New Directions in Mathematics

Adérito Araújo

DMUC, University of Coimbra, Portugal

Coimbra, 2024

Module Overview

Numerical Linear Algebra

New Directions in Mathematics

Adérito Araújo (alma@mat.uc.pt) March 15, 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Syllabus

- Direct and iterative methods
 - Direct methods: solve the problem by a finite sequence of operations and in the absence of rounding errors, would deliver an exact solution; operate directly on elements of a matrix
 - Iterative methods: solve a problem by finding successive approximations to the solution starting from an initial guess, that hopefully converge to the true solution; often are easier to implement on parallel computers
- Prerequisite/co-requisite
 - Good knowledge in linear algebra
 - Programming experience in MATLAB (Fortran, C, C++)
 - Good numerical skils
- Required Textbook: Alfio Quarteroni, Riccardo Sacco, Fausto Saleri, Numerical Mathematics, Texts in Applied Mathematics Volume 37, 2007, ISBN: 978-1-4757-7394-1 (Chapters 3 - 4)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ����

• Grading: Assignments $(5 \times 20\%)$

Lecture 0

Foundations of Matrix Analysis

New Directions in Mathematics

Adérito Araújo (alma@mat.uc.pt) March 15, 2024

Orthogonal Vectors and Matrices, Norms

・ロト・日本・日本・日本・日本・日本

4 日 > 4 日 > 4 目 > 4 目 > 1 日 · 9 4 で

<text><equation-block><equation-block><text><text><equation-block><equation-block><equation-block>

Inner Product • Inner product of two column vectors $x, y \in \mathbb{C}^n$ $x^*y = \sum_{i=1}^n \bar{x}_i y_i$ • Euclidean length of x $\|x\| = \sqrt{x^*x} = \left(\sum_{i=1}^n |x_i|^2\right)$

• Angle α between x, y

$$\cos \alpha = \frac{x^*y}{\|x\|\|y\|}$$

・ロト・日本・山下・ 山下・ シュート

Positive Definite Matrices

- A hermitian matrix A is symmetric (hermitian) positive definite if x^TAx > 0 (x*Ax > 0) for x ≠ 0
- Exercise 0.1: x^*Ax is always real.
- Exercise 0.2: If A ∈ C^{m×m} is PD and X has full column rank, then X*AX is PD.
- Any principal submatrix of a PD matrix A is PD, and every diagonal entry a_{ii} > 0
- Exercise 0.3: PD matrices have positive real eigenvalues and orthogonal eigenvectors.

In MATLAB

Quantity	MATLAB Syntax	Comment							
Transpose of A	A.'	Transpose only							
Adjoint of A	A'	Transpose + complex conjugate							
Inner product x^*y	x'*y	'* assumes column vector							
	dot(x,y)								
Lenght $ x $	<pre>sqrt(x'*x)</pre>	'* assumes column vector							
	norm(x)								

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Orthogonal Vectors

• The vectors $x, y \in \mathbb{C}^n$ are orthogonal if

$$x^*y = 0$$

▶ The sets os vectors *X*, *Y* are orthogonal of

every $x \in X$ is orthogonal to every $y \in Y$

A set of (nonzero) vectors S is orthogonal if

vectors pairwise orthogonal, i.e., for $x, y \in S$, $x \neq y \Rightarrow x^*y = 0$

and orthonormal if, in addition

every $x \in S$ has ||x|| = 1

Orthogonal and Unitary Matrices

A square matrix Q ∈ C^{n×n} is unitary (orthogonal in real case) if

$$Q^* = Q^{-1}$$

► For unitary *Q*

$$Q^*Q = I \Leftrightarrow q_i^*q_j = \delta_{ij}$$

Interpretation of unitary-times-vector product

 $x = Q^*b$ = solution to Qx = b= the vector of coefficients of the expansion of b in the basis of columns of Q

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Norms in MATLAB

Quantity	MATLAB Syntax
$\ x\ _1$	<pre>sum(abs(x)) or norm(x,1)</pre>
$\ x\ _{2}$	<pre>sqrt(x'*x) or norm(x)</pre>
$\ x\ _p$	$sum(abs(x).^p).^(1/p)$ or $norm(x,p)$
$\ \mathbf{x}\ _{\infty}$	<pre>max(abs(x)) or norm(x,inf)</pre>
$\ A\ _1$	<pre>max(sum(abs(A),1)) or norm(A,1)</pre>
$\ A\ _2$	norm(A)
$\ A\ _{\infty}$	<pre>max(sum(abs(A),2)) or norm(A,inf)</pre>
$\ A\ _F$	<pre>sqrt(A(:)'*A(:)) or norm(x,'fro')</pre>

The Singular Value Decomposition

Diagonalizable Matrices

A square matrix A is called diagonalizable or non-defective if it is similar to a diagonal matrix, i.e., there exists an invertible matrix P and a diagonal matrix D such that

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ◆ ■ ● のへで

$$P^{-1}AP = D$$

 Exercise 0.4: If A ∈ C^{n×n} has n linear independent columns, there exists an eigenvalue decomposition (EVD)

$$X\Lambda X^{-1}=A.$$

• If A is real and symmetric, the EVD is always possible

$$A = U\Lambda U^T,$$

with U an unitary matrix

The SVD - Brief Description

• In matrix form, $Av_i = \sigma_i u_i$ becomes

$$AV = \hat{U}\hat{\Sigma} \Leftrightarrow A = \hat{U}\hat{\Sigma}V^*$$

where $\hat{\boldsymbol{\Sigma}} = \mathsf{diag}(\sigma_1, \sigma_2, \dots, \sigma_n)$

- This is the reduced singular value decomposition
- Add orthonormal extension to \hat{U} and add rows to $\hat{\Sigma}$ to obtain the full sigular value decomposition

$$A = U\Sigma V^*$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ

The Reduced Singular Value Decomposition

 A more compact representation is the reduced SVD, for m ≥ n:

$$A = \hat{U}\hat{\Sigma}V^*$$

where

 $U \text{ is } m \times n, \qquad V \text{ is } n \times n, \qquad \Sigma \text{ is } n \times n$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Matrix Properties (Exercise 0.5)

1. The rank of A is r, the number of nonzero singular values

2. range
$$(A) = \langle u_1, \ldots, u_r \rangle$$
 and null $(A) = \langle v_{r+1}, \ldots, v_n \rangle$

3.
$$||A||_2 = \sigma_1 \text{ and } ||A||_F = \sqrt{\sigma_1^2 + \sigma_2^2 \cdots + \sigma_r^2}$$

- Nonzero eigenvalues of A*A are nonzero σ_j², eigenvectors are v_j; Nonzero eigenvalues of AA* are nonzero σ_j², eigenvectors are u_j
- 5. In $A = A^*$, $\sigma_i = |\lambda_j|$, where λ_j are eigenvalues of A
- 6. For square A, $|\det(A)| = \prod_{j=1}^{m} \sigma_j$

Example:
$$A = \begin{bmatrix} 2 & 2 \\ 1 & -1 \end{bmatrix}$$

Prove that the eigenvalues of

$$A^{\mathsf{T}}A = \left[\begin{array}{cc} 5 & 3\\ 3 & 5 \end{array}\right],$$

are $\lambda_1 = 8$ and $\lambda_2 = 2$ and the (orthonormal) eigenvectors are

$$v_1 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$
 and $v_2 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$

Then

$$\Sigma = \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix} = \begin{bmatrix} 2\sqrt{2} \\ \sqrt{2} \end{bmatrix} \text{ and } V = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

Example: $A = \begin{bmatrix} 2 & 2 \\ 1 & -1 \end{bmatrix}$ (cont.) • The columns of U are obtained by $\sigma_1 u_1 = Av_1 = \begin{bmatrix} 2 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 2\sqrt{2} \\ 0 \end{bmatrix} \Rightarrow u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\sigma_2 u_2 = Av_2 = \begin{bmatrix} 2 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 0 \\ \sqrt{2} \end{bmatrix} \Rightarrow u_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ • The SVD of $A = U\Sigma V^T$ is $\begin{bmatrix} 2 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2\sqrt{2} \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$ • Exercise 0.6: Obtain the SVD of $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.

Low-Rank Approximations

The SVD can be written as a sum of rank-one matrices

$$A = \sum_{j=1}^{r} \sigma_j u_j v_j^*$$

 Eckart-Young (1936): The best rank η approximation in the 2-norm is

$$A_{\eta} = \sum_{j=1}^{\eta} \sigma_j u_j v_j^*$$

with

$$\|\mathsf{A}-\mathsf{A}_{\eta}\|_{2}=\sigma_{\eta+1}$$

Also true in the Frobenius norm, with

$$\|A - A_{\eta}\|_{F} = \sqrt{\sigma_{\eta+1}^{2} + \dots + \sigma_{r}^{2}}$$

<section-header><equation-block><list-item><list-item><list-item><list-item><equation-block><equation-block>

The QR Factorization

Gram-Schmidt Orthogonalization (*)

Find new q_j orthogonal to q₁,..., q_{j-1} by subtracting components along previous vectors

$$v_j = a_j - (q_1^* a_j) q_1 - (q_2^* a_j) q_2 - \dots - (q_{j-1}^* a_j) q_{j-1}$$

- Normalize to get $q_j = v_j / ||v_j||$
- We then obtain a reduced QR factorization $A = \hat{Q}\hat{R}$, with

$$r_{ij} = q_i^* a_j, \qquad (i \neq j)$$

and

$$|r_{jj}| = \left\|a_j - \sum_{i=1}^{j-1} r_{ij}q_i\right\|_2$$

・ロト・1日・1日・1日・1日・

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ◆ ■ ● のへで

"Triangular Orthogonalization"

Classical Gram-Schmidt (*)

- Straight-forward application of Gram-Schmidt orthogonalization
- Numerically unstable
- Algorithm: Classical Gram-Schmidt

for
$$j = 1$$
 to n do
 $v_j = a_j$
for $i = 1$ to $j - 1$ do
 $r_{ij} = q_i^* a_j$
 $v_j = v_j - r_{ij}q_i$
end for
 $r_{jj} = ||v_j||_2$
 $q_j = v_j/r_{jj}$
end for

Existence and Uniqueness

Theorem 0.3: Existence

Every $A \in \mathbb{C}^{m \times n}$ $(m \ge n)$ has a full QR factorization and a reduced QR factorization.

Proof: For full rank A, Gram-Schmidt process gives the existence of $A = \hat{Q}\hat{R}$. Otherwise, when $v_j = 0$ choose arbitrary vector orthogonal to previous q_1, \ldots, q_{j-1} . For full QR, add orthogonal extension to Q (silent columns) and zero rows to R. \Box

Theorem 0.4: Uniqueness

Each $A \in \mathbb{C}^{m \times n}$ $(m \ge n)$ of full rank has a unique $A = \hat{Q}\hat{R}$ with $r_{jj} > 0$.

Proof: Again Gram-Schmidt, $r_{ii} > 0$ determines the sign. \Box

Classical vs Modified Gram-Schmidt (*)

- Some modifications of classical Gram-Schmidt gives modified Gram-Schmidt (but see next slide)
- Modified Gram-Schmidt is numerically stable (less sensitive to rounding errors)
- Algorithm: Classical/Modified Gram-Schmidt

for
$$j = 1$$
 to n do
 $v_j = a_j$
for $i = 1$ to $j - 1$ do
 $r_{ij} = q_i^* a_j$ (CGS)
 $r_{ij} = q_i^* v_j$ (MGS)
 $v_j = v_j - r_{ij}q_i$
end for
 $r_{jj} = ||v_j||_2$
 $q_j = v_j/r_{jj}$
end for

・ロト・日本・日本・日本・日本・日本

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Implementation of Modified Gram-Schmidt (*) Algorithm: CGS Algorithm: MGS for i = 1 to n do for i = 1 to n do $v_i = a_i$ $v_i = a_i$ for i = 1 to j - 1 do end for $r_{ii} = q_i^* a_i$ for i = 1 to n do $v_i = v_i - r_{ii}q_i$ $r_{ii} = \|v_i\|_2$ end for $q_i = v_i/r_{ii}$ $r_{ii} = \|v_i\|_2$ for j = i + 1 to n do $q_i = v_i/r_{ii}$ $r_{ii} = q_i^* v_i$ end for $v_i = v_i - r_{ii}q_i$ end for end for ◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

```
Example: Classical vs Modified Gram-Schmidt (*)
        % Create a random orthogonal matrix Q
        n = 80;
        [Q,X] = qr(randn(n));
        % Make an ill-conditioned R (with diagonal
        % entries = 2<sup>-j</sup>, j=1,...,n)
        R = diag(2.^(-1:-1:-n))*triu(ones(n)+0.1*randn(n));
        % Compute QR factorization with classical and with
        % modified GS, compare diagonal elements of
        % computed R's
        A = Q * R;
        [QC,RC] = clgs(A);
        [QM,RM] = mgs(A);
        semilogy(1:n,diag(RC),'o',1:n,diag(RM),'x',1:n,diag(R))
        legend('CGS', 'MGS', 'exact')
        grid on
                                            ▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで
```


The LU Factorization

The LU Factorization

- Transform A = R^{n×n} into upper triangular U by subtracting multiples of rows
- Each *L_i* introduces zeros below diagonal of column *i*:

< ロ > < 回 > < 国 > < 国 > < 国 > < 国 > の < ()

The Matrices L_k

• At step k, eliminate elements below A_{kk} :

$$x_{k} = \begin{bmatrix} x_{1k} & \cdots & x_{kk} & x_{k+1,k} & \cdots & x_{nk} \end{bmatrix}^{T}$$
$$L_{k}x_{k} = \begin{bmatrix} x_{1k} & \cdots & x_{kk} & 0 & \cdots & 0 \end{bmatrix}^{T}$$

Each L_i introduces zeros below diagonal of column i:

$$\underbrace{L_{n-1}\cdots L_2 L_1}_{L^{-1}} A = U \Rightarrow A = LU \text{ where } L = L_1^{-1}L_2^{-1}\cdots L_{n-1}^{-1}$$

• The multipliers $\ell_{jk} = x_{jk}/x_{kk}$ appear in L_k :

$$L_{k} = \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & -\ell_{k+1,k} & 1 & \\ & \vdots & & \ddots & \\ & & -\ell_{nk} & & 1 \end{bmatrix}$$

Forming L

The L matrix contains all the multipliers in one matrix (with plus signs)

$$L = L_1^{-1} L_2^{-1} \cdots L_{n-1}^{-1} = \begin{bmatrix} 1 \\ \ell_{21} & 1 \\ \ell_{31} & \ell_{32} & 1 \\ \vdots & \vdots & \ddots & \ddots \\ \ell_{n1} & \ell_{n2} & \cdots & \ell_{n,n-1} & 1 \end{bmatrix}$$

• Define $\ell_k = (0, \cdots, 0, \ell_{k+1,k}, \cdots, \ell_{nk})$. Then $L_k = I - \ell_k e_k^T$,

where e_k is the column vector with 1 in position k and 0 elsewhere

Gaussian Elimination without Pivoting

- Factorize $A \in \mathbb{R}^{n \times n}$ into A = LU
- Algorithm: Gaussian Elimination (no pivoting)

U = A, L = Ifor k = 1 to n - 1 do for j = k + 1 to n do $\ell_{jk} = u_{jk}/u_{kk}$ $u_{j,k:n} = u_{j,k:n} - \ell_{jk}u_{k,k:n}$ end for end for

 The inner loop can be written using matrix operations instead of for-loop

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Consider pivots in column k only and interchange rows (partial pivoting)

*	*	*	*	*]	*	*	*	*	* -]	└ ★	*	*	*	* -
	*	*	*	*			Xik	*	*	*			Xik	*	*	*
	*	*	*	*	$\xrightarrow{P_1}$		*	*	*	*	$\xrightarrow{L_1}$		0	*	*	*
	Xik	*	*	*			*	*	*	*			0	*	*	*
	*	*	*	*			*	*	*	*			0	*	*	*
Pivot selection						ŀ	Row interchange					Elimination				
	► In	tei	rms	of	matric	ces:										

 $L_{n-1}P_{n-1}\cdots L_2P_2L_1P_1A=U$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

The PA = LU Factorization (*) • To combine all L_k and all P_k into matrices, rewrite as $L_{n-1}P_{n-1}\cdots L_2P_2L_1P_1A = U$ $(\bar{L}_{n-1}\cdots\bar{L}_2\bar{L}_1)(P_{n-1}\cdots P_2P_1)A=U$ where $\bar{L}_k = P_{n-1} \cdots P_{k+1} L_k P_{k+1}^{-1} \cdots P_{n-1}^{-1}$ This gives the LU factorization of A PA = LU◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ Gaussian Elimination with Partial Pivoting (*) Factorize $A \in \mathbb{R}^{n \times n}$ into PA = LU

 $\begin{array}{l} \mathcal{U} = \mathcal{A}, \ \mathcal{L} = \mathcal{I}, \ \mathcal{P} = \mathcal{I} \\ \text{for } k = 1 \ \text{to } n - 1 \ \text{do} \\ & \text{Select } i \geq k \ \text{to maximize } |u_{ik}| \\ & u_{k,k:n} \leftrightarrow u_{i,k:n} \qquad \% \ \text{interchange two rows} \\ & \ell_{k,1:k-1} \leftrightarrow \ell_{i,1:k-1} \\ & p_{k,:} \leftrightarrow p_{i,:} \\ & \text{for } j = k + 1 \ \text{to } n \ \text{do} \\ & \ell_{jk} = u_{jk}/u_{kk} \\ & u_{j,k:n} = u_{j,k:n} - \ell_{jk}u_{k,k:n} \\ & \text{end for} \end{array}$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ◆ ■ ● のへで

Algorithm: Gaussian Elimination (partial pivoting)

Cholesky Factorization for SPD/HPD Matrices (*)

Eliminate below pivot and to the right of pivot:

$$A = \begin{bmatrix} a_{11} & \omega^* \\ \omega & K \end{bmatrix} = \begin{bmatrix} \alpha & 0 \\ \omega/\alpha & I \end{bmatrix} \begin{bmatrix} \alpha & \omega^*/\alpha \\ 0 & K - \omega\omega^*/a_{ii} \end{bmatrix}$$
$$= \begin{bmatrix} \alpha & 0 \\ \omega/\alpha & I \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & K - \omega\omega^*/a_{ii} \end{bmatrix} \begin{bmatrix} \alpha & \omega^*/\alpha \\ 0 & I \end{bmatrix}$$
$$= R_1^* A_1 R_1$$

where $\alpha = \sqrt{a_{11}}$

- $K \omega \omega^* / a_{11}$ is a principal submatrix of PD matrix $R_1^* A_1 R_1$, therefore its upper-left entry is positive
- Apply recursively to obtain

$$A = (R_1^* R_2^* \cdots R_n^*)(R_n \cdots R_2 R_1) = R^* R, \qquad r_{jj} > 0$$

The Cholesky Factorization Algorithm

- ▶ Factorize hermitian positive definite $A \in \mathbb{R}^{n \times n}$ into $A = R^*R$
- Algorithm: Cholesky Factorization (*)

```
R = A
for k = 1 to n do
for j = k + 1 to n do
r_{j,j:n} = r_{j,j:n} - r_{k,j:n}r_{k,j}^*/r_{kk}
end for
r_{k,k:n} = r_{k,k:n}/\sqrt{r_{kk}}
end for
end for
```

 Existence and uniqueness: Every PD matrix has a unique Choleskey factorization

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Backslash in MATLAB

- x=A\b for dense A performs these steps (stopping when successful):
 - 1. If A is upper or lower triangular, solve by back/forward substitution
 - If A is permutation of triangular matrix, solve by permuted back substitution (useful for [L,U]=lu(A) since L is permuted)
 - 3. If A is symmetric
 - Check if all diagonal elements are positive
 - Try Cholesky, if successful solve by back substitutions
 - 4. If A is Hessenberg (upper triangular plus one subdiagonal), reduce to upper triangular then solve by back substitution
 - 5. If A is square, factorize PA = LU and solve by back substitutions
 - 6. If A is not square, run Householder QR, solve least squares problem

Conditioning and Condition Numbers

・ロト・1日・1日・1日・1日・

<text><equation-block><equation-block><text><text><text><text><equation-block>

Condition of Matrix-Vector Product

• Consider f(x) = Ax, with $A \in \mathbb{C}^{m \times n}$

$$k = \frac{\|J(x)\|}{\|f(x)\|/\|x\|} = \|A\|\frac{\|x\|}{\|Ax\|} = [Ax = b] = \|A\|\frac{\|x\|}{\|b\|}$$

• For A square and nonsingular, use $||x||/||Ax|| \leq ||A^{-1}||$:

$$k \leqslant \|A\| \|A^{-1}\|$$

(equality achieved for the last right singular vector $x = v_m$)

- The condition number of Ax if ∞ if $x \in \text{null}(A)$
- Also the condition number for f(b) = A⁻¹b (solution of linear system Ax = b):

$$k = \|A^{-1}\| \frac{\|b\|}{\|x\|} \le \|A\| \|A^{-1}\|$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Condition of System of Equations

• Exercise 0.7: For fixed A, consider $f(b) = A^{-1}b$. Prove that

$$k = \frac{\|\delta x\|}{\|x\|} / \frac{\|\delta b\|}{\|b\|} \leq k(A).$$

Then, if the input data is accurate to the $\epsilon_{machine}$

$$\frac{\|\delta x\|}{\|x\|} \leqslant k(A)\epsilon_{machine}.$$

Exercise 0.8 (Theorem 3.1 (QSS, page 62)): Let A ∈ C^{m×m} be a non singular matrix and let δA ∈ C^{m×m} be such that ||A⁻¹|| ||δA|| < 1. Let Ax = b and (A + δA)(x + δx) = b + δb. Prove that

$$\frac{\|\delta x\|}{\|x\|} \leq \frac{k(A)}{1-k(A)\frac{\|\delta A\|}{\|A\|}} \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|b\|}\right),$$

where k(A) is the condition number of the matrix A.

・ 王・ 王 うくぐ

Example: Condition of Hilbert system

```
% Initialise settings, constants and vectors
clc; clear; close all;
N = 12; error = zeros(1,N-1); estimate = zeros(1,N-1);
% Loop on the order of the matrix
for n = 2:N
                    H = hilb(n);
                    x = ones(n,1); b = H*x;
                                                                                                                                                           % Exact values
                    xbar = H\b; bbar = H*xbar; % Computed values
                    % Compute error and error estimate
                     error(n-1) = norm(x-xbar)/norm(x);
                     estimate(n-1) = cond(H)*norm(b-bbar)/norm(b);
end
semilogy(2:n,error,'-o',2:n,estimate,'-x')
legend('error', 'estimate')
xlabel('order'), ylabel('relative error')
                                                                                                                                                                                 < ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
                                                                                                                                                                                                                                                                        3
                                                                                                                                                                                                                                                                                    500
```

