Departamento de Matemática da Universidade de Coimbra

Matemática II

Engenharias Química e de Materiais

Exame de época normal

21/06/04

1^a parte

1- Calcule as seguintes primitivas:

a)
$$\int x \sin(x^2) dx$$
;

b)
$$\int \frac{1}{x(2-3\ln x)^{2/3}} dx$$
.

2- Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações.

a) Se
$$a \ge 1$$
, então $\ln a \le \int_1^a \frac{e^t}{t} dt$.

b) Se f é integrável em [a, b], então f é contínua em [a, b].

c) Se
$$f$$
 é integrável em $[a,b]$ e $\int_a^b f(t)dt = 0$, então $f(x) = 0$ para todo o $x \in [a,b]$.

3- Calcule:

a)
$$\int_0^1 e^x \arctan(e^x) dx$$
; **b)** $\int_0^1 \frac{1}{e^t + e^{2t}} dt$.

b)
$$\int_0^1 \frac{1}{e^t + e^{2t}} dt$$
.

4- Sejam f e g duas funções definidas por $f(x) = x^2 \int_0^x e^{-t} dt$ e $g(x) = e^{x^3} - 1$.

a) Determine f'(x) e g'(x).

b) Mostre que
$$\lim_{x\to 0} \frac{f(x)}{g(x)} = 1$$
.

5- Considere a região do plano definida por $x^2 \le y \le x + 2$. Calcule:

a) a respectiva área.

b) o volume do sólido gerado pela rotação em torno do eixo dos xx da região anteriormente definida.

6- Estude a natureza das seguintes séries:

a)
$$\sum_{n=1}^{\infty} \left[(-1)^n + \frac{2^{3n+1}}{5^{2n+3}} \right]$$
 b) $\sum_{n=1}^{\infty} \frac{4+3^n}{2^n}$.

b)
$$\sum_{n=1}^{\infty} \frac{4+3^n}{2^n}$$

- 7- Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações.
 - a. Se $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ são séries divergentes, então a série $\sum_{n=1}^{\infty} (a_n + b_n)$ é divergente.
 - b. Se uma fonte radioactiva emitir, em cada ano, uma quantidade de radiação igual a 0.9 da quantidade emitida durante o ano anterior e se, num dado ano, a quantidade de radiação emitida foi de 2000 unidades Roetgen (Unidade Internacional dos Raios X), o total de radiações que irão ser emitidas pela fonte a partir desse ano é de 20 000 Roetgen.
 - c. Existe uma função $f: D \subseteq IR^2 \to IR$ tal que $f_x(x, y) = x + 4y$ e $f_{y}(x,y) = 3x - y.$
- 8- Desenvolva em série de potências de x a função

$$f(x) = \operatorname{sen}(x)$$

e determine o raio de convergência da série obtida.

9- Seja f uma função real definida em IR^2 por

$$f(x,y) = \begin{cases} \frac{2x^2 + y^2}{x^2 - y^2}, & (x,y) \neq (0,0), \\ 2, & (x,y) = (0,0). \end{cases}$$

- a) Determine o domínio de f.
- **b)** Determine o domínio de continuidade de f.
- c) Determine f_x e f_y , para $(x, y) \neq (0,0)$.
- d) Usando a alínea anterior, determine a derivada direccional $D_u f(1,0)$, em que u = (2,1).
- 10-As dimensões de uma caixa fechada rectangular foram medidas como 80cm, 60cm e 50cm, respectivamente, com erro máximo de 0.2cm em cada dimensão. Utilize diferenciais para estimar o erro máximo no cálculo da área da superfície da caixa.