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Direct vs Iterative Methods
§ Direct methods: compute the exact solution after a finite
number of steps (in exact arithmetic); Gaussian elimination,
QR factorization, etc

§ Iterative methods: produce a sequence of approximations
x

p0q, x p1q, . . . that hopefully converge to the true solution;
Jacobi, Conjugate Gradient (CG), GMRES, BiCG, etc



Iterative Methods

§ The basic idea of iterative methods is to construct a sequence
of vectors x pkq such that

x “ lim
kÑ8

xpkq,

where x is the solution to the system

Ax “ b (1)

§ To start with, we consider iterative methods in the form

x
p0q given, x pk`1q “ Bx

pkq ` f , k • 0 (2)

§ The iterative method is said to be consistent with Ax “ b if
B and f are such that x “ Bx ` f

Convergence of Iterative Methods
§ Let

e
pkq “ x

pkq ´ x .

The condition of convergence amounts to requiring that

lim
kÑ8

e
pkq “ 0 ô lim

kÑ8
}epkq} “ 0

§ The choice of the norm does not influence the result since in
Rnˆn all norms are equivalent

Theorem 1.1: Convergence

Let (2) be a consistent method. Then the sequence of vectores
tx pkqu converges to the solution of (1) for any choice of tx p0qu if
and only if ⇢pBq † 1.

§ A su�cient condition for convergence to hold is that }B} † 1
§ It reasonable to expect that the convergence is faster when

⇢pBq is smaller



Classes of Matrices

§ Symmetric Positive Definite (SPD):

x
T
Ax ° 0, for x ‰ 0

§ Exercise 1.1: If A P Rnˆn is SPD, then

px , yqA “ x
T
Ay

defines an inner product on Rn and

}x}A “ pxTAxq1{2

is a norm on Rn.

§ Strictly Row Diagonal Dominant (SRDD):

|aii | °
nÿ

j“1,j‰i

|aij |, i “ 1, ..., n

Linear Iterative Methods



Consistent Linear Iterative Methods
§ Let A “ P ´ pP ´ Aq, where P is nonsingular; P is called
preconditioning matrix or preconditioner

§ Given x
p0q one can compute x

pkq by solving the system

Px
pk`1q “ pP ´ Aqx pkq ` b, k • 0 (3)

§ The iteration matrix is

B “ P
´1pP ´ Aq “ I ´ P

´1
A

and f “ P
´1

b

§ The iterative method (3) can be written as

x
pk`1q “ x

pkq ` P
´1

r
pkq, k • 0,

where
r

pkq “ b ´ Ax
pkq,

denotes the residual vector at step k

SPD Matrices: Monotone Converrgence (˚)
Theorem 1.2: Monotone Convergence (˚)
Let A “ P ´ pP ´ Aq, with A and P be SPD. If 2P ´ A is PD, the
iterative method is convergent for any choice of x p0q and

⇢pBq “ }B}A “ }B}P † 1.

Moreover, the convergence is monotone w.r.t. } ¨ }A and } ¨ }P :

}epk`1q}A † }epkq}A, and }epk`1q}P † }epkq}P .

Theorem 1.3: Monotone Convergence (˚)
If A is SPD and P ` P

T ´ A is PD, then P is invertible and the
iterative method is monotonically convergent w.r.t. } ¨ }A and
⇢pBq “ }B}A † 1.



Jacobi Method
§ Let A be a matrix with nonzero diagonal entries and

A “ D ´ L ´ U,

where D “ paii q (diagonal), L “ p´aijq, i ° j , (lower
triangular and U “ p´aijq, j ° i (upper triangular) matrices

§ Let
P “ D

§ The iteration matrix of the Jacobi method is given by

BJ “ D
´1pL ` Uq “ D

´1pD ´ Aq “ I ´ D
´1

A

§ Jacobi method:

x
pk`1q
i

“ 1

aii

«
bi ´

nÿ

j“1,j‰i

aijx
pkq
j

�
, i “ 1, . . . , n

Gauss-Seidel Method

§ Let A be a matrix with nonzero diagonal entries and

P “ D ´ L

§ The iteration matrix of the Gauss-Seidel method is given by

BGS “ pD ´ Lq´1
U “ I ´ pD ´ Lq´1

A

§ Gauss-Seidel:

x
pk`1q
i

“ 1

aii

«
bi ´

i´1ÿ

j“1

aijx
pk`1q
j

´
nÿ

j“i`1

aijx
pkq
j

�
, i “ 1, . . . , n



Convergence of Jacobi and Gauss-Seidel Methods

Theorem 1.4: Convergence of Jacobi and Gauss-Seidel

If A is SRDD, then the Jacobi and Gauss-Seidel methods are
convergent.

Theorem 1.5: Monotone Convergence of Jacobi (˚)
If A and 2D ´ A are SPD, then the Jacobi method is convergent
for any choice of x p0q and

⇢pBJq “ }BJ}A “ }BJ}D † 1.

Moreover, the convergence is monotone w.r.t. } ¨ }A and } ¨ }D .

Theorem 1.6: Monotone Convergence of Gauss-Seidel

If A is SPD then the Gauss-Seidel method is monotonically
convergent with respect to the norm } ¨ }A.

Jacobi Over-Relaxation Method (JOR)

§ The iteration matrix is given by

BJp!q “ !BJ ` p1 ´ !qI

§ JOR method:

x
pk`1q
i

“ !

aii

«
bi ´

nÿ

j“1,j‰i

aijx
pkq
j

�
` p1´!qx pkq

i
, i “ 1, . . . , n

§ Exercise 1.2: JOR is consistent for any ! ‰ 0 and the residual
form is:

x
pk`1q “ x

pkq ` !D´1
r

pkq, k • 0.

§ For ! “ 1 JOR coincides with the Jacobi method



Optimal Choice of Parameter

Theorem 1.7: Optimal Choice of Parameter for JOR

Assume that BJ has real eigenvalues and ⇢pBJq † 1. Then
⇢pBJp!qq becomes minimal for the relaxation parameter

!opt “ 2

2 ´ �max ´ �min

and the spectral radius

⇢opt “ �max ´ �min

2 ´ �max ´ �min

,

where �min and �max denote the smallest and the largest
eigenvalue of B , respectively.

§ In the case �max ‰ ´�min the convergence of the Jacobi
method with optimal relaxation parameter is faster then the
convergence of the Jacobi method without relaxation

Gauss-Seidel Over-Relaxation Method (SOR)
§ SOR:

x
pk`1q
i

“ !

aii

«
bi ´

i´1ÿ

j“1

aijx
pk`1q
j

´
nÿ

j“i`1

aijx
pkq
j

�
`p1´!qx pkq

i
, i “ 1, . . . , n

§ The method can be written as

pI ´ !D´1
Lqx pk`1q “ rp1 ´ !qI ` !D´1

Usx pkq ` !D´1
b,

and the iteration matrix is

BGSp!q “ pI ´ !D´1
Lq´1rp1 ´ !qI ` !D´1

Us

§ Exercise 1.3: The SOR method is consistent for any ! ‰ 0
and for ! “ 1 and the residual form is:

x
pk`1q “ x

pkq `
ˆ
1

!
D ´ L

˙´1

r
pkq, k • 0.

§ For ! “ 1 it coincides with the Gauss-Seidel method



Convergence of Jacobi and Gauss-Seidel Methods

Theorem 1.8: Convergence of JOR for SPD Matrices

If A is SPD and 0 † ! † 2{⇢pD´1
Aq, then the JOR method is

convergent.

Theorem 1.9: Convercence of JOR

If the Jacobi method is convergent, then the JOR method
converges if 0 † ! § 1.

Theorem 1.10: Convergence of SOR

For any ! P R we have ⇢pBGSp!qq • |! ´ 1|. Therefore the SOR
method fails to converge if ! § 0 or ! • 2.

Theorem 1.11 (Ostrowski): Monotone Convergence of SOR

If A is SPD, then the SOR method is convergent if and only if
0 † ! † 2. Moreover, it is monotonically convergent w.r.t. } ¨ }A.

HW Exercise

§ Exercise 1.4: Consider the SOR method for Ax “ b.

1. Consider the tridiagonal matrix A with 2 on the diagonal and
´1 above and below the diagonal. Construct the right-hand
side vector so that x “ r1, 1, ..., 1sT is the true solution.

2. For each value of ! “ 1, 1.01, 1.02, ..., 1.99, 2.0, apply 100
iterations of SOR starting with x

p0q “ 0. Do this for A of order
10, 20, and 50. Measure the error at the end of 100 iterations,
call it e, and set p “ 100

?
e. The value of p is the ”average”

rate of convergence of the iteration; the error was reduced by
this much on each iteration. Note that the error of xp0q is 1.

3. For each of the three cases make a performance plot of p
versus ! and estimate the optimum value of !. If the plot is
too coarse, make additional runs to fill in the gaps.

4. Discuss the behavior of the performance profiles and their
implications for the di�culty of finding optimum SOR factors.



Richardson Method

Richardson Method

§ Let
R “ I ´ P

´1
A

the iteration matrix associated to the method

x
pk`1q “ Rx

pkq ` P
´1

b ô x
pk`1q “ x

pkq ` P
´1

r
pkq, k • 0

§ Stationary Richardson method:

x
pk`1q “ x

pkq ` ↵P´1
r

pkq, k • 0

§ Nonstationary Richardson method:

x
pk`1q “ x

pkq ` ↵kP
´1

r
pkq, k • 0

§ The iteration matrix of the k´th step for these methods is

Rp↵kq “ I ´ ↵kP
´1

A



Richardson Method

§ If P “ I , the methods is called nonpreconditioned

§ The Jacobi (resp. Gauss-Seidel) method is stationary
Richardson method with ↵ “ 1 and P “ D (resp. P “ D ´ L)

§ Algorithm: Nonstationary Richardson Method

x
p0q and P given; r p0q “ b ´ Ax

p0q

for k “ 0, 1, . . .
solve Pz

pkq “ r
pkq % compute preconditioned residual

compute ↵k % acceleration parameter
x

pk`1q “ x
pkq ` ↵kz

pkq % update the solution
r

pk`1q “ r
pkq ´ ↵kAz

pkq % update the residual
until convergence

Convergence of Richardson Method

Theorem 1.12: Convergence

For any nonsingular matrix P , the stationary Richardson method is
convergent if and only if

2Re �i

↵|�i |2
° 1 @i “ 1, . . . , n,

where �i P C are the eigenvalues of P´1
A.

§ Note: If the sign of the real parts of the eigenvalues of P´1
A

is not constant, the stationary Richardson method cannot
converge



Convergence of Richardson Method

Theorem 1.13: Convergence

Let P be a nonsingular matrix and P
´1

A with positive real
eigenvalues �1 • �2 • ¨ ¨ ¨ • �n ° 0. Then, the stationary
Richardson method is convergent if and only if 0 † ↵ † 2{�1.
Moreover, if ↵ “ ↵opt “ 2{p�1 ` �nq then ⇢pRp↵qq is minimum
and

⇢opt “ �1 ´ �n

�1 ` �n

.

138 4. Iterative Methods for Solving Linear Systems

the spectral radius of the iteration matrix R� is minimum if ↵ = ↵opt, with

⇢opt = min
�

[⇢(R�)] =
�1 � �n

�1 + �n
. (4.28)

Proof. The eigenvalues of R� are given by �i(R�) = 1 � ��i, so that (4.23) is

convergent i� |�i(R�)| < 1 for i = 1, . . . , n, that is, if 0 < � < 2/�1. It follows

(see Figure 4.2) that �(R�) is minimum when 1 � ��n = ��1 � 1, that is, for

� = 2/(�1 + �n), which furnishes the desired value for �opt. By substitution, the

desired value of �opt is obtained. �

1

�n

1

�1

↵opt
2

�1

⇢ = 1

|1 � ↵�1|

|1 � ↵�n|

⇢opt

|1 � ↵�k|

↵

FIGURE 4.2. Spectral radius of R� as a function of the eigenvalues of P�1A

If P�1A is symmetric positive definite, it can be shown that the convergence
of the Richardson method is monotone with respect to either �·�2 and �·�A.
In such a case, using (4.28), we can also relate ⇢opt to K2(P�1A) as follows

⇢opt =
K2(P�1A) � 1

K2(P�1A) + 1
, ↵opt =

2�A�1P�2

K2(P�1A) + 1
. (4.29)

The choice of a suitable preconditioner P is, therefore, of paramount im-
portance for improving the convergence of a Richardson method. Of course,
such a choice should also account for the need of keeping the computational
e�ort as low as possible. In Section 4.3.2, some preconditioners of common
use in practice will be described.

Corollary 4.1 Let A be a symmetric positive definite matrix. Then, the
non preconditioned stationary Richardson method is convergent and

�e(k+1)
�A � ⇢(R�)�e(k)

�A, k � 0. (4.30)

Convergence of Richardson Method for SPD Matrices

§ If P´1
A is SPD, the convergence of the Richardson method is

monotone with respect to either } ¨ }2 and } ¨ }A
§ In such case

↵opt “ 2}P´1
A}2

K2pP´1Aq ` 1
and ⇢opt “ K2pP´1

Aq ´ 1

K2pP´1Aq ´ 1

Theorem 1.14: Convergence for SPD matrices

If A is SPD, then the non preconditioned stationary Richardson
method is convergent for any choice of x p0q and

}epk`1q}A § ⇢pRp↵qq}epkq}A, k § 0.

The same result hold for the preconditioned Richardson method,
provided that the matrices P , A and P

´1
A are SPD.



Preconditioning Matrices

§ All methods can be regarded as being methods for solving

P
´1

Ax “ P
´1

b

§ This last is called preconditioned system, being P the
preconditioning matrix or left preconditioner

§ Right preconditioners can also be introduced and the system
is transformed as

P
´1
L

AP
´1
R

y “ P
´1
L

b, y “ PRx

§ Optimal preconditioner: a preconditioner which is able to
make the number of iterations required for convergence
independent of the size of the system

§ P “ A is optimal but ine�cient; P “ I is e�cient but not
useful

Choice of Preconditioners

§ In the choice of the preconditioner the computational cost and
memory requirements must be taken into account

§ Diagonal preconditioners: choosing P as the diagonal o↵ A is
generally e↵ective if A is SPD. An usual choice in the non
symmetric case is to set

pii “
˜

nÿ

j“1

a
2
ij

¸1{2

§ Polynomial preconditioners: the preconditioner matrix is
defined as

P
´1 “ ppAq,

where p is a polynomial in A, usually of low degree

§ ...



Gradient Method

Gradient Method for SPD Matrices

§ The expression of the optimal parameter requires the
knowledge of the extremal eigenvalues of P´1

A

§ Exercise 1.5: For SPD matrices, solving Ax “ b is equivalent
to finding the minimizer x P Rn of the quadratic form

�pyq “ 1

2
y
T
Ay ´ y

T
b (energy of the system).

§ Goal: Determine the minimizer x P Rn of �. Starting from
x

p0q P Rn,
x

pk`1q “ x
pkq ` ↵kp

pkq, k • 0,

where p
pkq is a descent direction



Example: Finding Minima

§ Compute the minimizer of

peaks : D Ä R2 ›Ñ R

z “ peaks px , yq
“ 3p1 ´ xq2e´x

2´py`1q2

´10
´
x

5
´ x

3 ´ y
5
¯
e

´x
2´y

2

´1

3
e

´px`1q2´y
2

An Iterative Process



Directional Derivative and Gradient Vector

§ Directional derivative: Dp�pxq “ r�pxqTp
Peaks : curvas de nível
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§ The directional derivative is given by

Dp�pxq “ r�pxqTp “ }r�pxq}}p} cos ✓,

where ✓ the angle between r�pxq and
the direction p

∇"($)

&

$
'

Directional Derivative and Gradient Vector

§ Exercise 1.6: If � P C
1p⌦q the maximum (resp. minimum) of

the directional derivative Dp�pxq occurs when p has the same
direction as the gradient vector r�pxq (resp. ´r�pxq).

§ Descent direction: p P Rn is a descent direction of � in x if
exists t̄ ° 0 such that �px ` tpq † �pxq, for all t P p0, t̄q

§ Exercise 1.7: If the angle between p

and ´r�pxq is less than ⇡{2, i.e.

´r�pxqTp ° 0,

then p is a descent direction.

−∇"($)

&

$

'



Gradient/Steepest Descent Method
§ Starting from a point x p0q P Rn, the step k ` 1 is computed as

x
pk`1q “ x

pkq ` ↵kp
pkq,

where p
pkq “ ´r�px pkqq4.3 Stationary and Nonstationary Iterative Methods 149
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FIGURE 4.5. The first iterates of the gradient method on the level curves of �

Program 19 provides an implementation of the gradient method with dy-
namic parameter. Here and in the programs reported in the remainder of
the section, the input parameters A, x, b, M, maxit and tol respectively
represent the coe�cient matrix of the linear system, the initial datum x(0),
the right side, a possible preconditioner, the maximum number of admis-
sible iterations and a tolerance for the stopping test. This stopping test
checks if the ratio �r(k)

�2/�b�2 is less than tol. The output parameters of
the code are the the number of iterations niter required to fulfill the stop-
ping test, the vector x with the solution computed after niter iterations
and the normalized residual error = �r(niter)

�2/�b�2. A null value of the
parameter flag warns the user that the algorithm has actually satisfied
the stopping test and it has not terminated due to reaching the maximum
admissible number of iterations.

Program 19 - gradient : Gradient method with dynamic parameter

function [x, error, niter, flag] = gradient(A, x, b, M, maxit, tol)
flag = 0; niter = 0; bnrm2 = norm( b );
if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end
r = b - A*x; error = norm( r ) / bnrm2;
if ( error < tol ) return, end
for niter = 1:maxit

z = M \ r; rho = (r’*z);
q = A*z; alpha = rho / (z’*q );
x = x + alpha * z; r = r - alpha*q;
error = norm( r ) / bnrm2;
if ( error <= tol ), break, end

end
if ( error > tol ) flag = 1; end

§ Exercise 1.8: Prove that

r�px pkqq “ Ax
pkq ´ b “ ´r

pkq,

so the gradient method, as the Richardson method, moves at
each step k along the direction r

pkq.

Computing the Acceleration Parameter

§ To compute ↵k let us write �px pk`1qq as a function of a
parameter ↵,

�px pk`1qq “ 1

2
px pkq ` ↵r pkqqTApxpkq ` ↵rpkqq´pxpkq ` ↵rpkqqTb

§ Exercise 1.9: Di↵erentiating with respect to ↵, the value of
↵k (which depends only on the residual) is

↵k “ r
pkqT

r
pkq

r pkqTAr pkq
.



Gradient/Steepest Descent Method
§ Algorithm: Gradient/Steepest Descent Method

x
p0q given;

for k “ 0, 1, . . .
r

pkq “ b ´ Ax
pkq % compute residual

↵k “ r
pkqT

r
pkq

r pkqTAr pkq
% acceleration parameter

x
pk`1q “ x

pkq ` ↵k r
pkq % update solution

until convergence

Theorem 1.15: Convergence

Let A be SPD. Then the gradient method is convergent for any
choice of x p0q and

}epk`1q}A § K2pAq ´ 1

K2pAq ` 1
}epkq}A.


