New Directions in Mathematics

Adérito Araijo
DMUC, University of Coimbra, Portugal

UNIVERSIDADE B

COIMBRA

Coimbra, 2024

Module Overview

Numerical Linear Algebra

New Directions in Mathematics

Adérito Aratjo (alma@mat.uc.pt)
March 15, 2024

Syllabus

» What is numerical linear algebra?

> Solving linear algebra problems using efficient algorithms on
computers

» Module topics: direct and iterative methods for solving
simultaneous linear equations (Ax = b)

> Matrix factorization and decomposition.

> Stationary iterative methods: Jacobi, Gauss-Seidel and
relaxation methods

> Non stationary iterative methods: Arnoldi and GMRES
methods

> The two-grid/multigrid and domain decomposition methods

Syllabus

» Direct and iterative methods

» Direct methods: solve the problem by a finite sequence of
operations and in the absence of rounding errors, would deliver
an exact solution; operate directly on elements of a matrix

> Iterative methods: solve a problem by finding successive
approximations to the solution starting from an initial guess,
that hopefully converge to the true solution; often are easier to
implement on parallel computers

> Prerequisite/co-requisite
» Good knowledge in linear algebra
> Programming experience in MATLAB (Fortran, C, C4++)
> Good numerical skils

» Required Textbook: Alfio Quarteroni, Riccardo Sacco, Fausto
Saleri, Numerical Mathematics, Texts in Applied Mathematics
Volume 37, 2007, ISBN: 978-1-4757-7394-1 (Chapters 3 - 4)

» Grading: Assignments (5 x 20%)

Lecture O

Foundations of Matrix Analysis

New Directions in Mathematics

Adérito Aratjo (alma@mat.uc.pt)
March 15, 2024

Orthogonal Vectors and Matrices, Norms

Transpose and Adjoint

» For real A, the transpose of A is obtained by interchanging
rows/columns

a1l ad12

d11 421 431
A= d21 a2 = AT = 3
d21 422 432

d31 432

» The adjoint or hermitian conjugate also takes complex

conjugates
1912 a1 ax a3
A= ajr1 dao2 = A* = - - —
daz1 a2 as2
d31 4a32

> Ais symmetric (hermitian) if A = AT (A = A*¥)

Inner Product

» Inner product of two column vectors x,y € C”

n
x*y = Z XiYi
i=1

» Euclidean length of x

I = Vxix = (_Z x,-|2>

» Angle a between x, y

x*y

Cos ¥ =
Ix[lyl

Positive Definite Matrices

v

A hermitian matrix A is symmetric (hermitian) positive
definite if xT Ax > 0 (x*Ax > 0) for x # 0

» Exercise 0.1: x*Ax is always real.

» Exercise 0.2: If Ae C™*™ is PD and X has full column rank,
then X*AX is PD.

» Any principal submatrix of a PD matrix A is PD, and every
diagonal entry aj; > 0

» Exercise 0.3: PD matrices have positive real eigenvalues and
orthogonal eigenvectors.

In MATLAB

Quantity MATLAB Syntax | Comment

Transpose of A A Transpose only

Adjoint of A A Transpose + complex conjugate

Inner product x*y | x’*y ’* assumes column vector
dot (x,y)

Lenght ||x|| sqrt (x’*x) ’x assumes column vector
norm(x)

Orthogonal Vectors

» The vectors x,y € C" are orthogonal if
x*y =0
» The sets os vectors X, Y are orthogonal of
every x € X is orthogonal to every y € Y
> A set of (nonzero) vectors S is orthogonal if
vectors pairwise orthogonal, i.e., for x,y € S, x # y = x*y =0
and orthonormal if, in addition

every x € S has x| =1

Orthogonal and Unitary Matrices

> A square matrix @ € C"*" is unitary (orthogonal in real case)
if
Q* _ Q_l

» For unitary @
Q*Q =1<q/q = Jj

» Interpretation of unitary-times-vector product
x = Q"b = solutionto @x = b

= the vector of coefficients of the expansion of b

in the basis of columns of @

Preservation of Geometry Structure

» Inner product is preserved under multiplication by unitary Q
(@x)*(Qy) = x*Q*Qy = x*y

» Therefore lengths of vectors and angles between vectors are
preserved

» A real orthogonal @ is either a rigid rotation or reflection

Rotation Reflection

Norms in MATLAB

Quantity | MATLAB Syntax

x| sum(abs(x)) or norm(x,1)

x| sqrt(x’*x) or norm(x)

Ix1lp sum(abs(x)."p) . " (1/p) or norm(x,p)
x| o0 max (abs(x)) or norm(x,inf)

1A]1 max (sum(abs(A) ,1)) or norm(A,1)
A2 norm(A)

1A 0 max (sum(abs(A),2)) or norm(A,inf)
1Al sqrt(A(:)’*A(:)) or norm(x,’fro’)

The Singular Value Decomposition

Diagonalizable Matrices

» A square matrix A is called diagonalizable or non-defective if
it is similar to a diagonal matrix, i.e., there exists an invertible
matrix P and a diagonal matrix D such that

P'AP =D

» Exercise 0.4: If Ae C"™" has n linear independent columns,
there exists an eigenvalue decomposition (EVD)

XAX™1 = A.
» If Ais real and symmetric, the EVD is always possible
A=UNUT,

with U an unitary matrix

The SVD - Brief Description

> Suppose that Ae C™*" with m > n and full rank (r = n)
» Choose orthonormal basis
Vi,...,V, for the row space

ui,...,u, for the column space

such that Av; is in the direction of u;: Av; = oju;

» The singular values 01 > 00 > - --

The SVD - Brief Description

» |n matrix form, Av; = o;u; becomes
AV = % < A= 05 Vv*
where 3 = diag(o1,02,...,0n)
» This is the reduced singular value decomposition

» Add orthonormal extension to U and add rows to 3 to obtain
the full sigular value decomposition

A= ULV*

The Full Singular Value Decomposition

» Let A be an m x n matrix. The singular value decomposition
of A is the factorization A = UXV* where
U is m x m unitary (the left singular vectors of A)

V is n x n unitary (the right singular vectors of A)

U is m x m unitary (the left singular vectors of A)

The Reduced Singular Value Decomposition

» A more compact representation is the reduced SVD, for

m = n:

where

Uis mx n, V is n x n, 2isnxn

The SVD and The Eigenvalue Decomposition

» The

eigenvalue decomposition A = XAX ™1

uses the same basis X for row and column space, but the SVD
uses two different basis V' and U

generally does not use an orthonormal basis, but the SVD does
is only defined for square matrices, but the SVD exists for all
matrices

» For symmetric positive definite matrices A, the EVD and SVD
are equal

Matrix Properties (Exercise 0.5)

[y

. The rank of A is r, the number of nonzero singular values

2. range (A) ={u1,...,ury and null (A) =Ves1,..., Vn)

3. |Al2 = o1 and |A|f = /02 + 03+ + 02

2

4. Nonzero eigenvalues of A*A are nonzero 0%, eigenvectors are

vj; Nonzero eigenvalues of AA* are nonzero o

J2, eigenvectors

are u;

5. In A= A*, og; = |\j|, where)\; are eigenvalues of A

6. For square A, [det(A)| = [[2; 0;

Existence and Uniqueness

Theorem 0.1: Existence

Every matrix A e C™*" has a SVD.

Theorem 0.2: Uniqueness

The singular values {o;} are uniquely determined. If A is square
and the o; are distinct, the left and right singular vectors are
uniquely determined up to complex signs.

2 2
Example: A = [11]

» Prove that the eigenvalues of

7. [5 3
AA_[35,

are A1 = 8 and Ay = 2 and the (orthonormal) eigenvectors are

(Y] e[

S B B e R I vt

|

Example: A = {i _21] (cont.)

» The columns of U are obtained by

== 2][R]-[2]~ 5]

and
_A_22—1/ﬁ_0:>_0
g2tz =A2 =1 1v2 | TV | T
> The SVD of A= UX VT is

HEIR R Ry v

» Exercise 0.6: Obtain the SVD of A = [1 (1) })

Low-Rank Approximations

» The SVD can be written as a sum of rank-one matrices
r
— - - *
A= 0juy)
j=1

» Eckart-Young (1936): The best rank n approximation in the
2-norm is

n
A?7 = Z JjUj\/j*
j=1
with
|A = Ayl2 = oy11

» Also true in the Frobenius norm, with

|A=Agllr = \Jo2 s+ + 0

Application: Image Compression

> View m x n image as a (real) matrix A, find best rank 7
approximation by SVD

> Storage n x (m+ n) instead of m x n

Original (Rank 200)

Application: Image Compression

rank = 359

0 100 200 300 400
Cleave Moler Textbooks: www.mathworks.com/moler/

Solving Systems of Linear Equations (Ax = b)

> Let A= USV* = USV* (rank(A) = r)
» Ax = b is solvable iif b L null(A*)

» A solution of Ax = b, if exists, is given by

A A

£=VEt0*h=VITU*h=A"h,
where AT = VI T U* is the pseudo inverse of A

» The vector X = A" b represents the uniquely determined
solution of Ax = b with minimal euclidean norm

» If Ax = b has no solution, X = AT b represents its least
squares solution with minimal euclidean norm

The QR Factorization

The QR Factorization - Main Idea

> Find orthonormal vectors g; that span the successive spaces
spanned by the columns of A:

(a1y S {a1,ax) S (ar,az,ap) < -~

> This means that (for full rank A)

{(q1,q2,...qj) = (a1, a2, ... a;), forj=1,...,n

The QR Factorization - Matrix Form

> In matrix form (q1, g2, ... qj) = (a1, a2, ... aj) becomes

ni n2 -+ nNn
rap -+ I2p
al a2 .. an frd q]. q2 « .. qn i
| Fnn
or
A= QR

» This is the reduced QR factorization

» Add orthogonal extension to Q and add rows to R of obtain the full
QR factorization

The Full QR Factorization

» Let A be an m x n matrix. The full QR factorization of A is
the factorization A = QR, where

@ is m x m unitary

R is m x n upper-triangular

The Reduced QR Factorization

» A more compact representation is the reduced QR
factorization A = QR, where (for m = n)

Q is m x n with orthonormal columns

R is n x n upper-triangular

Gram-Schmidt Orthogonalization (x)

> Find new g, orthogonal to g1, ..., gj—1 by subtracting
components along previous vectors

vi =aj — (a13))q1 — (923j)q2 — -+ — (g;-13))gj—1
> Normalize to get q; = v;/| v
» We then obtain a reduced QR factorization A = Cf)li’ with
rp=daa, (I#]))
and
|l =

j—1
aj = 2, rid
i=1

» "Triangular Orthogonalization”

2

Classical Gram-Schmidt ()

» Straight-forward application of Gram-Schmidt
orthogonalization

» Numerically unstable
» Algorithm: Classical Gram-Schmidt

for j=1to ndo

Vi = dj
fori=1toj—1do
_ * 4.

rij = q; aj

Vi = Vj — Ijqi
end for
ri = |vjll2
qj = vj/rjj

end for

Existence and Uniqueness

Theorem 0.3: Existence

Every Ae C™*" (m = n) has a full QR factorization and a reduced
QR factorization.

Proof: For full rank A, Gram-Schmidt process gives the existence
of A= @li’ Otherwise, when v; = 0 choose arbitrary vector
orthogonal to previous q, ..., gj—1. For full QR, add orthogonal
extension to @ (silent columns) and zero rows to R. []

Theorem 0.4: Uniqueness

Each Ae C™*" (m = n) of full rank has a unique A = QR with
rjj > 0.

Proof: Again Gram-Schmidt, r; > 0 determines the sign. []

Classical vs Modified Gram-Schmidt (x)

» Some modifications of classical Gram-Schmidt gives modified
Gram-Schmidt (but see next slide)

» Modified Gram-Schmidt is numerically stable (less sensitive to
rounding errors)

» Algorithm: Classical/Modified Gram-Schmidt

for j=11to ndo

Vi = 4dj

fori=1toj—1do
%o,
rij = q; aj
k.
Fij = 4; Vj
Vi = Vi — Iijqi

end for

ri = |vil2

qj = vj/rjj

end for

Implementation of Modified Gram-Schmidt ()

> Algorithm: CGS

for j=11to ndo

Vi = dj
fori=1toj—1do
rj = q;'a
Vi = Vi — Iijqi
end for
ri = |vil2
qj = vj/rjj
end for

» Algorithm: MGS

fori =1 to ndo

Vi = a;
end for
for i =1 to ndo
ri = |vil2
qi = vi/rii
forj=1i+1tondo
rjp = q; vj
Vi =V — Fjqi
end for
end for

Example: Classical vs Modified Gram-Schmidt ()

% Create a random orthogonal matrix Q

n = 80;
[Q,X] = gr(randn(n));

% Make an ill-conditioned R (with diagonal

% entries = 2"-j, j=1,...,n)

R = diag(2.”(-1:-1:-n))*triu(ones(n)+0.1*randn(n));

% Compute QR factorization with classical and with

% modified GS, compare diagonal elements of

% computed R’s

A = Q*R;

[QC,RC] = clgs(A);
[QM,RM] = mgs(A);

semilogy(1l:n,diag(RC),’0’,1:n,diag(RM),’x’,1:n,diag(R))

legend(’CGS’, ’MGS’, ’exact’)

grid on

Example: Classical vs Modified Gram-Schmidt (=

10

1070

102°F ... i

1 0—25 i i i i

XX)X X
XXX xxXxxXxxxxxxxxxxx Xy
X Xx

50 60 70 80

Gram-Schmidt vs Householder (=

Orthogonality of Q for CGS (red), MGS (green), Householder (blue)

Orthogonality of Q for CGS (red), MGS (green), Householder (blue)
T T T T T T T

10 : T 10 .
107 b - 102 4
107 L - 107 L .|
10° | - 10° | 4
2 =
k] s
g . g
g 107 - — S 10° - o
g g
] 2
°© 5
107"} - 1071 4
* * *
2 *) *
4
1072 - 2% * : 4
0 10 : woE * *
* % % * *
4 * * ¥ ¥ o+ * * ERE
oy % bl 107"F * * .]
H
. * * *
¥ 3 ¥ - £ % o % % t % * % % * 5 % ¥ * * Ok *
* * * ¥ * X * * *
107" L L L L L L L L L 107" L L L L L I L L
2 4 6 B 10 12 14 16 18 20 2 4 6 B 10 12 14 16 18 20
test matrix number, condition num =10 test matrix number, condition num =1000
. Orthogonality of Q for GGS (red), MGS (green), Householder (blue) o Orthogonality of Q for CGS (red), MGS (green), Householder (blue)
10 (: : i ! : ‘ £ £ £ + - S * £
*
¥ 4 . s - ¥ * B B
- *
w02l B .] 1074 g * = * * . 4
* *
* . .
107 bk 1 o 7
*
ok * "
0ok] 10° 1 .
z 2z
s * g 00
g e 5 10° |]
S 107 PR TR * * % ¥ g
£ [MR + £
£ * * 5
* ~10
1oL *] 10700 §
.
12
102] 10721 .
e
107 . 10 b
P
* I * o4 % % " O N T
B ; 1 1 * | | 10710 L L L L
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 16 18 20

test matrix number, condition num =100000000

test matrix number, condition num =1000000000000000

The LU Factorization

The LU Factorization

v

Transform A = R"*" into upper triangular U by subtracting
multiples of rows

v

Each L; introduces zeros below diagonal of column i:

Lp1--LoliA=U= A= LUwhere L = L1151 . L1

L—l

b S
* % A
L I
b S
O O O »
EE S
* %k ¥
* %k ¥ A
~
N
O O »*
EE S
EE I
~
w
O * *
CE S

A LA LL;A L3l A

» “Triangular triangularization”

The Matrices Ly

> At step k, eliminate elements below Ajg:
Xk = [X1k T Xkk Xk+1,k Tt Xnk]T
Lixk =] >+ xk O - 0]T
» Each L; introduces zeros below diagonal of column i:

Lop1-LaliA=U= A= LUwhere L = L1051 . L1

L1

> The multipliers £ = Xjx/Xxk appear in Ly:

1
1
[, —
« —lrr1k 1
i —lnk I
Forming L
» The L matrix contains all the multipliers in one matrix (with
plus signs)
- -
621 1
L=yttt = b2 1
| Enl €n2 T gn,n—l 1]

» Define ¢y = (0, ce ,0,€k+1,k, s 7£nk)- Then
Ly =1—trel,

where e is the column vector with 1 in position k and 0
elsewhere
> First, L;l =/ +€kekT, since ekTEk =0 and

(I —lel)+ trel) =1 — Lee] tie] =1
» Also, L;lL;il = /+£kekT + €k+1ekT+1, since ekTKkH =0 and

(I — kel) + liyre 1) = 1 + lee] + bref 4

Gaussian Elimination without Pivoting

» Factorize A R"™" into A= LU

> Algorithm: Gaussian Elimination (no pivoting)

U=A L=1
fork=1ton—1do
forj=k+1to ndo
Uik = Ujke/ Uk
Uj k:n = Uj jen — Lk Uk k:n
end for
end for

» The inner loop can be written using matrix operations instead
of for-loop

Pivoting (*)

» At step k, we used matrix element k, k as pivot and
introduced zeros in entry k of remaining rows

[x * * x k| [« * x K K|
Xkk * * * Xkk * * *
* Kk x — 0 * % %
P S 0 E I S
*x x x 0 * % %

» But any other element / < k in column k can be used as pivot:

[x x x x x| [« x x x x|
* * x * 0 % %
* * Kk x — 0 ¥ % %
Xik * * * Xik * * *
*x x Kk * 0 * = =

Pivoting (*)

» Also, any other column j < k can be used:

* * * N T T
* * % * 0 % =%
* * — £+ 0 ¥ %
* Xik * * * Xik * *
* X x x + 0 % %

» Choosing different pivots means we can avoid zero or very
small pivots

> Instead of using pivots at different entries, change rows or
columns and use the standard triangular algorithm (pivoting)

» A computer code might account for the pivoting indirectly
instead of actually moving the data

Partial Pivoting (*)

» Searching among all valid pivots is expensive (complete

pivoting)
» Consider pivots in column k only and interchange rows (partial
pivoting)
[* * * *] [* * * * *] [* * * * *]
* * * Xik * * * Xik * * *
Py Ly
* *x x — I S 0 =% =% =
Xk k% % * % % 0 * % =%
* x k% * Kk ok 0 =% = =
Pivot selection Row interchange Elimination

» In terms of matrices:

Lhno1Pp_1---LoP2LiPi1A=U

The PA = LU Factorization (*)

» To combine all Lx and all P, into matrices, rewrite as

Lhn—1Pp—1---LoPL1PIA=U
(Lp—1--+LoLy)(Pp_1---P2P1)A=U

where
T -1 -1
Ly=P,_1--- 'Dk+1LkPk+1 e Pn—l

» This gives the LU factorization of A

PA=LU

Gaussian Elimination with Partial Pivoting ()

» Factorize A€ R " into PA= LU

» Algorithm: Gaussian Elimination (partial pivoting)

U=A L=1I P=1
fork=1ton—1do
Select i > k to maximize |uj|
Uk k:n <> Uj k:n
Cr1:k—1 <> Li1:k—1
Pk,: <> Pi,:
forj=k+1tondo
Uik = Ujke/ Uk
Uj k:n = Uj k:n — gjkuk,k:n
end for
end for

Cholesky Factorization for SPD/HPD Matrices (*)

» Eliminate below pivot and to the right of pivot:
A — [a7 W B a 0 o w* /o
B w K | | wa | 0 K —ww*/aj
0
/

s ke | 7]

» K —ww®*/aj; is a principal submatrix of PD matrix R{*A1R;,
therefore its upper-left entry is positive

» Apply recursively to obtain

A=(RfR;---Rn*)(Rn---RQRl)ZR*R, rjj>0

The Cholesky Factorization Algorithm

» Factorize hermitian positive definite A€ R™" into A = R*R

> Algorithm: Cholesky Factorization ()

R=A
for k =1 to ndo
for j =k +1to ndo

Fjj:n = Fjj:n rk,Jinrk,j/rkk

end for
Mk k:n = rk,k:n/\/rkk
end for

end for

» Existence and uniqueness: Every PD matrix has a unique
Choleskey factorization

Backslash in MATLAB

» x=A\D for dense A performs these steps (stopping when
successful):

1.

If A is upper or lower triangular, solve by back/forward
substitution
If A is permutation of triangular matrix, solve by permuted
back substitution (useful for [L,U]=1u(A) since L is
permuted)
If A is symmetric

> Check if all diagonal elements are positive

> Try Cholesky, if successful solve by back substitutions
If A is Hessenberg (upper triangular plus one subdiagonal),
reduce to upper triangular then solve by back substitution
If A is square, factorize PA = LU and solve by back
substitutions
If A is not square, run Householder QR, solve least squares
problem

Conditioning and Condition Numbers

Conditioning

» Absolute Condition Number of a differentiable problem f at x:

lofl— |of]
k = lim sup
50 |5x|<s 10X Tax 6|

= [

where the Jacobian J;j = 0f;/0x;, and the matrix norm is
induced by the norms on df and dx

» Relative Condition Number:

Y O 113 Byl L2 A BIC9]
“ p(Hf()l HXH) I G/

Condition of Matrix-Vector Product
» Consider f(x) = Ax, with Ae C™*"

WL I o
“= el = AT = A =Bl = 1Al

> For A square and nonsingular, use |x||/||Ax]| < |A7Y]:
k< |AIIATY

(equality achieved for the last right singular vector x = v;;)
> The condition number of Ax if oo if x € null(A)

> Also the condition number for f(b) = A=1b (solution of linear
system Ax = b):

]

= |AH x|

< [AlIA7Y

Condition Number of a Matrix

» Condition number of matrix A:

k(A) = |A||A7Y] = [for 2-norm] = 2L > 1

Om
> If A is singular we consider, by convention, k(A) = o0

» Measure of uncertainty

well-conditioned ill-conditioned

Condition of System of Equations
> Exercise 0.7: For fixed A, consider f(b) = A~1b. Prove that

_Joxl /196l
< k(A).
o] < KA

Ixl

Then, if the input data is accurate to the €5chine
T S k(A)Emachine-

> Exercise 0.8 (Theorem 3.1 (QSS, page 62)): Let Ae C™*™
be a non singular matrix and let A € C™*™ be such that
IA7L||6A] < 1. Let Ax = b and (A + 6A)(x + 6x) = b+ Jb.
Prove that

[ox| _ — Kk(A) (HMH H5bH)

< -
Xl 1 — k(ayl2l \JAL]

[A]

where k(A) is the condition number of the matrix A.

Example: Condition of Hilbert system

% Initialise settings, constants and vectors
clc; clear; close all;
N = 12; error = zeros(1,N-1); estimate = zeros(1,N-1);

% Loop on the order of the matrix

for n = 2:N
H = hilb(n);
x = ones(n,1); b = Hx*x; % Exact values

xbar = H\b; bbar Hxxbar; 7, Computed values
% Compute error and error estimate
error(n-1) = norm(x-xbar)/norm(x);
estimate(n-1) = cond(H)*norm(b-bbar)/norm(b) ;

end
semilogy(2:n,error,’-o’,2:n,estimate,’-x’)

legend(’error’, ’estimate’)

xlabel(’order’), ylabel(’relative error’)

Example: Condition of Hilbert system

10 T T

—&— error
——x— estimate

relative error

