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Syllabus

§ What is numerical linear algebra?
§ Solving linear algebra problems using e�cient algorithms on

computers

§ Module topics: direct and iterative methods for solving
simultaneous linear equations (Ax “ b)

§ Matrix factorization and decomposition.
§ Stationary iterative methods: Jacobi, Gauss-Seidel and

relaxation methods
§ Non stationary iterative methods: Arnoldi and GMRES

methods
§ The two-grid/multigrid and domain decomposition methods

Syllabus
§ Direct and iterative methods

§ Direct methods: solve the problem by a finite sequence of
operations and in the absence of rounding errors, would deliver
an exact solution; operate directly on elements of a matrix

§ Iterative methods: solve a problem by finding successive
approximations to the solution starting from an initial guess,
that hopefully converge to the true solution; often are easier to
implement on parallel computers

§ Prerequisite/co-requisite
§ Good knowledge in linear algebra
§ Programming experience in MATLAB (Fortran, C, C++)
§ Good numerical skils

§ Required Textbook: Alfio Quarteroni, Riccardo Sacco, Fausto
Saleri, Numerical Mathematics, Texts in Applied Mathematics
Volume 37, 2007, ISBN: 978-1-4757-7394-1 (Chapters 3 - 4)

§ Grading: Assignments (5 ˆ 20%)



Lecture 0

Foundations of Matrix Analysis
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Orthogonal Vectors and Matrices, Norms



Transpose and Adjoint

§ For real A, the transpose of A is obtained by interchanging
rows/columns

A “
»

–
a11 a12

a21 a22

a31 a32

fi

fl ñ A
T “

„
a11 a21 a31

a21 a22 a32

⇢

§ The adjoint or hermitian conjugate also takes complex
conjugates

A “
»

–
a11 a12

a21 a22

a31 a32

fi

fl ñ A
˚ “

„
ā11 ā21 ā31

ā21 ā22 ā32

⇢

§ A is symmetric (hermitian) if A “ A
T (A “ A

˚)

Inner Product

§ Inner product of two column vectors x , y P Cn

x
˚
y “

nÿ

i“1

x̄iyi

§ Euclidean length of x

}x} “
?
x˚x “

˜
nÿ

i“1

|xi |2
¸

§ Angle ↵ between x , y

cos↵ “ x
˚
y

}x}}y}



Positive Definite Matrices

§ A hermitian matrix A is symmetric (hermitian) positive
definite if xTAx ° 0 (x˚

Ax ° 0) for x ‰ 0

§ Exercise 0.1: x˚
Ax is always real.

§ Exercise 0.2: If A P Cmˆm is PD and X has full column rank,
then X

˚
AX is PD.

§ Any principal submatrix of a PD matrix A is PD, and every
diagonal entry aii ° 0

§ Exercise 0.3: PD matrices have positive real eigenvalues and
orthogonal eigenvectors.

In MATLAB

Quantity MATLAB Syntax Comment
Transpose of A A.’ Transpose only
Adjoint of A A’ Transpose + complex conjugate
Inner product x˚

y x’*y ’* assumes column vector

dot(x,y)

Lenght }x} sqrt(x’*x) ’* assumes column vector

norm(x)



Orthogonal Vectors

§ The vectors x , y P Cn are orthogonal if

x
˚
y “ 0

§ The sets os vectors X ,Y are orthogonal of

every x P X is orthogonal to every y P Y

§ A set of (nonzero) vectors S is orthogonal if

vectors pairwise orthogonal, i.e., for x , y P S , x ‰ y ñ x
˚
y “ 0

and orthonormal if, in addition

every x P S has }x} “ 1

Orthogonal and Unitary Matrices

§ A square matrix Q P Cnˆn is unitary (orthogonal in real case)
if

Q
˚ “ Q

´1

§ For unitary Q

Q
˚
Q “ I ô q

˚
i qj “ �ij

§ Interpretation of unitary-times-vector product

x “ Q
˚
b “ solution to Qx “ b

“ the vector of coe�cients of the expansion of b

in the basis of columns of Q



Preservation of Geometry Structure

§ Inner product is preserved under multiplication by unitary Q

pQxq˚pQyq “ x
˚
Q

˚
Qy “ x

˚
y

§ Therefore lengths of vectors and angles between vectors are
preserved

§ A real orthogonal Q is either a rigid rotation or reflection

Preservation of Geometry Structure

• Inner product is preserved under multiplication by unitary Q

(Qx)�(Qy) = x�Q�Qy = x�y

• Therefore, lengths of vectors and angles between vectors are preserved

• A real orthogonal Q is either a rigid rotation or reflection

Rotation

u

v

Qu

Qv

Reflection

u

v

Qu

Qv

7

Norms in MATLAB

Quantity MATLAB Syntax
}x}1 sum(abs(x)) or norm(x,1)

}x}2 sqrt(x’*x) or norm(x)

}x}p sum(abs(x).ˆp).ˆ(1/p) or norm(x,p)

}x}8 max(abs(x)) or norm(x,inf)

}A}1 max(sum(abs(A),1)) or norm(A,1)

}A}2 norm(A)

}A}8 max(sum(abs(A),2)) or norm(A,inf)

}A}F sqrt(A(:)’*A(:)) or norm(x,’fro’)



The Singular Value Decomposition

Diagonalizable Matrices

§ A square matrix A is called diagonalizable or non-defective if
it is similar to a diagonal matrix, i.e., there exists an invertible
matrix P and a diagonal matrix D such that

P
´1

AP “ D

§ Exercise 0.4: If A P Cnˆn has n linear independent columns,
there exists an eigenvalue decomposition (EVD)

X⇤X´1 “ A.

§ If A is real and symmetric, the EVD is always possible

A “ U⇤UT ,

with U an unitary matrix



The SVD - Brief Description
§ Suppose that A P Cmˆn with m • n and full rank (r “ n)

§ Choose orthonormal basis

v1, . . . , vn for the row space

u1, . . . , un for the column space

such that Avi is in the direction of ui : Avi “ �iui

This completes the construction of the desired orthonormal bases for IRn and EXm. 
Setting ai = fiwe have Avi = aiui for all i 5 k. Assembling the vi as the columns 
of a matrix V and the ui to form U, this shows that AV = UC, where C has the 
same dimensions as A, has the entries ai along the main diagonal, and has all other 
entries equal to zero. Hence, A = UCVT, which is the singular value decomposition 
of A. 

In summary, an m x n real matrix A can be expressed as the product UCVT, 
where V and U are orthogonal matrices and C is a diagonal matrix, as follows. The 
matrix V is obtained from the diagonal factorization ATA = V D V ~ ,in which the 
diagonal entries of D appear in non-increasing order; the columns of U come from 
normalizing the nonvanishing images under A of the colutnns of V, and extending 
if necessary to an orthonormal basis for Rm;the nonzero entries of C are the square 
roots of corresponding diagonal entries of D .  

The preceding construction demonstrates that the SVD exists, and gives some 
idea of what it tells about a matrix. There are a number of additional algebraic and 
geometric insights about the SVD that will be derived with equal ease. Before pro- 
ceeding to them, two remarks should be made. First, the SVD encapsulates the most 
appropriate bases for the domain and range of the linear transfortnation defined by 
the matrix A. A beautiful relationship exists between these bases and the four funda- 
mental subspaces associated with A: the range and nullspace, and their orthogonal 
complements. It is the full picture provided by the SVD and these subspaces that 
Strang has termed the filndamental theorem of linear algebra. He also invented a di- 
agram schematically illustrating the relationship of the bases and the four subspaces; 
see Figure 1. Strang's article [231 is recommended for a detailed discussion of this 
topic. 

Figure 1. Strang's diagram. 

The second remark concerns computation. There is often a gap between mathe- 
matical theory and computational practice. In theory, we envision arithmetic oper- 
ations being carried out on real numbers in infinite precision. But when we carry 
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§ The singular values �1 • �2 • ¨ ¨ ¨ • �n ° 0

The SVD - Brief Description

§ In matrix form, Avi “ �iui becomes

AV “ Û⌃̂ ô A “ Û⌃̂V ˚

where ⌃̂ “ diagp�1, �2, . . . , �nq
§ This is the reduced singular value decomposition

§ Add orthonormal extension to Û and add rows to ⌃̂ to obtain
the full sigular value decomposition

A “ U⌃V ˚



The Full Singular Value Decomposition

§ Let A be an m ˆ n matrix. The singular value decomposition
of A is the factorization A “ U⌃V ˚ where

U is m ˆ m unitary (the left singular vectors of A)

V is n ˆ n unitary (the right singular vectors of A)

U is m ˆ m unitary (the left singular vectors of A)

The Full Singular Value Decomposition

• Let A be an m � n matrix. The singular value decomposition of A is the
factorization A = U�V � where

U is m � m unitary (the left singular vectors of A)

V is n � n unitary (the right singular vectors of A)

� is m � n diagonal (the singular values of A)

=

A U � V �

5

The Reduced Singular Value Decomposition

§ A more compact representation is the reduced SVD, for
m • n:

A “ Û⌃̂V ˚

where

U is m ˆ n, V is n ˆ n, ⌃ is n ˆ n

The Reduced Singular Value Decomposition

• A more compact representation is the Reduced SVD, for m � n:

A = Û�̂V �

where

Û is m � n, V is n � n, and � is n � n

=

A Û �̂ V �

6



The SVD and The Eigenvalue Decomposition

§ The eigenvalue decomposition A “ X⇤X´1

§ uses the same basis X for row and column space, but the SVD
uses two di↵erent basis V and U

§ generally does not use an orthonormal basis, but the SVD does
§ is only defined for square matrices, but the SVD exists for all

matrices

§ For symmetric positive definite matrices A, the EVD and SVD
are equal

Matrix Properties (Exercise 0.5)

1. The rank of A is r , the number of nonzero singular values

2. range pAq “ xu1, . . . , ur y and null pAq “ xvr`1, . . . , vny

3. }A}2 “ �1 and }A}F “
b

�2
1 ` �2

2 ¨ ¨ ¨ ` �2
r

4. Nonzero eigenvalues of A˚
A are nonzero �2

j
, eigenvectors are

vj ; Nonzero eigenvalues of AA˚ are nonzero �2
j
, eigenvectors

are uj

5. In A “ A
˚, �i “ |�j |, where �j are eigenvalues of A

6. For square A, | detpAq| “ ±
m

j“1 �j



Existence and Uniqueness

Theorem 0.1: Existence

Every matrix A P Cmˆn has a SVD.

Theorem 0.2: Uniqueness

The singular values t�ju are uniquely determined. If A is square
and the �j are distinct, the left and right singular vectors are
uniquely determined up to complex signs.

Example: A “
„
2 2
1 ´1

⇢

§ Prove that the eigenvalues of

A
T
A “

„
5 3
3 5

⇢
,

are �1 “ 8 and �2 “ 2 and the (orthonormal) eigenvectors are

v1 “
„

1{
?
2

1{
?
2

⇢
and v2 “

„ ´1{
?
2

1{
?
2

⇢

§ Then

⌃ “
„

�1

�2

⇢
“

„
2

?
2 ?

2

⇢
and V “

„
1{

?
2 ´1{

?
2

1{
?
2 1{

?
2

⇢



Example: A “
„
2 2
1 ´1

⇢
(cont.)

§ The columns of U are obtained by

�1u1 “ Av1 “
„

2 2
1 ´1

⇢ „
1{

?
2

1{
?
2

⇢
“

„
2
?
2

0

⇢
ñ u1 “

„
1
0

⇢

and

�2u2 “ Av2 “
„

2 2
1 ´1

⇢ „ ´1{
?
2

1{
?
2

⇢
“

„
0?
2

⇢
ñ u2 “

„
0
1

⇢

§ The SVD of A “ U⌃V T is
„

2 2
1 ´1

⇢
“

„
1 0
0 1

⇢ „
2
?
2 ?

2

⇢ „
1{

?
2 1{

?
2

´1{
?
2 1{

?
2

⇢
l

§ Exercise 0.6: Obtain the SVD of A “
„

1 1
1 0

⇢
.

Low-Rank Approximations

§ The SVD can be written as a sum of rank-one matrices

A “
rÿ

j“1

�jujv
˚
j

§ Eckart-Young (1936): The best rank ⌘ approximation in the
2-norm is

A⌘ “
⌘ÿ

j“1

�jujv
˚
j

with
}A ´ A⌘}2 “ �⌘`1

§ Also true in the Frobenius norm, with

}A ´ A⌘}F “
b

�2
⌘`1 ` ¨ ¨ ¨ ` �2

r



Application: Image Compression

§ View m ˆ n image as a (real) matrix A, find best rank ⌘
approximation by SVD

§ Storage ⌘ ˆ pm ` nq instead of m ˆ n

Application: Image Compression

• View m � n image as a (real) matrix A, find best rank � approx. by SVD

• Storage �(m + n) instead of mn

Original (Rank 200) Rank 1 Rank 2

Rank 5 Rank 15 Rank 50

12

Application: Image Compression

rank = 359 rank = 1

rank = 50

0 100 200 300 400
100

105

Cleave Moler Textbooks: www.mathworks.com/moler/



Solving Systems of Linear Equations (Ax “ b)

§ Let A “ U⌃V ˚ “ Û⌃̂V ˚ prankpAq “ r)

§ Ax “ b is solvable iif b K nullpA˚q
§ A solution of Ax “ b, if exists, is given by

x̂ “ V̂ ⌃̂´1
Û

˚
b “ V⌃`

U
˚
b “ A

`
b,

where A
` “ V⌃`

U
˚ is the pseudo inverse of A

§ The vector x̂ “ A
`
b represents the uniquely determined

solution of Ax “ b with minimal euclidean norm

§ If Ax “ b has no solution, x̂ “ A
`
b represents its least

squares solution with minimal euclidean norm

The QR Factorization



The QR Factorization - Main Idea

§ Find orthonormal vectors qj that span the successive spaces
spanned by the columns of A:

xa1y Ñ xa1, a2y Ñ xa1, a2, a2y Ñ ¨ ¨ ¨

§ This means that (for full rank A)

xq1, q2, . . . qjy “ xa1, a2, . . . ajy, for j “ 1, . . . , n

The QR Factorization - Matrix Form

§ In matrix form xq1, q2, . . . qjy “ xa1, a2, . . . ajy becomes

»

– a1 a2 ¨ ¨ ¨ an

fi

fl “
»

– q1 q2 ¨ ¨ ¨ qn

fi

fl

»

———–

r11 r12 ¨ ¨ ¨ r1n

r22 ¨ ¨ ¨ r2n

. . .
...
rnn

fi

���fl

or
A “ Q̂R̂

§ This is the reduced QR factorization

§ Add orthogonal extension to Q̂ and add rows to R̂ of obtain the full
QR factorization



The Full QR Factorization

§ Let A be an m ˆ n matrix. The full QR factorization of A is
the factorization A “ QR , where

Q is m ˆ m unitary

R is m ˆ n upper-triangular

The Full QR Factorization

• Let A be an m � n matrix. The full QR factorization of A is the
factorization A = QR, where

Q is m � m unitary

R is m � n upper-triangular

=

A Q R

10

The Reduced QR Factorization

§ A more compact representation is the reduced QR
factorization A “ Q̂R̂ , where (for m • n)

Q̂ is m ˆ n with orthonormal columns

R is n ˆ n upper-triangular

The Reduced QR Factorization

• A more compact representation is the Reduced QR Factorization

A = Q̂R̂, where (for m � n)

Q̂ is m � n and R̂ is m � n

=

A Q̂ R̂

11



Gram-Schmidt Orthogonalization (˚)

§ Find new qj orthogonal to q1, . . . , qj´1 by subtracting
components along previous vectors

vj “ aj ´ pq˚
1ajqq1 ´ pq˚

2ajqq2 ´ ¨ ¨ ¨ ´ pq˚
j´1ajqqj´1

§ Normalize to get qj “ vj{}vj}

§ We then obtain a reduced QR factorization A “ Q̂R̂ , with

rij “ q
˚
i aj , pi ‰ jq

and

|rjj | “
›››››aj ´

j´1ÿ

i“1

rijqi

›››››
2

§ ”Triangular Orthogonalization”

Classical Gram-Schmidt (˚)

§ Straight-forward application of Gram-Schmidt
orthogonalization

§ Numerically unstable

§ Algorithm: Classical Gram-Schmidt

for j “ 1 to n do
vj “ aj

for i “ 1 to j ´ 1 do
rij “ q

˚
i
aj

vj “ vj ´ rijqi

end for
rjj “ }vj}2
qj “ vj{rjj

end for



Existence and Uniqueness

Theorem 0.3: Existence

Every A P Cmˆn pm • nq has a full QR factorization and a reduced
QR factorization.

Proof: For full rank A, Gram-Schmidt process gives the existence
of A “ Q̂R̂ . Otherwise, when vj “ 0 choose arbitrary vector
orthogonal to previous q1, . . . , qj´1. For full QR, add orthogonal
extension to Q (silent columns) and zero rows to R . l

Theorem 0.4: Uniqueness

Each A P Cmˆn pm • nq of full rank has a unique A “ Q̂R̂ with
rjj ° 0.

Proof: Again Gram-Schmidt, rjj ° 0 determines the sign. l

Classical vs Modified Gram-Schmidt (˚)
§ Some modifications of classical Gram-Schmidt gives modified
Gram-Schmidt (but see next slide)

§ Modified Gram-Schmidt is numerically stable (less sensitive to
rounding errors)

§ Algorithm: Classical/Modified Gram-Schmidt

for j “ 1 to n do
vj “ aj

for i “ 1 to j ´ 1 do
rij “ q

˚
i
aj (CGS)

rij “ q
˚
i
vj (MGS)

vj “ vj ´ rijqi

end for
rjj “ }vj}2
qj “ vj{rjj

end for



Implementation of Modified Gram-Schmidt (˚)

§ Algorithm: CGS

for j “ 1 to n do
vj “ aj

for i “ 1 to j ´ 1 do
rij “ q

˚
i
aj

vj “ vj ´ rijqi

end for
rjj “ }vj}2
qj “ vj{rjj

end for

§ Algorithm: MGS

for i “ 1 to n do
vi “ ai

end for
for i “ 1 to n do

rii “ }vi}2
qi “ vi{rii
for j “ i ` 1 to n do

rij “ q
˚
i
vj

vj “ vj ´ rijqi

end for
end for

Example: Classical vs Modified Gram-Schmidt (˚)
% Create a random orthogonal matrix Q

n = 80;

[Q,X] = qr(randn(n));

% Make an ill-conditioned R (with diagonal

% entries = 2ˆ-j, j=1,...,n)

R = diag(2.ˆ(-1:-1:-n))*triu(ones(n)+0.1*randn(n));

% Compute QR factorization with classical and with

% modified GS, compare diagonal elements of

% computed R’s

A = Q*R;

[QC,RC] = clgs(A);

[QM,RM] = mgs(A);

semilogy(1:n,diag(RC),’o’,1:n,diag(RM),’x’,1:n,diag(R))

legend(’CGS’, ’MGS’, ’exact’)

grid on



Example: Classical vs Modified Gram-Schmidt (˚)
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The LU Factorization

The LU Factorization

§ Transform A “ Rnˆn into upper triangular U by subtracting
multiples of rows

§ Each Li introduces zeros below diagonal of column i :

Ln´1 ¨ ¨ ¨ L2L1loooooomoooooon
L´1

A “ U ñ A “ LU where L “ L
´1
1 L

´1
2 ¨ ¨ ¨ L´1

n´1

»

——–

‹ ‹ ‹ ‹
‹ ‹ ‹ ‹
‹ ‹ ‹ ‹
‹ ‹ ‹ ‹

fi

��fl
L1›Ñ

»

——–

‹ ‹ ‹ ‹
0 ˚ ˚ ˚
0 ˚ ˚ ˚
0 ˚ ˚ ˚

fi

��fl
L2›Ñ

»

——–

‹ ‹ ‹ ‹
‹ ‹ ‹
0 ˚ ˚
0 ˚ ˚

fi

��fl
L3›Ñ

»

——–

‹ ‹ ‹ ‹
‹ ‹ ‹

‹ ‹
0 ˚

fi

��fl

A L1A L2L1A L3L2L1A

§ “Triangular triangularization”



The Matrices Lk
§ At step k , eliminate elements below Akk :

xk “
“

x1k ¨ ¨ ¨ xkk xk`1,k ¨ ¨ ¨ xnk

‰
T

Lkxk “
“

x1k ¨ ¨ ¨ xkk 0 ¨ ¨ ¨ 0
‰
T

§ Each Li introduces zeros below diagonal of column i :

Ln´1 ¨ ¨ ¨ L2L1loooooomoooooon
L´1

A “ U ñ A “ LU where L “ L
´1
1 L

´1
2 ¨ ¨ ¨ L´1

n´1

§ The multipliers `jk “ xjk{xkk appear in Lk :

Lk “

»

————————–

1
. . .

1
´`k`1,k 1

...
. . .

´`nk 1

fi

��������fl

Forming L
§ The L matrix contains all the multipliers in one matrix (with
plus signs)

L “ L
´1
1 L

´1
2 ¨ ¨ ¨ L´1

n´1 “

»

—————–

1
`21 1
`31 `32 1
...

...
. . .

. . .
`n1 `n2 ¨ ¨ ¨ `n,n´1 1

fi

�����fl

§ Define `k “ p0, ¨ ¨ ¨ , 0, `k`1,k , ¨ ¨ ¨ , `nkq. Then
Lk “ I ´ `ke

T

k
,

where ek is the column vector with 1 in position k and 0
elsewhere

§ First, L´1
k

“ I ` `keTk , since e
T

k
`k “ 0 and

pI ´ `ke
T

k
qpI ` `ke

T

k
q “ I ´ `ke

T

k
`ke

T

k
“ I

§ Also, L´1
k

L
´1
k`1 “ I ` `keTk ` `k`1e

T

k`1, since e
T

k
`k`1 “ 0 and

pI ´ `ke
T

k
qpI ` `k`1e

T

k`1q “ I ` `ke
T

k
` `k`1e

T

k`1



Gaussian Elimination without Pivoting

§ Factorize A P Rnˆn into A “ LU

§ Algorithm: Gaussian Elimination (no pivoting)

U “ A, L “ I

for k “ 1 to n ´ 1 do
for j “ k ` 1 to n do

`jk “ ujk{ukk
uj ,k:n “ uj ,k:n ´ `jkuk,k:n

end for
end for

§ The inner loop can be written using matrix operations instead
of for-loop

Pivoting (˚)

§ At step k , we used matrix element k , k as pivot and
introduced zeros in entry k of remaining rows

»

————–

‹ ‹ ‹ ‹ ‹
xkk ˚ ˚ ˚
‹ ‹ ‹ ‹
‹ ‹ ‹ ‹
‹ ‹ ‹ ‹

fi

����fl
›Ñ

»

————–

‹ ‹ ‹ ‹ ‹
xkk ‹ ‹ ‹
0 ˚ ˚ ˚
0 ˚ ˚ ˚
0 ˚ ˚ ˚

fi

����fl

§ But any other element i § k in column k can be used as pivot:

»

————–

‹ ‹ ‹ ‹ ‹
‹ ‹ ‹ ‹
‹ ‹ ‹ ‹
xik ˚ ˚ ˚
‹ ‹ ‹ ‹

fi

����fl
›Ñ

»

————–

‹ ‹ ‹ ‹ ‹
0 ˚ ˚ ˚
0 ˚ ˚ ˚
xik ‹ ‹ ‹
0 ˚ ˚ ˚

fi

����fl



Pivoting (˚)

§ Also, any other column j § k can be used:

»

————–

‹ ‹ ‹ ‹ ‹
‹ ‹ ‹ ‹
‹ ‹ ‹ ‹
˚ xik ˚ ˚
‹ ‹ ‹ ‹

fi

����fl
›Ñ

»

————–

‹ ‹ ‹ ‹ ‹
˚ 0 ˚ ˚
˚ 0 ˚ ˚
‹ xik ‹ ‹
˚ 0 ˚ ˚

fi

����fl

§ Choosing di↵erent pivots means we can avoid zero or very
small pivots

§ Instead of using pivots at di↵erent entries, change rows or
columns and use the standard triangular algorithm (pivoting)

§ A computer code might account for the pivoting indirectly
instead of actually moving the data

Partial Pivoting (˚)
§ Searching among all valid pivots is expensive (complete
pivoting)

§ Consider pivots in column k only and interchange rows (partial
pivoting)

»

————–

‹ ‹ ‹ ‹ ‹
‹ ‹ ‹ ‹
‹ ‹ ‹ ‹
xik ˚ ˚ ˚
‹ ‹ ‹ ‹

fi

����fl
P1›Ñ

»

————–

‹ ‹ ‹ ‹ ‹
xik ˚ ˚ ˚
‹ ‹ ‹ ‹
˚ ˚ ˚ ˚
‹ ‹ ‹ ‹

fi

����fl
L1›Ñ

»

————–

‹ ‹ ‹ ‹ ‹
xik ‹ ‹ ‹
0 ˚ ˚ ˚
0 ˚ ˚ ˚
0 ˚ ˚ ˚

fi

����fl

Pivot selection Row interchange Elimination

§ In terms of matrices:

Ln´1Pn´1 ¨ ¨ ¨ L2P2L1P1A “ U



The PA “ LU Factorization (˚)

§ To combine all Lk and all Pk into matrices, rewrite as

Ln´1Pn´1 ¨ ¨ ¨ L2P2L1P1A “ U

pL̄n´1 ¨ ¨ ¨ L̄2L̄1qpPn´1 ¨ ¨ ¨P2P1qA “ U

where
L̄k “ Pn´1 ¨ ¨ ¨Pk`1LkP

´1
k`1 ¨ ¨ ¨P´1

n´1

§ This gives the LU factorization of A

PA “ LU

Gaussian Elimination with Partial Pivoting (˚)

§ Factorize A P Rnˆn into PA “ LU

§ Algorithm: Gaussian Elimination (partial pivoting)

U “ A, L “ I , P “ I

for k “ 1 to n ´ 1 do
Select i • k to maximize |uik |
uk,k:n Ø ui ,k:n % interchange two rows

`k,1:k´1 Ø `i ,1:k´1

pk,: Ø pi ,:

for j “ k ` 1 to n do
`jk “ ujk{ukk
uj ,k:n “ uj ,k:n ´ `jkuk,k:n

end for
end for



Cholesky Factorization for SPD/HPD Matrices (˚)
§ Eliminate below pivot and to the right of pivot:

A “
„

a11 !˚

! K

⇢
“

„
↵ 0

!{↵ I

⇢ „
↵ !˚{↵
0 K ´ !!˚{aii

⇢

“
„

↵ 0
!{↵ I

⇢ „
1 0
0 K ´ !!˚{aii

⇢ „
↵ !˚{↵
0 I

⇢

“ R
˚
1A1R1

where ↵ “ ?
a11

§ K ´ !!˚{a11 is a principal submatrix of PD matrix R
˚
1A1R1,

therefore its upper-left entry is positive

§ Apply recursively to obtain

A “ pR˚
1R

˚
2 ¨ ¨ ¨Rn˚qpRn ¨ ¨ ¨R2R1q “ R

˚
R , rjj ° 0

The Cholesky Factorization Algorithm

§ Factorize hermitian positive definite A P Rnˆn into A “ R
˚
R

§ Algorithm: Cholesky Factorization (˚)
R “ A

for k “ 1 to n do
for j “ k ` 1 to n do

rj ,j :n “ rj ,j :n ´ rk,j :nr
˚
k,j{rkk

end for
rk,k:n “ rk,k:n{?

rkk

end for
end for

§ Existence and uniqueness: Every PD matrix has a unique
Choleskey factorization



Backslash in MATLAB

§ x=A\b for dense A performs these steps (stopping when
successful):
1. If A is upper or lower triangular, solve by back/forward

substitution
2. If A is permutation of triangular matrix, solve by permuted

back substitution (useful for [L,U]=lu(A) since L is
permuted)

3. If A is symmetric
§ Check if all diagonal elements are positive
§ Try Cholesky, if successful solve by back substitutions

4. If A is Hessenberg (upper triangular plus one subdiagonal),
reduce to upper triangular then solve by back substitution

5. If A is square, factorize PA “ LU and solve by back
substitutions

6. If A is not square, run Householder QR, solve least squares
problem

Conditioning and Condition Numbers



Conditioning

§ Absolute Condition Number of a di↵erentiable problem f at x :

k̂ “ lim
�Ñ0

sup
}�x}§�

}�f }
}�x} “ sup

�x

}�f }
}�x} “ }Jpxq},

where the Jacobian Jij “ Bfi{Bxj , and the matrix norm is
induced by the norms on �f and �x

§ Relative Condition Number:

k “ sup
�x

ˆ }�f }
}f pxq}

M}�x}
}x}

˙
“ }Jpxq}

}f pxq}{}x}

Condition of Matrix-Vector Product
§ Consider f pxq “ Ax , with A P Cmˆn

k “ }Jpxq}
}f pxq}{}x} “ }A} }x}

}Ax} “ rAx “ bs “ }A}}x}
}b}

§ For A square and nonsingular, use }x}{}Ax} § }A´1}:

k § }A}}A´1}

(equality achieved for the last right singular vector x “ vm)

§ The condition number of Ax if 8 if x P nullpAq

§ Also the condition number for f pbq “ A
´1

b (solution of linear
system Ax “ b):

k “ }A´1}}b}
}x} § }A}}A´1}



Condition Number of a Matrix

§ Condition number of matrix A:

kpAq “ }A}}A´1} “ rfor 2-norms “ �1

�m

• 1

§ If A is singular we consider, by convention, kpAq “ 8
§ Measure of uncertainty

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Error Bounds – Illustration

In two dimensions, uncertainty in intersection point of two
lines depends on whether lines are nearly parallel

< interactive example >
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Condition of System of Equations
§ Exercise 0.7: For fixed A, consider f pbq “ A

´1
b. Prove that

k “ }�x}
}x}

M}�b}
}b} § kpAq.

Then, if the input data is accurate to the ✏machine

}�x}
}x} § kpAq✏machine .

§ Exercise 0.8 (Theorem 3.1 (QSS, page 62)): Let A P Cmˆm

be a non singular matrix and let �A P Cmˆm be such that
}A´1}}�A} † 1. Let Ax “ b and pA ` �Aqpx ` �xq “ b ` �b.
Prove that

}�x}
}x} § kpAq

1 ´ kpAq }�A}
}A}

ˆ}�A}
}A} ` }�b}

}b}

˙
,

where kpAq is the condition number of the matrix A.



Example: Condition of Hilbert system

% Initialise settings, constants and vectors

clc; clear; close all;

N = 12; error = zeros(1,N-1); estimate = zeros(1,N-1);

% Loop on the order of the matrix

for n = 2:N

H = hilb(n);

x = ones(n,1); b = H*x; % Exact values

xbar = H\b; bbar = H*xbar; % Computed values

% Compute error and error estimate

error(n-1) = norm(x-xbar)/norm(x);

estimate(n-1) = cond(H)*norm(b-bbar)/norm(b);
end

semilogy(2:n,error,’-o’,2:n,estimate,’-x’)

legend(’error’, ’estimate’)

xlabel(’order’), ylabel(’relative error’)

Example: Condition of Hilbert system
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