Lecture 4

Multigrid

New Directions in Mathematics

Adérito Araújo (alma@mat.uc.pt)
April 12, 2024

Defect Correction

- Let $A x=b, A \in \mathbb{R}^{n \times n}$ nonsingular, and $x^{(0)} \simeq x$ with residual

$$
r^{(0)}=b-A x^{(0)} \neq 0
$$

- Goal: try to improve the accuracy by writing

$$
x^{(1)}=x^{(0)}+\delta^{(0)}
$$

- If the defect correction $\delta^{(0)}$ is computed by

$$
A \delta^{(0)}=r^{(0)},
$$

then $x^{(1)}=x$

- Defect correction princilpe: let $A_{\text {approx }}^{-1} \simeq A^{-1}$ and consider

$$
x^{(1)}=x^{(0)}+\delta^{(0)}, \quad \text { with } \delta^{(0)}=A_{\text {approx }}^{-1} r^{(0)}
$$

Defect Correction Iteration

- Defect correction iteration:

$$
x^{(k+1)}=x^{(k)}+\delta^{(k)}=x^{(k)}+A_{\text {approx }}^{-1} r^{(k)}, \quad k=0,1, \ldots
$$

- The method converges if and only if

$$
\rho\left(I-A_{\text {approx }}^{-1} A\right)<1
$$

- If $A_{\text {approx }}^{-1} A \simeq I$ then $\rho\left(I-A_{\text {approx }}^{-1} A\right) \simeq 0$ (fast convergence)
- Defect correction iteration \Leftrightarrow Richardson iteration
- Richardson iteration: $R=I-P^{-1} A$ and

$$
x^{(k+1)}=R x^{(k)}+P^{-1} b \Leftrightarrow x^{(k+1)}=x^{(k)}+P^{-1} r^{(k)}, \quad k \geqslant 0
$$

- Defect correction iteration: $P^{-1}=A_{\text {approx }}^{-1}, R=I-A_{\text {approx }}^{-1} A$

Two-Grid Method: Coarse and Fine Grids

- Idea: use the defect correction principle with

$$
A_{\text {approx }}^{-1}=A_{\text {coarse }}^{-1} \simeq A_{\text {fine }}^{-1}=A^{-1}
$$

- What we need: transfer vectors corresponding to the fine grid to vectors corresponding to the coarse grid and vice-versa
- Applications
- Improve the accuracy of an approximate solution obtained for example by Gaussian elimination
- Develop fast iterative solutions of linear system arising in the discretization of differential and integral equations

Example: Elliptic Equation (1D)

- Boundary value problem:

$$
-u_{x x}=f, \quad 0<x<1, \quad u(0)=u(1)=0
$$

- Discretizing the problem (FDM)

$$
A_{h} u_{h}=f_{h},
$$

with

$$
A_{h}=\frac{1}{h^{2}}\left[\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \cdot & \cdot & . & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right], \quad h=\frac{1}{n+1},
$$

and $f_{h, j}=f\left(x_{j}\right), u_{h, j} \simeq u\left(x_{j}\right), j=1, \ldots, n$, on the grid

$$
0=x_{0}<x_{1}<\ldots<x_{n}<x_{n+1}=1, \quad x_{j}=j h
$$

Example: Elliptic Equation (1D)

- Solve the linear system by the JOR method (see: Lecture 1)

$$
u_{h}^{(k+1)}=u_{h}^{(k)}+\omega D_{h}^{-1}(\underbrace{f_{h}-A_{h} u_{h}^{(k)}}_{\text {residual }}), \quad k=0,1, \ldots
$$

- Exercise 4.1: Prove that the eigenvalues of $I-\omega D_{h}^{-1} A_{h}$ are

$$
\lambda_{h, j}=1-2 \omega \sin ^{2} \frac{\pi j h}{2}, \quad j=1, \ldots, n
$$

and the corresponding eigenvectures are

$$
v_{h, j}=[\sin (\pi j h), \ldots, \sin (\pi n j h)]^{T}, \quad j=1, \ldots, n,
$$

that form an orthogonal basis of \mathbb{R}^{n}.

Choice of the Damping Factor

- From Theorem 1.7

$$
\omega_{o p t}=\frac{2}{2-\lambda_{h, \max }-\lambda_{h, \min }} \Rightarrow \omega_{o p t} \simeq 1
$$

- Use Damped/Underrelaxed Jacobi Iteration (DJI) (i.e, JOR with $0<\omega<1$)
- DJI with $w=0.5$ is a smoothing iteration
- Since v_{j} is an orthogonal basis of \mathbb{R}^{n}, the error satisfies

$$
u_{h}-u_{h}^{(k)}=\sum_{j=1}^{n} \alpha_{j}^{(k)} v_{h, j},
$$

and it may proven that $\alpha_{j}^{(k+1)}=\lambda_{h, j} \alpha_{j}^{(k)}$

- Exercise 4.2: Prove that, for $\omega=0.5$, we have

$$
\left|\alpha_{j}^{(k+1)}\right|=\cos ^{2} \frac{\pi j h}{2}\left|\alpha_{j}^{(k)}\right| \leqslant \frac{1}{2}\left|\alpha_{j}^{(k)}\right|, \quad j=\underbrace{(n+1) / 2, \ldots, n}_{\text {high frequencies }} .
$$

- Fast convergence for high frequencies

Coarse Grid Correction

- We consider a fine grid with mesh size h and a coarse grid with mesh size $2 h$ (n is odd)
- Restriction

- Prolongation

Restriction: Fine to Coarse Grid

- Restriction: $R_{h}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\frac{n-1}{2}}$ such that

$$
\left(R_{h} u_{h}\right)_{j}=\frac{1}{4}\left(u_{h, 2 j-1}+2 u_{h, 2 j}+u_{h, 2 j+1}\right), \quad j=1, \ldots,(n-1) / 2
$$

- Restriction Matrix: $u_{2 h}=R_{h} u_{h}$ with

$$
R_{h}=\frac{1}{4}\left[\begin{array}{cccccccccc}
1 & 2 & 1 & & & & & & & \\
& & 1 & 2 & 1 & & & & & \\
& & & \ddots & \ddots & \ddots & & & & \\
& & & & & & & & & \\
& & & & & 1 & 2 & 1 & & \\
& & & & & & & 1 & 2 & 1
\end{array}\right]
$$

Prolongation: Coarse to Fine Grid

- Prolongation: $P_{2 h}: \mathbb{R}^{\frac{n-1}{2}} \rightarrow \mathbb{R}^{n}$ (piecewise linear interpolation)

$$
\begin{aligned}
\left(P_{2 h} u_{2 h}\right)_{2 j} & =u_{2 h, j}, & j & =1, \ldots,(n-1) / 2, \\
\left(P_{2 h} u_{2 h}\right)_{2 j-1} & =\frac{1}{2}\left(u_{2 h, j}+u_{2 h, j-1}\right), & & j=1, \ldots,(n+1) / 2
\end{aligned}
$$

- Prolongation Matrix: $u_{h}=P_{2 h} u_{2 h}$ with

$$
P_{2 h}=2 R_{h}^{T}=\frac{1}{2}\left[\begin{array}{ccc}
1 & & \\
2 & & \\
1 & 1 & \\
& 2 & \\
& 1 & 1 \\
& & \vdots
\end{array}\right]
$$

Defect Correction Iteration

- Let

$$
A_{\text {coarse }}^{-1}=P_{2 h} A_{2 h}^{-1} R_{h}
$$

and compute

$$
u_{h}^{(k+1)}=u_{h}^{(k)}+A_{\text {coarse }}^{-1}\left(f_{h}-A_{h} u_{h}^{(k)}\right), \quad k=0,1, \ldots
$$

- How to compute $\delta_{h}^{(k)}=A_{\text {coarse }}^{-1} r_{h}^{(k)}=P_{2 h} A_{2 h}^{-1} R_{h} r_{h}^{(k)}$

1. Restrict $r_{h}^{(k)} \in \mathbb{R}^{n}$ to $r_{2 h}^{(k)}=R_{h} r_{h}^{(k)} \in \mathbb{R}^{\frac{n-1}{2}}$
2. Solve the $\frac{n-1}{2} \times \frac{n-1}{2}$ system $A_{2 h} \delta_{2 h}^{(k)}=r_{2 h}^{(k)}$
3. Prolong the solution $\delta_{2 h}^{(k)} \in \mathbb{R}^{\frac{m-1}{2}}$ to $\delta_{h}^{(k)}=P_{2 h} \delta_{2 h}^{(k)} \in \mathbb{R}^{n}$

Two-Grid Iteration Scheme

- Two-Grid Iteration Scheme: Combining this coarse grid correction with N steps of the DJI we obtain

$$
u_{h}^{(k+1)}=u_{h}^{(k, N)}+P_{2 h} A_{2 h}^{-1} R_{h}\left(f_{h}-A_{h} u_{h}^{(k, N)}\right),
$$

for $k=0,1, \ldots$, where $u_{h}^{(k, N)}=\mathcal{J}^{N}\left(A_{h}, u^{(k)}, f_{h}\right)$ denotes the result of N steps of DJI starting with $u^{(k)}$.

- Exercise 4.3: Prove that the iteration matrix corresponding to this two-grid method is given by

$$
T_{N}=\underbrace{\left(I-P_{2 h} A_{2 h}^{-1} R_{h} A_{h}\right)}_{\text {coarse-grid correction }}\left(I-\frac{1}{2} D_{h}^{-1} A_{h}\right)^{N} .
$$

- $N=1\left(T_{1}=T\right)$: alternate one step of the DJI (fine grid) with a coarse-grid correction by elimination (coarse grid)

HW Exercises

- Exercise 4.4: Prove that, for $j=1, \ldots,(n-1) / 2$,

$$
R_{h} v_{h, j}=c_{j}^{2} v_{2 h, j}, \quad R_{h} v_{h, n+1-j}=-s_{j}^{2} v_{2 h, j}
$$

and

$$
P_{2 h} v_{2 h, j}=c_{j}^{2} v_{h, j}-s_{j}^{2} v_{h, n+1-j},
$$

with

$$
c_{j}=\cos \frac{j \pi h}{2}, \quad s_{j}=\sin \frac{j \pi h}{2} .
$$

- Exercise 4.5: Prove that, for $j=1, \ldots,(n-1) / 2$,

$$
\left[\begin{array}{c}
T v_{h, j} \\
T v_{h, n+1-j}
\end{array}\right]=s_{j}^{2} c_{j}^{2} \underbrace{\left[\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right]}_{Q}\left[\begin{array}{c}
v_{h, j} \\
v_{h, n+1-j}
\end{array}\right],
$$

and, since $R_{h} v_{h,(n+1) / 2}=0$,

$$
T v_{h,(n+1) / 2}=\frac{1}{2} v_{h,(n+1) / 2} .
$$

Convergence od Two-Grid Method

Theorem 4.1

For the spectral radius of T we have that $\rho(T)=0.5$.
Consequently, the two-grid iterations converge.

- Proof: From Exercise 4.1 we have, for $j=1, \ldots,(n-1) / 2$

$$
A_{2 h} v_{2 h, j}=\frac{1}{h^{2}} \sin ^{2}(\pi j h) v_{2 h, j}=\frac{4}{h^{2}} c_{j}^{2} s_{j}^{2} v_{2 h, j},
$$

and then

$$
A_{2 h}^{-1} v_{2 h, j}=\frac{h^{2}}{4 c_{j}^{2} s_{j}^{2}} v_{2 h, j}
$$

From Exercise 4.5, since the matrix Q has eigenvalues 0 and 2 , it can be proved that the matrix T has the eigenvalues

$$
2 c_{j}^{2} s_{j}^{2}=\frac{1}{2} \sin ^{2} \pi j h, \quad j=1, \ldots,(n+1) / 2,
$$

and the eigenvalue zero of multiplicity $(n-1) / 2$.

Two-Grid Method: General Formulation

- At the highest level (finest grid) a mesh-size of h is used

$$
A_{h} u_{h}=f_{h}
$$

- Requirement: a system similar to the one above must be solved at the coarser levels
- A coarse grid with mesh size H is used (coarser mesh Ω_{H})
- Galerkin projection:

$$
A_{H}=R_{h} A_{h} P_{H}, \quad f_{H}=R_{h} f_{h}
$$

Smoothing Step

- Define a smoother \mathcal{S} (e.g., DJI, SOR, ...) and consider

$$
u_{h}^{(N)}=\mathcal{S}^{N}\left(A_{h}, u_{h}^{(0)}, f_{h}\right)
$$

- Smoothing iterations

$$
u_{h}^{(j+1)}=S_{h} u_{h}^{(j)}+g_{h}, \quad j=0, \ldots, N-1,
$$

where S_{h} is the smoothing iteration matrix

- Exercise 4.6: Prove that

$$
u_{h}^{(j+1)}=u_{h}^{(j)}+B_{h}\left(f_{h}-A_{h} u_{h}^{(j)}\right), \quad j=0, \ldots, N-1,
$$

with $B_{h}=\left(I-S_{h}\right) A_{h}^{-1}, S_{h}=I-B_{h} A_{h}, g_{h}=B_{h} f_{h}$.

- The error $e_{h}^{(N)}$ and residual $r_{h}^{(N)}$ after N smoothing steps are

$$
e_{h}^{(N)}=S_{h}^{N} e_{h}^{(0)}=\left(I-B_{h} A_{h}\right)^{N} e_{h}^{(0)}, \quad r_{h}^{(N)}=\left(I-A_{h} B_{h}\right)^{N} r_{h}^{(0)}
$$

Two-Grid Cycle

- Algorithm: Two-Grid Cycle

$$
\begin{array}{ll}
u_{h}=\mathcal{S}^{N}\left(A_{h}, u_{h}^{(0)}, f_{h}\right) & \% \text { Pre-smooth } \\
r_{h}=f_{h}-A_{h} u_{h} & \text { \% Get residual } \\
r_{H}=R_{h} r_{h} & \text { \% Coarsen }
\end{array}
$$

Solve $A_{H} \delta_{H}=r_{H}$

$$
\begin{aligned}
& u_{h}=u_{h}+P_{H} \delta_{H} \quad \text { \% Correct } \\
& u_{h}=\mathcal{S}^{M}\left(A_{h}, u_{h}, f_{h}\right) \quad \text { \% Post-smooth }
\end{aligned}
$$

Two-Grid Cycle

- One iteration of the 2-grid algoritms corresponds to

$$
u_{h}^{(1)}=T_{h} u_{h}^{(0)}+g_{M_{h}}
$$

- If $f_{h} \equiv 0$

$$
u_{h}^{(1)}=S_{h}^{M}\left(S_{h}^{N} u_{h}^{(0)}+P_{H} A_{H}^{-1} R_{h}\left(-A_{h} S_{h}^{N} u_{h}^{(0)}\right)\right)
$$

- The 2-grid iteration operator is

$$
T_{h}=S_{h}^{M} \underbrace{\left(I-P_{h} A_{H}^{-1} R_{h} A_{h}\right)}_{\text {coarse-grid correction }} S_{h}^{N}
$$

Multigrid V-cycle

Figure: s-smoothing, r-restriction, p - prolongation, e - exact solver

V-cycle Multigrid

- Algorithm: V-cycle Multigrid
function $u_{h}=V_{\text {cycle }}\left(A_{h}, u_{h}^{(0)}, f_{h}, N, M\right)$

$$
\begin{array}{ll}
u_{h}=\mathcal{S}^{N}\left(A_{h}, u_{h}^{(0)}, f_{h}\right) & \% \text { Pre-smooth } \\
r_{h}=f_{h}-A_{h} u_{h} & \% \text { Get residual } \\
r_{H}=R_{h} r_{h} & \% \text { Coarsen } \\
\text { If }\left(H==h_{0}\right) & \\
\quad \text { Solve } A_{H} \delta_{H}=r_{H} \\
\text { else } \\
\quad \delta_{H}=V_{c y c l e}\left(A_{H}, 0, r_{H}, N, M\right) \quad \% \text { Recursion } \\
\text { end if } \\
u_{h}=u_{h}+P_{H} \delta_{H} & \% \text { Correct } \\
u_{h}=\mathcal{S}^{M}\left(A_{h}, u_{h}, f_{h}\right) & \% \text { Post-smooth }
\end{array}
$$

end function

- Note: H stands for $2 h$ and h_{0} for the coarsest mesh-size

W-cycle Multigrid

- More corrections, say γ times on a coarse grid before returning to a finer level
- Algorithm: W-cycle Multigrid function $u_{h}=M G\left(A_{h}, u_{h}^{(0)}, f_{h}, N, M, \gamma\right)$

$$
\begin{aligned}
& u_{h}=\mathcal{S}^{N}\left(A_{h}, u_{h}^{(0)}, f_{h}\right) \% \text { Pre-smooth } \\
& r_{h}=f_{h}-A_{h} u_{h} \quad \% \text { Get residual } \\
& r_{H}=R_{h} r_{h} \quad \text { \% Coarsen } \\
& \text { If (} H==h_{0} \text {) } \\
& \text { Solve } A_{H} \delta_{H}=r_{H} \\
& \text { else } \\
& \delta_{H}=M G^{\gamma}\left(A_{h}, 0, f_{h}, N, M, \gamma\right) \quad \text { \% Recursion } \\
& \text { end if } \\
& u_{h}=u_{h}+P_{H} \delta_{H} \quad \text { \% Correct } \\
& u_{h}=\mathcal{S}^{M}\left(A_{h}, u_{h}, f_{h}\right) \quad \text { \% Post-smooth }
\end{aligned}
$$

end function

V-cycles and W-cycle

$$
\mathrm{lev}=3, \gamma=3
$$

Full Multigrid

- Slightly different approach: find an approximation to the solution with only one sweep through the levels, going from bottom to top
- The system is first solved (or smoothed) on a very coarse grid, then one goes to the next finer grid and smoothes the system on this grid and so on, until the finest grid is reached
- Algorithm: Full Multigrid

Set $h=h_{0}$ and solve $A_{h} u_{h}=f_{h}$
for $k=1$ to p do

$$
u_{h / 2}=\hat{P}_{h} u_{h}
$$

$$
h=h / 2
$$

$$
u_{h}=M G^{\mu}\left(A_{h}, u_{h}, f_{h}, N, M, \gamma\right)
$$

end for

- Note: the interpolation operator \hat{P}_{h} is typically of a lower order than P_{h}

Full Multigrid V-cycle

Basic Convergence Results

- Cost (storage and computing time)
- overall costs are dominated by the costs of the finest grid
- Speed of convergence
- significant acceleration compared with relaxation methods
- the convergence rate is independent of the number of unknowns
- constant number of multigrid steps to obtain a given number of digits
- overall computational work increases only linearly with the number of unknowns

