 Matrix Polynomial Preconditioners

We have described two types of preconditioners. One of them is approximating
the coefficient matrix A ~ M, and M ~'v can easily be computed. The other one
is approximating the inverse of the coefficient matrix A~ &~ M. Here, we describe
another approach that is closely related to sparse approximate inverses. Since this
approach is based on matrix polynomials, it is referred to as a polynomial precondi-
tioner.

Algorithm 3.35 The AINV preconditioner

Input: wl@ = vf.o) =e;, 1<i<N

l:fori=1,...,Ndo

2: forj=1i,...,Ndo

. (-1 _ H (-1 (-1 _ H,,G-1)

30 p T =aivi T, g =W
4:  end for

5: if i = N, then exit.

6: forj=i+1,...,Ndo

1) (i—1)

. @) @i-1) Pj @i—1) (0 @i-1) i @i-1)
7: vl =v; —<p{_,.,,)>v,- .oW =W, —(qu,fl))wi

8: v =0if bl < Tol, 1 <k <N, wi;=0ifw{| <Tol, I <k <N
9:  end for
10: end for ) ]
iz =z wi=w™", p=pi™" 1<i<N

12: 'V =[vy,v2,...,vn], V = [w1,wa,...,wy], D =diag(p1,p2,...,PN)

Among the most well-known polynomial preconditioners are the Neumann expan-
sion and Euler expansion. Let A be of the form I — B with p(B) < 1. Then, we can
write the inverse matrix of A as

o0
Al = ZBi (Neumann expansion)
i=0

o0
= 1_[(1 + B?). (Euler expansion)
i=0
Hence, from the above expansions, we can readily obtain and moreover control an

approximate inverse of A by using the low order terms of the Neumann (or Euler)
expansion. This approach was studied in [50], and see also [116, 198].
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3.5.4 Preconditioners Based on Stationary Iterative Methods

The idea of stationary iterative methods in Sect. 1.6 can also be used for constructing
efficient preconditioners for Krylov subspace methods. In this section, Jacobi, Gauss—
Seidel, and SOR-type preconditioners are described.

The Jacobi preconditioner (or the diagonal preconditioner) is the simplest pre-
conditioner and is usually more effective than solving the original linear systems
Ax = b by unpreconditioned Krylov subspace methods. The Jacobi preconditioner
is constructed by using the diagonal entries of the coefficient matrix as follows:

K_] = diag(al’l, a2, ..., an,n).

If the matrix A is a diagonal matrix, then Kle = [. This means Jacobi precondi-
tioned Krylov subspace methods obtain the solution within only one iteration step.
In general, there is an approach to choosing diagonal matrix D as a preconditioner
so that the condition number of D™!A is as small as possible. The analysis of the
condition numbers of DA is found in [59, 194].

The symmetric Gauss—Seidel (SGS) preconditioner uses more information of A
than the Jacobi preconditioner. The SGS preconditioner is named after the Gauss—
Seidel method, which is one of the stationary iterative methods in Sect. 1.6. The
preconditioner is defined as

Ksgs := (D — L)D™'(D - U),

where A := D — L — U. If all the diagonal elements of A are scaled to one, then we
have a simpler preconditioner:

Ksgs = U —L)I = U).

In this case, it is known that there is an efficient implementation as follows: when
using the preconditioner Ksgs, we have the transformed linear systems of the form

I-L7'A0-U)""s=b, x=U—-U)x, b=U—-L)""b.

Hence, applying Krylov subspace methods to the transformed linear systems, we
need to compute the following matrix—vector multiplication:

I -L)7'Ad -U) 'z
When the cost of the matrix—vector product Az is dominant at each iteration step, this

usually leads to about double computational cost per iteration. However, recalling
A=1—L-—U,itfollows that
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- 'Aad-U)y'=a-L'du-L-U)d-U)"!
=I-D7'-D+UI-U-DII-U)""
=I-L7'I-Dd-U)"'+1-U-U)"]
=I(-U)"'+d-D'U-u-0)"".

Thus, we obtain

I-LA0-U)"2=0-U)24+0 -0 'I-I-U)""Iz
=t+UI-L)7"'z—0),

where ¢t := (I — U)~'z. Hence, we see that the cost of the above operation is only
about one matrix—vector multiplication. This implementation is one of Eisenstat’s
tricks [53].

The Symmetric Successive OverRelaxation (SSOR) preconditioner is regarded as
an extension of the SGS preconditioner. The preconditioner is defined as

Kssor = (D —L)D™"(D —U), D=D/ow.

Note that the choice w = l~leads to Ksgs. Eigenstat’s trick is then given as follows:
fromA=D—L—UandA = (D —L)"'A(D — U)™!, we have

Az=D-L'AD-U)"z
=D-L'[D-L+D-2D)+D-ID-U)""z
=D-U)yz24DO-L)7'"O-2D)D-U)""2+4D-L)"'z
=t+ (D —-L)"'[(D—2D)t +1z],

where t = (D —-U) 'z

3.5.5 Reorderings for Preconditioners

In the previous subsections, we have considered some preconditioning techniques
for solving original systems effectively. On the other hand, it is natural to find effec-
tive reorderings to improve the performance of preconditioners, e.g., apply Krylov
subspace methods to the following systems with a reordering matrix P:

K'PAP % = b,

where ¥ = Px, b = K~'Pb. From this idea, we can use many reordering techniques
such as Cuthill-Mckee (CM) [42], Reverse Cuthill-Mckee (RCM) [75], Nested Dis-
section (ND) [76], and Minimum Degree (MD) [77]. For these algorithms, see also
[51, 123, 151]. CM and RCM decrease the bandwidth of a matrix, MD reduces the
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number of fill-ins of a matrix, and ND generates an approximate block diagonal
matrix and is suitable for parallel computing.

For symmetric definite matrices, Duff and Meurant gave important results on the
effects of reorderings that reordering techniques for direct solvers did not enhance
the quality of preconditioners [52].

For nonsymmetric matrices, Saad experimentally showed that MD and ND
reorderings before ILUT preconditioning gave no advantage over the original sys-
tems and only RCM was the most likely to yield an improvement [151, p.334]. On the
other hand, Benzi et al. [23] studied the effects of reorderings on ILU-type precondi-
tioners and obtained the result that RCM dramatically enhanced the preconditioner
in a case where the coefficient matrix is highly nonsymmetric. Similar results of the
effects on approximate inverse preconditioners are also discussed in [25].



Chapter 4 ®
Applications to Shifted Linear Systems e

Abstract As seenin Sect. 2.2 (computational physics) and Sect. 2.3 (machine learn-
ing), one needs to solve a set of linear systems of the form

A+oDx®=b, k=1,2,...,m,

where oy is a scalar, which are called shifted linear systems. When using the LU
decomposition in Sect. 1.3.1, m times LU decompositions are required. Similarly,
when using stationary iterative methods in Sect. 1.6, solving m linear systems, i.e.,
(L + D + o I)z = v for all k, is required. To solve these linear systems, one can
apply a suitable Krylov subspace method to each linear system. On the other hand, if
the initial residual vector with respect to the ith linear system and the initial residual
vector with respect to the jth linear system are collinear, i.e., the angle between the
two initial residual vectors is O or m, the generated Krylov subspaces become the
same, which is referred to as the shift-invariance property of Krylov subspaces. This
means that we can share the information of only one Krylov subspace to solve all the
shifted linear systems, leading to efficient computations of shifted linear systems. In
this chapter, Krylov subspace methods using the shift-invariance property are derived
from the Krylov subspace methods in Chap. 3.

4.1 Shifted Linear Systems

The Krylov subspace methods in Chap. 3 are attractive for solving the following
linear systems:

APx® =p  k=1,2,...,m, (4.1)
where A® is a nonsingular matrix of the form

AP = A+ oy 1, 4.2)
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with I being the identity matrix and o}, € C. The linear systems (4.1) are referred to
as shifted linear systems. For simplicity, we also use the following notation:

(A+oD)x° =b.

Here %, 87, ... and a’, b’, ... denote scalars and vectors related to the shifted
linear system (A + o I)x? = b. Note that o is not the « to the power of o.

If a Krylov subspace method with the initial guess x(y = 0 is applied to (4.1), then
from (1.22) the Krylov subspace method finds the approximate solutions of (4.1)
over the following subspaces:

x® ek, (AP by, k=1,2,...,m. (4.3)

From the definition of Krylov subspace (1.20), the following shift invariance property
holds true:

Ka(A, b) = K, (AP b). (4.4)

This can be easily shown by induction and the definition of a Krylov subspace. As
an example, for the case n = 3 it follows that

K3(A+01,b) ={c1b+cr(A+aDb+c3(A+0D)?b : cf,cr, c3 €C)
= {(c]1 + o + 0302)11 + (c2 +2c30)Ab + C3A2b tc1,0,c3 € C}
={d|b+ drAb+ d3A%b : dy, dy, d3 € C}
=K3(A, b).

In the third equation, the relation between c¢; and d; is given by

d; lo o2 c1
db| =101 20 lo)
d3 0 O 1 C3

Since the 3 x 3 matrix is nonsingular, for any d;, d,, d3 there exist cy, ¢, c¢3. Thus
the third equation holds true. From this example, we see that the shift invariance
property can be slightly extended as follows:

Ka(A, v) = K, (AR, w), v=cuw.
If v = cw holds for some ¢, the two vectors are referred to as collinear.
Now from the shift invariance property (4.4), it follows that (4.3) can be rewrit-

ten as

x® ek, (A b), k=1,2,...,m.
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This means that only one Krylov subspace, K, (A, b), is required for obtaining the
approximate solutions x(V, x® ... x™_ Note that if the shift-invariance property
does not hold, m different Krylov subspaces are required.

In the following sections, we will see how to utilize the shift-invariance property
and how this property is incorporated into Krylov subspace methods.

4.2 Shifted Hermitian Linear Systems

Throughout this section, the coefficient matrix A%® in (4.1) is assumed to be Hermi-
tian,' i.e., A® = (A®)HH,

4.2.1 The Shifted CG Method

In this subsection, the algorithm of the CG method utilizing the shift-invariance
property (4.4) is described. The CG method applied to the shifted linear systems was
considered in [207, 208], where all the Lanczos vectors have to be stored. In what
follows, the memory-efficient algorithm based on [67, 70] is described.

It follows from Corollary 3.1, (3.15), and (4.4) that applying the CG method
(Algorithm 3.1) with xo = x"’ = 0 to Ax = b and A®x® = b produces residual
vectors r, and r® == b — A©Vx® with

ro, r® e K1 (A b) LK,(Ab), k=1,2,...,m.

This means that r,,, r'© € KC,11(A, b) N K, (A, b)*, where K, (A, b)* is the orthog-
onal complement of /C,, (A, b). Since KC,,(A, b) C K,4+1(A, b),

dim (K11 (A, b) N K, (A, b)1) = 1. 4.5)

Therefore r, and all rilk) ’s belong to the same one-dimensional subspace of CV,ie.,
there exists scalar values 78 € C such that

ro=na®r® k=1,2,...,m. (4.6)

The relation (4.6) implies that if X is known, all the residuals r® can be

produced by the residual r,,. In what follows, ¥ is determined.
From (3.18), the residual vector r,| can be written as

Fupl = (1 + b "L, — anA) ro— ﬂ””anrn_l. 4.7)

Ap—1 n—1

!'Since A® is Hermitian, it follows that o € R.
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Similarly, the residual vector rflkll can also be written as
) ﬁ(k) ﬂ(k)l (k)
i =1+ gl —al @t an il - =Ealnl. @)
n—1 o,
Substituting (4.6) into (4.8) yields
(k) (k) &) (k). (k)
B o B, o,
Fusl = { 1+ =1 NN La® — q® (A + op 1) ”(:) rn— (k;” Fooi. (4.9)
o, n o, 17T,
Comparing the coefficients of Ar,, r,, and r,,_; in (4.7) and (4.9) yields
(k)
T
a® = %a (4.10)
n+1
(k) (k)
B.- 4 1
1+ Z5tal — ooy | 25 =1+ Pt (4.11)
o, T, Op—1
k) (k). (k)
ﬂn—l _ ﬁn la( )T[I‘l+1 (4 12)
o =T _m :
n—1

Oy 17—

Substituting (4.10) into (4.12) gives

(k) ! (k)
= ml (.13)

Substituting (4.10) and (4.13) into (4.11) leads to

a® = (1 + P a, + anak> n,fk) - Eocnn(k_) . (4.14)

n+1 n—1
n—1 n—1

Since ro = ré ), it follows that nék) = 1. From (3.21) and (4.14), we have the fol-

lowing relation:
T = Rus1(—0p). (4.15)

In what follows, the computational formula of the approximate solution vector

x| for (4.1) is derived from (4.8). Let p* | := (A + o, D7'(r®, — r®)/a®,,

then from (4.8) we have

o =r 50 .16
PO = r® o0 (A 4 o 1) b, 4.17)



4.2 Shifted Hermitian Linear Systems 167
Substituting r® = b — (A + o3 1)x® into (4.17) yields

k
xl =x0 +a®p®. (4.18)

From (4.6) the search direction p®) is updated by

1
P =g+ B (4.19)
n

It is worth mentioning that approximate solutions are computed without using the
recurrence (4.17). Thus, matrix—vector multiplications (A + o3 1) pflk) for all k’s are
not required, which is much cost-efficient.

Using (4.6), (4.10)—(4.15), (4.18), and (4.19), we obtain the shifted CG method
described in Algorithm 4.1. In Algorithm 4.1, the CG method is applied to A®x = b
for a given s € {1, 2, ..., m} that is referred to as a seed system, and approximate
solutions x ) for the other shifted linear systems A®)x = b are computed by using
the residual vector r, produced by the CG method.

Algorithm 4.1 has the following properties:

1. the multiplication of A and a vector is required, but the multiplications of A®
for the other k and a vector are not required;

2. the approximate solution x® of the shifted CG method is the same as the nth
approximate solution of the CG method (with x, = 0) applied to AXx® = p.

It is obvious from Algorithm 4.1 that the first property holds. The second property
is also obvious from the derivation process of the shifted CG method.

In Algorithm 4.1, the relation [|r®|| = [Ir,[|/|7¥| can be used for monitoring
the convergence of the approximate solution x ¥'. Finally, notice that for computing
A® vy, we compute Av + o, v.

4.2.2 The Shifted CR Method

The shifted CR method can be very similarly derived from the CR method in Sect.
3.1.2 and the derivation process given in Sect.4.2.1. The algorithm of the shifted CR
method is described in Algorithm 4.2.

The main differences between the shifted CG method and the shifted CR method
are the computational formulas for «*) and B*). The shifted CR method (Algorithm
4.2) has the following properties:

1. the multiplication of A and a vector is required, but the multiplications of A®
for the other k£ and a vector are not required, which is the same property as that
of the shifted CG method;

2. Unlike the shifted CG method, the approximate solution x*) of the shifted CR
method is not the same as the nth approximate solution of the CR method (with
xo = 0) applied to A©x® = p,
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Algorithm 4.1 The shifted CG method

Input: Choose a seed system s € S = {1,2, ..., m} and set r = b, ,6(3)
Input: Aandos fork=1,2,...,m

Input: x(k) = p(kf 0, nés‘k) = nf]'k) =1fork=1,2,....,m

Output: xf,k> fork=1,2,....,m

1: forn =0, l , until convergence do
2 P = >+ﬂ(s> P,
. (s) _ (’_(S)’ (S))
3w, = P9 A0 0
s 5, =) ol pl)
5:  {Begin shifted system}
6: fork(£s)=1,2,...,mdo
k k
7= ||r<”||/|n,§ ') > & b]| then
8: n,fi ) = R,H_l(os —op) < see (4.15)}
K BY y:
9: 1 + (:) Olr(zs) Olr(zs)(ffs - Uk)] Nzgs ) a(:>lar(zs)”;gs_1)
@, l n—1

(s,
k
10: ,5,(,_)1 = (nmm) ,B(S)

k (:k)
11: al = ool
b_ o e ®
. 1
12: P = (xk)"n + B, l1Pnly
13: xs?_l (k)—i-oz p(k)
14: end if
15:  end for

16:  {End shifted system}

17: rz:)_l =r — oD A®p®

(s) (s)
18: (s) — r n+l'rn+1)
G

19: end for

Algorithm 4.2 The shifted CR method

Input: Choose a seed system s € S = {1,2, ..., m} and set r(()'g) =b, ,B(fl) =0
Input: x(k) ik; =0, nés’k) = nfl’k) =1fork=1,2,....,m

Output: x,(,)fork =1,2,....m

1: forn =0, 1, ..., until convergence do

2: p(X) (Y) + ﬂ(v) )(1&)1

3 (A(s) (5) A(S)r(S) + /S(S) A(S)p(S) )
L@ @.A9rY)

S T (A® p) 4G pi)y

5 xﬁl (SJ + o[(s) ,(1&)

6:  {Begin sh1fted system}

7:  Run lines 6-15 of the shifted CG method.

8:  {End shifted system}

A

10 g — i AYn)
. no - ((”.A(‘) (x))

11: end for
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The second property comes from the fact that the nth residual vectors of the CR
method for Ax = b and A®x = b do not belong to the same one-dimensional sub-
space because the residual vectors belong to

rCR € K1 (A, b) N AK, (A, b)*,
riO® € Kt (A®, 5) N AVK,(AY, byt

Notice that /C,, 1 (A, b) = K,,11(A®, b) holds true from the shift invariance property
(4.4), but in general AK, (A, b) # APK,(A®, b). Thus,

Knt1(A, b) N AK, (A, B # Kus1 (AR, b) N AV K, (AP, b)*.

This means that r$R and r R are not produced by the same one-dimensional sub-
space, which are not collinear.

4.2.3 The Shifted MINRES Method

The shifted MINRES method is based on the MINRES method in Sect. 3.1.3, which
achieves the minimization of residual 2-norms:

min |6 — A®x®O]. (4.20)
xP ek, (A®,b) (=K, (A,b))

In what follows, we will see how the above minimization problems can efficiently
be solved, and note that the idea below corresponds to the special case of the shifted
GMRES method [43] that will be described in Sect.4.4.3.

From the Lanczos process in Sect. 1.9.4, xﬁl") € K, (A, b) can be rewritten as

x® =v,y®O k=1,2,...,m, (4.21)
where y® € C". The corresponding residual vectors for (4.1) are r® :=b —
APx® = p — (A + o I)xP. From (4.21) and the matrix form of the Lanczos pro-

cess (1.42), it follows that

r,(lk) =b—-(A+ akI)Vnyfj‘)
= Varig1e1 — (AV, + o V) y®

1
= n+1<g1e1 — n(?l,ny,(qk))7 Tn(i)l,n = Thi1n + 0k [Oﬂ ) (4.22)
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Here, e;=(1,0,...,0) " is the first unit vector and g, = (b, b)'/?. From (4.20) and
(4.22), we have

min b—APx, || = min ||V, ( e — TV (k)) H
x, €K, (A,b) ” " H yBecn n+1\81€1 n+1,nn
. k
= min |gie; = 7,5, H : (4.23)
yecn

The minimization problem (4.23) can be solved by Givens rotations that are described
in Sect. 3.1.3. The algorithm of the shifted MINRES method is shown in Algorithm
4.3.

Algorithm 4.3 The shifted MINRES method
Input: x(()k) = pg‘{ = p(()k) =0,v; = b/(b,b)lﬂ, ® = (b, b)2, B-1=0
Output: xf,k> forl=1,2,...,m

l: forn=1,2,...do
2:  {The Lanczos process}

30 ap = (v, Avy)
4 Vyy = Avy — 00, — BV
5: ﬂn = (vn+1v vn+1)1/2
6: vyl =Vuy1/Bn
7. b _ () o
e = Bn—1s tan =0n +0¢, 1 n+ln = B
8:  {Solve least-squares problems by Givens rotations}
9: fork=1,2,...,mdo
10: if g 1/161 > € then
11: for i = max{l,n —2 ,n—1d
(® <k) (k) (®
12: @ | = 7<k) <k> (1’<>"
£
i+1,n l+l n
13: end for ©
k) _ [tn |
14: =
! HaRHY, 2
(
~(k bisin (k
15: 50 = tfkl) P
k k) (k k) (k
16: 1) = (9 100
. k) _
17: tn+1‘n =0
k k k
18: I [g,ﬁk)]
¢ T s® (Lo
19: {Update approximate solutions x( )}
k k k k k
20: p” =Up — (t( )Zn/t( )Zn 2)pi(l )2 (t( )]n/t( )1 n— l)p( )
k k k) ,, (k) (k
21: ) =x )+ e /o
22: end if
23:  end for
24. if |g,(2I |/11b]] < € for all ¢, then exit.
25: end for

From Algorithm 4.3 and the derivation process, we see that:
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1. the multiplication of A and a vector is required, but the multiplications of A®
for the other k£ and a vector are not required, which is the same property as that
of the shifted CG method and the shifted CR method;

2. the approximate solution x*) of the shifted MINRES method is the same as
the nth approximate solution of the MINRES method (with xo = 0) applied to
AR y& — p

4.3 Shifted Complex Symmetric Linear Systems

Throughout this section, the coefficient matrix A® in (4.1) is assumed to be complex
symmetric, i.e., A® = (AR)T £ (AW)H,

4.3.1 The Shifted COCG Method

The derivation of the shifted COCG method [184] is the same as in (4.6)—(4.19). The
only differences between the shifted CG method and the shifted COCG methods are
a, and B,. The algorithm of the shifted COCG method is described in Algorithm
4.4,

Algorithm 4.4 The shifted COCG method (note: (@, b) = a'b)

Input: Choose a seed system s € S = {1,2,...,m} and set r(()‘y) =b, /3(_? =0

Input: x(()k) = pg? =0, n(gs’k) = ﬂfl'k) =1fork=1,2,....,m
Output: xf,k> fork=1,2,...,m
1: forn =0, 1, ..., until convergence do

R

6) _ @)

3 e = @Y. A9 py)
5 2, =0 b g
5:  {Begin shifted system}
6:  Run lines 6-15 of the shifted CG method.
7:  {End shifted system}
6 1, = D ol A0
9 () _ foll’rftxﬁ)»l)
- @)
10: end for

Algorithm 4.4 has the following properties:

1. the multiplication of A and a vector is required, but the multiplications of A®
for the other k and a vector are not required;

2. the approximate solution x % of the shifted COCG method is the same as the nth
approximate solution of the COCG method (with xo = 0) applied to A x® =
b.
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When matrix A® is real symmetric for all k, the shifted COCG method is
equivalent to the shifted CG method.

In [190], the shifted COCG method is generalized to solving the following linear
systems:

(A+ o B)x® =b, (4.24)

which are referred to as generalized shifted linear systems. Here A and B are real
symmetric and o} ’s are complex numbers, and thus the coefficient matrix A + o3 B
is complex symmetric. It is easy to see that if B is the identity matrix, then the
generalized shifted linear systems (4.24) reduce to the shifted linear systems.

We note that the shifted COCG method and the other shifted Krylov subspace
methods cannot be applied to (4.24) because the shift invariance properties do not
hold any longer, i.e., IC, (A + 0; B, b) # K,(A 4 0B, b) for i # j. One remedy is
to consider the following shifted linear systems:

(B'A+ o0, )x® = B~ ',

where B is assumed to be nonsingular. However, B~ 'A + o1 is non-Hermitian,
and thus one may use shifted Krylov subspace methods for non-Hermitian linear
systems. On the other hand, without using such general solvers, it is shown that an
algorithm similar to the shifted COCG method is constructed, which is referred to
as the generalized shifted COCG method [190]. If B = I, the generalized shifted
COCG method reduces to the shifted COCG method.

As pointed out in Sect. 2.2.1, if the Hamiltonian matrix is real symmetric, then
the coefficient matrices (¢ +i8)I — H of the shifted linear systems are complex
symmetric. Thus the shifted COCG method is a method of choice, and applications
to computational physics are found in, e.g., [73, 110, 111]. An open-source library
of the shifted COCG method and related solvers is developed in [100].

The generalized shifted linear systems also arise in the following linear systems:

(6>?A+0B+C)x =b, (4.25)

where A, B, C are complex symmetric. Parameterized linear systems of this type
are considered in [158, 159], together with their application to structural dynamics.
The interesting observation in [158, §3] is that (4.25) can be transformed into the
following linear systems:

([CBT g} te [2 _ZTD m = m (4.26)

if C is nonsingular. Since A, B, C are complex symmetric, the coefficient matri-
ces of (4.26) are complex symmetric generalized shifted linear systems. Thus, the
generalized shifted COCG method can also be used to solve (4.25).
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4.3.1.1 Seed Switching Technique

We can see from Algorithm 4.4 (see also line 8 of Algorithm 4.1) that if |7r,§s’k)| =
|R® (05 — 0y)| > 1, then |[r®|| < ||r'|. Hence, if we could find a seed system such
that |R®) (o5 — oy)| > 1, then all the shifted systems could be solved. However, it is
extremely difficult to find such a system in advance except for some special cases
discussed in [67, Corollary 1]. The seed switching technique [166] will avoid such
a problem, and consists of the following steps:

(S1) Choose a seed system, and then start Algorithm 4.4.

(S2) If the seed system was solved at the nth iteration, then find a new one that
remained unsolved.

(S3) Start Algorithm 4.4 from the (n + 1)th iteration using the new seed system.

In (S2), one of the criteria for choosing the new seed system § may be
§ = argmax{|r, |}
iel

where [ denotes an index set of the unsolved linear systems. In (S3), we need two
steps to switch the old seed system to the new one. First, compute

-\ 2
(5,5) (s) 5 (s,5)
n:-sl RnA-H (U‘V - 0’5)’ :Br(LS) = ( ¢ S)/n’né-l—bl > an

to obtain r’), and SO p®. Since it follows from r'), + 5 p® that we obtain
pf,ﬁ)rl, one can start the COCG method solving the system (A + 05:7)x® = b from
the (n + 1)th iteration step. Second, to solve the remaining linear systems by using
the new seed s, the parameters oz,(,'}r] and B must be generated from the new seed.
We see that they can readily be generated by the following polynomial:

7% = RY) (05 —oy) forall i el

To obtain the above polynomial, one needs to compute

- - - -\ 2
() (5.8) s (5.5) (5) (5,5) ,__(5.5)
o = (w O/l ) @i 87 = (7O rmY)

fori =0,...,n, j=0,...,n— 1. Hence, the switching strategy requires only
scalar operations, and moreover we can see that if breakdown does not occur, iterating
the process from (S2) to (S3) enables us to keep solving the systems without losing
the dimension of the Krylov subspace that has been generated until the last switching.

The seed switching technique enables us to be free from the problem of the choice
of the seed system, and can also be applied to the shifted CG method in Sect.4.2.1
and the shifted BiCG method in Sect.4.4.1, since the residual vectors of the shifted
CG (BiCG) method for shifted systems are true CG (BiCG) residuals.
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4.3.2 The Shifted COCR Method

The derivation of the shifted COCR method [172] is also the same as in (4.6)—
(4.19). The only differences between the shifted CR method and the shifted COCR
methods are o, and B,,. The algorithm of the shifted COCR method is described in
Algorithm 4.5.

Algorithm 4.5 has the following properties:

1. the multiplication of A and a vector is required, but the multiplications of A®
for the other k and a vector are not required, which is the same property as that
of the shifted COCG method;

2. unlike the shifted COCG method, x© of the shifted COCR method is not the
same as the nth approximate solution of the COCR method (withxy = 0) applied
to AOx® = p.

Algorithm 4.5 The shifted COCR method (note: (a, b) = a'b)

Input: Choose a seed systems € S = {1, 2,...,m} and set r(()s) = b, /S(jf =0

Input: x(()k) = pg(} =0, n(gs’k) = n(_sl’k) =1fork=1,2,..., m
Output: xf,k) fork=1,2,..., m
1: forn =0, 1, ..., until convergence do

gl = L,

3 (A9pY = ALY 1+ B0 AC P )
(5) A (s),.(5)
4: (s) — 7(711 AWy )
o= Ao A0 D)
5 5= 1 o gl
6:  {Begin shifted system}
7:  Run lines 6-15 of the shifted CG method.
8:  {End shifted system}
0 = D ol A )
10: (s) — foll.A(“')rL’?rl)
com 7. A0 D)
11: end for

When matrix A® is real symmetric for all k, the shifted COCR method is equiv-
alent to the shifted CR method.

4.3.3 The Shifted QMR_SYM Method

The shifted QMR method for solving non-Hermitian linear systems was proposed in
[62]. As is known in [61], the shifted QMR_SYM method is a simplification of the
shifted QMR method, and the derivation of the shifted QMR_SYM is similar to the
shifted MINRES method.
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From the complex symmetric Lanczos process in Sect. 1.9.3, x,, € K,(A, b) can
be rewritten as
x® =vy® k=1,2,...,m, 4.27)

where y® € C". The corresponding residual vectors for (4.1) are r® := b — (A +
o 1)x® . From (4.27) and the matrix form of the complex symmetric Lanczos process
(1.41), it follows that

r® =b—(A+o)V,y®
= Vnt+181€1 — (AVn + O—kVn)y;k)

I,
= ,H_](g]el THny;“), T, = Thpin +ou [OT]' (4.28)

Here, e,=(1,0,...,0)7 is the first unit vector and g1 = (Z, b)'/2. As well as the
QMR_SYM method in Sect. 3.2.3, y®) is determined by solving the following min-
imization problem.

(k)

min ||gie; — T()lnyn

yPeCn

‘ . (4.29)

The minimization problem (4.29) can be solved by Givens rotations that are described
in Sect. 3.1.3. The algorithm of the shifted QMR_SYM method is shown in Algo-
rithm 4.6.

Algorithm 4.6 holds the following properties:

1. the multiplication of A and a vector is required, but the multiplications of A®)
for the other k and a vector are not required, which is the same property as those
of the shifted CG method and the shifted CR method;

2. the approximate solution x®) of the shifted QMR_SYM method is the same as
the nth approximate solution of the QMR_SYM method (with x¢y = 0) applied
to AVx® = p,

Algorithm 4.6 The shifted QMR_SYM method (note: (@, b) = a'b)
Input: x{ = p* = pi = 0,0, = b/®,5)'/2, ¢ = B,8)'/2, -1 =0
Output: x,(,k) forl=1,2,..., m

l: forn=1,2,...do

2:  (The complex symmetric Lanczos process)

3 ay = (Vy, Avy)

4 Uy :7Avn — Uy — Bu—1Vn-1
5 ﬂn = (5n+17 5n+1)1/2

6: Vpyl = f’n+l/ﬂn
7.

8

9:

{4 (¢4 (
tyE_)L,, = Bu-1, [n,r)z =, +0¢, tn-lzl,n = B

(Solve least-squares problems by Givens rotations)
Run lines 9-24 of the shifted MINRES method.
10: end for




176 4 Applications to Shifted Linear Systems
In [60], the following shifted linear systems are considered:
(A+ o Dx® = b, (4.30)

where A is Hermitian and o}’s are complex numbers. Thus the coefficient matrix
(A + oy 1) is neither Hermitian nor complex symmetric. In this case, one may use
the shifted QMR method for non-Hermitian shifted linear systems. On the other hand,
there is an algorithm in [60] that is more efficient than the shifted QMR method so
that the multiplication of (A + o} 1 )" and a vector is not required, i.e., the number of
required matrix—vector multiplications is only one per each iteration step. The key
idea is to generate a Krylov subspace of K, (A, b) by the Lanczos process, and the
basis vectors are used to solve (4.30). Note that if we generate /C,,(A + o I, b) with o
being a complex number instead of K, (A, b), then we need the bi-Lanczos process
whose computational cost is about twice as large as that of the Lanczos process when
the matrix—vector multiplication is the most time-consuming part.

In [168], the shifted QMR_SYM method is generalized to solving (complex sym-
metric) generalized shifted linear systems (4.24). Similar to the generalized shifted
COCG method as mentioned in Sect.4.3.1, the generalized shifted QMR_SYM
method [168] reduces to the shifted QMR_SYM method when B = I. Furthermore,
based on the shifted weighted QMR_SYM method in [167] for complex symmetric
shifted linear systems, the corresponding algorithm for solving complex symmetric
generalized shifted linear systems is proposed in [168].

4.4 Shifted Non-Hermitian Linear Systems

Throughout this section, the coefficient matrix A% in (4.1) is assumed to be non-
Hermitian, i.e., A® £ (A®)H,

4.4.1 The Shifted BiCG Method

As seenin Sect.4.2.1, the ith residual vector r; of the CG method for the seed system
Ax = b and the ith residual vector r{ for the shifted system (A 4+ o /)x? = b are
collinear. Theorem 4.1 is a generalized result of the condition that two residual vectors
of a Krylov subspace method are collinear.

Theorem 4.1 ([67]) Let W, € W, C --- € Wy be a sequence of subspaces of CN
such that dim(W;) =i and W; N K1 (A, ) = (0} fori =1,2,... k. Let x; €
ICi (A, b)* be an approximate solution of Ax = b defined via the following Petrov—
Galerkin condition of the residual r; = b — Ax; = p;(A)b:

ri LW, fori=1,2,...,k,

where p;i(A) = Y i_, ci Al
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Similarly, let x{ € K;i(A+ o1, b) = K;(A, b) be the approximation to the solu-
tion of (A + o 1)x? = b with the residual r’ = b — (A +o1)x? = p7 (A+o1)b,
again satisfying

rf LW, fori=1,2,... k.

Thenr; and r? are collinear, i.e., there exists w7 € C such thatr; = n]r{.

Proof Let Uy, U, be subspaces of CV. Then from standard linear algebra, it follows
that (U, N U,)* = Ull + UZJ‘. From assumption W; N IC;1 (A, b)* = {0}, we have

(Wi NKin1(A, D)) = (0F & W+ Kii(A,b) =CV. (4.31)

dim Wil =N —iand K;41(A,b) =i+ 1, and thus dim Wil +dim C; (A, b) =
N + 1. On the other hand, from (4.31), dim(Wil + Kit1(A, b)) =dimCN = N.
Thus

dim(W N i1 (A, b)) = 1.

Since r;, r{ € Ki+1(A,b) N WiL, two residual vectors r;, r{ lie in the same one-
dimensional subspace, which means that r;, r? are collinear. 0O

Theorem 4.1 indicates that using the relation W,, = IC,,(AY, r(), the BiCGresidual
vector r, from Ax = b and the BiCG residual vector rﬁlk) from (A + o, Nx® = b
are collinear, i.e.,

(k) (k)
o,

r,=m,

Thus, following the derivation of the shifted CG method in Sect.4.2.1, the algorithm
of the shifted BiCG method is obtained, which is listed in Algorithm 4.7.

Similarly, the BiCR method in Sect. 3.3.3 is developed to solve shifted linear
systems, which is referred to as the shifted BiCR method in [85].

4.4.2 The Shifted BiCGSTAB Method

The shifted BICGSTAB method and the shifted BICGSTAB(£) method are proposed
in [67]. Since the derivation of the shifted BiICGSTAB(£) method is somewhat com-
plicated, the derivation of the shifted BIiCGSTAB method is described, which is based
on the explanation in [140].

For the derivation of the shifted BICGSTAB method, we consider the seed system
Ax = b and the shifted system (A + o I)x” = b.

First of all, let us recall the BICGSTAB method in Sect. 3.3.8. Let r,1; be the
residual vector of the BICGSTAB method. Then r,; and the other iterates ¢,, p,,,
x, are described by
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Algorithm 4.7 The shifted BiCG method

Input: Choose a seed system s € S = {1,2, ..., m} and set r(()s) =b, ,B(_Af =0
Input: Aando; fork =1,2,.

Input: x(k) = p(kf = p*(k) 0 Jt(A - isl‘k) =1fork=1,2,....m
Input: Choose rO e CVN ,e.g., r0 =ry

Output: xﬁ,k) fork=1,2,....,m

1: forn =0, 1, ..., until convergence do
g (s)
2 pif) _ r,,‘) +5(X)1P;(f)l’ p:;(’) *(S) +I3HS lpz(:)
C QW @)
T
bl = )
5:  {Begin shifted system}
6:  Run lines 6-15 of the shifted CG method.
7:  {End shifted system}
8- 221 _ (S) (S)A(s)pgf)’ r:?l — r:(S) _ EnA(S)Hp:(S)
9 g _ ni”l i)
n - (r n(S)’ (S))
10: end for
BiCG
= Q0u(A)p, " =rn+ Bu1(Py_y — Ci1AP, )
gnfl
=r,+ ﬂnfl |:Pn_1 + (tnfl - rnfl) s
Qn—1
BiCG
t, = Qn(A)rn.l;_l =r, — OlnAPn,
. BiCG

Fpty1 i = Qn+1(A)rn.lq.1 =t, — L Aty,

Xp+l = Xy + anp, + Cntn’
where rBICG and pBi€C are the BiCG residual vector at n + 1 iteration step and the

BiCG search direction at n iteration step respectively, and the polynomial Q,;(z)
is defined by

Qo(A) =1, (4.32)
Ont1(A) =1 =52)0,(1), n=0,1,... (4.33)
As for the BICGSTAB method, ¢, is determined so that ||7,4 || is minimized.

Recall that the residual vector of the shifted BiCG method in Sect.4.4.1 for (A +
o 1)x® = b is written as

0,BiCG __ co BiCG o
n+1 - sn+lrn-‘r1 ’ %-n-H eC

Here, from (4.14), the scalar &7 | is defined by
we have

o = (m7,,)"" for all n, and thus
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1

o —
En‘H o Bu-1 Bu-1 o
(1 + a:—:]an + ancr) e — 2=,

[ n—1
1
1 4 Bot oy—1 _ But o -1
+ i oy + o0 (én ) P oy (sn—l)
§r & 101

(4 0,0) E7 ot + apfu1 (BT —E0)

(4.34)

where §7, = &7 = 1.
We are now ready to describe the shifted BICGSTAB method. The residual vector
of the shifted BICGSTAB method is defined by

o.STAB ._ o 0.BiCG
rg = Qu g (A,

where Q| (A) are recursively defined as
Q7. M) =[1-¢/A+)]07), n=0,1,... (4.35)

with Qf () := 1. Here, ¢; is determined so that the shifted BICGSTAB residual and
the BICGSTAB residual are colinear, i.e.,

.STAB TAB
=i, o eC.
To this end, ¢ is determined so that
QZJr] ()") = :,7+1 Qn+1()\)9 ‘C:Jrl eC. (436)

Then, the residual vector of the shifted BICGSTAB method is defined and written as

o,STAB | __ 0,BiCG
rn+l s QZJrl(A)rn-H
BiCG
= Ty 11 Qnt1 (A& 415
o o BiCG
= n+1§n+1 Qn+1(A)rn+1

_ .0 o STAB
- Tn+1§n+1rn+1 . (437)

In what follows, the parameters 7,7, &7, ; in (4.37) are determined. It follows from
(4.33), (4.35), and (4.36) that

(1= 500, = [1 =670+ 0)] 77 (M) . (4.38)
——
[N O) 27 )

Comparing the coefficients on both sides of (4.38) yields
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CnTyi1 =80T T = (L =§J0)T),

from which, we obtain

T}? o é‘”

1+ &0’ ‘

7, = = , 4.39

n+1 n 1+ §n0 ( )
where 7§ =1 from the relation (4.36) and Qf(A) = Qo(A) = 1. The shifted
BiCGSTAB iterates for (A + o I)x® = b are now given by

- - o.Bi - - o C;ll o o
P, = Qn (A)pnB 0= r, + ﬂn—l |:pn—l + ! (tn—l - rn—l)]

oy
opo o | a0 $i1 o o0 o
=1,8 1+ B, |:Pn1 + o ltnfl(sn b — 5”1’7:1)] ; (4.40)
17 = Op (Ary i = &7 QuriSC = 1767, (4.41)
Fopl = QZH(A)"ZfliCG = :+1€;+1Qn+1r5i+ch = ‘c,‘fﬂ“g‘,‘zﬂriEB, (4.42)
Xop =X, Hopy (4.43)

From (4.34), (4.39), (4.40)—(4.43), the shifted BICGSTAB method is obtained, and
the algorithm is written in Algorithm 4.8.

4.4.3 The Shifted GMRES Method

In this subsection, the shifted GMRES method [43] is derived. To this end, we
consider applying the GMRES method to the shifted linear systems (A + o /)x = b.
For simplicity, the initial guess is set to xo = 0. Then the GMRES method finds an
approximate solution over the following Krylov subspace:

x, e Ky(A+ol,b). (4.44)
It follows from the shift-invariance property (4.4) that we have ,(A + o1, b) =
K. (A, b). Thus when using the Arnoldi process, the orthonormal basis vectors of
K.(A + o1, b) are equivalent to those of IC, (A, b), i.e., V, in Sect. 1.9.1. Then,

(4.44) and the corresponding residual are written as

xgz‘/nyna yne(cn
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Algorithm 4.8 The shifted BICGSTAB method

Input: x0 =0,p_, =0,ro=5,8_1=0
Input: Choose ry € CN,e.g., ri =r¢

Input: x(()k)

Output: xf,)
l1: forn=0,1,... do

20 py=rn+Bu-1(Py_i —Sn—1AP,—1)

. (ro ry)
3 (’0 Ap,)
4: tn =r, — o, Ap,
. _ (Atyty)
S n = Cig,aty
6: Xupr1 =X, +ayp, + ity
7. rpy) =1t — {n Aty
. _ay (rrn+1)
8 Bn=7%r X Gy
9:  {Begin shifted system}
10: fork=1,2,...,mdo
11 g0 £PEY 0,
L e )
®)
12: a,(,k) = i”(*)' o
k n
13: P = 1+C{ —
k k k k) ,(k
14 x®, =x® 1o pP 4 B
o)
15: =

n+l 1+[/,a

2
k g
16: ,p:(% Bk
Sn
. k k k k k k k) ,(k k
7 = 0 [ ol + Sl (600 — 60, |
18:  end for

19:  {End shifted system}
20: end for

=0.p" =b Y =0,a") =64 =Y =V =1fork=1.2,...

,m

and

rp=b—(A+oDx;
= ||b]|Viyi1€1 — AVyy, —0oVyuy,

= ||b||Vn+lel - Vn+lHn+1,nyn - O'Vn-ﬁ-l )E)ni|

1
= ”b”V'H'lel - Vn+1Hn+1,nyn AL 0$i| Y

ol, 1
— Vn+l [”b”el - (Hn+1,n + |:0Ti|> Yn

= Vorr (Ibller — HZ, ,3,)
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where 1, is the n x n identity matrix and H,’,, , is a so-called shifted Hessenberg
matrix whose elements are (H,),| ,)ij = (Hyt1,2)i; for i # j and (H7, | )i; =
(Hy41,0)i,j + o fori = j. Then similar to (3.63), the residual norm can be minimized
by solving

yy = argmin [|fe — Hyy ,yl.

The above least-squares problems can be efficiently solved by Givens rotations that
are described in Sect. 3.1.3. Using y¢,, the approximate solution is now given by

x> =V,ys.
If the coefficient matrix A is Hermitian and o € R, then the shifted GMRES method

reduces to the shifted MINRES method in Sect.4.2.3. The algorithm of the shifted
GMRES method is written in Algorithm 4.9.

Algorithm 4.9 The shifted GMRES method
Input: oy (k=1,2,...,m)
Output: xf,k> k=1,2,...,m)

(k)

1: g = (|bII.0,....0)". vy = b/|] 19: o) = —twal___
2 forn=1,2,... do I 1, 2
3:  (Arnoldi process) - nE

. C_ k &), (k k), (k
5. fori=1,2,...,ndo 21: h,gzl =C;(1 >hfl},+s,(1 )hfhalﬂ
6: hi,n = (1),‘, t) 22: h(k) =0
7. t=t-— hiiyy,?),' : n+}€,n - ) .
8: end for 23: gr(t ) _ C;(1 ) sé ) glsk)
9 hugin =t ' g[S (Lo
10: vpgp1 =/ hntin 24: (Check convergence)

. 0 ohi . . k
11: {](B;(f):gm shifted system} 25: if ‘gr(t-gl I/1B]l < €, then
12: h;, =hi,fori #n « -1

5" 26: = v, (HP) g®

. (k) n n n 4
13: hn,n = hn,n + ok . .
14: fork=1,2,...,mdo 27: end if
15: {Givens rotations} 28: end for‘
16: fori=172 ... n—1do 29:  {End shifted system}

(k) koK 5] 30: end for
SRR
hiin =S G hiiin

18: end for

The differences between the GMRES method and the shifted GMRES method are
the initial guess x( = 0 and line 13 in Algorithm 4.9 which corresponds to producing
H7 ., - Note that after Givens rotations H, becomes the upper triangular matrix, and
thus ¢® := (H®)~!g in line 26 can easily be obtained by solving H®X'¢® = g.

As mentioned in Sect. 3.3.5, the GMRES method is not practical when the number
of iterations is large, due to growing memory requirement and computational costs.
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Instead, the restarted GMRES method is useful in practice, and was described in
Algorithm 3.17. For the same reason, the shifted GMRES method is not practical
when the number of iterations is large. It is therefore natural to consider the restarted
version for the shifted linear systems. However, if we use the idea of Algorithm 3.17,
then we face a difficulty in that after the restart the initial residual vectors r(()i) and réj )
are, in general, not colinear any longer, and thus we cannot share the basis vectors
of Krylov subspaces for solving shifted linear systems.

Frommer and Grésner [68] nicely circumvented the difficulty. In what follows,
the idea and the corresponding algorithm are described. Let r,, be the residual vector
of the GMRES method for Ax = b. Then they consider forcing the residual vector
r{ for the shifted system (A 4 o /)x? = b to become collinear with r,,, i.e., find the
approximate solution x> = x§ + V,, 5, such that

ry = Burn.
r, 1S written as
r,=b—Ax, = Vn+lzn+19
where 2,41 = ||roller — Hy+1,,Y,- We now have the following equation:

ry =pBur, & b—A%x;, = B, Vir1Zati
S b—A(xq + Voyy) = B Vasi1Zasi
& Boro — AV, yy = B Vas1Znt1
& Boro — Var1 By Y0 = BaVas1Znt
& Boro = Var1(Buzns1 + Hy ,¥7)
& Va1 (H 1 Y0+ BuZas1) = Boro
& Va1 (Hy Y0 + Buzar1) = Boliroll Varien
< HJ Yy + Buzusr = Bollroller,

from which B, and y;, are determined by solving the following (n + 1) x (n + 1)
linear systems:

[Hr?+l,n z”+1] [-;ni| = 130||r0||el‘ (445)

After the restart, the new initial residual vectors ro(=r,), rj(=r;) become
collinear. Thus we can use Krylov subspace K, (A, b) for Ax = b to solve shifted
linear systems (A + o 1)x° = b°.

The algorithm of the restarted shifted GMRES method is given in Algorithm 4.10.
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Note that from the relation ||r|| = ||[8®r, | one can check the convergence of
|lr®| of Algorithm 4.10 by monitoring || x ||, ||. For further developments of
the (restarted) shifted GMRES method, see [55, 105, 115, 175], and the references
therein.

The full orthogonalization method (FOM) [149] is an extension of the CG method
to solving non-Hermitian linear systems. As well as the CG method, the residual
vector rfOM of the FOM satisfies

r'oM(e K,,1(A, b)) L K, (A, b).

Algorithm 4.10 The restarted shifted GMRES method
Input: oy (k=1,2,...,m)

Input: xo € CV

Input: Set x(()k) e CV such that r(()k) = ,Bék)ro, e.g.,xp= x(()k) = 0 for all k.
Output: x,(,k) k=1,2,...,m)

1ro=b— Axo, B = |roll

: Run the Arnoldi process in Algorithm 1.8 with v; = ro/B.

: Compute y, such that |8e; — H,41.,Y, | is minimized.
LXy =X+ Vnyn’ Zn+l1 = ,Bel - Hn+l.nyn

: {Shifted systems}

cfork=1,2,...,mdo

& o1,
Hn(-%—)l.n =Hyy10+ |: OT’I]

I Y N

(k)
k
8:  Solve [H)Eljr)l’n an] [;?k):| = /38 )Be.
n

9: xP = x(()k) + Vn,yf,]f)

10: end for

11: if not convergence then

12:  Setxg = x,, xgk) = x,(lk), ﬂ(()k) = ,(lk), and go to line 1.
13: end if

When the FOM is applied to shifted linear systems, we have
rofoMe K (A+ol,b) LK, (A+0ol,b).
Then from the shift invariance property IC,(A + o1, b) = K, (A, b), it follows that

rFOM poFOM ¢ g (A, b) N K, (A, b)" .

From (4.5), the two residual vectors rSOM, rg’FOM belong to a one-dimensional
subspace. Thus the residual vectors applied to Ax = b and (A +o1)x° = b are

collinear. This implies that we do not need to consider the trick (4.45) for keeping



4.4 Shifted Non-Hermitian Linear Systems 185

collinearity when considering the restart, since the residual vectors are collinear at
each iteration step. For the details of the restarted shifted FOM, see [158]. Further
development of the restarted shifted FOM, see [55, 112], and the references therein.

4.4.4 The Shifted IDR(s) Method

The IDR(s) method in Sect. 3.3.9 is extended to solving shifted linear systems and the
algorithm is referred to as the shifted IDR(s) method [48]. Prior to the derivation of
the shifted IDR(s) method, a variant of the IDR theorem (Theorem 3.4) is described
next.

Corollary 4.1 ([48]) Let r{’ (i =1,...,m) be collinear to each other, Gy’ =
Kn(A+o0il, r(()')), S be a subspace of R", and define sequences of subspaces g}’) as

g =[1-o(A+aD] @2 NS o £0, j=12..,

J

then it holds that gj(,” = gf) S g;."”.

Corollary 4.1 implies that if we consider solving the following linear system (seed
system) and shifted linear system:

Ax =b, (A+oD)x° =b,

then the collinear approach, as described in the shifted BICGSTAB method, r; =
{7 r{ is promising, since r; =0 and 77 # 0 lead to r{ = 0. Here r; is the ith
residual vector of the original linear system (seed system) Ax = b and r{ is the ith
residual vector of the shifted linear system (A 4+ o 1)x° = b. We now describe how to
compute r¢; from the information ry; whenr; = 77r? (77 € C,i =0, 1,...,k).
From the initial step of the IDR(s) method in Algorithm 3.24, the initial residual
vectors of the seed system are given as

rk+1=rk—a)kArk, (k=0,...,S—1). (446)
Similar to (4.46), the initial residual vectors of the shifted system are as follows:
rig=r; —o{(A+ohry =1 —-owl)ry — of Ary, (4.47)

where the parameters o] € C are unknown.
Substituting the relations r; = 77r{ (i =0, ..., k) into (4.46) yields

[

T b4

o _ k o k o

Tl = —5— I —og——Ary. (4.48)
k+1 Tyl
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From the relations r; = 77 r?, (4.46) and residual polynomial R;(0) =1, r; =
R; (A)ry, it follows that
{n; = Ri(—0),

o _ o o
T = Ty +oomy .

Thus, parameter 7, ; in (4.48) can be obtained when 7 is computed.
Comparing the coefficients of (4.47) and (4.48), we obtain ] = wymy /. The
corresponding approximate solution of the shifted system is written as

X =X +oiry. (4.49)

Next, we describe the derivation process of ri ; by using ry in the main step
of the IDR(s) method in Algorithm 3.24. From (3.110) and (3.111), vy and rj; of
the IDR(s) method are written as

s—1

vk—rk—ZyzArk 1= =y)re+ Y (= veDvre s + vk, (4.50)
=1 =1

Fi+1 = ([ — ij)‘Uk. (451)
It follows from (4.50) and (4.51) that we obtain
s—1
revr = —wjA) ((1 —yOre+ ) (= vier + )/sl‘ks) . (4.52)
=1

Residual vectors of the shifted system in the same form of (4.52) are defined as
follows:

s—1
i = (1 -0 (A +01)> ((1 v+ 207 = v + VsU’Z—s)
=1

o® s—1

= (1 -1 ;wq A) (1—-009) ((1 =+ = vri + y;’rzs) ,
J =1

(4.53)

where parameters o7, yy', ..., y] € C are unknown. Substituting r; = n7r? (i =
0,1,...,k+ 1) into (4.52) yields

s—1 7°

= —wA) (- )= rk+2(yz Vi) e 4y, f,frzy :
k+l =1 k+l k+1

(4.54)
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It follows from (4.52), r; ==7r{(i =0,1,...,k+ 1), and R;(0) =1 that we
obtain 7t as follows:

s—1
i =0+ wjo) ((1 —yDrg + Z(Vz — Y1), + yxn,fs) . (4.55)
=1

Comparing the corresponding coefficients of (4.53) and (4.54) gives

o

A .
l-ow] = wj,
I—n Ty
L-yp = 52 x 25
Vi T=0w? nk*‘”n (4.56)
O _ ., 0 _ VNTVi+l k=1
Vi =V T 1w X ag
O ¥y T
Vs = l—aa)‘j’ Ty
forl =1,2,...,s — 1. From (4.56), parameters oy, ¥/, ..., yy are determined as
o — _“9
wj - I+ow;’
o
vl = 1—(1—7/1)(1+aa)j)#+1, 4.57)
wy
VﬁH =y — -y +ij)ﬂ]1§+z]

forl=1,2,...,s — 1.
Using therelationr{, | = b — (A + o I)x}_ |, the approximate solutions x7_ , can
be derived from (4.53) as

s
X0 = X0 +o7v) = Y v Ax] ., (4.58)
=1

where v] =r{ — Y",_, y7 Ar{_,. For practical computation, one can express v by
the residual vectors ry_g, . .., r; of the seed system.

All the steps above give the shifted IDR(s) method as described in Algorithm
4.11.
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Algorithm 4.11 The shifted IDR(s) method (Seed system: (A 4 oy1)x = b)

Input: x(')_0,r0:b,PeC”“,7r(§f")zl,ai fori=1,...,m
Output: xDfori=1,....,m

l:fork=0,1,...,5s —1do

2: v=(A+0fI)rk,w=vHrk/vHv

3: AXCG,k+1)=wrig, ARG k+ 1) = —wv
4 x), —x,ﬁf) FAXCk+ 1), res1 = e+ ARG K+ 1)
5:  (Iteration for shifted system)
6: fori(# f)=1,2,...,mdo
7 if [r”] > €l|b|| then
8 ol =n" tee —opm” o = pre s
9: xl(clJ)r] = l) + w:fm
10: end if
11:  end for
12: end for
13: j=1,k=s5,M = PUAR h = Pir,
14: while stopping criterion is not satisfied do
15 forli=0,1,...,sdo
16: Solve ¢ from Mc =h
17: q=—ARc,v=rr+q
18: if / = 0 then
19: t=(A+orDv, w=to/tHt
20: ARG, j)=q —wt, AX(, j) =—AXc+ wv
21: else
22: AX(, j) = —AXc + wv, ARG, j) = —(A+ o, DAXC, j)
23: end if
24 Fit1 :rk—i—AR(:,j),x(f) —x(f)—&—AX(:,j)

k+1 k
25: sm = PHARC, J), M, j)=8m,h =h+dm
26: (Iteration for shifted system)
27: VI=Cjm1,2=Cj—2,...,Vj—1 =C]
28: Vi =Cs,Vj+2 = Cs—1,..., Vs = Cj
29: fori(# f)=1,2,...,mdo
30: if ||| > ¢[|b|| then
31: ai =1+ w(o; —oy)

. s—1

32: n,iii) =q; ((1 - yl)nlif") + Z (yg — yg+1)ﬂ<f Dy y;n,ﬁf?)
33: =11 - yl)nkf”/n,ﬁﬂ)
34: yg? =y = (g — yg+1>a,nk D) g=1. 51
I . Sl s >
36: end if
37: end for
38: k=k+1,j=j+1
39: j={ —1)%s+1 (%: modulo operation, i.e. a%n = r, where a = mn +r.)
40: end for

41: end while




Chapter 5 ®)
Applications to Matrix Functions e

The square root of a positive number received attention in the ancient world. Indeed,
an approximation to +/2 is found in the Yale Babylonian Collection YBC 7289 clay
tablet, which was created between 1800 BC and 1600 BC.

On the other hand, the notion of matrix functions such as matrix square root is
relatively new: the notion of the square root of a matrix was found by Cayley in 1858
[33], and a definition of matrix functions was given by Sylvester in 1883 [180].

Nowadays, matrix functions arise in many scientific fields such as particle physics,
quantum information, and control theory, thus efficient numerical algorithms have
been developed by many researchers.

In this chapter, the definition of matrix functions is described, and then numerical
algorithms of matrix functions are described such as matrix square root, matrix pth
root, matrix exponential, matrix logarithm, and matrix trigonometric function. We
will see that Krylov subspace methods or shifted Krylov subspace methods can be
useful for computing specific elements of the large matrix functions. The best-known
book on matrix functions is Higham’s book [97]. In what follows, the explanations
of matrix functions are based on [36, 97, 154], and the size of matrix A is n-by-n.

5.1 Jordan Canonical Form

Among some equivalent definitions of matrix functions, we adopt the definition using
Jordan canonical form. In this section, Jordan canonical form is explained.

Definition 5.1 (Jordan block) The following m x m square matrix is referred to as
a Jordan block:
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where A, € C. Since J; is the upper triangular matrix, all the eigenvalues of J; are
the same as the diagonal elements, i.e., A.

Definition 5.2 (Jordan matrix) The direct sum of Jordan blocks J; € C™>™ ], €

Crmaxmz L J, € C"r*™r s given by
Ji
J>
J =diag(Ji, o, ..., Jp) = ) e C, (5.1)
Jp

The matrix is referred to as a Jordan matrix. Here, n =m; +my+ - +m,,
and the symbol diag(J;, J2, ..., J,) denotes a matrix whose diagonal blocks are
Ji, Do, oo Jp.

Example 1 Let p=3,m; =2, my=1,m3=3, 1 =1, =A3 =2. Thenn =
m; + my + m3 = 6, and we have the following 6 x 6 Jordan matrix:

11[0/000

01]0{000

. 00]1{000

J =diag(Jy, J2, J3) = 00[0[210
00[0|021

00]|0{002

Theorem 5.1 (Jordan canonical form) A square matrix A € C"*" is similar to a
Jordan matrix, i.e., for any square matrix A, there exists a nonsingular matrix Z
such that

Z7'AzZ = J.

The form A = ZJZ~" is referred to as the Jordan canonical form of A.

Example 2 The following matrix is similar to the Jordan matrix J in Example 1.
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-1 1-1-2-2-1

1 2 2 1 2 1

A= -3 -3-4-3-5-3

o 4 0 3 5 4 2

4 4 7 4 8 4

-3-2-5-3-5-1

Indeed, we see that Z~'AZ = J, where

1 0 0-1 0 O 311211
0O 1-1 0 1-1 132111
_ 0-1 2 0-2 1 o[ 123121
Z= -1 0 0 2 0-1}" Z0= 211211
0 1-2 0 3-2 112121
0-1 1-1-2 4 111111

Among several definitions of matrix functions, a definition using Jordan canonical
form in Theorem 5.1 is adopted in the next section.

5.2 Definition and Properties of Matrix Functions

The set of all the eigenvalues of matrix A is called the spectrum of A. The definition
of a function on the spectrum of a matrix is given as follows.

Definition 5.3 (function on the spectrum of a matrix) Let A, A,, ..., A, be dis-
tinct eigenvalues of matrix A, and let n; be the size of a Jordan block with respect to
eigenvalue A; of A. If there exist the following values:

ni—1

d .
f(/\i),af(ki),--.,mf()»i) (i=12,....5s),

then f(x) is called a function on the spectrum of matrix A.
In what follows, we use the symbol £ (x) instead of dd—;,» £ ().

Example 3 Let A be matrix J in Example 1. Then the number of distinct eigenval-
ues is s = 2 since A; = A, = 1 and A3 = 2. The maximum sizes of Jordan blocks
corresponding to A} = Ap = 1 and A3 = 2 are n; = 2 and n, = 3. The spectrum of
matrix A is {A, A3 }. We now give an example of a function on the spectrum of matrix
A.Let f(x) = x~'. Then f(x) is a function on the spectrum of matrix A, because
fO(x) = —x72, fP(x) = 2x~3 and there exist the values of the functions on the
spectrum as follows: f(A) =1, fP ) =—1, f(h3) =1/2, FD3) = —1/4,
and fP(13) = 1/4.

A matrix function of A can be defined by using Jordan canonical form in Theorem
5.1 and a function on the spectrum of a matrix in Definition 5.3 as follows:
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Definition 5.4 (Matrix function) Let f(x) be a function on the spectrum of matrix
A e C™ and A = ZJZ~" be Jordan canonical form of A. Then, matrix function

f(A) = f(ZJZ™") is defined as follows:
f(A) = Zdiag(f(J), f(D), .., fFUNZT".
Here f(Ji) is the following my X m; matrix:
0 (mg—1)
£ Ow) f 1(!)%) f(nikfl(?!k)
f(-]k) = f()"k) . e Cmixmi
f(l)()\k)
f()\k)

and my x my, is the size of Jordan block corresponding to eigenvalue Ay.

It follows from Definition 5.4 that when A; is an eigenvalue of matrix A, the
eigenvalue of matrix function f(A)is f(iy).

In particular, when matrix A is diagonalizable, the Jordan blocks are diag-
onal matrices Dy for k = 1,2, ..., p. Then it follows from f(A) = Zdiag(Dy,
D, ..., D,,)Z*1 that f(A) and A have the same eigenvectors.

Example 4 Let A be matrix J in Example 1 and let f(x) = x~'. Jordan canonical
form of A is given by A = ZJZ~!, where Z is the identity matrix. Then f(A) =
f(ZJZ‘l) = f(J) and thus from A; = A, = 1, A3 = 2 and Definition 5.4, we have

Crop 2801 o0 | 0o 0 0 ]
0o fonl oo o o
0 0 | 0 0 0
fA) = 0 0 f(oz) 0 f()(kz) f(Z)(M)
0 0|0 o0 f(,\3) f‘”“*)
Lo oo |0 "0 sl
T1-1[0j]0 0 0
0100 0 0
~|oofffo 0 o
(0002 T=4T gT
000 27! —4!
l0oo0fojo o 27

It is easy to see that f(A) is the inverse of matrix A, i.e., A~! was derived from the
definition of the matrix function f(A).
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Example 5 We consider other examples of matrix functions of A. Let

-1 6 -9
A=1| 4 -4 12
3 =511

Then the Jordan canonical form is given by

A=27J77",
where
210
Z'Az=J=1]021
002
and
3 0-—1 1 -1 2
Z=|0211|, z7'=|-12 =3
111 2 -3 6

Using these matrices, A!/? corresponding to f(x) = x'/? is given by

1 1
V255 —wn

12 _ 1 —1
AV2=71 0 2 |2

0 0 2

It is easy to see that A/2A1/2 = A,
The last example is a matrix exponential function of A. The matrix exponential
function e” corresponding to f(x) = e is given by

2 L2
2

€

0
0

o o

et =27 z 1

(e
(DN ('DNN | o,

Notice that computing Jordan canonical form is numerically unstable. These
examples, therefore, are not for practical computations.

We enumerate some properties of matrix functions. For details see, e.g., [97].

Theorem 5.2 (Properties of matrix functions) Let f (x) be a function on the spec-
trum of matrix A. Then:

() Af(A) = f(AA.
(2) XA =AX = Xf(A) = f(A)X.
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B) f(AH) = fA".
@ fXAX™) = Xf(A)X.
(5) If Ay is an eivenvalue of A, then f (Ay) is an eigenvalue of f(A).

Let f(x) and g(x) be functions on the spectrum of matrix A. Then:

©) If (f +8)x) := f(x) + g(x), then (f + g)(A) = f(A) + g(A).
(D) If (fe)(x) := f(x)g(x), then (fg)(A) = f(A)g(A).

Using Definition 5.3, it follows that

(8) f(A)=g(A) if and only if f(ri)=gM),.... f" D) =g" V()
i=12,...,8).

From Definition 5.4, we can define A'/", ¢*, sin A, cos A, log A that correspond
to elementary functions xn e* sinx, cosx, log x. However, since numerically
computing the Jordan canonical form is quite unstable, it is not recommended to
compute matrix functions via the Jordan canonical form. Therefore, many researchers
have devised numerically stable algorithms for matrix functions.

In what follows, some numerical algorithms are described for computing matrix
functions. We will see that the notion of a Krylov subspace is useful for computing
some of the matrix functions.

5.3 Matrix Square Root and Matrix pth Root

5.3.1 Matrix Square Root

Square roots of real number a > 0 are a'/?> and —a'/?, and the principal square root
is a'/?. The notion of the principal square root is extended to complex numbers as
follows: let z be a complex number, and for z = ré r >0,—m <86 <), we
define z'/> = r1/2¢'%/2_ This is called the principal square root of z.

Now we consider the case of matrix square roots and define the principal square
root of A. X is called a square root of A if X? = A. The square roots of a matrix
differ from square roots of complex or real numbers in that there may be infinitely
many square roots. For example, let

10 -1 0 cos@ sinf
Sl_|:01:|’ Sz_[O —1i|’ S(Q)_[siné —c059:|'

Then 512 = S% = 5(9)> = I for any . These are square roots of the identity
matrix. Thus this is an example for which there are infinitely many square roots.

While there are infinitely many square roots, there is a unique square root whose
eigenvalues lie in the right half-plane of the complex plane. The unique square root
is called the principal matrix square root. In the above example, S, is the principal
matrix square root of the identity matrix /.

The next theorem presents the notion of the principal matrix square root.
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Theorem 5.3 (principal matrix square root) Let A be a complex square matrix
whose eigenvalues (A # 0) do not lie in the negative real axis of the complex plane.
Then there exists a unique square root of A such that all the eigenvalues of the square
root lie in the right half-plane of the complex plane.

In Theorem 5.3, the unique matrix square root is referred to as the principal matrix
square root of A, and denoted by A2,

In what follows, numerical algorithms, a direct method, and an iterative method
are described for the (principal) matrix square root.

First, a well-known direct method based on the Schur decomposition is described.
The Schur decomposition is to decompose matrix A as QT Q', where T is an
upper triangular matrix, Q is a unitary matrix. If we can compute U := T''/2, then
(QUQOM? = QU? QM = QT QM = A. Thus the (principal) matrix square root is
given by A2 = QU QY. Since U is also an upper tridiagonal matrix, U can be
obtained by sequentially solving U? = T'. The resulting algorithm is shown in Algo-
rithm 5.1. Here (i, j) element of matrix 7 (and U) is denoted by #; (and u;;).

Algorithm 5.1 (Direct method) The Schur method for X = A!/?

1: Compute the Schur decomposition of A, i.e., A = QT QM.
2:fori=1,2,..., n do
2
Ui =1;;
end for
for j =2,3,...,ndo
fori=j—-1,j—-2,..., ldo
ij = ﬁlu,, = SZi o wikukg)
end for
end for
0: X =QUuoH

R e A A

—

Assume that matrix A satisfies the condition in Theorem 5.3. Then from line 3 in
Algorithm 5.1, we see that u;; = tl/z(z =1, 2,...,n)and u;; is the principal square
root of complex number #;;. From the assumption of matrix A, all the u;;’s lie in the
right half-plane of the complex plane. Thus u;; + u;; # 0, which is the denominator
in line 7 in Algorithm 5.1. Thus Algorithm 5.1 never suffers from breakdown.

Next, some iterative methods are described. The iterative methods can be regarded
as Newton’s method (Newton—Raphson method) for X?> = A. We now give a well-
known derivation of Newton’s method for matrix square roots.

Let X; be an approximate solution of A'/? and let E be the corresponding error

matrix such that X; + E = A'/2.If we can obtain E so that (X, + E)> = (A'?)? &
X,% + EX; + X, E + E* = A, then we have X; + E = AY2, But it may be more
difficult to solve the original problem since there are additional terms E X; + X E.
On the other hand, from the assumption that X, ~ A!/?, we can expect that E ~ O
(zero matrix). Thus instead of considering the correction equation above, we consider
obtaining Ej from X,% + E X + Xy Er = A, whichis a Sylvester equation in (2.59).
Then we have the following Newton’s method:
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1. Set an initial guess Xy,

2. Fork =1, 2, ..., until convergence,

3. Solve Ex Xy + Xy Ex = A — X,% to obtain £y,
4. Xiv1 = Xp + Ey.

5. End

If we choose an initial guess X such that AXy = XA, then the Sylvester equation
is simplified. By the choice, it can be shown that E; X; = X Ey. Then from E; =
(1/2)X,:1(A — X,f) = (1/2)(Xk_1A — X)), it follows that X; + E;, = (1/2)(Xi +
X;lA). We now describe Newton’s method for the matrix square root in Algo-
rithm 5.2.

For the details of the above derivation and a derivation based on Fréchet derivative,
see [96].

Algorithm 5.2 (Tterative method) Newton’s method for X = A!/2
1: Choose X¢ such that AXg = XpA,e.g., Xo=1.

2:fork=0,1,..., until convergence do
3 Xpq1 = %(Xk +X,(_1A)
4: end for

Let A be a matrix satisfying the condition in Theorem 5.3. If all the eigenvalues
of A'2Xj lie in the right-half plane of the complex plane, then X; quadratically
converges to the matrix square root A'/2 [97, p.140].

In Algorithm 5.2, there is a restriction for the choice of an initial guess, i.e.,
AXo = XoA. The usual choice is Xo = A or Xy = I. Since matrix polynomial ¢y +
1A + A% + - - - + ¢, A" and A commute, it is natural to choose Xo(= col + ¢1 A +
A% 4 - + ¢, A™) such that the norm of the residual ||X§ — A|| is minimized. An
approximate minimization using a Grobner basis and a low degree matrix polynomial
is proposed in [132].

A numerically stable variant of Algorithm 5.2 is the incremental Newton (IN)
iteration [101] that is described in Algorithm 5.3.

Algorithm 5.3 (Iterative method) The IN method for X = A!/?
1: Xo = A; Eg = $(I — A)

2:fork=0,1,..., until convergence do
30 Xit1 = Xg + Ex

4 Epp = -3EX ] Ex

5: end for

A feature of Algorithm 5.3 is that matrix A does not appear in the main iteration,
i.e., line 3. Though Algorithm 5.3 is more numerically stable than Algorithm 5.2,
additional matrix—matrix multiplications are required. The computational cost of
Algorithm 5.3 is about 7/4 times higher than that of Algorithm 5.2 per iteration step.
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5.3.2 Matrix pth Root

In this section, direct and iterative methods are described for solving matrix pth
roots.

A matrix X such that X? = A is called a matrix pth root. As described in
Sect.5.3.1, there may be infinitely many matrix square roots. Among them, there
is the principal matrix square root that is characterized in Theorem 5.3. Similarly,
the notion of the principal matrix pth root is given as follows:

Theorem 5.4 (principal matrix pth root) Let A be a complex square matrix whose
eigenvalues (A; # 0) do not lie in the negative real axis of the complex plane. Then
there exists a unique pth root of A such that all the eigenvalues of the pth root lie in
sectorarea {z € C : —m/p < arg(z) < /p}.

The unique matrix pth root is called the principal matrix pth root of A and is
denoted by A7 If p = 2, then Theorem 5.4 is equivalent to Theorem 5.3.

In what follows, direct methods for A'/? are described. The Schur method is a
direct method based on the Schur decomposition. After the Schur decomposition of
matrix A (A = QT QY), it follows that A/? = QT/? QM. For obtaining TV?, let
U := T"». Since U is an upper tridiagonal matrix, U is also an upper tridiagonal
matrix. Then, all we have to do is to solve U” = T. The resulting algorithm is
summarized in Algorithm 5.4.

Algorithm 5.4 (Direct method) Schur method for X = A!/?

1: Compute Schur decomposition of A = QT QH.
2:for j =1,2,...,ndo

1 1 k+2
3: u”_t]j/p,v;j)_l, jj“ W k=0.1,....p-2)
4: fori=j—1,j-2,...,1do
5: fork=0,1,...,p— 2d0
i—1
6 s = Thiy uoe?
7 end for 5 1) .
8wy = (g — g ol e /S v
9: fork=0,1,...,p—2do
. (k+2) koo G=ttD D k=0
10: vij :ZZ=0 ii uijv Ji +Z€ =0 Vi Wet2
11: end for
12:  end for
13: end for
14: X = QU QY

As for iterative methods, Algorithms 5.5 and 5.6 are known as extensions of
Algorithms 5.2 and 5.3, respectively.
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Algorithm 5.5 (Iterative method) Newton’s method for A/
1: Set p, and choose X¢ such that AXy = XA, e.g., Xo = A.

2: for k =0, 1, ..., until convergence do
1—

3 Xipr = 5[0 = DXk + X PA]

4: end for

The computational cost of Algorithm 5.6 is higher than Algorithm 5.5. On the
other hand, it is known in [102] that Algorithm 5.6 has numerical stability. For other
useful variants of Newton’s method, see, e.g., [102, Egs. (3.6), (3.9)]. A cost-efficient
variant of Algorithm 5.6 having numerical stability is found in [187].

Algorithm 5.6 (Iterative method) The incremental Newton’s method for Al/p
1: Set p, Xo = I, Eg = %(A - .

2: for k =0, 1, ..., until convergence do
30 Xk =Xk+Ek»Fk=XkX/:_:1
_ _ _ -2
4 Epy = —%Ek[xkjll +2X 0 Fo+ o+ (p— DX FP P Ex
5: end for

5.4 Matrix Exponential Function

As seen in Definition 5.4, the matrix exponential function is defined by the Jordan
canonical form. On the other hand, the following equivalent definition is useful for
computing the matrix function:

A 1 2 1 3

The series converges for any square matrix A € C**”. In this section, numerical
algorithms for matrix exponential functions are described.

Fundamental properties of matrix functions are summarized in Theorem 5.5.
These properties are easily proved from the definition in (5.2)

Theorem 5.5 (Properties of matrix exponential functions) For A, B € C"*":

(1) €9 = I, where O is the zero matrix;
(2) eef =erB if AB = BA;
(3) CAC_A — I, (eA)—l — C_A,'
“4) eXAXT Xe2 X! where X is a nonsingular matrix;
5) et = (eMH.
From (5) in Theorem 5.5, matrix exponential function e’ is Hermitian if A is
Hermitian. From (3) and (5) in Theorem 5.5, matrix exponential function e? is
unitary, i.e., (e4)Hed = e~4e4 = I if A is skew-Hermitian (A" = —A).
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From 2) in Theorem 5.5 with A = aC and B = bC for scalar values a and b, we
have e?CetC = e@tbC Here, if ¢ = 1 and b = —1, then we have e€e~¢ = € =
O = [ that corresponds to 3) in Theorem 5.5.

5.4.1 Numerical Algorithms for Matrix Exponential
Functions

One of the simplest ways to approximately compute matrix exponential functions
is to truncate the series in (5.2), i.e., I + A+ 3 A> + $A>+ -+ LA™ If all the
eigenvalues of matrix A are close to zero, then the truncatlon error may be small for
small n. The above approach is, however, inefficient for a matrix A with no such
distribution of the eigenvalues of A.

A better and simple way to compute matrix exponential functions is to consider
e/ instead of e?. We see that (e#/*)* = e fors > 1, and the all eigenvalues of A/s
are s times smaller than the eigenvalues of A. Then truncating the following series:

I+ aq ) L 53
—+1T +W +F + - (5.3)

yields

1 1 1
Foy=14+—A AT+ — A3+ ... A", 5.4
+ 1ls o2 21 s2 + 3153 T rls’ 54

which is an approximation to (F,)* ~ e. Then, the following property holds:'

Theorem 5.6 ([179]) Let A € C"*" and F,; be the truncation given in (5.4). Then

) AJ el
e’ — (Fo)'ll € ———, 5.5
et = (F’l = °0 (5.5)
where || - || is any matrix norm that is submultiplicative.”

From the right-hand side of Theorem 5.6, The truncation error can be estimated
by computing ||A| or its upper bound. For example, we consider the case s = 2.
Assume that ||A|| = 10. Then if we use r = 8, m =9, s = 2™, the right-hand side
of (5.5) is about 1.29 x 10~'%, which means that it is possible to determine s and r
such that the truncation error is less than a given tolerance, if | A|| is estimated. When
||A]l is a Frobenius norm, then it is easy to compute the norm by the definition of a
Frobenius norm. When || A|| is a matrix 2-norm, the maximum singular value of A is
needed, which can also be easily estimated by the Golub—Kahan bidiagonalization
process (Algorithm 3.29).

!'In [179], Theorem 5.6 is stated on Banach algebra, which is a more general result.
2 See (Nm4) in Section 1.1.2 for the term “submultiplicative”.
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A more cost-efficient method is as follows: instead of computing (5.4), we use
the Padé approximant to e*/* and compute sth power of the approximant. The Padé
approximant R, ,(A) to matrix exponential function e” is given below:

R, ,(A) =D, ,(A1'N, ,(A), (5.6)
where

< (P+a—i! p!
Npg(A) =Y n;Al, nj= X — —
= (P +q)! J{p = D!

_tqg-)! y q!
P+t~ jlg— DY

q
D, (A) =) di(—A), d;
j=0

When approximating the matrix exponential, it is recommended to use the diago-
nal Padé approximant, i.e., p = ¢g. From ed = [eA?" " ~ [Ry.4 (A/2’”)]2”', we need
to choose two parameters g and m. If ||A]| /2™ < 1/2, then

2q 12

(Ryga/ 2 =etvs, P <[ ULT 0
Al 2m (2g)!'(2q + D!

For the details, see [133, p.12]. The inequality leads to optimum parameters g
and m such that ¢ 4+ m is minimized under the condition that the truncation error
holds | E||/||A|| < e for a given tolerance €. The optimum parameters for a tolerance
€ = 1071 with respect to || A|| are given in Table 5.1. For related studies, see [8, 98].

If Schur decomposition A = QT QY is computed, then it follows from (5.2) that

e = g0 — Qe” QM. Thus all we have to do is to compute e’ using (diagonal)
Padé approximant.

Inparticular, when A is Hermitian, 7 becomes a diagonal matrix. Let A1, Az, ..., A,
be the diagonal elements of 7. Then the matrix exponential function can be com-
puted by

et

e’ =0 o' (5.7)

o

Further, if A is diagonalizable, i.e., A = XDX ! fora nonsingular matrix X and
a diagonal matrix D, then we have e = Xe?X~!, where e” is the same form as
in (5.7). On the other hand, if the condition number X is high, this approach can be
numerically unstable.

Table 5.1 Optimum parameters ¢ and m in R, ,(A/2™) satisfying the error tolerance € = 10715,
lAl (1073 1072 |107' |1 10 102 103 104 10° 10°

q 3 3 4 6 6 6 6 6 6 6

m 0 0 0 1 5 8 11 15 18 21
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5.4.2 Multiplication of a Matrix Exponential Function
and a Vector
We consider the following linear ordinary differential equation:

dx (1)
dt

=Ax(@®) + f(0), x(0)=xo, (5.8)

where A € C"" x, f € C",t € R. The solution can be given by using matrix expo-
nential functions as follows:

x(t) = e xo+ / e=4 f(r)dr. (5.9)
0

We see that in (5.9) there are multiplications of matrix exponential functions and
vectors. In particular, if f(t) = 0, then the solution is written as x (t) = e'4x,. This
explicit form of the solution means that we know the solution at an arbitrary time ¢
if the multiplications are obtained.

If matrix exponential functions have already been computed, then all we have to do
is to compute the matrix—vector multiplication whose computational cost is of order
n?, where n is amatrix of sizen x n.On the other hand, computing the cost of a matrix
exponential function may be of order 1 even if matrix A is sparse. Thus computing
matrix exponential functions is inefficient, when it comes to computing the solution
of (5.8). Note that the solution only requires the result of the multiplication of a
matrix exponential functions and a vector. In such a case, an approximation to the
multiplication using Krylov subspace is useful, which is described below.

Since matrix exponential function e’# is defined by the series (5.2), it is natural to
use matrix polynomials p,, (A) of degree m to approximate e’*. The multiplication of
amatrix polynomial p,, (A) and a vector belongs to Krylov subspace C,,, (A, x¢). Thus
the optimal approximation is given by solving the following least-squares problem:

min  |le"“xg — Xl (5.10)
X € (A,x0)

Let V,, be a matrix whose columns are orthonormalized basis vectors of K,
(A, x¢). Then, any vectorx € KC,,(A, x¢) canbe writtenasx = V,,y, where y € C".
Thus (5.10) is equivalent to

min [le"xo — Vuy].
yECm

The solution is y = V!e4x, and thus the solution of (5.10) is given by

(x(t) ®) x,, = V,, VHe!x,. (5.11)



202 5 Applications to Matrix Functions

In what follows, we consider using the Arnoldi process in Section 1.9.1 to com-
pute basis vectors of K, (A, xo) and give an approximate solution of (5.11). From
the Arnoldi process in Section 1.9.1, it follows from xy = ||x¢|| V,,e; that we obtain
X = ||%0l|Vin(VHe' 4V, e, wheree; = [1,0, ..., 0]". Furthermore, using the rela-
tion VHAV,, = H,, (Hessenberg matrix) in (1.39), we consider an approximation

H
VielAy, ~ e!Vn' AVn = e!Hn Then we have
H,tA ~ Hy,
X = [x0llVin (V,, € Vi)er = [lxoll Ve ey (5.12)

e'flne| is the multiplication of an m x m small matrix exponential function and a
vector, whose computational costs are of O(m?). This comes from the fact that the
multiplication of the Padé approximant (to e'¥7) and a vector requires H,'v, i.e.,
solving linear systems H,,z = v, whose computational cost is of O(m?).

If matrix A is Hermitian, a suitable choice of m for satisfying a given error
tolerance is provided by using Theorem 5.7.

Theorem 5.7 ([99], Theorem 2) Let A be Hermitian and all the eigenvalues lie in
the interval [—4p, 0]. Then the error of (5.12) is given by

ol
c- e Japt <m < 2pt),
le"x0 — xolloVoe ey | < {€7€7 (WARE=m <200
e (BT @pt < m),
where ¢ = 10]|x¢]|.
In practice, first estimate the minimum eigenvalue Ay, of A and set p = — A /4.

Then, the dimension of Krylov subspace m is chosen so that the upper bound error in
Theorem 5.7 is less than the given tolerance, e.g., 10~'2. The usefulness of the error
bound is shown in [139], together with devising a practical computation avoiding the
loss of orthogonality regarding the basis vectors of Krylov subspaces and an efficient
method of parallel computation.

5.5 Matrix Trigonometric Functions

Here we consider matrix trigonometric functions: matrix sine function sin(A) and
matrix cosine function cos(A). sin(x) and cos(x) can be expanded as

sin(A) and cos(A) are defined for any A € C"*" by using the above expansions as
described below:
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: 1 3 1 5 1 7
1, 1, 1

Below are the fundamental properties of sin(A) and cos(A).

Theorem 5.8 (Some properties of sin(A) and cos(A)) The following facts hold
true for A, B € C"":

(1) &4 =cos(A) +isin(A);

(2) sin(A) = (¢4 —e~i1)/2i;

(3) cos(A) = (e +e 1) /2,

4) sin(—A) = —sin(A), cos(—A) = cos(A);

(5) sin(A)? +cos(A)? =1I;

(6) sin(A £ B) = sin(A) cos(B) = cos(A)sin(B) if AB = BA;
(7) cos(A = B) = cos(A) cos(B) Fsin(A)sin(B) if AB = BA.

(2) and (3) of Theorem 5.8 can be derived from (1) of Theorem 5.8. From (2) and
(3), sin(A) and cos(A) can be obtained by matrix exponential functions. If A is a real
matrix, it follows from 1) of Theorem 5.8 that cos(A) corresponds to the real part of
e’4, and sin(A) corresponds to the imaginary part of e’4. From this, Algorithm 5.7
is obtained for computing sin(A) and cos(A) as described in Algorithm 5.7.

Algorithm 5.7 Computation of § = sin(A) and C = cos(A)

1: Compute X = e,

2: if A is areal matrix then

3: S = Im(X) (imaginary part of A), C = Re(X) (real part of A)
4: end if

5: if A is a complex matrix then

6: S=4X-XNHc=3x+x"

7: end if

5.6 Matrix Logarithm

A matrix X satisfying e¥ = A for A € C"™ " is referred to as a matrix logarithm.
Recall that the notion of the principal matrix square root is described in Theorem 5.3.
Similarly, the notion of the principal matrix logarithm is described in Theorem 5.9.

Theorem 5.9 (Principal matrix logarithm) Let A be a complex square matrix
whose eigenvalues (A, # 0) do not lie in the negative real axis of the complex plane.
Then there exists a unique matrix logarithm of A such that all the eigenvalues of the
square root lie in the strip {z € C : —m < Im(z) < 7}.

The unique matrix in Theorem 5.9 is referred to as the principal matrix logarithm of
A, denoted by log(A). Below are some properties of log(A).
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Theorem 5.10 (Some properties of log(A)) Let A be a complex square matrix
whose eigenvalues (Ly # 0) do not lie in the negative real axis of the complex
plane. Then, for —1 < a < 1 we havelog(A®) = a log(A). Inparticular, log(A’l) =
—log(A), log(A'/?) = (1/2)log(A).

For the proof of Theorem 5.10, see the proof of [97, Theorem 11.2].
In what follows, some numerical algorithms for computing log(A) are described.
When matrix A satisfies p(A — ) < 17, log(A) can be expanded as follows:

log(A) =log(I +(A—=1) = (A= 1) — %(A—1>2+§(A—1)3—3<A—1>4+~-~ :
(5.13)
which is the Neumann series, see also Section 3.5.3. If A does not satisfy p(A — I) <
1, we cannot use (5.13) for approximately computing log(A). Even in this case, the
expansion can be useful after the following modifications: it follows from Theorem
5.10 that for a natural number k& we have

log(A) = klog(A'h),

and A'/* gets closer to the identity matrix I as k gets larger. Thus all we have to do
is to find k from (5.13) such that the following series is convergent:

log(AY*) = log(I + (AY* — 1))

1 1
=(Al/k—l)—E(Al/"—I)2+§(A1/"—I)3~|—-~-. (5.14)

In practice, set k = 2™, and for the right-hand side of (5.14) we use the Padé
approximant to log(1 + x). Below are some examples of the diagonal Padé approx-
imant to log(1 + X):

Ri1(X) = QI+ X)7'2X),
Ry»(X) = (61 +6X + X»)71(6X +3X?),
R33(X) = (601 +90X + 36X +3X%)~1(60X + 60X> + 11X°).

The algorithm is listed in Algorithm 5.8. For the matrix 2"th root, see Sect.5.3.2.
For an improvement of Algorithm 5.8, see [9].

Algorithm 5.8 Computation of log(A)

1: Set a natural number m such that p(Al/zm —1) <1
20X =AY

3: Y = Ry 4(X) (the diagonal Padé aproximant)

4: log(A) =~ 2"Y

3 P (X) = |Amax| 1s the spectral radius of X, see Section 1.6.4.
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Numerical algorithms based on Newton’s method are listed in Algorithms 5.9 and
5.10. Under a certain condition, Algorithm 5.9 shows alocally quadratic convergence
to log(A), and Algorithm 5.10 shows a locally cubic convergence to log(A).

Algorithm 5.9 Iterative method 1 for X = log(A)
1: Choose X such that AXy = XA, e.g., Xo = A.

2:fork=0,1,..., until convergence do
30 Xkt =Xy — I +eXxpA
4: end for

Algorithm 5.10 Iterative method 2 for X = log(A)
1: Choose X such that AXy = XA, e.g., Xo = A.

2:fork=0,1,..., until convergence do
30 Xpy1 =X+ % (e*XkA — Ailex‘f)
4: end for

Let Y =e **A in Algorithm 5.10. Then from 3) of Theorem 5.5 we have
Y~ = A~'eXs, and thus we obtain X; | = X; + (Y — Y~!)/2. This implies that
the computational cost of Algorithm 5.10 is about the sum of computational costs of
Algorithm 5.9 and Y ~!. Since the cost of ¥ ! is relatively much smaller than that of
the matrix exponential function, the cost of Algorithm 5.9 is nearly equal to that of
Algorithm 5.10. From this, Algorithm 5.10 will be faster than Algorithm 5.9 since
Algorithm 5.10 shows a cubic convergence.

When matrix A is Hermitian positive definite, the Schur decomposition of A
corresponds to the eigen-decomposition A = QD Q™, where Q is a unitary matrix
and D is a diagonal matrix whose diagonal elements are eigenvalues A; of A, and
thuseX = A & X = ODOY & QHeXQ = D & ¢2"XC — D Let M = QMX Q.
Then M satisfyinge™ = D can be written as M = diag(log(A;), ..., log(x,)). From
the definition of M, we have X (= log(A)) = QM Q" leading to the following com-
putation of log(A):

log(A1)
log(A) = Q oM.
log(A,)

In general, if matrix A satisfies the assumption in Theorem 5.9 and diagonalizable
(i.e., A = VDV~!), then it may be possible to compute log(A) by

log(A1)
log(A) =V vl
log (%)
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However, if V is ill-conditioned, then this approach is not recommended due to
numerical instability of the computation of V.

If matrix A is large and sparse, and if we need specific elements of log(A),
computing the following integration (e.g., [97, Theorem 11.1]) may be a method of
choice:

1
log(A) = (A — 1)/ [t(A—1)+ 117" dr. (5.15)
0

Applying the jth unit vector e; to (5.15) from the right yields

1
log(A)e; = (A — 1)[ [((A—T)+1]"e;dr. (5.16)
0

This means that computing the right-hand side of (5.16) yields the ith column
vector of log(A). Now, let x® = [t(A — I) + I1" e;. Then we have

[(HA—-1D)+11xD =e;,

which are (continuous) shifted linear systems for ¢. For the numerical quadrature, if
t is discretized as tq, 15, . . ., 1,,, then we need to solve

L(A—1)+11x" =e; fori=1,2,...,m. (5.17)
For #; # 0, the equations can be rewritten as
[A+@ "' = DIV =e; fori=1,2,...,m, (5.18)
where ¥ = ;x®_ Therefore, computing specific elements of the matrix logarithm
via a quadrature formula is an important application for shifted Krylov subspace
methods in Chap. 4.

Among many numerical quadratures, the double exponential (DE) formula [183]
is regarded as one of the most successful methods, especially if the integrand has
endpoint (near) singularities. For the developments of the DE formula, see, e.g.,
[192].

Using the DE formula for computing matrix functions was first considered in

[188]. In what follows, the DE formula for the matrix logarithm is described. Apply-
ing variable transformation u = 2t — 1 to (5.15) yields

1
log(A) = (A — 1)/ [(14u)(A—1)+2I11"" du. (5.19)
-1
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Then, using the DE transformation # = tanh(sinh(x)) gives

log(A) = (A —I) / ” Fpe(x) dx, (5.20)

where
Fpe(x) := cosh(x)sech?(sinh(x)) [(1 4 tanh(sinh(x)))(A — 1) +2I17". (5.21)

Note that the matrix (1 + tanh(sinh(x)))(A — I) 4 21 in Fpg is nonsingular for any
x € (—00, 00).

An algorithm for computing log(A) the DE formula is given in Algorithm 5.11.
For the theoretical details of Algorithm 5.11, see [188].

From line 16 of Algorithm 5.11, vector (A — I)Te; is the jth column of log(A),
and from lines 3 and 15 we need to solve the following equations:

Algorithm 5.11 Computation of log(A) based on the DE formula

1: Input: A € R"", m € N, € > 0 a tolerance for the interval truncation error
2: Output: X ~ log(A)

3: Set Fpg(x) = cosh(x)sech?(sinh(x)) [(1 + tanh(sinh(x)))(A — I) + 211"
4: Compute ||A — I, |A~]], and p(A).

5: 0 = |log(p(A))|

6 31A-1]| A=Y

6 1A

7: if € > €max then

8: € <« emax/2

9: end if

© €max =

) fe 1
10: @ = min ,
A =11 2)1A = 1||
fe 214~
11: b =max {1 — T i
SIA=TIIIAT 21A~ I+ 1

12: [ = arsinh(artanh(2a — 1))
13: r = arsinh(artanh(2b — 1))
4:h=—-D/m—-1)
m—2
h .
15: T = E(FDE(Z) + Fpe(r)) +h Z Fpe(l +ih)
i=1

16: X =(A— DT

[(1 + tanh(sinh( + ih)))(A — I) +21]x =e; fori=0,1,...,m—1,

which can also be rewritten as shifted linear systems. For the rewrite, see (5.17) and
(5.18). Thus, if matrix A is large and sparse, (shifted) Krylov subspace methods are
attractive to use.
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5.7 Matrix Fractional Power

Matrix fractional power can be defined by using log(A) as follows:

A% = exp(alog(A)), (5.22)

where 0 < o < 1. The condition 0 < o < 1 looks to be too restrictive, but it is
satisfactory in practice. In fact, if one wants to compute A>3, then A>3 can be
decomposed by A%3 = AZA%3. Therefore, the problem is how to compute A% that
corresponds to (5.22) with « = 0.3.

Computing A% via the definition in (5.22) requires two matrix functions: a matrix
logarithm and a matrix exponential function. On the other hand, these matrix func-
tions do not appear in the following integral form:

sin
A =

(Om)A/oo(tl/"‘I +A)7'dr O<a<]). (5.23)
am 0

Application of the DE formula to (5.23) is considered in [186] as described next:

A% = / ” Fpe(x) dx, (5.24)
where
Fpe(x) =1 (x)F(t(x)), F()= Sin(—Z”)A(rl/“l + AL (5.25)
o

The algorithm for computing A* by the DE formula is described in Algorithm
5.12. For the theoretical details of Algorithm 5.12, see [186].

Algorithm 5.12 m-point DE formula for computing A*

1: Input A € R, ¢ € (0,1), ¢ >0, m

2:1,r = GetInterval(A,«,c¢€)

3: Set Fpg(x) := exp(a sinh(x)/2) cosh(x) [exp(n sinh(x)/2)1 + A]fl.
dh=@F-D/m-1) _

5: T = h[For(l) + For(r1/2 + h Y327 Foedl + kh)

6: Output sin(amr)AT/2 ~ A%

7

8: function GetInterval(A, a, €)

9: Compute || A, A~

10: a1 = [ax (1 + a)e]/[4sin(an)(1 +2)], ar = QAN

11: @ = min{ay, az}

12: by = [r(1 — )2 — @)e]*/ @~V /[4sin(am) (3 = 20) | A1/ @D, by = (2] A[)*
13: b = max{by, by}

14: [ = asinh(2log(a)/am), r = asinh(2log(b)/am)

15: return [, r

—
(o)}

: end function
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From Algorithm 5.12, the jth column of computed A% is (sin(amw)AT/2)e;.
Therefore, from line 5 the Fpg(/ + ih)e;’s must be computed using the following
equations:

@™ SMHM2 cosh(l + ih) (e ™ML + A)x@D =e; fori=0,1,....,m— 1.
Similar to (5.17) and (5.18), the equations can be rewritten as shifted linear sys-

tems. Thus, if matrix A is large and sparse, using (shifted) Krylov subspace methods
will be a method of choice.



Software

The emphasis of this book is on algorithm design, and the detailed history of the
Krylov subspace methods is omitted. For those who would like to know the history
in detail, the book by Gérard Meurant and Jurjen Duintjer Tebbens [129] is highly
recommended, and provides a detailed history with more than a thousand references
and Matlab/Octave functions of Krylov subspace methods that come in handy for
many users.

For the convenience of possible users of Krylov subspace methods, some available
software packages are listed below.

e Fortran 90 (CCGPACK 2.0 by Piotr J. Flatau)
https://code.google.com/archive/p/conjugate- gradient-1ib/
— downloads — ccgpak2_0.zip
User manual https://arxiv.org/abs/1208.4869
COCR, CSYM, BiCGSTAB(¥), GPBiCG(m, £), BICOR and others are available.

e Fortran 90 (Kw)
Kw: an open-source library for the shifted Krylov subspace methods
https://www.pasums.issp.u-tokyo.ac.jp/komega/en/
Shifted CG, Shifted COCG, Shifted BiCG are available.

e GNU Octave (version 6.4.0)
https://octave.org/doc/v6.4.0/Specialized-Solvers.html#Specialized-Solvers
CG, CR, BiCG, QMR, CGS, BiCGSTAB, GMRES, and others are available.

e Julia (IterativeSolvers.jl)
https://iterativesolvers.julialinearalgebra.org/dev/
CG, MINRES, GMRES, IDR(s), BICGSTAB(¥) are available.

e Python (SciPy 1.8.0)
https://docs.scipy.org/doc/scipy/reference/sparse.linalg.html
CG, MINRES, BiCG, QMR, CGS, BiCGSTAB, GMRES, and others are available.
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A Collinear, 164

AINV preconditioner, 158 Complete pivoting, 7

Approximate inverse preconditioner, 158 Complex symmetric, 90

Arnoldi process, 23 Complex symmetric Lanczos process, 27
Augmentation, 114 Composite step BiCG, 104

Condition number, 4
Conjugate A-orthogonalization process, 92

B Contracted product, 67
Backward difference, 32 CR method, 83
BiCG method, 101 CRS method, 132

BiCGSTAB(¢) method, 123
BiCGSTAB method, 127

BiCGSTAB2 method, 123 D

BiCOR method, 132 Dense, 12

BiCR method, 107 Diagonal matrix, 14

BiCRSTAB method, 132 Diagonal preconditioner, 160
Bi-Lanczos process , 26 D-ILU preconditioner, 153
Block BiCG method, 141 Double exponential formula, 206

Block BiCGSTAB method, 141
Block CG method, 141

Block GMRES method, 141 E

Block IDR(s) method, 140 Eisenstat’s trick, 161

Block Krylov subspace, 140 Euler expansion, 159

C F

Central difference, 32 Faber-Manteuffel theorem, 100

CG method, 73 Fill-in, 12

CGNE method, 147 Finite difference method, 31

CGNR method, 147 Finite element method, 42

CGS method, 126 FOM, 122

Cholesky decomposition, 10 Forward difference, 32

COCG method, 91 Frobenius norm, 3, 143
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G

Gaussian kernel, 61

Gauss—Seidel method, 15

GBiCGSTAB(s, L) method, 139

GCR(k) method, 121

GCR method, 116

Generalized shifted linear systems, 172

Givens rotation, 86

GMRES-E method, 114

GMRES method, 111

GMRES(m) method, 114

Golub-Kahan bidiagonalization
process, 148

GPBiCG method, 128

GPBiCG(m, £) method, 129

GPBIiCGstab(L) method, 129

GPBIiCR method, 132

Grade of block Krylov subspace, 140

Grade of Krylov subspace, 19

Grassmann manifold, 69

Green’s function, 52

H

Hermitian positive definite, 22
Hessenberg matrix, 25
Hessian matrix, 68

I

IDR(s) method, 132

IDRstab method , 139

IDR theorem, 132
Il1-conditioned, 4

ILU(p) preconditioner, 155
ILU(0) preconditioner, 154
ILUT(p,7) preconditioner, 157
Iterative refinement, 8

J

Jacobi method, 14

Jacobi preconditioner, 160
Jordan canonical form, 190
Jordan matrix, 190
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Kronecker product, 34
Kronecker sum, 37

Krylov subspace, 19

Krylov subspace condition, 20
Krylov subspace methods, 19
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Lanczos process, 28
LDLT decomposition, 10
Leading principal minors, 5
Left and right preconditioning, 152
Left preconditioning, 152
LGMRES method, 114
Lower triangular matrix, 5
LQ factorization, 90

LSQR method, 148

LU decomposition, 5

M

Matrix exponential function, 198
Matrix fractional power, 208
Matrix logarithm, 203

Matrix norm, 2

Matrix pth root, 197

Matrix square root, 194

Matrix trigonometric functions, 202
Minimal residual approach, 20
MINRES method, 86

Multigrid method, 18

N

Neumann expansion, 159
Newton-Grassmann equation, 69
Newton’s method, 68

n-mode product, 66

Norm, 2

(0]

Orthogonal matrix, 3
Orthomin(k) method, 121
Overfitting, 58

P

Partial pivoting, 7
Petrov—Galerkin approach, 20
Pivoting, 7

Polynomial preconditioner, 159
Positive definite, 9
Preconditioner, 152
Preconditioning, 81

Principal matrix pth root, 197
Principal matrix square root, 195

Q
QMR method, 109

QMR_SYM method, 97
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QMRCGSTAB method, 131

R

Regular splitting, 17
Residual gap, 131

Right preconditioning, 152
Ritz—Galerkin approach, 20

S

Seed switching technique, 173
Seed system, 167

SGS preconditioner, 160

Shift invariance property, 164
Shifted BiCG method, 176
Shifted BiCGSTAB method, 177
Shifted CG method, 165
Shifted COCG, 171

Shifted COCR method, 174
Shifted CR method, 167
Shifted FOM, 185

Shifted GMRES method, 180
Shifted IDR(s) method, 185
Shifted linear systems, 59, 163
Shifted MINRES method, 169
Shifted QMR_SYM method, 174
Smoother, 18

SOR method, 15

Sparse, 12

Spectral radius, 17

Spectrum of a matrix, 191
SSOR method, 16

SSOR preconditioner, 161

Stationary iterative methods, 13
Stiefel manifold, 69

Strictly lower triangular matrix, 14
Strictly upper triangular matrix, 14
Submultiplicative, 3

Subordinate matrix norm, 3
Sylvester equation, 63

Sylvester’s law of inertia, 11
Symmetric positive definite, 9
SYMMLQ method, 89

T

T-congruence Sylvester equation, 65

Tensor, 66

Tensor product, 34
Tensor sum, 37
TFQMR method, 131
Trace, 143
Tridiagonal matrix, 27

U

Upper triangular matrix, 5

\4
Vec operator, 63
Vector norm, 2

w
Weak form, 43
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