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Krylov Subspace Methods

§ Problem: Find x P Rn, such that Ax “ b, with A P Rnˆn

§ Consider the Krylov subspace of order k ,

Kk “ KkpA; bq “ xb,Ab, . . . ,Ak´1
by

§ Goal: Search for approximate solutions of the form

x
pkq P Kk , k § n,

such that x pkq be the best approximation of x in Kk



Richardson Method (P “ I )
§ Algorithm: Richardson Method (P “ I )

x
p0q “ 0; r p0q “ b ´ Ax

p0q “ b

for k “ 0, 1, . . .
solve I z

pkq “ r
pkq

compute ↵k

x
pk`1q “ x

pkq ` ↵kz
pkq

r
pk`1q “ r

pkq ´ ↵kAz
pkq

until convergence
§ Residual at the k-th step

r
pkq “

k´1π

j“0

pI ´ ↵jAqb ñ r
pkq “ pkpAqb P Kk`1,

where pkpAq is a polynomial in A of degree k

§ The iterate x
pkq

x
pkq “ 0 `

k´1ÿ

j“0

↵j r
pjq “

k´1ÿ

j“0

↵j r
pjq “ qk´1pAqb P Kk

Krylov Subspace Methods
§ Goal: Search for approximate solutions of the form

x
pkq “ qk´1pAqb,

such that x pkq be the best approximation of x in Kk

§ Two alternative strategies

§ FOM (Full Orthogonalization Method) or Arnoldi method

Compute x
pkq P Kk such that the residual r pkq K Kk , i.e.,

v
T pb ´ Ax

pkqq “ 0, @v P Kk

§ GMRES method (Generalized Minimum RESidual method)

Compute x
pkq P Kk minimizing }r pkq}2, i.e.,

}b ´ Ax
pkq}2 “ min

vPKk

}b ´ Av}2

§ (Preliminary) Goal: Compute an orthogonal basis of Kk



Arnoldi Iteration

The Arnoldi Iteration

§ For a fixed k it is possible to compute an orthogonal basis for
Kk using the so-called Arnoldi algorithm.

§ The Arnoldi process reduces a general, nonsymmetric A to
Hessenberg form by similarity transforms: A “ QHQ

T

§ Allows for reduced factorizations by a Gram-Schmidt-style
iteration instead of Householder reflections

§ Let Qn be the n ˆ k matrix with the first k columns of Q, and
consider AQk = Qk`1Ĥk

A

»

—————–
q1 ¨ ¨ ¨ qk

fi

�����fl
“

»

—————–
q1 ¨ ¨ ¨ qk`1

fi

�����fl

»

—————–

h11 h12 . . . h1k

h21 h22

. . .
. . .

...
hk,k´1 hkk

hk`1,k

fi

�����fl



Hessenberg Matrix

§ Hk P Rkˆk is an upper Hessenberg matrix if

Hk “

»

———–

h11 h12 . . . h1k

h21 h22
. . .

. . .
...

hk,k´1 hkk

fi

���fl ,

§ The matrix Ĥk P Rpk`1qˆk is such that

Ĥk “

»

—————–

h11 h12 . . . h1k

h21 h22
. . .

. . .
...

hk,k´1 hkk

hk`1,k

fi

�����fl
, hij “ q

T

i Aqj

§ Note that Hk “ Q
T

k
AQk “ Ĥ1:k,1:k

The Arnoldi Algorithm
§ The k-th column of AQk “ Qk`1Ĥk gives

Aqk “ h1kq1 ` ¨ ¨ ¨ ` hkkqk ` hk`1,kqk`1

which can be used to compute qk`1 similarly to modified GS

§ Algorithm: Arnoldi Iteration

b arbitrary; q1 “ b{}b}
for k “ 1, 2, . . .

v “ Aqk

for i “ 1 to k do

hik “ q
T

i
v

v “ v ´ hikqi

end for

hk`1,k “ }v}2
qk`1 “ v{hk`1,k

end for

§ Algorithm: Gram-Schmidt

%For orthonormalize ta1, ..., anu
for k “ 1 to n do

v “ ak

for i “ 1 to k ´ 1 do"
rik “ q

T

i
ak (CGS)

rik “ q
T

i
v (MGS)

v “ v ´ rikqi
end for
rkk “ }v}2
qk “ v{rkk

end for

§ Exercise 3.1: What if q1 happens to be an eigenvector of A?



QR Factorization of Krylov Matrix

§ The vectors qj from Arnoldi are orthonormal bases of the
successive Krylov subspaces

Kk “ KkpA; bq “ xb,Ab, . . . ,Ak´1
by “ xq1, q2, . . . , qky Ñ Rn

§ Qk P Rnˆk is the reduced QR factorization Kk “ QkRk of the
Krylov matrix

Kk “

»

———–
b Ab ¨ ¨ ¨ A

k`1
b

fi

���fl

§ The projection of A onto this space gives k ˆ k Hessenberg
matrix Hk “ Q

T

k
AQk , whose eigenvalues may be good

approximations of A’s

Symmetric Matrices and the Lanczos Iteration (˚)

§ For symmetric A, Hk reduces to tridiagonal Tk , and qk`1 can
be computed by a three-term recurrence:

Aqk “ �k´1qk´1 ` ↵kqk ` �kqk`1

§ Algorithm: Lanczos Iteration

�0 “ 0; q0 “ 0; b arbitrary; q1 “ b{}b}
for k “ 1, 2, . . .

v “ Aqk

↵k “ q
T

k
v

v “ v ´ �k´1qk´1 ´ ↵kqk

�k “ }v}2
qk`1 “ v{�k

end for



Properties of Arnoldi and Lanczos Iterations (˚)

§ Eigenvalues of Hk (or Tk in Lanczos iterations) are called Ritz
values

§ When k “ n, Ritz values are eigenvalues

§ Even for k ! n, Ritz values are often accurate approximations
to eigenvalues of A

§ For symmetric matrices with evenly spaced eigenvalues, Ritz
values tend to first convert to extreme eigenvalue

§ With rounding errors, Lanczos iteration can su↵er from loss of
orthogonality and can in turn lead to spurious ”ghost”
eigenvalues.

Arnoldi Iteration Breakdown

§ Exercise 3.2 (˚): Suppose that the Arnoldi algorithm is
executed for a particular A and b until at some step k , an
entry hk`1,k “ 0 is encountred.

(a) Show that AQk “ Qk`1Ĥk can be symplified in this case.
What does it imply about the structure of a full n ˆ n

Hessembeg reduction A “ QHQ
T of A?

(b) Show that Kk is an invariant subspace of A, i.e., AKk Ñ Kk .

(c) Show that Kk “ Kk`1 “ Kk`2 “ ¨ ¨ ¨ .
(d) Show that each eigenvalue of Hk is an eigenvalue of A.

(e) Show that if A is nonsingular, then the solution x of Ax “ b

lies in Kk .

§ The appearence of any entry hk`1,k “ 0 is called a breakdown
of the Arnoldi interation



FOM or Arnoldi for Linear Systems

FOM / Arnoldi Method for Linear Systems
§ Full Orthogonalization Method: iterative method for Ax “ b

§ Compute x
pkq P Kk such that r pkq K Kk , i.e.,

v
T
r

pkq “ v
T pb ´ Ax

pkqq “ 0, @v P Kk

§ Considering x
pkq P Kk , we may write x

pkq “ Qky where y is
such that r pkq K Kk

Q
T

k
r

pkq “ Q
T

k
pb ´ AQkyq “ Q

T

k
b ´ Q

T

k
AQky “ 0

§ Due to the orthonormality of the basis we have

Q
T

k
b “ }b}2e1, (e1 is the first unit vector in Rk)

and Hk “ Q
T

k
AQk , we have

Q
T

k
b ´ Q

T

k
AQky “ 0 ô Hky “ }b}2e1

§ The system can be easily solved (Hk is upper Hessenberg)

x
pkq “ Qky



FOM / Arnoldi Method for Linear Systems

Theorem 3.1

In exact arithmetic, the Arnoldi method yields the solution of
Ax “ b after at most n iterations. Moreover, if a breakdown
occurs after k † n iterations, x pkq “ x .

§ Proof: Since Kn “ Rn, if the method terminates at the n-th
iteration, then x

pnq “ x .
Conversely, from the relations

Q
T

k
AQk “ Hk , Q

T

k
AQky “ Q

T

k
b and x

pkq “ Qky ,

if a breakdown occurs after k † n iterations, we get

x
pkq “ QkH

´1
k

Q
T

k
b “ A

´1
b “ x . l

FOM Algorithm
§ Algorithm: FOM

b arbitrary; q1 “ b{}b}
for k “ 1, 2, . . .

x step k of Arnoldi iteration y
Solve Hky “ }b}2e1
x

pkq “ Qky

until convergence

§ The residual is available by

}b ´ Ax
pkq}2 “ hk`1,k |eT

k
y |

§ Stopping criteria: for a fixed tolerance ✏

hk`1,k |eT
k
y |{}b}2 § ✏

§ Exercise 3.3: Implement the previous algorithm to solve the
linear system Ax “ b with A “ tridiag100p´1, 2, ´1q and b

such that the solution is x “ 1. The initial vector is x p0q “ 0
and ✏ “ 1e ´ 10. Plot }r pkq}2{}b}2 as a function of k .



GMRES

Minimizing Residuals

§ Generalized Minimal RESiduals: iterative method for Ax “ b

§ Find x
pkq “ Kky P Kk that minimizes }r pkq}2 “ }b ´ Ax

pkq}2
§ This is a least squares problem: Find a vector y such that

}AKky ´ b}2 “ minimum

where Kk is the n ˆ k Krylov matrix

§ QR factorization can us to solve for y , and x
pkq “ Kky

§ In practice the columns of Kk are ill-conditioned and an
orthogonal basis is used instead, produced by Arnoldi iteration



Minimal Residual with Orthogonal Basis

§ Set x pkq “ Qky (orthogonal columns of Qk span Kk) and solve

}AQky ´ b}2 “ minimum

§ Find x
pkq P Kk that minimizes }r pkq}2 “ }b ´ Ax

pkq}2
§ Since for the Arnoldi iteration AQk “ Qk`1Ĥk

}Qk`1Ĥky ´ b}2 “ minimum

§ Left multiplication by Q
T

k`1 does not change the norm (since
both vectors are in the column space of Qk`1)

}Ĥky ´ Q
T

k`1b}2 “ minimum

§ Finally, it is clear that QT

k`1b “ }b}2e1

}Ĥky ´ }b}2e1}2 “ minimum

The GMRES Method

§ Algorithm: GMRES

b arbitrary; q1 “ b{}b}
for k “ 1, 2, . . .

x step k of Arnoldi iteration y
Find y to minimize }Ĥky ´ }b}2e1}2
x

pkq “ Qky

until convergence

§ The residual }r pkq}2 does not need to be computed explicitly
from x

pkq

§ Least squares problem has Hessenberg structure, solve with
QR factorization of Ĥk (computed by updating the
factorization of Ĥk´1)

§ Memory and cost grow with k : restart the algorithm by
clearing accumulated data (might stagnate the method)



Convergence of GMRES

Theorem 3.2

A breakdown occurs for the GMRES method at a step k (with
k † n) i↵ the computed solution x

pkq coincides with the exact
solution to the system.

§ Exercise 3.4: The recurrence

x
pk`1q “ x

pkq ` ↵r pkq “ x
pkq ` ↵pb ´ Ax

pkqq,

where ↵ is a scalar constant is the Richardson iteration. What
polynomial ppAq at step k does this correspond to?

§ Exercise 3.5: Our statement of the GMRES begins with the
initial guest x p0q “ 0, r p0q “ b. Show that if one wishes to
start an arbitrary initial guess x p0q, this can be accomplished
by an easy modification of the right-hand side b.

GMRES and Polynomial Approximation

§ GMRES can be interpreted as the related approximation
problem: find pk P Pk , where

Pk “ tpolynomial p of degree § k with pp0q “ 1u,

to minimize }pkpAqb}2.
§ The iterate x

pkq can be written as

x
pkq “ qk´1pAqb,

where q is a polynomial of degree k ´ 1

§ The corresponding residual r pkq “ b ´ Ax
pkq is

r
pkq “ pI ´ Aqk´1pAqqb “ pkpAqb



Convergence of GMRES
§ Two obvious observations based on the minimization in Kk :
GMRES converges monotonically and it converges after at
most n steps,

}r pk`1q}2 § }r pkq}2 and }r pnq}2 “ 0.

This will happen because Kn “ Rn.

§ The residual }r pkq}2 “ }pkpAqb}2, where pk P Pk is a degree k

polynomial with pp0q “ 1, so GMRES also finds a minimizing
polynomial

}pkpAqb}2 “ minimum

§ The factor that determines the size of this quantity is usually
}pkpAq}2, that is

}r pkq}2
}b}2

§ inf
pkPPk

}pkpAq}2.

§ Exercise 3.6: Repeat Exercise 3.3 for the GMRES method.

Convergence of GMRES
§ How small can }pkpAq}2 be?

§ If A is diagonalizable A “ V⇤V´1 for some nonsingular
matrix ⇤

}ppAq}2 § }V }2}pp⇤q}2}V´1}2 “ K2pV q}p}⇤pAq,

being }p}⇤pAq “ sup�P⇤pAq |pp�q|

Theorem 3.3

At the step k of the GMRES iteration, the residual r pkq satisfies

}r pkq}2
}b}2

§ inf
pkPPk

}pkpAq}2 § kpV q inf
pkPPk

}pk}⇤pAq.

§ In other words: If A has well-conditioned eigenvectors, the
convergence is based on how small polynomials pk can be on
the spectrum



Other Krylov Subspace Methods

Other Krylov Subspace Methods

§ CG on the Normal Equations (CGN)
§ Solve A

˚
Ax “ A

˚
b using CG

§ Poor convergence, squared condition number
K pA˚

Aq “ K pAq2
§ BiConjugate Gradients (BiCG)

§ Makes residuals orthogonal to another Krylov subspace, based
on A

˚
§ Memory requirements only constant number of vectors
§ Convergence sometimes comparable to GMRES, but

unpredictable

§ Conjugate Gradients Squared (CGS)
§ Avoids multiplication by A

˚, sometimes twice as fast
convergence

§ Quasi-Minimal Residuals (QMR) and Stabilized BiCG
(Bi-CGSTAB)

§ Variants of BiCG with more regular convergence



HW Exercises
§ Exercise 3.7: Consider Kn “ rb | Ab | ... | An´1

bs (Krylov
matrix) for a given matrix A P Rnˆn and a vector b P Rn.
In Matlab: Kn = gallery(’krylov’,A,b,n)

1. Varying n between 2 and 20, choose a random matrix A and b

and determine the condition number

condpKnq “ }Kn}2}K´1
n

}2
of matrix Kn and plot the data in logarithmic scale.

2. Let us suppose that we want to solve the system Knx “ c ,
where c is determined such that x “ r1, 1, ..., 1sT is the exact
solution of the system. Plot the evolution of the relative error
with respect the calculated approximation x̄ ,

rpx̄q “ }x ´ x̄}2{}x}2,
as a function of n (make the range from 2 to 20).

3. Prove that, if Knx̄ “ c̄ ,

rpx̄q § condpKnqrpc̄q
and plot the evolution of this upper bond for the relative error
as a function of n (make the range from 2 to 20).

HW Exercises (cont.)
§ Exercise 3.8: In the last lectures we considered the Conjugate
Gradient (CG) method, the Krylov subspace methods and
Richardson iteration method.

1. Explain the relationship between these three methods.

2. How does the CG method fit into the broader framework of
Krylov subspace methods? Furthermore, discuss how
Richardson iteration can be viewed as a special case of both
the CG method and Krylov methods.

3. Provide insights into the similarities and di↵erences between
these iterative techniques, and discuss the implications of
understanding this relationship for solving linear systems
e�ciently.

4. Prove that, for SPD matrices, solving Ax “ b is equivalent to
finding the minimizer x P Rn of the quadratic form

�pyq “ 1

2
y
T
Ay ´ y

T
b

and explain how this can be used to develop an interactive
method for solving a system of linear equations.


