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Defect Correction

§ Let Ax “ b, A P Rnˆn nonsingular, and x
p0q » x with residual

r
p0q “ b ´ Ax

p0q ‰ 0

§ Goal: try to improve the accuracy by writing

x
p1q “ x

p0q ` �p0q

§ If the defect correction �p0q is computed by

A�p0q “ r
p0q,

then x
p1q “ x

§ Defect correction princilpe: let A´1
approx » A

´1 and consider

x
p1q “ x

p0q ` �p0q, with �p0q “ A
´1
approx r

p0q



Defect Correction Iteration

§ Defect correction iteration:

x
pk`1q “ x

pkq ` �pkq “ x
pkq ` A

´1
approx r

pkq, k “ 0, 1, . . .

§ The method converges if and only if

⇢pI ´ A
´1
approxAq † 1

§ If A´1
approxA » I then ⇢pI ´ A

´1
approxAq » 0 (fast convergence)

§ Defect correction iteration ô Richardson iteration

§ Richardson iteration: R “ I ´ P
´1

A and

x
pk`1q “ Rx

pkq ` P
´1

b ô x
pk`1q “ x

pkq ` P
´1

r
pkq, k • 0

§ Defect correction iteration: P´1 “ A
´1
approx

, R “ I ´ A
´1
approx

A

Two-Grid Method: Coarse and Fine Grids

§ Idea: use the defect correction principle with

A
´1
approx “ A

´1
coarse » A

´1
fine

“ A
´1

§ What we need: transfer vectors corresponding to the fine grid
to vectors corresponding to the coarse grid and vice-versa

§ Applications
§ Improve the accuracy of an approximate solution obtained for

example by Gaussian elimination

§ Develop fast iterative solutions of linear system arising in the
discretization of di↵erential and integral equations



Example: Elliptic Equation (1D)
§ Boundary value problem:

´uxx “ f , 0 † x † 1, up0q “ up1q “ 0

§ Discretizing the problem (FDM)

Ahuh “ fh,

with

Ah “ 1

h2

»

——————–

2 ´1
´1 2 ´1

. . .

´1 2 ´1
´1 2

fi

������fl
, h “ 1

n ` 1
,

and fh,j “ f pxjq, uh,j » upxjq, j “ 1, . . . , n, on the grid

0 “ x0 † x1 † . . . † xn † xn`1 “ 1, xj “ jh

Example: Elliptic Equation (1D)

§ Solve the linear system by the JOR method (see: Lecture 1)

u
pk`1q
h

“ u
pkq
h

` !D´1
h

pfh ´ Ahu
pkq
hlooooomooooon

residual

q, k “ 0, 1, . . . .

§ Exercise 4.1: Prove that the eigenvalues of I ´ !D´1
h

Ah are

�h,j “ 1 ´ 2! sin2
⇡jh

2
, j “ 1, . . . , n,

and the corresponding eigenvectures are

vh,j “ rsinp⇡jhq, . . . , sinp⇡njhqsT , j “ 1, . . . , n,

that form an orthogonal basis of Rn.



Choice of the Damping Factor
§ From Theorem 1.7

!opt “ 2

2 ´ �h,max ´ �h,min

ñ !opt » 1

§ Use Damped/Underrelaxed Jacobi Iteration (DJI) (i.e, JOR
with 0 † ! † 1)

§ DJI with w “ 0.5 is a smoothing iteration
§ Since vj is an orthogonal basis of Rn, the error satisfies

uh ´ u
pkq
h

“
nÿ

j“1

↵pkq
j

vh,j ,

and it may proven that ↵pk`1q
j

“ �h,j↵
pkq
j

§ Exercise 4.2: Prove that, for ! “ 0.5, we have
ˇ̌
ˇ↵pk`1q

j

ˇ̌
ˇ “ cos2

⇡jh

2

ˇ̌
ˇ↵pkq

j

ˇ̌
ˇ § 1

2

ˇ̌
ˇ↵pkq

j

ˇ̌
ˇ , j “ pn ` 1q{2, . . . , nloooooooomoooooooon

high frequencies

.

§ Fast convergence for high frequencies

Coarse Grid Correction
§ We consider a fine grid with mesh size h and a coarse grid
with mesh size 2h (n is odd)

§ Restriction

§ Prolongation



Restriction: Fine to Coarse Grid

§ Restriction: Rh : Rn Ñ R
n´1
2 such that

pRhuhqj “ 1

4
puh,2j´1 ` 2uh,2j ` uh,2j`1q, j “ 1, . . . , pn ´ 1q{2

§ Restriction Matrix: u2h “ Rhuh with

Rh “ 1

4

»

———————–

1 2 1
1 2 1

. . .
. . .

. . .

1 2 1
1 2 1

fi

�������fl

Prolongation: Coarse to Fine Grid

§ Prolongation: P2h : R
n´1
2 ÑRn (piecewise linear interpolation)

pP2hu2hq2j “ u2h,j , j “ 1, . . . , pn ´ 1q{2,

pP2hu2hq2j´1 “ 1

2
pu2h,j ` u2h,j´1q, j “ 1, . . . , pn ` 1q{2

§ Prolongation Matrix: uh “ P2hu2h with

P2h “ 2RT

h
“ 1

2

»

———————–

1
2
1 1

2
1 1

...

fi

�������fl



Defect Correction Iteration

§ Let
A

´1
coarse “ P2hA

´1
2h Rh

and compute

u
pk`1q
h

“ u
pkq
h

` A
´1
coarsepfh ´ Ahu

pkq
h

q, k “ 0, 1, . . .

§ How to compute �pkq
h

“ A
´1
coarser

pkq
h

“ P2hA
´1
2h Rhr

pkq
h

1. Restrict r pkq
h

P Rn to r
pkq
2h “ Rhr

pkq
h

P R n´1
2

2. Solve the n´1
2 ˆ n´1

2 system A2h�
pkq
2h “ r

pkq
2h

3. Prolong the solution �pkq
2h P Rm´1

2 to �pkq
h

“ P2h�
pkq
2h P Rn

Two-Grid Iteration Scheme

§ Two-Grid Iteration Scheme: Combining this coarse grid
correction with N steps of the DJI we obtain

u
pk`1q
h

“ u
pk,Nq
h

` P2hA
´1
2h Rhpfh ´ Ahu

pk,Nq
h

q,

for k “ 0, 1, . . . , where u
pk,Nq
h

“ J
NpAh, upkq, fhq denotes the

result of N steps of DJI starting with u
pkq.

§ Exercise 4.3: Prove that the iteration matrix corresponding to
this two-grid method is given by

TN “ pI ´ P2hA
´1
2h RhAhqloooooooooomoooooooooon

coarse-grid correction

ˆ
I ´ 1

2
D

´1
h

Ah

˙
N

.

§ N “ 1 (T1 “ T ): alternate one step of the DJI (fine grid)
with a coarse-grid correction by elimination (coarse grid)



HW Exercises
§ Exercise 4.4: Prove that, for j “ 1, . . . , pn ´ 1q{2,

Rhvh,j “ c
2
j v2h,j , Rhvh,n`1´j “ ´s

2
j v2h,j ,

and
P2hv2h,j “ c

2
j vh,j ´ s

2
j vh,n`1´j ,

with

cj “ cos
j⇡h

2
, sj “ sin

j⇡h

2
.

§ Exercise 4.5: Prove that, for j “ 1, . . . , pn ´ 1q{2,
„

Tvh,j

Tvh,n`1´j

⇢
“ s

2
j c

2
j

„
1 1
1 1

⇢

loooomoooon
Q

„
vh,j

vh,n`1´j

⇢
,

and, since Rhvh,pn`1q{2 “ 0,

Tvh,pn`1q{2 “ 1

2
vh,pn`1q{2.

Convergence od Two-Grid Method

Theorem 4.1

For the spectral radius of T we have that ⇢pT q “ 0.5.
Consequently, the two-grid iterations converge.

§ Proof: From Exercise 4.1 we have, for j “ 1, . . . , pn ´ 1q{2

A2hv2h,j “ 1

h2
sin2p⇡jhqv2h,j “ 4

h2
c
2
j s

2
j v2h,j ,

and then

A
´1
2h v2h,j “ h

2

4c2
j
s2
j

v2h,j .

From Exercise 4.5, since the matrix Q has eigenvalues 0 and
2, it can be proved that the matrix T has the eigenvalues

2c2j s
2
j “ 1

2
sin2 ⇡jh, j “ 1, . . . , pn ` 1q{2,

and the eigenvalue zero of multiplicity pn ´ 1q{2. l



Two-Grid Method: General Formulation

§ At the highest level (finest grid) a mesh-size of h is used

Ahuh “ fh

§ Requirement: a system similar to the one above must be
solved at the coarser levels

§ A coarse grid with mesh size H is used (coarser mesh ⌦H)

§ Galerkin projection:

AH “ RhAhPH , fH “ Rhfh

Smoothing Step
§ Define a smoother S (e.g., DJI, SOR, ... ) and consider

u
pNq
h

“ S
NpAh, u

p0q
h

, fhq

§ Smoothing iterations

u
pj`1q
h

“ Shu
pjq
h

` gh, j “ 0, . . . ,N ´ 1,

where Sh is the smoothing iteration matrix

§ Exercise 4.6: Prove that

u
pj`1q
h

“ u
pjq
h

` Bhpfh ´ Ahu
pjq
h

q, j “ 0, . . . ,N ´ 1,

with Bh “ pI ´ ShqA´1
h

, Sh “ I ´ BhAh, gh “ Bhfh.

§ The error epNq
h

and residual r pNq
h

after N smoothing steps are

e
pNq
h

“ S
N

h
e

p0q
h

“ pI ´ BhAhqNep0q
h

, r
pNq
h

“ pI ´ AhBhqN r p0q
h



Two-Grid Cycle

§ Algorithm: Two-Grid Cycle

uh “ S
NpAh, u

p0q
h

, fhq % Pre-smooth

rh “ fh ´ Ahuh % Get residual

rH “ Rhrh % Coarsen

Solve AH�H “ rH

uh “ uh ` PH�H % Correct

uh “ S
MpAh, uh, fhq % Post-smooth

Two-Grid Cycle

§ One iteration of the 2-grid algoritms corresponds to

u
p1q
h

“ Thu
p0q
h

` gMh

§ If fh ” 0

u
p1q
h

“ S
M

h
pSN

h
u

p0q
h

` PHA
´1
H

Rhp´AhS
N

h
u

p0q
h

qq

§ The 2-grid iteration operator is

Th “ S
M

h
pI ´ PhA

´1
H

RhAhqlooooooooomooooooooon
coarse-grid correction

S
N

h



Multigrid V-cycle

Figure: s - smoothing, r - restriction, p - prolongation, e - exact solver

V-cycle Multigrid
§ Algorithm: V-cycle Multigrid

function uh “ VcyclepAh, u
p0q
h

, fh,N,Mq
uh “ S

NpAh, u
p0q
h

, fhq % Pre-smooth

rh “ fh ´ Ahuh % Get residual

rH “ Rhrh % Coarsen

If pH ““ h0q
Solve AH�H “ rH

else
�H “ VcyclepAH , 0, rH ,N,Mq % Recursion

end if

uh “ uh ` PH�H % Correct

uh “ S
MpAh, uh, fhq % Post-smooth

end function

§ Note: H stands for 2h and h0 for the coarsest mesh-size



W-cycle Multigrid
§ More corrections, say � times on a coarse grid before
returning to a finer level

§ Algorithm: W-cycle Multigrid

function uh “ MG pAh, u
p0q
h

, fh,N,M, �q
uh “ S

NpAh, u
p0q
h

, fhq % Pre-smooth

rh “ fh ´ Ahuh % Get residual

rH “ Rhrh % Coarsen

If pH ““ h0q
Solve AH�H “ rH

else
�H “ MG

�pAh, 0, fh,N,M, �q % Recursion
end if

uh “ uh ` PH�H % Correct

uh “ S
MpAh, uh, fhq % Post-smooth

end function
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lev=1,�=1 lev=2,�=1 lev=3,�=1 lev=4,�=1

lev=1,�=2 lev=2,�=2 lev=3,�=2

lev=3,�=3

Figure 13.6: Representations of Various V-cycles and W-cycles

boundary points in each direction. This leads to a linear system of dimension N =
312 = 961. The V-cycle multigrid was tested with three smoothers: (1) The weighted
Jacobi relaxation with ! = 2/3; (2) Gauss-Seidel relaxation, and (3) the red-black
Gauss-Seidel relaxation. Various values of �1 and �2, the number of pre- and post-
smoothing steps, respectively, were used. Table 13.1 shows the convergence factors
⇢ as estimated from the expression,

⇢ = exp

�
1

k
log

�rk�2

�r0�2

�
,

for each of the smoothers. Here k is the total number of smoothing steps taken.
The convergence was stopped as soon as the 2-norm of the residual was reduced by
a factor of tol = 10�8. The overall winner is clearly the Red-Black Gauss Seidel
smoother. It is remarkable that even with a number of total smoothing steps �1 + �2

as small as two, a reduction factor of less than 0.1 is achieved with RB-GS. Also,
it is worth pointing out that when �1 + �2 is constant, the red-black Gauss-Seidel
smoother tends to perform better when �1 and �2 are more or less balanced (compare
the case (�1, �2) = (0, 2) versus (�1, �2) = (1, 1) for example). In the asymptotic
regime (or very large k), the two ratios should be identical in theory.



Full Multigrid
§ Slightly di↵erent approach: find an approximation to the
solution with only one sweep through the levels, going from
bottom to top

§ The system is first solved (or smoothed) on a very coarse grid,
then one goes to the next finer grid and smoothes the system
on this grid and so on, until the finest grid is reached

§ Algorithm: Full Multigrid

Set h “ h0 and solve Ahuh “ fh

for k “ 1 to p do

uh{2 “ P̂huh

h “ h{2
uh “ MG

µpAh, uh, fh,N,M, �q
end for

§ Note: the interpolation operator P̂h is typically of a lower
order than Ph

Full Multigrid V-cycle



Basic Convergence Results

§ Cost (storage and computing time)
§ overall costs are dominated by the costs of the finest grid

§ Speed of convergence
§ significant acceleration compared with relaxation methods

§ the convergence rate is independent of the number of
unknowns

§ constant number of multigrid steps to obtain a given number
of digits

§ overall computational work increases only linearly with the
number of unknowns


