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Defect Correction

» Let Ax = b, Ae R"*" nonsingular, and x(© ~ x with residual
r® =p—Ax© 20

» Goal: try to improve the accuracy by writing

x(1) = x(0) 4 5(0)
> If the defect correction 6(9) is computed by

2450 _ )

Y

then x(1) = x

-1

approx =~ A~! and consider

» Defect correction princilpe: let A

x1 = xO 4 50 with 6@ = A72 O

approx




Defect Correction lteration

» Defect correction iteration:

KD (K)o sR) (R oaml (k)

approx )

k=0,1,...
» The method converges if and only if

p(l — AL A <1

approx

» If AL A=~ then p(I — AJL . A) ~ 0 (fast convergence)

approx approx
» Defect correction iteration < Richardson iteration
» Richardson iteration: R =1 — P~ 1A and

> Defect correction iteration: P~ = AL R=1—-A_ A

Two-Grid Method: Coarse and Fine Grids

» |dea: use the defect correction principle with

~1 —1 —1 —1
Aapprox = Acoarse = Afine = A
» What we need: transfer vectors corresponding to the fine grid
to vectors corresponding to the coarse grid and vice-versa

» Applications
> Improve the accuracy of an approximate solution obtained for
example by Gaussian elimination

> Develop fast iterative solutions of linear system arising in the
discretization of differential and integral equations




Example: Elliptic Equation (1D)

» Boundary value problem:
—uy=1f, 0<x<1, wu(0)=u(l)=0

» Discretizing the problem (FDM)

Anup = fp,
with
- o 1 _
-1 2 -1
1 1
Ap = — h =
h h2 ) n+ 17
-1 2 -1

and fpj = f(X;), unj ~ u(x),j=1,...,n, on the grid

O=xo<x1<...<xp<Xpy1 =1, Xx;j=jh

Example: Elliptic Equation (1D)

> Solve the linear system by the JOR method (see: Lecture 1)

uﬁkﬂ) = uflk) +wD; H(fy — Ahuﬁk)), k=0,1,....

residual
» Exercise 4.1: Prove that the eigenvalues of | — th_lAh are

h
Ah,jzl—zwsin2%, i=1,....n,

and the corresponding eigenvectures are
Vh’j - [Sin<ﬂ—jh>""’Sin(ﬂ—njh)]T7 ./: 17"'7”7

that form an orthogonal basis of R".




Choice of the Damping Factor
» From Theorem 1.7
B 2
Copt = 5 Ah,max — Ah,min
» Use Damped/Underrelaxed Jacobi Iteration (DJI) (i.e, JOR
with 0 < w < 1)

» DJI with w = 0.5 is a smoothing iteration
> Since v; is an orthogonal basis of R”, the error satisfies

n
(k) (k)
j=1

and it may proven that ozj(-kH) = Ah,jozj(-k)

» Exercise 4.2: Prove that, for w = 0.5, we have

h 1
ot | <

, J=((n+1)/2,...,n.

high frequencies

> Fast convergence for high frequencies

Coarse Grid Correction

» We consider a fine grid with mesh size h and a coarse grid
with mesh size 2h (n is odd)

» Restriction
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» Prolongation
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Restriction: Fine to Coarse Grid
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» Restriction: Ry : R" — R 2 such that

1 )
(Rypup)j = Z(Uh,2j—1 +2up2j + Up2jy1), j=1,...,(n—1)/2

» Restriction Matrix: upp, = Rpup with

&~

Prolongation: Coarse to Fine Grid
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» Prolongation: Ppp : R™2 —R" (piecewise linear interpolation)
(Panugp)2j = uopj, ji=1...,(n—-1)/2

1 :
(P2hU2h)2j—1 = §(U2h,j + U2h,j—1), j=1,..., (n + 1)/2

» Prolongation Matrix: up = Popupp with
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Defect Correction lteration

» Let
1 -1
Acoarse = ’D2hA2h Ry

and compute

i(7k+1) (k) + Acogrse(f - Ahu( )>7 k=0,1,...

» How to compute 6,(7) AL ( ) = Py ARy (k)

coarsel r h

1. Restrict r,sk) e R" to rz(h) Ry r,Sk) ceR7T 7

2. Solve the ”;1 X "_ system A2h5(h) = rz(/l:)

3. Prolong the solution (5§h) eR"™™ to (5(k) P, (5&? e R”

Two-Grid lteration Scheme

» Two-Grid Iteration Scheme: Combining this coarse grid
correction with N steps of the DJI we obtain

u,(1k+1) = (k V) + PghA2h Rh(fh — Ahuigk N)),
for k=0,1,..., where uﬁk’N) — JN (A, u® | f,) denotes the

result of N steps of DJI starting with u(k).

» Exercise 4.3: Prove that the iteration matrix corresponding to
this two-grid method is given by

_ 1 N
Ty = ﬁ' - P2hA2h1RhAh2 (/ — §Dh 1A,,) .

coarse-grid correction

» N =1 (T, = T): alternate one step of the DJI (fine grid)
with a coarse-grid correction by elimination (coarse grid)




HW Exercises
> Exercise 4.4: Prove that, for j=1,...,(n—1)/2,

> 2
Rnvhj = ¢jvanj,  RhVhn+1—j = —Si Van,
and
2 >
Panvanj = C; Vhj — SiVhnt1—j,
with _ _
jmh . Jmh
CJ'=COST, 5;j = sIn 7

> Exercise 4.5: Prove that, for j=1,...,(n—1)/2,

Tvhny1—j I 11 Vhn+l—j |
—_—

Q
and, since Ryvp (n11)2 =0,

1
TVh (nt1)2 = 5 Vh,(n+1)/2:

Convergence od Two-Grid Method

Theorem 4.1

For the spectral radius of T we have that p(T) = 0.5.
Consequently, the two-grid iterations converge.

> Proof: From Exercise 4.1 we have, for j =1,...,(n—1)/2

1 4
s 20 - 2.2
AghVth = 12 Sin (7T_jh)V2h,J = 12 Cj Sj V2h,j;
and then
h2
A vop i = —5—wop
oh V2hj = 775 3 V2h-
4cj S;

From Exercise 4.5, since the matrix () has eigenvalues 0 and
2, it can be proved that the matrix T has the eigenvalues

1
2¢7s; = 5sin%jh, j=1,...,(n+1)/2,

and the eigenvalue zero of multiplicity (n —1)/2. ]




Two-Grid Method: General Formulation

v

At the highest level (finest grid) a mesh-size of h is used

Apup = fp

v

Requirement: a system similar to the one above must be
solved at the coarser levels

v

A coarse grid with mesh size H is used (coarser mesh Q)

v

Galerkin projection:

An = RhAnPH, fy = Rnfy

Smoothing Step
> Define a smoother S (e.g., DJI, SOR, ... ) and consider
uN) = SN(ap, ul?”, £)
» Smoothing iterations
“/(;jﬂ)

— Sl + gy j=0,... ,N—1,

where Sy, is the smoothing iteration matrix

» Exercise 4.6: Prove that
U/(;j+1) = U,(7j) +Bh(fh—AhU/gj)), j=0,...,N—1,

with B, = (I — Sp)A, Y, Sk = | — ByAn, gh = Bhfy.

» The error efSN) and residual r,SN) after N smoothing steps are

e = Shey) = (1 - ByAn) Ve, ") = (1 — ApBR)Nr”




Two-Grid Cycle

» Algorithm: Two-Grid Cycle
up = SN(Ap, u'? | £,)
rh = fh — Anup
ry = Rprp
Solve Aoy = ry
up = up + Pyoy
up = SM(Ap, up, o)

Two-Grid Cycle

» One iteration of the 2-grid algoritms corresponds to

u,gl) = Thu,go) + gwm,

» If f, =0
uy) = S (S uy) + PrAy Ra(—AnSH "))
» The 2-grid iteration operator is

Th=SM (I — PLAL*RyAL) S

coarse-grid correction




Multigrid V-cycle

h

2h

4h

8h

Figure: s - smoothing, r - restriction, p - prolongation, e - exact solver

V-cycle Multigrid
» Algorithm: V-cycle Multigrid
function up = Veyeie(Ap, 1, fo, N, M)
up = SN(Ah, Ul(f)), fh)

rn = fn — Apup

rH = Rpra
If (H == ho)
Solve AH5H = ry
else
5H = chc/e(AH7 0, rq, /V, M)
end if

up = up + Pyoy

Up = SM(AfH Up, fh)
end function

» Note: H stands for 2h and hg for the coarsest mesh-size




W-cycle Multigrid
» More corrections, say v times on a coarse grid before
returning to a finer level
» Algorithm: W-cycle Multigrid

function up, = MG(Ap, u(o), fh, N, M, )
up = SN(Aha U;(, )7 fh)

rp, = fh — Ahuh

rH = Rury
If (H== hp)

Solve AH(SH = ry

else

oy = MG7(Ap, 0, fy, N, M, ~)
end if

up = up + Pyoy

up = SM(Ap, up, f)
end function

V-cycles and W-cycle

lev=1,7=1 lev=2,y=1 lev=3,vy=1 lev=4,v=1
lev=1,v=2 lev=2,v=2 lev=3,v=2

WA




Full Multigrid

» Slightly different approach: find an approximation to the
solution with only one sweep through the levels, going from
bottom to top

> The system is first solved (or smoothed) on a very coarse grid,
then one goes to the next finer grid and smoothes the system
on this grid and so on, until the finest grid is reached

» Algorithm: Full Multigrid
Set h = hg and solve Ajup = f}
for k =1 to p do

Upj2 = Prup

h=h/2

up = MGH*(Ap, up, fn, N, M, )
end for

» Note: the interpolation operator Py, is typically of a lower
order than P,

Full Multigrid V-cycle




Basic Convergence Results

» Cost (storage and computing time)
> overall costs are dominated by the costs of the finest grid

» Speed of convergence

> significant acceleration compared with relaxation methods

> the convergence rate is independent of the number of
unknowns

> constant number of multigrid steps to obtain a given number
of digits

> overall computational work increases only linearly with the
number of unknowns




