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Gradient Method

§ For SPD matrices, solving Ax “ b is equivalent to finding the
minimizer x P Rn of the quadratic form

�pyq “ 1

2
y
T
Ay ´ y

T
b “ py , yqA ´ py , bq

§ Two phases: (i) choosing a descent direction (the residual);
(ii) picking up a point of local minimum for � along that
direction

§ For a given direction p
pkq, the value of ↵k was obtained such

that �px pkq ` ↵ppkqq is minimized

↵k “ p
pkqT

r
pkq

ppkqTAppkq
“ pppkq, r pkqq

pppkq, ppkqqA
(4)

§ For the gradient method p
pkq “ r

pkq



Richardson and Gradient Methods

§ Richardson Method (P “ I )

x
p0q given; r p0q “ b ´ Ax

p0q

for k “ 0, 1, . . .
solve Iz

pkq “ r
pkq

compute ↵k

x
pk`1q “ x

pkq ` ↵kz
pkq

r
pk`1q “ r

pkq ´ ↵kAz
pkq

until convergence

§ Gradient Method

x
p0q given; r p0q “ b ´ Ax

p0q

for k “ 0, 1, . . .

↵k “ r
pkqT

r
pkq

r pkqTAr pkq
x

pk`1q “ x
pkq ` ↵k r

pkq

r
pk`1q “ r

pkq ´ ↵kAr
pkq

until convergence

§ Exercise 2.1: Prove that, for ppkq “ r
pkq

pppkq, r pk`1qq “ p
pkqT

r
pk`1q “ 0 ô p

pkq K r
pk`1q,

i.e., the new residual becomes orthogonal to the search
direction

Improve Steepest Descent Method
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path (each turn is orthogonal) towards the solution while conjugate gradient methods will
take a shorter one; see the figure below.

FIGURE 2. Steepest gradient descent vs. conjugate gradient directions.

2. CONJUGATE GRADIENT METHODS

By tracing back to the initial guess u0, the k + 1-th step of the steepest gradient descent
method can be written as

uk+1 = u0 + ↵0r0 + ↵1r1 + · · · + ↵krk.

Let

(7) Vk = span{r0, r1, · · · , rk}.

The correction
�k

i=0 ↵iri can be thought as an approximate solution of the residual equa-
tion

Ae0 = r0,

in Vk by computing the coefficients along each basis vector {r0, r1, · · · , rk}. It is not
the best approximation of e0 = u � u0 in the subspace Vk. Here the ‘best’ refers to the
approximation in the A-norm and can be found by computing the A-orthogonal projection
ProjAVk

(u � u0) � Vk. If using the basis (7), to compute the A-orthogonal projection, one
needs to invert the Gram matrix M = ((ri, rj)A), while in the steepest descent gradient,
only diagonal of M is inverted.

If we can find an A-orthogonal basis, i.e.

(8) Vk = span{p0, p1, · · · , pk}, (pi, pj)A = 0 for i �= j,

the projection can be found component by component

ProjAVk
(u � u0) =

k�

i=0

↵ipi, ↵i =
(u � u0, pi)A

(pi, pi)A
, for i = 0, · · · k.

Equivalently the corresponding Gram matrix ((pi, pj)A) is diagonal.
Conjugate gradient method will construct an A-orthogonal basis by recrusion. Start

from an initial guess u0. Let p0 = r0 = �rf(u0) . For k = 0, 1, 2, . . . , n, let Vk =
span{p0, p1, · · · , pk} be a subspace spanned by A-orthogonal basis, i.e. (pi, pj)A = 0 for
i �= j, i, j = 0, . . . , k.

CG consists of three steps:
(1) compute uk+1 by the A-orthogonal projection of u � u0 to Vk.
(2) add residual vector rk+1 to Vk to get Vk+1.

§ For the gradient method

}epk`1q}A § K2pAq ´ 1

K2pAq ` 1
}epkq}A

§ Goal: Improve the convergence, minimizing }epkq}A at each
step



General Direction Method
§ Exercise 2.2: Prove that, for ↵k given by (4)

�px pkq ` ↵kp
pkqq “ �px pkqq ´ 1

2

pppkq, r pkqq2
pppkq, ppkqqA

.

§ Find search direction p
pkq such that pppkq, r pkqq ‰ 0

§ General Direction Method

x
p0q given; r p0q “ b ´ Ax

p0q; pp0q “ r
p0q

for k “ 0, 1, . . .

↵k “ r
pkqT

r
pkq

r pkqTAr pkq
x

pk`1q “ x
pkq ` ↵kp

pkq

r
pk`1q “ r

pkq ´ ↵kAp
pkq

choose p
pk`1q such that pppk`1q, r pk`1qq ‰ 0

until convergence

§ For x p0q “ 0, since x
pkq P xpp0q, pp1q, . . . , ppk´1qy then

xx p1q, x p2q, . . . , x pkqy “ xpp0q, pp1q, . . . , ppk´1qy

Conjugate Direction Method

§ Goal: Find search direction p
pk`1q that provides a faster

convergence

§ Let pp0q “ r
p0q. Search for directions ppk`1q in such way that

pppjq, ppk`1qqA “ 0, j “ 0, 1, . . . , k , (5)

i.e., the directions are A-conjugate (or A-orthogonal)

§ Exercise 2.3: Prove that, if ppjq ‰ 0, j “ 0, 1, . . . , k ´ 1, are
A-conjugate, then:
1. the directions tpp0q, pp1q, . . . , ppk´1qu are linearly independent;

2. the algorithm converges in at most n steps.



Conjugate Gradient (CG) Method

§ Let pp0q “ r
p0q. Search for directions of the form

p
pk`1q “ r

pk`1q ´ �kp
pkq, k “ 0, 1, . . .

where �k P R must be determined in such way that (5) holds,
i.e., the directions are A-conjugate

§ Exercise 2.4: Prove that, for j “ k ,

�k “ pppkq, r pk`1qqA
pppkq, ppkqqA

, k “ 0, 1, . . .

and, by induction, using the above �k , that

pppjq, ppk`1qqA “ 0, j “ 0, 1, . . . , k ´ 1.

Conjugate Gradient (CG) Method

§ Algorithm: Conjugate Gradient Method

x
p0q given; r p0q “ b ´ Ax

p0q; pp0q “ r
p0q

for k “ 0, 1, . . .

↵k “ pppkq, r pkqq
pppkq, ppkqqA

% step lenght

x
pk`1q “ x

pkq ` ↵kp
pkq % update solution

r
pk`1q “ r

pkq ´ ↵kAp
pkq % update residual

�k “ pppkq, r pk`1qqA
pppkq, ppkqqA

% improvement this step

p
pk`1q “ r

pk`1q ´ �kp
pkq % search direction

until convergence

§ Exercise 2.5: Show that the algorithm requires only one
matrix-vector product Appkq per iteration.



Conjugate Gradient (CG) Method

§ Algorithm: Conjugate Gradient Method

x
p0q “ 0; r p0q “ b; pp0q “ r

p0q

for k “ 0, 1, . . .

↵k “ pppkq, r pkqq
pppkq, ppkqqA

% step lenght

x
pk`1q “ x

pkq ` ↵kp
pkq % update solution

r
pk`1q “ r

pkq ´ ↵kAp
pkq % update residual

�k “ pppkq, r pk`1qqA
pppkq, ppkqqA

% improvement this step

p
pk`1q “ r

pk`1q ´ �kp
pkq % search direction

until convergence

§ Exercise 2.6: Show that

↵k “ }r pkq}2
}ppkq}2

A

and �k “ ´}r pk`1q}2
}r pkq}2 .

Krylov Subspace



Krylov Subspace
§ Krylov Subspace: Kk “ KkpA; bq “ xb,Ab, . . . ,Ak´1

by
§ CG for Ax “ b, A P Rnˆn SPD, x p0q “ 0, pp0q “ r

p0q “ b

Theorem 2.1

As long as r pk´1q ‰ 0 (CG not yet converged), the algorithm
proceeds without divisions by zero and

Kk “ xx p1q, x p2q, . . . , x pkqy “ xpp0q, pp1q, . . . , ppk´1qy
“ xr p0q, r p1q, . . . , r pk´1qy “ xb,Ab, . . . ,Ak´1

by.

§ Exercise 2.7: Prove that the residuals are orthogonal,

r
pkqT

r
pjq “ 0, j † k ,

and the search directions are A-conjugate (or A-orthogonal),

p
pkqT

Ap
pjq “ 0, j † k .

Convergence Result

Theorem 2.2: Monotonic convergence

If the iteration has not yet converged then x
pkq is the only point in

Kk that minimizes }epkq}A. The convergence is monotonic,

}epkq}A § }epk´1q}A,

and }epkq}A “ 0 is achieved for some k § n.

§ Proof: For any other point y “ x
pkq ´ �y P Kk , the error is

}e}2
A

“ pepkq ` �yqTApepkq ` �yq
“ pepkqqTAepkq ` p�yqTAp�yq ` 2pepkqqTAp�yq

But pepkqqTAp�yq “ pr pkqqT p�yq “ 0 since r
pkq K Kk , so �y

minimizes }e}2
A
. Since A P SPD, the monotonic convergence

follow from Kk Ñ Kk`1, and Kk Ñ Rn unless converged. l



Optimization in CG

§ CG can be interpreted as a minimization algorithm

§ We know it minimizes }e}A, but this cannot be evaluated

§ CG minimizes the quadratic function �pyq “ 1
2y

T
Ay ´ y

T
b:

}epkq}A “ pepkqqTAepkq “ px ´ x
pkqqTApx ´ x

pkqq
“ px pkqqTAx pkq ´ 2px pkqqTAx ` x

T
Ax

“ px pkqqTAx pkq ´ 2px pkqqT xTb
“ 2�px pkqq ` constant

§ At each step↵k is choosen to minimizes x pk`1q “x
pkq ` ↵kp

pkq

§ Conjugated search directions ppkq give minimization overKk

Polynomial Approximation by CG
§ Pk “ tp : p is a polynomial of degree § k , pp0q “ 1u
§ Find pk P Pk such that

}pkpAqep0q}A “ minimum. (6)

Theorem 2.3

If the CG iteration has not yet converged, the problem (6) has a
unique solution pk P Pk and the iterate x

pkq has error
e

pkq “ pkpAqep0q for this same polynomial pk . Moreover

}epkq}A
}ep0q}A

“ inf
pPPk

}ppAqep0q}A
}ep0q}A

§ inf
pPPk

max
�P⇤pAq

|pp�q|.

§ Proof: It is clear that x pkq “ qk´1pAqb “ qk´1pAqAx with
qk´1 of degree k ´ 1, Then e

pkq “ pkpAqep0q with pk P Pk .
The equality follows from Theorem 2.2; for the inequality,
expand in eigenvectors of A and conclude the result. l



Rate of Convergence

§ Exercise 2.8: Prove that, if A has only k distinct eigenvalues,
the the CG method converges in at most k steps.

Theorem 2.4: Rate of convergence

The error epkq at the k-th iteration (with k † n) is orthogonal to
p

pjq, j “ 0, . . . , k ´ 1, and

}epkq}A § 2ck

1 ` c2k
}ep0q}A § 2ck}ep0q}A, with c “

a
K2pAq ´ 1a
K2pAq ` 1

.

§ Note that a
K2pAq ´ 1a
K2pAq ` 1

„ 1 ´ 2a
K2pAq ,

and the convergence to a specified tolerance can be expected
in Op

a
K2pAqq iterations

Some Remarks

§ CG was proposed by Hestenes and Stiefel in 1952 as a direct
method

§ For systems with matrices of large size, CG is usually
employed as an iterative method

§ The dependence of the error reduction factor on the condition
number of the matrix is more favourable when compared with
the steepest descent method

§ We have derived only an upper bound for the error; the
convergence may be faster



Preconditioned Conjugate Gradient (PCG) Method
§ If P is SPD (preconditioning matrix)

P
´1{2

AP
´1{2

y “ P
´1{2

b, y “ P
1{2

x

§ Not explicitly require the computation of P1{2 or P´1{2

§ Algorithm: Preconditioned Conjugate Gradient Method

x
p0q and P given; r p0q “ b ´Ax

p0q; zp0q “ P
´1

r
p0q; pp0q “ r

p0q

for k “ 0, 1, . . .

↵k “ p
pkqT

r
pkq

ppkqTAppkq
% step lenght

x
pk`1q “ x

pkq ` ↵kp
pkq % update solution

r
pk`1q “ r

pkq ´ ↵kAp
pkq % update residual

Pz
pk`1q “ r

pk`1q % update residual

�k “ pAppkqqT zpk`1q

pAppkqqTppkq % improvement this step

p
pk`1q “ z

pk`1q ´ �kp
pkq % search direction

until convergence

Homework Exercises

§ Exercise 2.9: Let A P R805ˆ805 matrix with eigenvalues 1.00,
1.01, 1.02, ..., 8.98. 8.99, 9.00 and also 10, 12, 16, 24. How
many steps CG must take to be sure of reducing of }ep0q}A by
a factor 106?

§ Exercise 2.10: The CG is applied to a SPD matrix A with
results }ep0q}A “ 1, }ep10q}A “ 2 ˆ 2´10. Based solely on this
data, what bound can you give for K2pAq and }ep20q}A?

§ Exercise 2.11: Let A P R100ˆ100 tridiagonal SPD matrix with
1, 2, ..., 100 on the diagonal and 1 on the sub/super-diagonals,
and set b “ p1, 1, . . . , 1qT . Write a program that takes 100
steps of CG and the steepest descent (SD) iterations to
approximately solve Ax “ b. Produce a plot with four curves:
the computed residual }r pkq}2 for CG, the actual residual
}b ´ Ax

pkq} for CG, the residual }r pkq}2 for SD, and the
estimate 2ck of Theorem 2.4. Comment on the results.


