New Directions in Mathematics

Adérito Araújo

DMUC, University of Coimbra, Portugal

UNIVERSIDADE E
COIMBRA

Coimbra, 2024

Module Overview

Numerical Linear Algebra

New Directions in Mathematics

Adérito Araújo (alma@mat.uc.pt)
March 15, 2024

Syllabus

- What is numerical linear algebra?
- Solving linear algebra problems using efficient algorithms on computers
- Module topics: direct and iterative methods for solving simultaneous linear equations $(A x=b)$
- Matrix factorization and decomposition.
- Stationary iterative methods: Jacobi, Gauss-Seidel and relaxation methods
- Non stationary iterative methods: Arnoldi and GMRES methods
- The two-grid/multigrid and domain decomposition methods

Syllabus

- Direct and iterative methods
- Direct methods: solve the problem by a finite sequence of operations and in the absence of rounding errors, would deliver an exact solution; operate directly on elements of a matrix
- Iterative methods: solve a problem by finding successive approximations to the solution starting from an initial guess, that hopefully converge to the true solution; often are easier to implement on parallel computers
- Prerequisite/co-requisite
- Good knowledge in linear algebra
- Programming experience in MATLAB (Fortran, C, C++)
- Good numerical skils
- Required Textbook: Alfio Quarteroni, Riccardo Sacco, Fausto Saleri, Numerical Mathematics, Texts in Applied Mathematics Volume 37, 2007, ISBN: 978-1-4757-7394-1 (Chapters 3-4)
- Grading: Assignments ($5 \times 20 \%$)

Lecture 0

Foundations of Matrix Analysis

New Directions in Mathematics
Adérito Araújo (alma@mat.uc.pt)
March 15, 2024

Orthogonal Vectors and Matrices, Norms

Transpose and Adjoint

- For real A, the transpose of A is obtained by interchanging rows/columns

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right] \Rightarrow A^{T}=\left[\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{21} & a_{22} & a_{32}
\end{array}\right]
$$

- The adjoint or hermitian conjugate also takes complex conjugates

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right] \Rightarrow A^{*}=\left[\begin{array}{lll}
\bar{a}_{11} & \bar{a}_{21} & \bar{a}_{31} \\
\bar{a}_{21} & \bar{a}_{22} & \bar{a}_{32}
\end{array}\right]
$$

- A is symmetric (hermitian) if $A=A^{T}\left(A=A^{*}\right)$

Inner Product

- Inner product of two column vectors $x, y \in \mathbb{C}^{n}$

$$
x^{*} y=\sum_{i=1}^{n} \bar{x}_{i} y_{i}
$$

- Euclidean length of x

$$
\|x\|=\sqrt{x^{*} x}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)
$$

- Angle α between x, y

$$
\cos \alpha=\frac{x^{*} y}{\|x\|\|y\|}
$$

Positive Definite Matrices

- A hermitian matrix A is symmetric (hermitian) positive definite if $x^{T} A x>0\left(x^{*} A x>0\right)$ for $x \neq 0$
- Exercise 0.1: $x^{*} A x$ is always real.
- Exercise 0.2: If $A \in \mathbb{C}^{m \times m}$ is PD and X has full column rank, then $X^{*} A X$ is PD .
- Any principal submatrix of a PD matrix A is PD, and every diagonal entry $a_{i i}>0$
- Exercise 0.3: PD matrices have positive real eigenvalues and orthogonal eigenvectors.

In MATLAB

Quantity	MATLAB Syntax	Comment		
Transpose of A	A.'	Transpose only		
Adjoint of A	$\mathrm{~A}^{\prime}$	Transpose + complex conjugate		
Inner product $x^{*} y$	$\mathrm{x}^{\prime} * \mathrm{y}$ $\operatorname{dot}(\mathrm{x}, \mathrm{y})$	${ }^{\prime} *$ assumes column vector		
Lenght $\\|x\\|$	$\operatorname{sqrt}\left(\mathrm{x}{ }^{\prime} * \mathrm{x}\right)$ norm (x)	${ }^{\prime} *$ assumes column vector		

Orthogonal Vectors

- The vectors $x, y \in \mathbb{C}^{n}$ are orthogonal if

$$
x^{*} y=0
$$

- The sets os vectors X, Y are orthogonal of every $x \in X$ is orthogonal to every $y \in Y$
- A set of (nonzero) vectors S is orthogonal if vectors pairwise orthogonal, i.e., for $x, y \in S, x \neq y \Rightarrow x^{*} y=0$ and orthonormal if, in addition

$$
\text { every } x \in S \text { has }\|x\|=1
$$

Orthogonal and Unitary Matrices

- A square matrix $Q \in \mathbb{C}^{n \times n}$ is unitary (orthogonal in real case) if

$$
Q^{*}=Q^{-1}
$$

- For unitary Q

$$
Q^{*} Q=I \Leftrightarrow q_{i}^{*} q_{j}=\delta_{i j}
$$

- Interpretation of unitary-times-vector product

$$
x=Q^{*} b=\text { solution to } Q x=b
$$

$=$ the vector of coefficients of the expansion of b in the basis of columns of Q

Preservation of Geometry Structure

- Inner product is preserved under multiplication by unitary Q

$$
(Q x)^{*}(Q y)=x^{*} Q^{*} Q y=x^{*} y
$$

- Therefore lengths of vectors and angles between vectors are preserved
- A real orthogonal Q is either a rigid rotation or reflection

Rotation

Reflection

Norms in MATLAB

Quantity	MATLAB Syntax		
$\\|x\\|_{1}$	sum(abs(x)) or norm(x,1)		
$\\|x\\|_{2}$	sqrt (x^{\prime} *x) or norm(x)		
$\\|x\\|_{p}$	sum (abs (x).^p).^(1/p) or $\operatorname{norm}(x, p)$		
$\\|x\\|_{\infty}$	$\max (\mathrm{abs}(\mathrm{x})$) or norm(x,inf)		
$\\|A\\|_{1}$	$\max (\operatorname{sum}(\operatorname{abs}(\mathrm{A}), 1))$ or $\operatorname{norm}(\mathrm{A}, 1)$		
$\\|A\\|_{2}$	norm(A)		
$\\|A\\|_{\infty}$	$\max (\operatorname{sum}(\operatorname{abs}(\mathrm{A}), 2))$ or $\operatorname{norm}(\mathrm{A}, \mathrm{inf})$		
$\\|A\\|_{F}$	$\operatorname{sqrt}(\mathrm{A}(:) \cdot * A(:))$ or $\operatorname{norm}(\mathrm{x}, \mathrm{\prime} \mathrm{fro}$ ')		

The Singular Value Decomposition

Diagonalizable Matrices

- A square matrix A is called diagonalizable or non-defective if it is similar to a diagonal matrix, i.e., there exists an invertible matrix P and a diagonal matrix D such that

$$
P^{-1} A P=D
$$

- Exercise 0.4: If $A \in \mathbb{C}^{n \times n}$ has n linear independent columns, there exists an eigenvalue decomposition (EVD)

$$
X \wedge X^{-1}=A .
$$

- If A is real and symmetric, the EVD is always possible

$$
A=U \wedge U^{T},
$$

with U an unitary matrix

The SVD - Brief Description

- Suppose that $A \in \mathbb{C}^{m \times n}$ with $m \geqslant n$ and full rank $(r=n)$
- Choose orthonormal basis

$$
v_{1}, \ldots, v_{n} \text { for the row space }
$$

$$
u_{1}, \ldots, u_{n} \text { for the column space }
$$

such that $A v_{i}$ is in the direction of $u_{i}: A v_{i}=\sigma_{i} u_{i}$

- The singular values $\sigma_{1} \geqslant \sigma_{2} \geqslant \cdots \geqslant \sigma_{n}>0$

The SVD - Brief Description

- In matrix form, $A v_{i}=\sigma_{i} u_{i}$ becomes

$$
A V=\hat{U} \hat{\Sigma} \Leftrightarrow A=\hat{U} \hat{\Sigma} V^{*}
$$

where $\hat{\Sigma}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$

- This is the reduced singular value decomposition
- Add orthonormal extension to \hat{U} and add rows to $\hat{\Sigma}$ to obtain the full sigular value decomposition

$$
A=U \Sigma V^{*}
$$

The Full Singular Value Decomposition

- Let A be an $m \times n$ matrix. The singular value decomposition of A is the factorization $A=U \Sigma V^{*}$ where
U is $m \times m$ unitary (the left singular vectors of A)
V is $n \times n$ unitary (the right singular vectors of A)
U is $m \times m$ unitary (the left singular vectors of A)

A
$=$

Σ
V^{*}

The Reduced Singular Value Decomposition

- A more compact representation is the reduced SVD, for $m \geqslant n$:

$$
A=\hat{U} \hat{\Sigma} V^{*}
$$

where

$$
U \text { is } m \times n, \quad V \text { is } n \times n, \quad \Sigma \text { is } n \times n
$$

A

\hat{U}

$\hat{\Sigma}$
V^{*}

The SVD and The Eigenvalue Decomposition

- The eigenvalue decomposition $A=X \wedge X^{-1}$
- uses the same basis X for row and column space, but the SVD uses two different basis V and U
- generally does not use an orthonormal basis, but the SVD does
- is only defined for square matrices, but the SVD exists for all matrices
- For symmetric positive definite matrices A, the EVD and SVD are equal

Matrix Properties (Exercise 0.5)

1. The rank of A is r, the number of nonzero singular values
2. range $(A)=\left\langle u_{1}, \ldots, u_{r}\right\rangle$ and null $(A)=\left\langle v_{r+1}, \ldots, v_{n}\right\rangle$
3. $\|A\|_{2}=\sigma_{1}$ and $\|A\|_{F}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2} \cdots+\sigma_{r}^{2}}$
4. Nonzero eigenvalues of $A^{*} A$ are nonzero σ_{j}^{2}, eigenvectors are v_{j}; Nonzero eigenvalues of $A A^{*}$ are nonzero σ_{j}^{2}, eigenvectors are u_{j}
5. In $A=A^{*}, \sigma_{i}=\left|\lambda_{j}\right|$, where λ_{j} are eigenvalues of A
6. For square $A,|\operatorname{det}(A)|=\prod_{j=1}^{m} \sigma_{j}$

Existence and Uniqueness

Theorem 0.1: Existence

Every matrix $A \in \mathbb{C}^{m \times n}$ has a SVD.

Theorem 0.2: Uniqueness

The singular values $\left\{\sigma_{j}\right\}$ are uniquely determined. If A is square and the σ_{j} are distinct, the left and right singular vectors are uniquely determined up to complex signs.

Example: $A=\left[\begin{array}{cc}2 & 2 \\ 1 & -1\end{array}\right]$

- Prove that the eigenvalues of

$$
A^{T} A=\left[\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right]
$$

are $\lambda_{1}=8$ and $\lambda_{2}=2$ and the (orthonormal) eigenvectors are

$$
v_{1}=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] \quad \text { and } \quad v_{2}=\left[\begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]
$$

- Then

$$
\Sigma=\left[\begin{array}{ll}
\sigma_{1} & \\
& \sigma_{2}
\end{array}\right]=\left[\begin{array}{ll}
2 \sqrt{2} & \\
& \sqrt{2}
\end{array}\right] \text { and } V=\left[\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]
$$

Example: $A=\left[\begin{array}{cc}2 & 2 \\ 1 & -1\end{array}\right]$ (cont.)

- The columns of U are obtained by
$\sigma_{1} u_{1}=A v_{1}=\left[\begin{array}{cc}2 & 2 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]=\left[\begin{array}{c}2 \sqrt{2} \\ 0\end{array}\right] \Rightarrow u_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
and
$\sigma_{2} u_{2}=A v_{2}=\left[\begin{array}{cc}2 & 2 \\ 1 & -1\end{array}\right]\left[\begin{array}{c}-1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]=\left[\begin{array}{c}0 \\ \sqrt{2}\end{array}\right] \Rightarrow u_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
- The SVD of $A=U \Sigma V^{T}$ is

$$
\left[\begin{array}{cc}
2 & 2 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
2 \sqrt{2} & \\
& \sqrt{2}
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]
$$

- Exercise 0.6: Obtain the SVD of $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$.

Low-Rank Approximations

- The SVD can be written as a sum of rank-one matrices

$$
A=\sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{*}
$$

- Eckart-Young (1936): The best rank η approximation in the 2-norm is

$$
A_{\eta}=\sum_{j=1}^{\eta} \sigma_{j} u_{j} v_{j}^{*}
$$

with

$$
\left\|A-A_{\eta}\right\|_{2}=\sigma_{\eta+1}
$$

- Also true in the Frobenius norm, with

$$
\left\|A-A_{\eta}\right\|_{F}=\sqrt{\sigma_{\eta+1}^{2}+\cdots+\sigma_{r}^{2}}
$$

Application: Image Compression

- View $m \times n$ image as a (real) matrix A, find best rank η approximation by SVD
- Storage $\eta \times(m+n)$ instead of $m \times n$

Original (Rank 200)

Rank 5

Rank 1

Rank 15

Rank 2

Rank 50

Application: Image Compression

Cleave Moler Textbooks: www.mathworks.com/moler/

Solving Systems of Linear Equations $(A x=b)$

- Let $A=U \Sigma V^{*}=\hat{U} \hat{\Sigma} V^{*} \quad(\operatorname{rank}(A)=r)$
- $A x=b$ is solvable iif $b \perp \operatorname{null}\left(A^{*}\right)$
- A solution of $A x=b$, if exists, is given by

$$
\hat{x}=\hat{V} \hat{\Sigma}^{-1} \hat{U}^{*} b=V \Sigma^{+} U^{*} b=A^{+} b,
$$

where $A^{+}=V \Sigma^{+} U^{*}$ is the pseudo inverse of A

- The vector $\hat{x}=A^{+} b$ represents the uniquely determined solution of $A x=b$ with minimal euclidean norm
- If $A x=b$ has no solution, $\hat{x}=A^{+} b$ represents its least squares solution with minimal euclidean norm

The QR Factorization - Main Idea

- Find orthonormal vectors q_{j} that span the successive spaces spanned by the columns of A :

$$
\left\langle a_{1}\right\rangle \subseteq\left\langle a_{1}, a_{2}\right\rangle \subseteq\left\langle a_{1}, a_{2}, a_{2}\right\rangle \subseteq \cdots
$$

- This means that (for full rank A)

$$
\left\langle q_{1}, q_{2}, \ldots q_{j}\right\rangle=\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle, \quad \text { for } j=1, \ldots, n
$$

The QR Factorization - Matrix Form

- In matrix form $\left\langle q_{1}, q_{2}, \ldots q_{j}\right\rangle=\left\langle a_{1}, a_{2}, \ldots a_{j}\right\rangle$ becomes

$$
\left[\begin{array}{l|l|l|l}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right]=\left[\begin{array}{l|l|l|l}
q_{1} & q_{2} & \cdots & q_{n}
\end{array}\right]\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 n} \\
& r_{22} & \cdots & r_{2 n} \\
& & \ddots & \vdots \\
& & & r_{n n}
\end{array}\right]
$$

or

$$
A=\hat{Q} \hat{R}
$$

- This is the reduced $Q R$ factorization
- Add orthogonal extension to \hat{Q} and add rows to \hat{R} of obtain the full QR factorization

The Full QR Factorization

- Let A be an $m \times n$ matrix. The full QR factorization of A is the factorization $A=Q R$, where

$$
\begin{aligned}
& Q \text { is } m \times m \text { unitary } \\
& R \text { is } m \times n \text { upper-triangular }
\end{aligned}
$$

The Reduced QR Factorization

- A more compact representation is the reduced QR factorization $A=\hat{Q} \hat{R}$, where (for $m \geqslant n$)
\hat{Q} is $m \times n$ with orthonormal columns
R is $n \times n$ upper-triangular

Gram-Schmidt Orthogonalization (*)

- Find new q_{j} orthogonal to q_{1}, \ldots, q_{j-1} by subtracting components along previous vectors

$$
v_{j}=a_{j}-\left(q_{1}^{*} a_{j}\right) q_{1}-\left(q_{2}^{*} a_{j}\right) q_{2}-\cdots-\left(q_{j-1}^{*} a_{j}\right) q_{j-1}
$$

- Normalize to get $q_{j}=v_{j} /\left\|v_{j}\right\|$
- We then obtain a reduced $Q R$ factorization $A=\hat{Q} \hat{R}$, with

$$
r_{i j}=q_{i}^{*} a_{j}, \quad(i \neq j)
$$

and

$$
\left|r_{j j}\right|=\left\|a_{j}-\sum_{i=1}^{j-1} r_{i j} q_{i}\right\|_{2}
$$

- "Triangular Orthogonalization"

Classical Gram-Schmidt (*)

- Straight-forward application of Gram-Schmidt orthogonalization
- Numerically unstable
- Algorithm: Classical Gram-Schmidt for $j=1$ to n do $v_{j}=a_{j}$
for $i=1$ to $j-1$ do

$$
r_{i j}=q_{i}^{*} a_{j}
$$

$$
v_{j}=v_{j}-r_{i j} q_{i}
$$

end for

$$
\begin{aligned}
r_{j j} & =\left\|v_{j}\right\|_{2} \\
q_{j} & =v_{j} / r_{j j}
\end{aligned}
$$

end for

Existence and Uniqueness

Theorem 0.3: Existence

Every $A \in \mathbb{C}^{m \times n}(m \geqslant n)$ has a full $Q R$ factorization and a reduced QR factorization.

Proof: For full rank A, Gram-Schmidt process gives the existence of $A=\hat{Q} \hat{R}$. Otherwise, when $v_{j}=0$ choose arbitrary vector orthogonal to previous q_{1}, \ldots, q_{j-1}. For full $Q R$, add orthogonal extension to Q (silent columns) and zero rows to R.

Theorem 0.4: Uniqueness

Each $A \in \mathbb{C}^{m \times n}(m \geqslant n)$ of full rank has a unique $A=\hat{Q} \hat{R}$ with $r_{j j}>0$.

Proof: Again Gram-Schmidt, $r_{j j}>0$ determines the sign.

Classical vs Modified Gram-Schmidt (*)

- Some modifications of classical Gram-Schmidt gives modified Gram-Schmidt (but see next slide)
- Modified Gram-Schmidt is numerically stable (less sensitive to rounding errors)
- Algorithm: Classical/Modified Gram-Schmidt

$$
\text { for } j=1 \text { to } n \text { do }
$$

$$
v_{j}=a_{j}
$$

$$
\text { for } i=1 \text { to } j-1 \text { do }
$$

$$
r_{i j}=q_{i}^{*} a_{j} \quad(C G S)
$$

$$
r_{i j}=q_{i}^{*} v_{j} \quad(\mathrm{MGS})
$$

$$
v_{j}=v_{j}-r_{i j} q_{i}
$$

end for

$$
\begin{aligned}
r_{j j} & =\left\|v_{j}\right\|_{2} \\
q_{j} & =v_{j} / r_{j j}
\end{aligned}
$$

end for

Implementation of Modified Gram-Schmidt (*)

- Algorithm: CGS	- Algorithm: MGS		
for $j=1$ to n do	for $i=1$ to n do		
$v_{j}=a_{j}$ for $i=1$ to $j-1$ do	$v_{i}=a_{i}$		
$r_{i j}=q_{i}^{*} a_{j}$	for $i=1$ to n do		
$v_{j}=v_{j}-r_{i j} q_{i}$	$r_{i i}=\left\\|v_{i}\right\\|_{2}$		
end for	$q_{i}=v_{i} / r_{i i}$		
$r_{j j}=\left\\|v_{j}\right\\|_{2}$	for $j=i+1$ to n do		
$q_{j}=v_{j} / r_{j j}$	$r_{i j}=q_{i}^{*} v_{j}$		
end for	$v_{j}=v_{j}-r_{i j} q_{i}$		
	end for		
	end for		

Example: Classical vs Modified Gram-Schmidt (*)

```
% Create a random orthogonal matrix Q
    n = 80;
```

 \([\mathrm{Q}, \mathrm{X}]=\operatorname{qr}(\operatorname{randn}(\mathrm{n}))\);
 \% Make an ill-conditioned R (with diagonal
 \(\%\) entries \(\left.=2^{\wedge}-j, j=1, \ldots, n\right)\)
 \(R=\operatorname{diag}(2 . \wedge(-1:-1:-n)) * \operatorname{triu}(o n e s(n)+0.1 * r a n d n(n)) ;\)
 \% Compute QR factorization with classical and with
 \% modified GS, compare diagonal elements of
 \% computed R's
 \(\mathrm{A}=\mathrm{Q} * \mathrm{R}\);
 [QC,RC] = clgs(A);
 [QM,RM] = mgs(A);
 semilogy (1:n, diag(RC), 'o', $\left.1: n, \operatorname{diag}(R M), X^{\prime}, 1: n, \operatorname{diag}(R)\right)$
legend('CGS', 'MGS', 'exact')
grid on

Example: Classical vs Modified Gram-Schmidt (*)

Gram-Schmidt vs Householder (*)

Orthogonality of Q for CGS (red), MGS (green), Householder (blue)

The LU Factorization

The LU Factorization

- Transform $A=\mathbb{R}^{n \times n}$ into upper triangular U by subtracting multiples of rows
- Each L_{i} introduces zeros below diagonal of column i :

$$
\underbrace{L_{n-1} \cdots L_{2} L_{1}}_{L^{-1}} A=U \Rightarrow A=L U \text { where } L=L_{1}^{-1} L_{2}^{-1} \cdots L_{n-1}^{-1}
$$

$$
\begin{aligned}
& {\left[\begin{array}{llll}
\star & \star & \star & \star \\
\star & \star & \star & \star \\
\star & \star & \star & \star \\
\star & \star & \star & \star
\end{array}\right] \xrightarrow{L_{1}}\left[\begin{array}{llll}
\star & \star & \star & \star \\
0 & * & * & * \\
0 & * & * & * \\
0 & * & * & *
\end{array}\right] \xrightarrow{L_{2}}\left[\begin{array}{cccc}
\star & \star & \star & \star \\
& \star & \star & \star \\
& 0 & * & * \\
& 0 & * & *
\end{array}\right] \xrightarrow{L_{3}}\left[\begin{array}{llll}
\star & \star & \star & \star \\
& \star & \star & \star \\
& & \star & \star \\
& & 0 & *
\end{array}\right]} \\
& \text { A } \\
& L_{1} A \\
& L_{2} L_{1} A \\
& L_{3} L_{2} L_{1} A
\end{aligned}
$$

- "Triangular triangularization"

The Matrices L_{k}

- At step k, eliminate elements below $A_{k k}$:

$$
\begin{aligned}
x_{k} & =\left[\begin{array}{lllllll}
x_{1 k} & \cdots & x_{k k} & x_{k+1, k} & \cdots & x_{n k}
\end{array}\right]^{T} \\
L_{k} x_{k} & =\left[\begin{array}{lllllll}
x_{1 k} & \cdots & x_{k k} & 0 & \cdots & 0 &]^{T}
\end{array}\right.
\end{aligned}
$$

- Each L_{i} introduces zeros below diagonal of column i :

$$
\underbrace{L_{n-1} \cdots L_{2} L_{1}}_{L^{-1}} A=U \Rightarrow A=L U \text { where } L=L_{1}^{-1} L_{2}^{-1} \cdots L_{n-1}^{-1}
$$

- The multipliers $\ell_{j k}=x_{j k} / x_{k k}$ appear in L_{k} :

$$
L_{k}=\left[\begin{array}{cccccc}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & -\ell_{k+1, k} & 1 & & \\
& & \vdots & & \ddots & \\
& & -\ell_{n k} & & & 1
\end{array}\right]
$$

Forming L

- The L matrix contains all the multipliers in one matrix (with plus signs)

$$
L=L_{1}^{-1} L_{2}^{-1} \cdots L_{n-1}^{-1}=\left[\begin{array}{ccccc}
1 & & & & \\
\ell_{21} & 1 & & & \\
\ell_{31} & \ell_{32} & 1 & & \\
\vdots & \vdots & \ddots & \ddots & \\
\ell_{n 1} & \ell_{n 2} & \cdots & \ell_{n, n-1} & 1
\end{array}\right]
$$

- Define $\ell_{k}=\left(0, \cdots, 0, \ell_{k+1, k}, \cdots, \ell_{n k}\right)$. Then

$$
L_{k}=I-\ell_{k} e_{k}^{T},
$$

where e_{k} is the column vector with 1 in position k and 0 elsewhere

- First, $L_{k}^{-1}=I+\ell_{k} e_{k}^{T}$, since $e_{k}^{T} \ell_{k}=0$ and

$$
\left(I-\ell_{k} e_{k}^{T}\right)\left(I+\ell_{k} e_{k}^{T}\right)=I-\ell_{k} e_{k}^{T} \ell_{k} e_{k}^{T}=I
$$

- Also, $L_{k}^{-1} L_{k+1}^{-1}=I+\ell_{k} e_{k}^{T}+\ell_{k+1} e_{k+1}^{T}$, since $e_{k}^{T} \ell_{k+1}=0$ and

$$
\left(I-\ell_{k} e_{k}^{T}\right)\left(I+\ell_{k+1} e_{k+1}^{T}\right)=I+\ell_{k} e_{k}^{T}+\ell_{k+1} e_{k+1}^{T}
$$

Gaussian Elimination without Pivoting

- Factorize $A \in \mathbb{R}^{n \times n}$ into $A=L U$
- Algorithm: Gaussian Elimination (no pivoting)
$U=A, L=I$
for $k=1$ to $n-1$ do

$$
\begin{aligned}
\text { for } j= & k+1 \text { to } n \text { do } \\
& \ell_{j k}=u_{j k} / u_{k k} \\
& u_{j, k: n}=u_{j, k: n}-\ell_{j k} u_{k, k: n}
\end{aligned}
$$

end for
end for

- The inner loop can be written using matrix operations instead of for-loop

Pivoting (*)

- At step k, we used matrix element k, k as pivot and introduced zeros in entry k of remaining rows

$$
\left[\begin{array}{ccccc}
\star & \star & \star & \star & \star \\
& x_{k k} & * & * & * \\
& \star & \star & \star & \star \\
& \star & \star & \star & \star \\
& \star & \star & \star & \star
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
\star & \star & \star & \star & \star \\
& x_{k k} & \star & \star & \star \\
& 0 & * & * & * \\
0 & * & * & * \\
& 0 & * & * & *
\end{array}\right]
$$

- But any other element $i \leqslant k$ in column k can be used as pivot:

$$
\left[\begin{array}{ccccc}
\star & \star & \star & \star & \star \\
& \star & \star & \star & \star \\
& \star & \star & \star & \star \\
& x_{i k} & * & * & * \\
& \star & \star & \star & \star
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
\star & \star & \star & \star & \star \\
0 & * & * & * \\
0 & * & * & * \\
& x_{i k} & \star & \star & \star \\
& 0 & * & * & *
\end{array}\right]
$$

Pivoting (*)

- Also, any other column $j \leqslant k$ can be used:

$$
\left[\begin{array}{ccccc}
\star & \star & \star & \star & \star \\
& \star & \star & \star & \star \\
& \star & \star & \star & \star \\
& * & x_{i k} & * & * \\
& \star & \star & \star & \star
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
\star & \star & \star & \star & \star \\
& * & 0 & * & * \\
& * & 0 & * & * \\
& \star & x_{i k} & \star & \star \\
& * & 0 & * & *
\end{array}\right]
$$

- Choosing different pivots means we can avoid zero or very small pivots
- Instead of using pivots at different entries, change rows or columns and use the standard triangular algorithm (pivoting)
- A computer code might account for the pivoting indirectly instead of actually moving the data

Partial Pivoting (*)

- Searching among all valid pivots is expensive (complete pivoting)
- Consider pivots in column k only and interchange rows (partial pivoting)

$$
\left[\begin{array}{ccccc}
\star & \star & \star & \star & \star \\
& \star & \star & \star & \star \\
& \star & \star & \star & \star \\
& x_{i k} & * & * & * \\
& \star & \star & \star & \star
\end{array}\right] \xrightarrow{P_{1}}\left[\begin{array}{ccccc}
\star & \star & \star & \star & \star \\
& x_{i k} & * & * & * \\
& \star & \star & \star & \star \\
& * & * & * & * \\
& \star & \star & \star & \star
\end{array}\right] \xrightarrow{L_{1}}\left[\begin{array}{ccccc}
\star & \star & \star & \star & \star \\
& x_{i k} & \star & \star & \star \\
& 0 & * & * & * \\
& 0 & * & * & * \\
& 0 & * & * & *
\end{array}\right]
$$

Pivot selection
Row interchange
Elimination

- In terms of matrices:

$$
L_{n-1} P_{n-1} \cdots L_{2} P_{2} L_{1} P_{1} A=U
$$

The $P A=L U$ Factorization (*)

- To combine all L_{k} and all P_{k} into matrices, rewrite as

$$
\begin{gathered}
L_{n-1} P_{n-1} \cdots L_{2} P_{2} L_{1} P_{1} A=U \\
\left(\bar{L}_{n-1} \cdots \bar{L}_{2} \bar{L}_{1}\right)\left(P_{n-1} \cdots P_{2} P_{1}\right) A=U
\end{gathered}
$$

where

$$
\bar{L}_{k}=P_{n-1} \cdots P_{k+1} L_{k} P_{k+1}^{-1} \cdots P_{n-1}^{-1}
$$

- This gives the LU factorization of A

$$
P A=L U
$$

Gaussian Elimination with Partial Pivoting (*)

- Factorize $A \in \mathbb{R}^{n \times n}$ into $P A=L U$
- Algorithm: Gaussian Elimination (partial pivoting)
$U=A, L=I, P=I$ for $k=1$ to $n-1$ do

Select $i \geqslant k$ to maximize $\left|u_{i k}\right|$
$u_{k, k: n} \leftrightarrow u_{i, k: n} \quad$ \% interchange two rows
$\ell_{k, 1: k-1} \leftrightarrow \ell_{i, 1: k-1}$
$p_{k,:} \leftrightarrow p_{i,:}$
for $j=k+1$ to n do
$\ell_{j k}=u_{j k} / u_{k k}$
$u_{j, k: n}=u_{j, k: n}-\ell_{j k} u_{k, k: n}$
end for
end for

Cholesky Factorization for SPD/HPD Matrices (*)

- Eliminate below pivot and to the right of pivot:

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
a_{11} & \omega^{*} \\
\omega & K
\end{array}\right]=\left[\begin{array}{cc}
\alpha & 0 \\
\omega / \alpha & l
\end{array}\right]\left[\begin{array}{cc}
\alpha & \omega^{*} / \alpha \\
0 & K-\omega \omega^{*} / a_{i i}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\alpha & 0 \\
\omega / \alpha & l
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & K-\omega \omega^{*} / a_{i i}
\end{array}\right]\left[\begin{array}{cc}
\alpha & \omega^{*} / \alpha \\
0 & l
\end{array}\right] \\
& =R_{1}^{*} A_{1} R_{1}
\end{aligned}
$$

where $\alpha=\sqrt{a_{11}}$

- $K-\omega \omega^{*} / a_{11}$ is a principal submatrix of PD matrix $R_{1}^{*} A_{1} R_{1}$, therefore its upper-left entry is positive
- Apply recursively to obtain

$$
A=\left(R_{1}^{*} R_{2}^{*} \cdots R_{n} *\right)\left(R_{n} \cdots R_{2} R_{1}\right)=R^{*} R, \quad r_{j j}>0
$$

The Cholesky Factorization Algorithm

- Factorize hermitian positive definite $A \in \mathbb{R}^{n \times n}$ into $A=R^{*} R$
- Algorithm: Cholesky Factorization (*)
$R=A$
for $k=1$ to n do
for $j=k+1$ to n do
$r_{j, j: n}=r_{j, j: n}-r_{k, j: n} r_{k, j}^{*} / r_{k k}$
end for
$r_{k, k: n}=r_{k, k: n} / \sqrt{r_{k k}}$ end for
end for
- Existence and uniqueness: Every PD matrix has a unique Choleskey factorization

Backslash in MATLAB

- $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$ for dense A performs these steps (stopping when successful):

1. If A is upper or lower triangular, solve by back/forward substitution
2. If A is permutation of triangular matrix, solve by permuted back substitution (useful for $[\mathrm{L}, \mathrm{U}]=\mathrm{lu}(\mathrm{A})$ since L is permuted)
3. If A is symmetric

- Check if all diagonal elements are positive
- Try Cholesky, if successful solve by back substitutions

4. If A is Hessenberg (upper triangular plus one subdiagonal), reduce to upper triangular then solve by back substitution
5. If A is square, factorize $P A=L U$ and solve by back substitutions
6. If A is not square, run Householder $Q R$, solve least squares problem

Conditioning and Condition Numbers

Conditioning

- Absolute Condition Number of a differentiable problem f at x :

$$
\hat{k}=\lim _{\delta \rightarrow 0} \sup _{\|\delta x\| \leqslant \delta} \frac{\|\delta f\|}{\|\delta x\|}=\sup _{\delta x} \frac{\|\delta f\|}{\|\delta x\|}=\|J(x)\|,
$$

where the Jacobian $J_{i j}=\partial f_{i} / \partial x_{j}$, and the matrix norm is induced by the norms on δf and δx

- Relative Condition Number:

$$
k=\sup _{\delta x}\left(\frac{\|\delta f\|}{\|f(x)\|} / \frac{\|\delta x\|}{\|x\|}\right)=\frac{\|J(x)\|}{\|f(x)\| /\|x\|}
$$

Condition of Matrix-Vector Product

- Consider $f(x)=A x$, with $A \in \mathbb{C}^{m \times n}$

$$
k=\frac{\|J(x)\|}{\|f(x)\| /\|x\|}=\|A\| \frac{\|x\|}{\|A x\|}=[A x=b]=\|A\| \frac{\|x\|}{\|b\|}
$$

- For A square and nonsingular, use $\|x\| /\|A x\| \leqslant\left\|A^{-1}\right\|$:

$$
k \leqslant\|A\|\left\|A^{-1}\right\|
$$

(equality achieved for the last right singular vector $x=v_{m}$)

- The condition number of $A x$ if ∞ if $x \in \operatorname{null}(A)$
- Also the condition number for $f(b)=A^{-1} b$ (solution of linear system $A x=b$):

$$
k=\left\|A^{-1}\right\| \frac{\|b\|}{\|x\|} \leqslant\|A\|\left\|A^{-1}\right\|
$$

Condition Number of a Matrix

- Condition number of matrix A :

$$
k(A)=\|A\|\left\|A^{-1}\right\|=[\text { for 2-norm }]=\frac{\sigma_{1}}{\sigma_{m}} \geqslant 1
$$

- If A is singular we consider, by convention, $k(A)=\infty$
- Measure of uncertainty

well-conditioned

ill-conditioned

Condition of System of Equations

- Exercise 0.7: For fixed A, consider $f(b)=A^{-1} b$. Prove that

$$
k=\frac{\|\delta x\|}{\|x\|} / \frac{\|\delta b\|}{\|b\|} \leqslant k(A) .
$$

Then, if the input data is accurate to the $\epsilon_{\text {machine }}$

$$
\frac{\|\delta x\|}{\|x\|} \leqslant k(A) \epsilon_{\text {machine }}
$$

- Exercise 0.8 (Theorem 3.1 (QSS, page 62)): Let $A \in \mathbb{C}^{m \times m}$ be a non singular matrix and let $\delta A \in \mathbb{C}^{m \times m}$ be such that $\left\|A^{-1}\right\|\|\delta A\|<1$. Let $A x=b$ and $(A+\delta A)(x+\delta x)=b+\delta b$.
Prove that

$$
\frac{\|\delta x\|}{\|x\|} \leqslant \frac{k(A)}{1-k(A) \frac{\|\delta A\|}{\|A\|}}\left(\frac{\|\delta A\|}{\|A\|}+\frac{\|\delta b\|}{\|b\|}\right),
$$

where $k(A)$ is the condition number of the matrix A.

Example: Condition of Hilbert system

```
% Initialise settings, constants and vectors
clc; clear; close all;
N = 12; error = zeros(1,N-1); estimate = zeros(1,N-1);
% Loop on the order of the matrix
for n = 2:N
    H = hilb(n);
    x = ones(n,1); b = H*x; % Exact values
    xbar = H\b; bbar = H*xbar; % Computed values
    % Compute error and error estimate
    error(n-1) = norm(x-xbar)/norm(x);
    estimate(n-1) = cond(H)*norm(b-bbar)/norm(b);
end
semilogy(2:n,error,'-o',2:n,estimate,'-x')
legend('error', 'estimate')
xlabel('order'), ylabel('relative error')
```


Example: Condition of Hilbert system

