Lecture 3

Arnoldi and GMRES

New Directions in Mathematics

Adérito Araújo (alma@mat.uc.pt) April 5, 2024

Krylov Subspace Methods

- Problem: Find $x \in \mathbb{R}^n$, such that Ax = b, with $A \in \mathbb{R}^{n \times n}$
- Consider the Krylov subspace of order k,

$$\mathcal{K}_k = \mathcal{K}_k(A; b) = \langle b, Ab, \dots, A^{k-1}b \rangle$$

• Goal: Search for approximate solutions of the form

$$x^{(k)} \in \mathcal{K}_k, \quad k \leqslant n,$$

such that $x^{(k)}$ be the best approximation of x in \mathcal{K}_k

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Richardson Method (P = I)• Algorithm: Richardson Method (P = I) $x^{(0)} = 0; r^{(0)} = b - Ax^{(0)} = b$ for k = 0, 1, ...solve $Iz^{(k)} = r^{(k)}$ compute α_k $x^{(k+1)} = x^{(k)} + \alpha_k z^{(k)}$ $r^{(k+1)} = r^{(k)} - \alpha_k Az^{(k)}$ until convergence • Residual at the k-th step $r^{(k)} = \prod_{j=0}^{k-1} (I - \alpha_j A)b \implies r^{(k)} = p_k(A)b \in \mathcal{K}_{k+1},$ where $p_k(A)$ is a polynomial in A of degree k • The iterate $x^{(k)}$ $x^{(k)} = 0 + \sum_{i=0}^{k-1} \alpha_j r^{(j)} = \sum_{i=0}^{k-1} \alpha_j r^{(j)} = q_{k-1}(A)b \in \mathcal{K}_k$

Krylov Subspace Methods

Goal: Search for approximate solutions of the form

$$x^{(k)} = q_{k-1}(A)b,$$

such that $x^{(k)}$ be the best approximation of x in \mathcal{K}_k

- Two alternative strategies
 - FOM (Full Orthogonalization Method) or Arnoldi method
 Compute x^(k) ∈ K_k such that the residual r^(k) ⊥ K_k, i.e.,

$$\mathbf{v}^{\mathsf{T}}(\mathbf{b} - \mathbf{A}\mathbf{x}^{(k)}) = \mathbf{0}, \quad \forall \mathbf{v} \in \mathcal{K}_{k}$$

GMRES method (Generalized Minimum RESidual method)
 Compute x^(k) ∈ K_k minimizing ||r^(k)||₂, i.e.,

$$||b - Ax^{(k)}||_2 = \min_{v \in \mathcal{K}_k} ||b - Av||_2$$

• (Preliminary) Goal: Compute an orthogonal basis of \mathcal{K}_k

Arnoldi Iteration

The Arnoldi Iteration

For a fixed k it is possible to compute an orthogonal basis for K_k using the so-called Arnoldi algorithm.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ◆ ■ ● のへで

- The Arnoldi process reduces a general, nonsymmetric A to Hessenberg form by similarity transforms: A = QHQ^T
- Allows for reduced factorizations by a Gram-Schmidt-style iteration instead of Householder reflections
- Let Q_n be the n × k matrix with the first k columns of Q, and consider AQ_k = Q_{k+1}Ĥ_k

$$A\left[\begin{array}{c|c} q_1 \\ \cdots \\ q_k \end{array}\right] = \left[\begin{array}{c|c} q_1 \\ \cdots \\ q_{k+1} \end{array}\right] \left[\begin{array}{c|c} h_{11} & h_{12} & \cdots & h_{1k} \\ h_{21} & h_{22} & \cdots & \vdots \\ \vdots & \vdots & \vdots \\ & & h_{k,k-1} & h_{kk} \\ & & & h_{k+1,k} \end{array}\right]$$

The Arnoldi Algorithm

• The k-th column of $AQ_k = Q_{k+1}\hat{H}_k$ gives

$$Aq_k = h_{1k}q_1 + \cdots + h_{kk}q_k + h_{k+1,k}q_{k+1}$$

which can be used to compute q_{k+1} similarly to modified GS

Algorithm: Arnoldi Iteration Algorithm: Gram-Schmidt b arbitrary; $q_1 = b/||b||$ % For orthonormalize $\{a_1, ..., a_n\}$ for k = 1, 2, ...for k = 1 to n do $v = Aq_k$ $v = a_k$ for i = 1 to k do for i = 1 to k - 1 do $\begin{cases} r_{ik} = q_i^T a_k \text{ (CGS)} \\ r_{ik} = q_i^T v \text{ (MGS)} \\ v = v - r_{ik} q_i \end{cases}$ end for $h_{ik} = q_i^T v$ $v = v - h_{ik} q_i$ end for $h_{k+1,k} = \|v\|_2$ $r_{kk} = \|v\|_2$ $q_{k+1} = v/h_{k+1,k}$ $q_k = v/r_{kk}$ end for end for

• Exercise 3.1: What if q_1 happens to be an eigenvector of A?

QR Factorization of Krylov Matrix

The vectors q_j from Arnoldi are orthonormal bases of the successive Krylov subspaces

$$\mathcal{K}_k = \mathcal{K}_k(A; b) = \langle b, Ab, \dots, A^{k-1}b \rangle = \langle q_1, q_2, \dots, q_k \rangle \subseteq \mathbb{R}^n$$

• $Q_k \in \mathbb{R}^{n \times k}$ is the reduced QR factorization $K_k = Q_k R_k$ of the Krylov matrix

$$\mathcal{K}_{k} = \left[\begin{array}{c|c} b & Ab & \cdots & A^{k+1}b \end{array} \right]$$

The projection of A onto this space gives k × k Hessenberg matrix H_k = Q_k^TAQ_k, whose eigenvalues may be good approximations of A's

Symmetric Matrices and the Lanczos Iteration (*)

For symmetric A, H_k reduces to tridiagonal T_k, and q_{k+1} can be computed by a three-term recurrence:

$$Aq_k = \beta_{k-1}q_{k-1} + \alpha_k q_k + \beta_k q_{k+1}$$

► Algorithm: Lanczos Iteration

$$\begin{array}{l} \beta_0=0; \ q_0=0; \ b \ \text{arbitrary}; \ q_1=b/\|b\| \\ \text{for } k=1,2,\ldots \\ v=Aq_k \\ \alpha_k=q_k^T v \\ v=v-\beta_{k-1}q_{k-1}-\alpha_k q_k \\ \beta_k=\|v\|_2 \\ q_{k+1}=v/\beta_k \\ \text{end for} \end{array}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Arnoldi Iteration Breakdown

- Exercise 3.2 (*): Suppose that the Arnoldi algorithm is executed for a particular A and b until at some step k, an entry h_{k+1,k} = 0 is encountred.
 - (a) Show that $AQ_k = Q_{k+1}\hat{H}_k$ can be symplified in this case. What does it imply about the structure of a full $n \times n$ Hessembeg reduction $A = QHQ^T$ of A?
 - (b) Show that \mathcal{K}_k is an invariant subspace of A, i.e., $A\mathcal{K}_k \subseteq \mathcal{K}_k$.
 - (c) Show that $\mathcal{K}_k = \mathcal{K}_{k+1} = \mathcal{K}_{k+2} = \cdots$.
 - (d) Show that each eigenvalue of H_k is an eigenvalue of A.
 - (e) Show that if A is nonsingular, then the solution x of Ax = b lies in \mathcal{K}_k .
- The appearence of any entry h_{k+1,k} = 0 is called a breakdown of the Arnoldi interation

FOM or Arnoldi for Linear Systems

FOM / Arnoldi Method for Linear Systems

- Full Orthogonalization Method: iterative method for Ax = b
- Compute $x^{(k)} \in \mathcal{K}_k$ such that $r^{(k)} \perp \mathcal{K}_k$, i.e.,

$$v^T r^{(k)} = v^T (b - A x^{(k)}) = 0, \quad \forall v \in \mathcal{K}_k$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

●□▶●□▶●■▶●■▶●■ ● のへで

• Considering $x^{(k)} \in \mathcal{K}_k$, we may write $x^{(k)} = Q_k y$ where y is such that $r^{(k)} \perp \mathcal{K}_k$

$$Q_k^T r^{(k)} = Q_k^T (b - AQ_k y) = Q_k^T b - Q_k^T AQ_k y = 0$$

Due to the orthonormality of the basis we have

 $Q_k^T b = \|b\|_2 e_1$, $(e_1 \text{ is the first unit vector in } \mathbb{R}^k)$

and $H_k = Q_k^T A Q_k$, we have

$$Q_k^{\prime} b - Q_k^{\prime} A Q_k y = 0 \quad \Leftrightarrow \quad H_k y = \|b\|_2 e_1$$

• The system can be easily solved $(H_k \text{ is upper Hessenberg})$

$$x^{(k)} = Q_k y$$

FOM / Arnoldi Method for Linear Systems

Theorem 3.1

In exact arithmetic, the Arnoldi method yields the solution of Ax = b after at most *n* iterations. Moreover, if a breakdown occurs after k < n iterations, $x^{(k)} = x$.

Proof: Since K_n = ℝⁿ, if the method terminates at the *n*-th iteration, then x⁽ⁿ⁾ = x. Conversely, from the relations

$$Q_k^T A Q_k = H_k, \quad Q_k^T A Q_k y = Q_k^T b \text{ and } x^{(k)} = Q_k y$$

if a breakdown occurs after k < n iterations, we get

$$x^{(k)} = Q_k H_k^{-1} Q_k^T b = A^{-1} b = x.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

FOM Algorithm

Algorithm: FOM

 $b \text{ arbitrary; } q_1 = b/\|b\|$ for k = 1, 2, ... $\langle \text{ step } k \text{ of Arnoldi iteration } \rangle$ Solve $H_k y = \|b\|_2 e_1$ $x^{(k)} = Q_k y$

until convergence

The residual is available by

$$||b - Ax^{(k)}||_2 = h_{k+1,k}|e_k^T y|$$

• Stopping criteria: for a fixed tolerance ϵ

$$h_{k+1,k}|e_k^T y|/\|b\|_2 \leqslant \epsilon$$

Exercise 3.3: Implement the previous algorithm to solve the linear system Ax = b with A = tridiag₁₀₀(−1, 2, −1) and b such that the solution is x = 1. The initial vector is x⁽⁰⁾ = 0 and ε = 1e − 10. Plot ||r^(k)||₂/||b||₂ as a function of k.

GMRES

Minimizing Residuals

- Generalized Minimal RESiduals: iterative method for Ax = b
- Find $x^{(k)} = K_k y \in \mathcal{K}_k$ that minimizes $||r^{(k)}||_2 = ||b Ax^{(k)}||_2$
- This is a least squares problem: Find a vector y such that

$$||AK_ky - b||_2 = \min$$

where K_k is the $n \times k$ Krylov matrix

- QR factorization can us to solve for y, and $x^{(k)} = K_k y$
- In practice the columns of K_k are ill-conditioned and an orthogonal basis is used instead, produced by Arnoldi iteration

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ♥ ♥ ♥

Minimal Residual with Orthogonal Basis

• Set $x^{(k)} = Q_k y$ (orthogonal columns of Q_k span K_k) and solve

 $\|AQ_ky - b\|_2 = \min$

- Find $x^{(k)} \in \mathcal{K}_k$ that minimizes $||r^{(k)}||_2 = ||b Ax^{(k)}||_2$
- Since for the Arnoldi iteration $AQ_k = Q_{k+1}\hat{H}_k$

$$\|Q_{k+1}\hat{H}_ky - b\|_2 = \min$$

 Left multiplication by Q^T_{k+1} does not change the norm (since both vectors are in the column space of Q_{k+1})

$$\|\hat{H}_k y - Q_{k+1}^T b\|_2 = \min$$

Finally, it is clear that $Q_{k+1}^T b = \|b\|_2 e_1$

$$\|\hat{H}_k y - \|b\|_2 e_1\|_2 = \min(m_1)$$

The GMRES Method

Algorithm: GMRES

b arbitrary; $q_1 = b/||b||$ for k = 1, 2, ... \langle step *k* of Arnoldi iteration \rangle Find *y* to minimize $||\hat{H}_k y - ||b||_2 e_1||_2$ $x^{(k)} = Q_k y$ until convergence

- The residual ||r^(k)||₂ does not need to be computed explicitly from x^(k)
- Least squares problem has Hessenberg structure, solve with QR factorization of \hat{H}_k (computed by updating the factorization of \hat{H}_{k-1})
- Memory and cost grow with k: restart the algorithm by clearing accumulated data (might stagnate the method)

・母・・ヨ・・ヨ・ うへの

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Convergence of GMRES

Theorem 3.2

A breakdown occurs for the GMRES method at a step k (with k < n) iff the computed solution $x^{(k)}$ coincides with the exact solution to the system.

► Exercise 3.4: The recurrence

 $x^{(k+1)} = x^{(k)} + \alpha r^{(k)} = x^{(k)} + \alpha (b - Ax^{(k)}),$

where α is a scalar constant is the Richardson iteration. What polynomial p(A) at step k does this correspond to?

Exercise 3.5: Our statement of the GMRES begins with the initial guest x⁽⁰⁾ = 0, r⁽⁰⁾ = b. Show that if one wishes to start an arbitrary initial guess x⁽⁰⁾, this can be accomplished by an easy modification of the right-hand side b.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

GMRES and Polynomial Approximation

 GMRES can be interpreted as the related approximation problem: find p_k ∈ P_k, where

 $P_k = \{ \text{polynomial } p \text{ of degree } \leq k \text{ with } p(0) = 1 \},$

to minimize $||p_k(A)b||_2$.

• The iterate $x^{(k)}$ can be written as

$$x^{(k)} = q_{k-1}(A)b,$$

where q is a polynomial of degree k - 1

• The corresponding residual $r^{(k)} = b - Ax^{(k)}$ is

$$r^{(k)} = (I - Aq_{k-1}(A))b = p_k(A)b$$

Convergence of GMRES

 Two obvious observations based on the minimization in K_k: GMRES converges monotonically and it converges after at most n steps,

$$\|r^{(k+1)}\|_2 \leq \|r^{(k)}\|_2$$
 and $\|r^{(n)}\|_2 = 0$.

This will happen because $\mathcal{K}_n = \mathbb{R}^n$.

The residual ||r^(k)||₂ = ||p_k(A)b||₂, where p_k ∈ P_k is a degree k polynomial with p(0) = 1, so GMRES also finds a minimizing polynomial

$$\|p_k(A)b\|_2 = \min$$
mum

 The factor that determines the size of this quantity is usually ||p_k(A)||₂, that is

$$\frac{\|r^{(k)}\|_2}{\|b\|_2} \leqslant \inf_{p_k \in P_k} \|p_k(A)\|_2.$$

• Exercise 3.6: Repeat Exercise 3.3 for the GMRES method.

Convergence of GMRES

- How small can $||p_k(A)||_2$ be?
- If A is diagonalizable A = VΛV⁻¹ for some nonsingular matrix Λ

$$\|p(A)\|_{2} \leq \|V\|_{2} \|p(\Lambda)\|_{2} \|V^{-1}\|_{2} = K_{2}(V) \|p\|_{\Lambda(A)},$$

being $\|p\|_{\Lambda(A)} = \sup_{\lambda \in \Lambda(A)} |p(\lambda)|$

Theorem 3.3

At the step k of the GMRES iteration, the residual $r^{(k)}$ satisfies

$$\frac{\|r^{(k)}\|_{2}}{\|b\|_{2}} \leq \inf_{p_{k} \in P_{k}} \|p_{k}(A)\|_{2} \leq k(V) \inf_{p_{k} \in P_{k}} \|p_{k}\|_{\Lambda(A)}$$

In other words: If A has well-conditioned eigenvectors, the convergence is based on how small polynomials p_k can be on the spectrum

590

Other Krylov Subspace Methods

Other Krylov Subspace Methods

- CG on the Normal Equations (CGN)
 - Solve $A^*Ax = A^*b$ using CG
 - Poor convergence, squared condition number K(A*A) = K(A)²
- BiConjugate Gradients (BiCG)
 - Makes residuals orthogonal to another Krylov subspace, based on A*
 - Memory requirements only constant number of vectors
 - Convergence sometimes comparable to GMRES, but unpredictable
- Conjugate Gradients Squared (CGS)
 - Avoids multiplication by A*, sometimes twice as fast convergence
- Quasi-Minimal Residuals (QMR) and Stabilized BiCG (Bi-CGSTAB)
 - Variants of BiCG with more regular convergence

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ♥ ♥ ♥

HW Exercises

- Exercise 3.7: Consider $K_n = [b \mid Ab \mid ... \mid A^{n-1}b]$ (Krylov matrix) for a given matrix $A \in \mathbb{R}^{n \times n}$ and a vector $b \in \mathbb{R}^n$. In Matlab: Kn = gallery('krylov', A, b, n)
 - 1. Varying *n* between 2 and 20, choose a random matrix *A* and *b* and determine the condition number

$$\operatorname{cond}(K_n) = \|K_n\|_2 \|K_n^{-1}\|_2$$

of matrix K_n and plot the data in logarithmic scale.

2. Let us suppose that we want to solve the system $K_n x = c$, where *c* is determined such that $x = [1, 1, ..., 1]^T$ is the exact solution of the system. Plot the evolution of the relative error with respect the calculated approximation \bar{x} ,

$$r(\bar{x}) = \|x - \bar{x}\|_2 / \|x\|_2,$$

as a function of n (make the range from 2 to 20).

3. Prove that, if $K_n \bar{x} = \bar{c}$,

$$r(\bar{x}) \leq \operatorname{cond}(K_n)r(\bar{c})$$

and plot the evolution of this upper bond for the relative error as a function of n (make the range from 2 to 20).

HW Exercises (cont.)

- Exercise 3.8: In the last lectures we considered the Conjugate Gradient (CG) method, the Krylov subspace methods and Richardson iteration method.
 - 1. Explain the relationship between these three methods.
 - How does the CG method fit into the broader framework of Krylov subspace methods? Furthermore, discuss how Richardson iteration can be viewed as a special case of both the CG method and Krylov methods.
 - 3. Provide insights into the similarities and differences between these iterative techniques, and discuss the implications of understanding this relationship for solving linear systems efficiently.
 - 4. Prove that, for SPD matrices, solving Ax = b is equivalent to finding the minimizer $x \in \mathbb{R}^n$ of the quadratic form

$$\phi(\mathbf{y}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{A} \mathbf{y} - \mathbf{y}^{\mathsf{T}} \mathbf{b}$$

E.

Sac

and explain how this can be used to develop an interactive method for solving a system of linear equations.