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Gradient Method

» For SPD matrices, solving Ax = b is equivalent to finding the
minimizer x € R" of the quadratic form

1

d(y) = §yTAy —y"b=(y,y)a—(y,b)

» Two phases: (i) choosing a descent direction (the residual);
(ii) picking up a point of local minimum for ¢ along that
direction

» For a given direction p(k), the value of ax was obtained such
that ¢(x%) + ap®)) is minimized
T
B p(k) r(K) B ('D(k)7 r(k)>
6793

a B 4
P T Apk) — (p), p(k) 4 (4)

> For the gradient method p(%) = r(¥)




Richardson and Gradient Methods

> Richardson Method (P = /) > Gradient Method
x© given; r©® = p — Ax(© x©) given; r(® = p — Ax(©)
for k=0,1,... for k =0,1,...
solve [z(K) = r(K) r(k)Tr(k)
o = ———=F——
compute ok PO
xk+1) = 5 (k) 4 ) z(K) x(k1) — 5 (k) 4 g p(K)
rtktl) — (0 — ) Az(K) pkt1) — p () o Ar(R)
until convergence until convergence

> Exercise 2.1: Prove that, for p(k) = (k)
(P kDY — g0 Tkt _ g o plk) | kD),

i.e., the new residual becomes orthogonal to the search
direction

Improve Steepest Descent Method

» For the gradient method

Ky(A) —1
k—{—l)H < 2( )

( Ka(A) -1
e S Ka(A) + 1

[e®a

> Goal: Improve the convergence, minimizing ||e(¥)| 4 at each
step




General Direction Method
» Exercise 2.2: Prove that, for ay given by (4)
1 (ph), r0)2
- 2(p®),pk)a°
> Find search direction p(¥) such that (p¥), r(k)) £ 0

(x5 + e py = p(x )

» General Direction Method
x© given; r® = p— Ax(©). p0) = ((0)
for k=0,1,...
(k)T (k)
r() T Ap(k)
X(k+1) = X(k) _|_ akp(k)
rtkt1) = p(K) — o Apth)
choose pk*1) such that (ptk+1) r(k+1)y 2
until convergence
» For x!9 = 0, since x) e (p® p@) . pk=1)\ then

<X(1)7X(2)7 R 7X(k)> = <P(O), P(l), sy p(k_1)>

o =

Conjugate Direction Method

> Goal: Find search direction p(k*1) that provides a faster
convergence

» Let p(@ = r(O Search for directions p(k*1) in such way that
(pU)ap(k+1))A 207 .j20717"'7k7 (5)
i.e., the directions are A-conjugate (or A-orthogonal)

> Exercise 2.3: Prove that, if p¥) 0, j=0,1,...,k—1, are
A-conjugate, then:

1. the directions {p©® pM) .. . p(k=1)1 are linearly independent;

2. the algorithm converges in at most n steps.




Conjugate Gradient (CG) Method

» Let p(@ = r(© Search for directions of the form
ptl) — pk) _ g 5K g =0,1,...

where §; € R must be determined in such way that (5) holds,
i.e., the directions are A-conjugate

» Exercise 2.4: Prove that, for j = k,

(p(k)7 r(k+1))A
(60, M)

and, by induction, using the above [, that

Br =

k=0,1,...

(P9, pk ) =0, j=0,1,....k—1.

Conjugate Gradient (CG) Method

» Algorithm: Conjugate Gradient Method

x(©) given; r@ = p— Ax0; p(o) = r(0)
for k =0,1,...
(p(k)7 r(K)
(pk), p(k)) 5
x(k+D) = x (k) 4 o p(k)
rtkt1) = (k) — o Apth)
(ptk), r(kt1)) 4
Pk = 0, k) 4
plkt1) — p(kt1) _ g 5(K)
until convergence

o =

» Exercise 2.5: Show that the algorithm requires only one
matrix-vector product Ap(¥) per iteration.




Conjugate Gradient (CG) Method

» Algorithm: Conjugate Gradient Method

X(O) — O, r(o) — b’ p(o) — r(o)
for k=0,1,...

B (ptk), r(K) ,
Qg = (o), % step lenght

xk+D) = x(K) o ptk) 9% update solution

rtk4) = () — q ApK) 9% update residual
(p4), 1),

Bk = = o0

(pX), pk)) 4
pkt1) — p(k+1) _ g, p(k) 9 search direction

until convergence

% improvement this ste
P p

» Exercise 2.6: Show that
)

H r(k+1) H2
A = —
Ip)]2

[rp2

and Bk =

Krylov Subspace




Krylov Subspace
> Krylov Subspace: Kx = Kx(A; b) = (b, Ab, ..., Ax"1b)

» CG for Ax = b, Ac R™" SPD, x(9 =0, p(0 = 0 = p

Theorem 2.1

As long as r(k=1) -2 0 (CG not yet converged), the algorithm
proceeds without divisions by zero and

ICk = <X(1)7X(2), c e 7X(k)> — <p(0)’ p(l)’ e p(k—l)>
= (9, 1D, r U0 = (b, Ab, .. AT,

» Exercise 2.7: Prove that the residuals are orthogonal,
T /-
r 0 =0, <k,
and the search directions are A-conjugate (or A-orthogonal),

p(k) TApU) =0, j<k

Convergence Result

Theorem 2.2: Monotonic convergence

If the iteration has not yet converged then x(K) is the only point in
K« that minimizes |e(A)| 4. The convergence is monotonic,

[e¥]la < e V]a,
and |e(®)| 4 = 0 is achieved for some k < n.

» Proof: For any other point y = x(¥) — Ay € Ky, the error is

leld = (e +Aay)TA(E® + Ay)
(e"N)TAe™ 1+ (Ay)TA(Ay) +2(e)TA(Ay)

But (e")TA(Ay) = (r")T(Ay) = 0 since r'®) L Ky, so Ay
minimizes |e|%. Since A € SPD, the monotonic convergence
follow from IC) < K11, and K < R" unless converged. []




Optimization in CG

v

CG can be interpreted as a minimization algorithm

v

We know it minimizes |e|a, but this cannot be evaluated

v

CG minimizes the quadratic function ¢(y) = %yTAy —yTh:

ENT Aetk) — (x — xNT A(x — xK))

[e®)a = )
UNT AxF) —2(xNT Ax + xT Ax
)

(k)

(e
= (x
_ ( k) TAX(k (X(k))TXTb
— 2¢(x®)) + constant

v

At each step ax is choosen to minimizes x(k+1) = x(k) 4 o, p(k)

v

Conjugated search directions p(k) give minimization over Ky

Polynomial Approximation by CG
» Py ={p: pis a polynomial of degree < k, p(0) = 1}
» Find px € Py such that

|pe(A)e®] 4 = minimum. (6)

Theorem 2.3

If the CG iteration has not yet converged, the problem (6) has a
unique solution px € Pk and the iterate x(¥) has error
elk) = pr(A)el® for this same polynomial py. Moreover

[e%a . . lp(A)e®]a
= inf < inf .
O, — ot ey, < At max PO

> Proof: It is clear that x(k) = g,_1(A)b = gx_1(A)Ax with
qr_1 of degree k — 1, Then e(¥) = p,(A)el® with py € Py.
The equality follows from Theorem 2.2; for the inequality,
expand in eigenvectors of A and conclude the result. []




Rate of Convergence

» Exercise 2.8: Prove that, if A has only k distinct eigenvalues,
the the CG method converges in at most k steps.

Theorem 2.4: Rate of convergence

The error e(%) at the k-th iteration (with k < n) is orthogonal to
p¥), j=0,...,k—1, and

Kao(A) — 1

VK2(A) +1

2ck
[e®a < = le@la < 2@ a,  with ¢ =

» Note that
Ky(A) —1 1 2

KA +1 /Ka(A)

and the convergence to a specified tolerance can be expected
in O(4/K2(A)) iterations

Some Remarks

» CG was proposed by Hestenes and Stiefel in 1952 as a direct
method

» For systems with matrices of large size, CG is usually
employed as an iterative method

» The dependence of the error reduction factor on the condition
number of the matrix is more favourable when compared with
the steepest descent method

» We have derived only an upper bound for the error; the
convergence may be faster




Preconditioned Conjugate Gradient (PCG) Method
> If P is SPD (preconditioning matrix)

P—1/2AP—1/2y _ P_1/2b, y = P1/2X

> Not explicitly require the computation of PY/2 or P~1/2
» Algorithm: Preconditioned Conjugate Gradient Method

x© and P given; r(0) — b—Ax(O); z(0) = P*1r<0>; p(o) — r(0)
for k=0,1,...

. p(k) T (k)

T T Apk)

X(k+1) = X(k) _|_ akp(k)
rtkt1) = p(K) — o AptR)
pr(k+1) _ p(k+1)

(Ap(k))TZ(k+1)
o= ap) ol
plkt]) — Z(kt1) _ g n(k)

until convergence

Homework Exercises

» Exercise 2.9: Let A e R8%%805 matrix with eigenvalues 1.00,
1.01, 1.02, ..., 8.98. 8.99, 9.00 and also 10, 12, 16, 24. How
many steps CG must take to be sure of reducing of |[e(?)] 4 by
a factor 10°7?

» Exercise 2.10: The CG is applied to a SPD matrix A with
results [[e® 4 = 1, [e(19]4 = 2 x 2710, Based solely on this
data, what bound can you give for K»(A) and ||e(?)| 47

» Exercise 2.11: Let A € R00x100 tridiagonal SPD matrix with
1,2,...,100 on the diagonal and 1 on the sub/super-diagonals,
and set b= (1,1,...,1)7. Write a program that takes 100
steps of CG and the steepest descent (SD) iterations to
approximately solve Ax = b. Produce a plot with four curves:
the computed residual |r(K)||, for CG, the actual residual
|b — Ax()| for CG, the residual || r%)||5 for SD, and the
estimate 2cX of Theorem 2.4. Comment on the results.




