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1General tools
\A major task of mathematics is to harmonize the continuous and the discrete, to include them in one com-prehensive mathematics, and to eliminate obscurity from both." (E.T. Bell, Men of Mathematics)1.1 IntroductionMotion is described by di�erential equations, which are derived from the laws of physics. In the simplestcase, they read md2xdt2 = F (t; x; dxdt )|Newton's second law. These equations contain within them not justa statement of the current acceleration experienced by the object(s), but all the physical laws relevant tothe particular situation. Finding these laws and their consequences for the motion has been a major partof physics since the time of Newton. For example, the equations tell us the space in which the systemevolves (its phase space, which may be ordinary Euclidean space or a curved space such as a sphere); anysymmetries of the motion, such as the left{right or forwards{backwards symmetries of a pendulum; andany special quantities such as energy, which for a pendulum is either conserved (if there is no friction) ordecreases (if there is friction). Finally and most importantly, the laws describe how all motions startingclose to the actual one are constrained in relation to each other. These laws are known as symplecticityand volume preservation.\A gyroscope is an emissary from a six-dimensional symplectic world to our three-dimensional one; in itshome world its behavior looks simple and natural." (Yuri Manin)Standard methods for simulating motion, called numerical integrators, take an initial condition andmove the objects in the direction speci�ed by the di�erential equations. They completely ignore all of theabove hidden physical laws contained within the equations. Since about 1990, new methods have beendeveloped, called geometric integrators, which obey these extra laws. Since this is physically natural, wecan hope that the results will be extremely reliable, especially for long-time simulations.Before we tell you all the advantages, three caveats:� The hidden physical law usually has to be known if the integrator is going to obey it. For example, topreserve energy, the energy must be known.� Because we're asking something more of our method, it may turn out to be computationally moreexpensive than a standard method. Amazingly (because the laws are so natural?) sometimes it'sactually much cheaper.� Many systems have multiple hidden laws, for which methods are currently known which preserve anyone law but not all simultaneously.Now the advantages:� Simulations can be run for enormously long times, because there are no spurious non-physical e�ects,such as dissipation of energy in a conservative system;� By studying the structure of the equations, very simple, fast, and reliable geometric integrators canoften be found; 4



1.2 Flows 5� In some situations, results can be guaranteed to be qualitatively correct, even when the motion is chaotic.This allows one to study systems in a \quick and dirty" mode and explore the system thoroughly, whileretaining reliability;� For some systems, even the actual quantitative errors are much smaller for short, medium, and longtimes than in standard methods.Chapter 2 discusses a case where all of these nice features are realized: the solar system.The �rst lecture is about general tools which will be useful later on, the second discusses the question\why bother?", and the third to sixth lectures are about how to preserve various speci�c properties.These lectures were delivered at ANODE, the Auckland Numerical ODEs workshop, in July 1998.Naturally, they are tailored to our own research interests. They are intended to be suitable for a student's�rst exposure to the subject, and we have preserved their informality. We are very grateful to JohnButcher for inviting us to speak, to all the organizers of ANODE, and especially to Nicolas Robidouxfor transcribing the lectures. ANODE and the authors are supported by the Marsden Fund of the RoyalSociety of New Zealand, the Australian Research Council and the EPSRC. The written form was preparedat the MSRI, Berkeley, supported in part by NSF grant DMS{9701755.1.2 The exact 
ow of an ODE, and general properties of integratorsWe �rst de�ne the exact 
ow (or solution) of an ordinary di�erential equation (ODE) and discuss whatproperties one would like an integrator to have. Let x(t) be the exact solution of the system of ordinaryequations (ODEs)y dxdt = f(x); x(0) = x0; x 2 Rm : (1.1)The exact 
ow '� is de�ned by x(t+ �) = '� (x(t)) 8 t; �For each �xed time step � , ' is a map from phase space to itself, i.e. '� : Rm ! Rm .Three properties of exact 
ows(i) (Self-adjointness) The 
ow has the continuous group property'�1 � '�2 = '�1+�2 8�1; �2 2 R: (1.2)In particular, '� � '�� = Id (1.3)Hence the exact 
ow is self-adjoint: '� = '�1�� : (1.4)(ii) (Taylor expansion) x(�) = x(0) + � dxdt (0) + �2 12 d2xdt2 (0) + : : :Substitute dxdt = f(x)d2xdt2 = (df)dxdt = (df)fHence '� (x0) = x0 + �f(x0) + 12�2(df(x0))f(x0) + : : : (1.5)y Nonautonomous ODEs dx=dt = f(x; t) can be formulated autonomously as dx=dt = f(x; xm+1), dxm+1=dt = 1. Thegeometric integrator is applied to this \extended" system (if possible), and then t = xm+1 substituted.



6 General tools(iii) (Formal exact solution) '� (x) = e�Pni=1 fi(x) @@xi (x):= exp(�f)(x) (1.6)It's impossible to construct integrators with the continuous group property (1.2) for any reasonablygeneral class of ODEs. The closest one can come is to preserve self-adjointness.Properties of integratorsIn general we don't know the 
ow '� , so we seek maps  � that approximate '� . We call such  �integrators. Some properties of integrators:(i) (Self-adjointness) It is useful for  � to be self-adjoint, i.e., � =  �1��(ii) (Order of an integrator) The order of accuracy of  � is p, if the Taylor series of  � and theexact 
ow '� agree to order p:  � (x)� '� (x) = O(�p+1)(iii) (Consistency) A necessary property of  � is that it be consistent, i.e., �rst order accurate, i.e., � (x) = x+ �f(x) +O(�2):Note: It is not di�cult to show that every self-adjoint integrator is of even order.There are three types of integrators:(i) Integrators that form a group(ii) Integrators that form a symmetric space(iii) Integrators that form a semigroup1.3 Integrators that form a groupSuppose we have a set G of integrators which may or may not be consistent. If, for all integrators  �and �� in G, we have  � � �� 2 Gand  �1� 2 G;we say the integrators form a group. That is, they are a group where the group operation is compositionof maps.Examples of integrators that can form a group are(i) symplectic integrators (Lecture 3)(ii) symmetry-preserving integrators (Lecture 4)(iii) volume-preserving integrators (Lecture 5)(iv) integral-preserving integrators (Lecture 6)For example, for the group of integral-preserving integrators there is a real function I(x) (the integral)such that I(x) = I('� (x)) for all x: the value of the integral I is preserved by the integrator. Thereforeit is also preserved by '� � �� and by '�1� : the integrators form a group.yThese groups are in�nite-dimensional groups of di�eomorphisms. They share many but not all of theproperties of Lie groups; various extensions of the concept of Lie groups from �nite to in�nite dimensionshave been proposed. One approach is the theory of \Lie pseudogroups" of di�eomorphisms. Cartandiscovered in 1913 that in a sense there are just 6 fundamental Lie pseudogroups: the group of alldi�eomorphisms; those preserving a symplectic, volume, or contact structure; and those preserving asymplectic or volume structure up to a constant. These correspond to di�erent generic types of dynamics.y If '�1� exists, which it does for the methods of Lecture 6, but not necessarily for projection methods.



1.4 Symmetric spaces 7How to construct integrators that form a groupThe main way to construct integrators that form a group is through splitting methods. Splittingmethods work for all cases (1){(4) above, and are discussed further in Lecture 3.We illustrate splitting for integral-preserving integrators. Assume we don't know an integral-preservingintegrator for the vector �eld f , but f can be split into two vector �elds f1 and f2, each with the sameintegral as f : f(x) = f1(x) + f2(x)and assume that we do know integral preserving integrators  1 (resp.  2) for f1 (resp. f2) separately.Then we obtain an integral-preserving integrator  for f by composition: � =  2;� �  1;�This is a consistent method for f , because it is the map  � : x 7! x00 given byx0 = x+ �f1(x) +O(�2)x00 = x0 + �f2(x0) +O(�2)= x+ �(f1(x) + f2(x)) +O(�2)Splitting methods are very easy to program|one merely calls routines for  1 and  2 in turn.Thus the problem becomes:(i) How to split vector �elds while staying in the appropriate class;(ii) How to construct integrators in the appropriate group;(iii) How to compose those integrators so as to get an integrator of the original vector �eld of thedesired order.Each of these will be considered in these lectures.1.4 Integrators that form a symmetric spaceSuppose we have a set G of integrators with the property that, for all integrators  � and �� in G, wehave  � � ��1� �  � 2 G: (1.7)Then G is an example of the algebraic object known as a symmetric space, a set G together with a binaryoperation � obeying the axioms x � x = xx � (x � y) = yx � (y � z) = (x � y) � (x � z)x � y = y ) y = x for all y su�ciently close to x :In our case the integrators G form a symmetric space by taking � � �� :=  � � ��1� �  � :Notice that every group also forms a symmetric space, but not vice versa: a group may have subsetswhich are closed under (1.7) but not under simple composition.The two most important examples of integrators that form a symmetric space are(i) Self-adjoint integrators.(ii) Integrators that possess time-reversal symmetry (Lecture 4).Proof of (1): Let �� =  � � ��1� �  � . Then��1�� = � �� � ��1�� �  ����1=  �1�� � ��� �  �1��=  � � ��1� �  �= �� :



8 General toolsHow to construct integrators that form a symmetric spaceThere are two main ways:(i) (Projection methods) If  � is any integrator, then the \projection"�� :=  �=2 �  �1��=2is self-adjoint.(ii) (Splitting methods) If f can be split into two vector �eldsf(x) = f1(x) + f2(x)such that we have self-adjoint integrators  1 and  2 for f1 and f2 separately, then we obtain aself-adjoint integrator  for f from the symmetric composition � :=  1;�=2 �  2;� �  1;�=2:These are generalized to other symmetric spaces in Lecture 4. The projection is almost miraculous,because it starts with any integrator. There is no analogous projection for groups.1.5 Integrators that form a semigroupA set G of integrators forms a semigroup if for all integrators  � and �� in G, we have  � � �� 2 G,but not necessarily  �1� 2 G.These arise from properties that only hold for forwards time:(i) systems with a Lyapunov function (Lecture 6)(ii) systems which contract phase space volumeFor example, if the Lyapunov function is decreasing as t increases, it is increasing as t decreases, andeven the 
ow '�1� = '�� does not have the Lyapunov property. This means one cannot use backwardstime steps when composing these integrators, which can be proved to limit the order of compositionmethods to 2. 1.6 Creating higher order integrators: composition methodsHaving obtained a geometric integrator  � , a higher order method can be obtained from the composition�� =  �n� �1��n�1� �n�2� �1��n�3� : : :: : :  �n�3� �1��n�2� �n�1� �1��n�which has been chosen to be self-adjoint, i.e. �� = ��1�� . Here the number of integrators n and thecoe�cients �n can be adjusted to obtain the desired order. High order methods can also be designed inthe context of splitting methods, using the two 
ows '1;� and '2;� of f1 and f2 respectively. One usesthe composition '1;�1�'2;
1� : : : '1;�n� :However, these two approaches turn out to be equivalent [7].Example 1 If  is self-adjoint, then a fourth-order integrator is obtained as follows:�� =  
� �  (1�2
)� �  
�where 
 := (2� 21=3)�1.This example is generalized in Theorem 2 below. Note that 1� 2
 < 0.



1.6 Composition methods 9An example of composition methods: the generalized Yoshida methodTheorem 2 (Yoshida, Qin, and Zhu) Let  be a self-adjoint integrator of order 2n. Then�� =  
� �  (1�2
)� �  
� ; 
 = (2� 2 12n+1 )�1is a self-adjoint integrator of order 2n+ 2.Proof Let  � (f) = '� (f) + ��2n+1 + : : : :Then, using the 
ow property of the exact 
ow '� , 
� �  (1�2
)� �  
� = '� (f)+�
2n+1 + (1� 2
)2n+1 + 
2n+1� ��2n+1 + : : :which has order 2n+ 1 if 
 is as given in the theorem. However, it is self-adjoint by construction, so ithas even order, hence the order is 2n+ 2. ReferencesBooks1. A.M. Stuart and A.R. Humphries, Dynamical Systems and Numerical Analysis, CUP, 1996.2. J.-M. Sanz-Serna and M.-P. Calvo, Numerical Hamiltonian Problems, Chapman Hall, 1994.Survey articles3. J.-M. Sanz-Serna, Geometric Integration, in The State of the Art in Numerical Analysis, I.S. Du� andG.A. Watson, eds., Clarendon Press, Oxford, 1997, pp. 121{143.4. G.R.W. Quispel and C. Dyt, Solving ODE's numerically while preserving symmetries, Hamiltonian struc-ture, phase space volume, or �rst integrals, in Proc. 15th IMACS World Congress, vol. 2, A. Sydow, ed.,Wissenschaft & Technik, Berlin, 1997, pp. 601{607.5. C.J. Budd and A. Iserles, eds., Geometric integration: Numerical solution of di�erential equations onmanifolds, Phil. Trans. Roy. Soc. A 357 (1999), 943{1133.Composition methodsThe best place to start is6. H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. 150A (1990), 262{268which was generalized in7. M. Qin and W.J. Zhu, Construction of higher order symplectic schemes by composition, Computing 27(1992) 309{321and further in8. R.I. McLachlan, On the numerical integration of ODE's by symmetric composition methods, SIAM J.Numer. Anal. 16 (1995) 151{168.9. A. Murua and J.M. Sanz-Serna, Order conditions for numerical integrators obtained by composing simplerintegrators, Phil. Trans. Roy. Soc. A 357 (1999), 1079{1100.



2Why preserve structure?
2.1 IntroductionLet's start with an example of a simulation of the outer solar system by Jack Wisdom and coworkers.Part of its appeal is the long history of modelling the solar system. The people who do this are notfrom the numerical analysis community, but they have their own history of methods which they havedeveloped and tweaked.In the 1980's, a special-purpose supercomputer, the \Digital Orrery", simulated the outer planets for845 million years. With a lot of tweaking, an energy error of about 10�9 was achieved with a time stepof 45 days (a six month calculation!). A calculation with a very high order symmetric multistep methodachieved an energy error of about 10�10 in a 3 million year simulation, with a time step of 0.75 days.In a completely di�erent approach, Laskar (1990) used classical perturbation theory (expanding in massratios and eccentricities about circular orbits) to eliminate the fast (annual) frequencies. This required250,000 terms, but a time step of 500 years could be taken.All of these attempts were roundly routed by the calculation of Jack Wisdom et al., using a very simple,elegant symplectic integrator. Their billion year simulation with a time step of 7.5 days gave an energyerror of only 2� 10�11. Moreover, only one force evaluation was used per time step, making the methodvery fast.Roughly speaking, they wrote the ODE as a sum of uncoupled Kepler 2-body problems and the potentialwhich couples the planets: f = f1+f2 = fKepler+fcoupling. Each fi is a Hamiltonian system, and the 
ow'�;i of each can be found exactly and quickly (the 2-body problems using an elegant method of Gauss).

Fig. 2.1. Energy error of leapfrog applied to the whole solar system over 108 years (Wisdom et al.)10



2.2 Phase space and phase 
ow 11

Fig. 2.2. Energy error after application of corrector �� .The time stepping is simply the simplest composition  � = '�;2 �'�;1|a form of the \leapfrog" method.Since the 
ow of Hamiltonian ODEs is symplectic, and symplectic maps form a group,  � is symplectic.Moreover, they found a \corrector" �� such that�� �  � � ��1� = '� +O(m2�3)where m � jf2=f1j � 10�3 is the mass ratio between Jupiter and the sun. (The result after n time stepsis �� �  n� � ��1� , so that �� only needs to be evaluated once, no matter how long the simulation.) Thismethod:� is symplectic;� is one-step;� is explicit;� is second order;� uses one force evaluation per time step;� exploits classical analysis, namely the exact solution of the 2-body problem;� preserves total linear and angular momentum;� is self-adjoint and reversible;� has an extra factor of m2 = 10�6 in its local truncation error, compared to classical methods;� for moderate times (� 2�107 years), has linear growth of global errors, compared to quadratic growthfor classical methods;� has bounded energy errors for long times.This is almost a dream situation, where geometric integration has lead to a simple method with vastlyimproved local (time �), global (time T ), and structural (time 1) errors. This calculation discoveredchaos in the outer solar system with a Lyapunov time, the time for the separation between nearbyorbits to grow by a factor e, of 20 million years. Over the billion year calculation, they would separateby e50 � 1022, and integration errors would be magni�ed by this amount also. Thus, the �nal angularpositions of the planets are not expected to be accurate. However, we can be con�dent that the qualitativeor statistical properties of the solution are correct.2.2 Phase space and phase 
ow\In phase space, no one can hear you scream." (Caltech T-shirt)The fundamental idea to keep in mind is to think in phase space. It's a simple idea but one which you



12 Why preserve structure?

Fig. 2.3. Inclination of Pluto over 109 years, showing chaos. Even after 109 years the inclination has reached anew maximum.have to keep reminding yourself of: a simple de�nition in a dynamical systems class just isn't enough.Considering that di�erential equations were studied for 200 years before Poincar�e adopted this point ofview, this may not be too surprising.\Consider the 
uid molecules which initially form a certain �gure F0; when these molecules are displaced,their ensemble forms a new �gure which will be deformed in a continuous manner, and at the instant t theenvisaged ensemble of molecules will form a new �gure F ." (Poincar�e, Celestial Mechanics, 1899)In a trajectory 't(x0), one thinks of the initial condition x0 as �xed, and the time t increasing; in the
ow map '� (x), one thinks of all initial conditions x 
owing forward for some �xed time � . We'll onlyconsider one-step methods, so that the numerical approximation for one time-step � is a map � : Rm ! Rm :Now classical approximation theory, e.g. for Runge-Kutta methods, shows that chaos always wins: thebest bound that can be obtained in general for a method of order p is��� T=�� (x)� 'T (x)��� � (�t)pC e�T � 1�The precise value of � depends on the Lipschitz constant of the vector �eld and on the method, but� > 0 and consequent exponential growth of error cannot be avoided in general. But dynamical systemstheory teaches that  can be \close" to ' in other ways: their phase portraits may be qualitatively oreven quantitatively similar; the stability of their orbits may be the same; for strange attractors, theirLyapunov exponents or fractal dimensions may be close.The pendulum: theorySystems can have many geometric or structural properties. Before we get into de�nitions, let's look atthe planar pendulum. It is a two-dimensional system with phase space R2 , and dynamics_q = p; _p = � sin q (2.1)where q is the angle of the pendulum, and p its angular momentum. (Here we are taking q 2 R, thecovering space of the actual angle.) Here are some of the properties of the pendulum:� It conserves the total energy _H = 12p2 � cos q. That is, its 
ow stays on the level sets of this function.Because this is a two-dimensional system, these level sets are curves in the plane.� Being a Hamiltonian system, its 
ow is symplectic. For two-dimensional systems, this is equivalent tobeing area-preserving.



2.3 Philosophy of geometric integration 13

Fig. 2.4. Phase portrait and 
ow of the pendulum (from Hairer and Wanner). The area of each cat is preservedin time, the manifestation of symplecticity. Energy, whose levels sets are the curves shown, is preserved. Rotationby 180� ((q; p) 7! (�q;�p)) is a symmetry, while 
ipping up-down (p 7! �p) is a reversing symmetry.� It has one discrete symmetry and one discrete reversing symmetry (see Lecture 4). The symmetry,(q; p) 7! (�q;�p), maps the vector �eld into itself; the reversing symmetry, (q; p) 7! (q;�p), maps thevector �eld into minus itself. Imagining 
owing along one of the solution curves, you can see that themotion of the re
ected points is constrained.Because this is such a simple system, preserving any of these three properties gives a geometric in-tegrator with good long-time behavior for almost all initial conditions. A picture of its phase portraitwill look very similar to the true phase portrait; we'll see examples of this in Section 2.7. By contrast,standard methods (e.g. Euler's method) destroy the qualitative phase portrait completely.2.3 Philosophy of geometric integrationIn any numerical study, one should� examine any geometric or structural properties of the ODE or its 
ow;� design numerical methods which also have these structural properties; and� examine the consequences, hopefully over and above the immediate ones.This encourages us to� confront questions of phase space and degrees of freedom;� think about the signi�cance of local, global, and qualitative errors; and� think about the kinds of tools and functions allowed in numerical analysis.For example, multistep methods do not de�ne a map on phase space, because more than one initialcondition is required. They can have geometric properties, but in a di�erent (product) phase space, whichcan alter the e�ects of the properties. (See Fig. 2.12.) This puts geometric integration �rmly into the\single step" camp. If a system is de�ned on a sphere, one should stay on that sphere: anything elseintroduces spurious, non-physical degrees of freedom.The direct consequences of geometric integration are that we are� studying a dynamical system which is close to the true one, and in the right class; and



14 Why preserve structure?

Fig. 2.5. Phase portrait of a symplectic integration, from Channell and Scovel. 105 time steps for 10 di�erentinitial conditions are shown. Smooth curves (\KAM tori") correspond to regular, quasiperiodic motion; cloudscorrespond to chaotic motion.� this class may have restricted orbit types, stability, and long-time behavior.In addition, because the structural properties are so natural, some indirect consequences have beenobserved. For example,� symplectic integrators have good energy behavior;� symplectic integrators can conserve angular momentum and other conserved quantities;� geometric integrators can have smaller local truncation errors for special problems, and smaller globaltruncation errors for special problems/initial conditions (even though they're larger in the \generic"case);� some problems (particle scattering, isospectral problems) can have errors tending to zero at long times.Here's a pictorial survey showing what you can expect from geometric integration. Fig. 2.5 appearsin Channell and Scovel [3], one of the �rst symplectic integration papers. Orbits starting on the smoothcurves (\invariant circles") stay on them forever. Of course, the orbit may be going around the circle atthe wrong speed, but the \orbital error" does not grow in time. Compare this to the traditional approachto numerical integration, with its overwhelming emphasis on the estimation and control of local errors.The idea that errors grow in time and, once committed, cannot be undone, was deeply ingrained. Pictureslike Fig. 2.5 did a lot to revise this traditional point of view.Other orbits in Fig. 2.5 are chaotic, and their position errors grow exponentially. But, they can neverjump across the invariant circles, and because it's the right kind of chaos (namely, the solution of somenearby Hamiltonian system), statistical observations of this chaos will have small errors.2.4 Types of geometric propertiesStudy the list in the Table. The left hand column gives properties of vector �elds, and the righthand column gives the corresponding properties of their 
ow. It's the right hand property that must bepreserved by the integrator. Usually the 
ow properties are named the same as the ODE property.(The standard example of a Lie group G is the set of orthogonal 3 � 3 matrices, ATA = I , whichrepresent rotations. Its Lie algebra g is the set of antisymmetric 3� 3 matrices. G is a manifold whereasg is a linear space, a much simpler object to work with.)To bring some order to this table, consider the following features.� Is the structure linear in some sense?All of the ODE properties are linear in f , but all of the 
ow properties are nonlinear in ', except



2.5 Miscellaneous topics 15ODE _x = f(x) 
ow 't, derivative d'tHamiltonian f = JrH(x), J = � 0 I�I 0� d'T Jd' = J (symplectic)Poisson f = J(x)rH(x) d'T Jd' = J � 'source-free r � f = 0 det d' = 1 (volume preserving)symmetric dS:f = f � S S � ' = ' � Sreversible �dR:f = f �R R � '�1 = ' �RLie group f = a(x)x, x 2 G, a 2 g ' 2 Gisospectral f = [b(x); x], x, b 2 g eigenvalues �(x) constantintegral f � rI = 0 I(x(t)) = I(x(0))dissipative f � rV � 0 V (x(t)) � V (x(0))Table 2.1. Special classes of ODEs, and the corresponding properties of their 
ows.for linear symmetries. Symplecticity, Poisson, and reversibility are quadratic; volume preservation andisospectrality are degree m when x 2 Rm .� Does the structure appear explicitly or implicitly in the ODE?Hamiltonian, Poisson, Lie group, and isospectral ODEs are explicit (e.g. f = JrH generates allHamiltonian ODEs); the rest are implicit|there are side conditions which f has to satisfy.� Does the 
ow property depend on ' or d'?Symplecticity, Poisson, and volume preservation depend on the Jacobian d'. This makes them harderto preserve.These will be explored further in the other lectures. Brie
y, it is easier to work on linear and explicitproperties, so we concentrate on bringing all 
ow properties into this form. (See x3.1 on splitting.) Thishas been achieved for all the properties in the Table, but not for some of their nonlinear generalisationsand combinations.A major justi�cation for geometric integration comes from backward error analysis. This theoreticaltool writes the integrator  � as the time-� 
ow of some vector �eld ~f , i.e.  � (f) = '� ( ~f). If the methodis of order p, we have ~f = f +O(�p). Then, in many cases one can argue that since  � is in some class(e.g. symplectic), the perturbed vector �eld must be in the appropriate class too (e.g. Hamiltonian). Sowe know that by studying the dynamics of the method, we are at least studying dynamics in the rightclass. The reliability of the results then depends on the \structural stability" of the original system: adi�cult problem, but a standard one in dynamical systems.In the Hamiltonian case, ~f = Jr eH for some Hamiltonian eH , which is conserved by the method. Sincewe don't know eH and can only measure the original energy H , it (H) will be seen to oscillate, but (if thelevels sets of H and eH are bounded) will not drift away from its original level.Technically, one suspends the map  � to a time-dependent 
ow '� (~g(x; t)), from which, when  � isanalytic, nearly all the time dependence can be removed by a change of variables, giving ~f(x)+O(e�1=� ; t).This introduction of an exponentially small nonautonomous term is inevitable, because most maps, eventhose close to the identity, are not actually 
ows. If the time step is too large these exponentially smallterms can actually pollute the calculation, and one observes, for example, the energy drifting.2.5 Miscellaneous topicsSome other branches of geometric integration are� ODEs on manifolds, such as homogeneous spaces. Although ultimately one can only compute in alinear space, it's best to formulate the method on the manifold and transfer to coordinates as late aspossible. A special case is when the manifold is a Lie group [4]; Lie group methods are one of the majorthemes in geometric integration which we don't have space to discuss here.
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Fig. 2.6. Flow on a family of invariant tori. From V.I. Arnol'd, Small denominators and problems of stabilityof motion in classical and celestial mechanics, Uspehi Mat. Nauk (Russ. Math. Surv.) 18 (1963) no. 6 (114)91{192.� Mapping methods approximate the equations in x as well as in t, for example, by Taylor series. Mapsde�ned by series can then be manipulated analytically.� When evaluating Lyapunov exponents one should try to preserve their structure, e.g., that the Jacobiansused are symplectic or volume-preserving.� For partial di�erential equations one can either discretize in space �rst, seeking a �nite-dimensionalversion of, e.g., the Hamiltonian structure, or discretize space-time directly.� One can discretize phase space itself and study lattice maps, a form of cellular automata. This hasbeen used in studies of the e�ect of roundo� error.� Instead of trying to construct special methods that preserve particular properties, one can see howwell standard methods do. Usually the property has to be fairly robust, e.g., dissipation of the typedjxj2=dt < 0 for jxj > R is studied, instead of dV=dt � 0 for all x. This approach is thoroughly treatedin Stuart and Humphries, Dynamical Systems and Numerical Analysis.2.6 Growth of global errorsThe global error is  T=�� (x)�'� (x) where T is a large, but �xed, time. Geometric integrators are notexpressly designed to control the global error. Nevertheless, sometimes it grows linearly in a symplecticintegrator and quadratically in a standard integrator. This will make the symplectic integrator superiorif T is large enough.This property has been observed in many systems of di�erent types. It is associated with preservationof invariant tori by the method. An invariant torus is a subset of initial conditions, topologically a torus,which orbits starting on stay on for all forwards and backwards time. A torus is preserved if the integratorhas an invariant torus of its own, which tends to the torus of the ODE as � ! 0.Invariant toriInvariant tori are ubiquitous in dynamics. They're found in:� Hamiltonian systems (tori have dimension n=2);� reversible systems (when orbits intersect the symmetry plane; tori often have dimension n=2);� volume-preserving systems (tori have any dimension < n).They are important because they� form positive-measure families of neutrally stable orbits, which� mostly persist under small perturbations of the system;� form \sticky sets," dominating behavior of nearby orbits on intermediate time scalesNearby orbits diverge like� O(1) on same torus



2.7 The pendulum: numerical experiments 17

Fig. 2.7. Cross-section of the tori in Fig 2.6 after perturbation (Arnol'd). Some are destroyed and replaced bychaos, some persist.� O(T ) on a nearby or perturbed torus� O(T 2) if O(T ) drift across tori� O(T; e�T ) on nearby chaotic orbits; � depends on the order of resonance, but can be very small.Therefore, in an integrator we should try to preserve tori of the correct dimension. In a standard method,they are not preserved, and orbits drift transversely, leading to O(T 2) growth of global errors. If thetorus is preserved, orbits only move around the torus at a slightly wrong angle or speed, leading to O(T )errors.It turns out to be an extraordinarily subtle question to determine when which tori persist under whichperturbations. Finally, in the 1960's, conditions were found by Kolmogorov, Arnol'd, and Moser underwhich most tori do persist under appropriate perturbations, although some are destroyed. This formsthe subject of KAM theory.For Hamiltonian systems, an appropriate perturbation is Hamiltonian, so the results apply to symplecticintegrators.In between invariant tori, or if tori were destroyed by taking too large a time step, orbits can be chaotic.But, because of the nearby tori, exponential separation can be very slow, and the linear error growth candominate for long times. 2.7 The pendulum: numerical experimentsWe illustrate the above points on the simplest meaningful example, the pendulum (Eq. (2.1)). Thesimplest symmetric, reversible, self-adjoint symplectic method is leapfrog:q0 = q + 12�pp0 = p� � sin q0q00 = q0 + 12�p0The results of this method are shown in Fig. 2.8 for a small time step (� = 0:1) and in Fig. 2.9 for amuch larger time step (� = 1). Even for the larger time step, the left-right and up-down symmetries arepreserved, as are most of the invariant circles, as promised by KAM theory for symplectic integrators.Chaos is signi�cant only in a small neighbourhood of the homoclinic orbit connecting (�; 0) and (��; 0).A symplectic method which is not symmetric or self-adjoint is shown in Fig. 2.10; the lack of symmetry
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Fig. 2.8. 1000 times steps of symplectic leapfrog applied to the pendulum, time step � = 0:1.
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Fig. 2.9. As in Fig. 2.8, but � = 1.
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Fig. 2.10. A nonsymmetric symplectic integration of the pendulum, � = 0:1.
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Fig. 2.11. 106 time steps of leapfrog at � = 1, showing a chaotic orbit.
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Fig. 2.12. A symplectic multistep method: the torus has dimension 2 instead of 1 as in Figs. 2.8{2.10. A singleorbit is shown, with the �rst 50 time steps marked by �.is plain to see. In this case, invariant circles are still preserved. In higher-dimensional systems, there isa more complicated interaction between symplecticity and reversibility.What is the e�ect of the chaos created by the numerical integrator? Fig. 2.11 shows one chaotic orbitof leapfrog at the large time step � = 1, obtained with initial condition (q; p) = (0; 1:8). It was found tohave a large Lyapunov exponent of 10�2. By T � 100, the chaos would dominate the numerical errors.by contrast, with initial condition (q; p) = (0; 1:6), the Lyapunov exponent is already reduced to 10�7,and phase errors (moving around the circle at the wrong speed) would dominate until T � 107. Thus,even when the numerical orbit does not lie on an invariant torus, the preservation of some invariant torinearby helps a great deal.In Section 2, we talked about the importance of staying in the right phase space. The multistepmethod xn+1 = xn�1 + 2�f(xn) is a map on the product phase space R2 � R2 . It can be shown to besymplectic in this larger space, but its KAM tori have dimension 2, instead of 1 as in the real system.When projected to the original phase space, they �ll out a solid region, instead of a curve|a disaster forlong-time simulations. This e�ect is illustrated in Fig. 2.12.2.8 SummarySystems may have many geometric or structural features. Integrators must balance costs, local, global,and long-time errors, stability, and structural preservation. You can't expect to do well at all of these



20 Why preserve structure?simultaneously! Also, numerical studies can have di�erent goals. Demanding very small local errors for alarge class of ODEs tilts the balance in favour of highly-developed standard methods; seeking reliabilityover long times with simple, fast methods tilts in favour of geometric integrators.The remaining lectures look at preserving di�erent properties. Here we sum up what is known aboutpreserving several properties at once.(i) Symplecticity and energy: If, by \integrator", we mean that the method is de�ned for all Hamilto-nian ODEs, then by a theorem of Ge, this is impossible. For exceptional (\completely integrable")problems, such as the free rigid body, this can be done.(ii) Symplecticity and integrals apart from energy: Not known, although doable in principle.(iii) Symplecticity and linear symmetries: Achieved by, e.g., the implicit midpoint rule.(iv) Poisson and linear symmetries: Not known.(v) Volume preservation and linear symmetries: Not known.(vi) Integrals and linear symmetries: Sometimes possible using the Harten, Lax and Van Leer discretegradient (see Lecture 6).(vii) Volume and an integral: Can be done by splitting for all systems with some integrals and for somesystems with any integrals. Not known in general.Extending the concept of geometric integration to PDEs is much less developed. Work has been done,e.g., on integral preservation [7], symmetry preservation [8], and Lagrangian (variational) structure [9].ReferencesBackground on numerical ODEs1. E. Hairer, S. N�rsett, and G. Wanner, Solving Ordinary Di�erential Equations I: Nonsti� Problems, 2nded., Springer, 1993. Historical illustrations2. J. Wisdom and M. Holman, Symplectic maps for the N -body problem, Astron. J. 102 (1991), 1528{1538; J. Wisdom, M. Holman, and J. Touma, Symplectic correctors, in Integration Algorithms for ClassicalMechanics, Fields Institute Communications 10 (1996), 217{244.3. P.J. Channell and J.C. Scovel, Symplectic integration of Hamiltonian systems, Nonlinearity 3 (1990),231{259. Equations on manifolds and Lie groups4. A. Iserles, H. Munthe-Kaas, S.P. N�rsett, and A. Zanna, Lie-group methods, Acta Numerica (2000), 215{365. Backward error analysis, invariant tori, and error growth5. E. Hairer and Ch. Lubich, The life-span of backward error analysis for numerical integrators, Numer.Math. 76 (1997), 441{462.6. B. Cano and J.M. Sanz-Serna, Error growth in the numerical integration of periodic orbits, with applicationto Hamiltonian and reversible systems, SIAM J. Numer. Anal. 34 (1997), 1391{1417.PDEs7. R.I. McLachlan and N. Robidoux, Antisymmetry, pseudospectral methods, and conservative PDEs, Proc.Int. Conf. EQUADIFF '99, to appear.8. V. Dorodnitsyn, Finite di�erence methods entirely inheriting the symmetry of the original equations, in N.Ibragimov, ed., Modern Group Analysis: Advanced Analytical and Computational Methods in MathematicalPhysics, Kluwer, 1993, pp. 191{201; C.J. Budd, G.J. Collins, W.Z. Huang, and R.D. Russell, Self-similarnumerical solutions of the porous medium equation using moving mesh methods, Phil. Trans. Roy. Soc.A 357 (1999), 1047{1077.9. J.E. Marsden, G.W. Patrick, and S. Shkoller, Multisymplectic geometry, variational integrators, and non-linear PDEs, Comm. Math. Phys. 199 (1998), 351{395.



3Symplectic integrators: A case study of themolecular dynamics of water.
\Chemistry is a science, but not Science; for the criterion of true science lies in its relation to mathemat-ics" (Kant)\Chemistry will only reach the rank of science when it shall be found possible to explain chemical reactionsin the light of their causal relations to the velocities, tensions and conditions of equilibrium of the con-stituent molecules; that the chemistry of the future must deal with molecular mechanics by the methods andin the strict language of mathematics, as the astronomy of Newton and Laplace deals with the stars in theircourses" (Du Bois Reymond)This quote (from D'Arcy Thompson's On Growth and Form) could not be more apt: symplecticintegrators, developed to deal with the stars in their courses, are now applied to the velocities of molecules.There are many �ne surveys of symplectic integration, so here we'll discuss Poisson systems, or non-canonical Hamiltonian systems, and how they arose in a study of water. Water, the \king of polar
uids," has many strange phases and anomalous properties, which statistical mechanics has a hard timeexplaining. Therefore people turn to numerical simulations.3.1 SplittingRecall the problem of splitting|how can we write f = f1 + f2 so that the fi retain some properties off? The idea is to represent all f in the given class explicitly by a \generating function." Then we splitthe generating function. This can be done for Hamiltonian systems by splitting the Hamiltonian. Lookat Table 2.1: Hamiltonian systems are expressed explicitly.Example 3 Hamiltonian systems. The generating function is the Hamiltonian H .f = JrH = Jr�Xi Hi� = JrH1 + : : :+ JrHn:Properties due to J , which is not split, are retained|symplecticity. Properties due to H , which is split,are lost|conservation of H .Example 4 Systems with an integral. The generating function is the skew-symmetric matrix function J .f = JrH = �Xi Ji�rH = J1rH + : : :+ JnrHProperties due to J , which is split, are lost|symplecticity. Properties due to H , which is not split, areretained|conservation of H .We'll return to systems with an integral in Lecture 6, and see how to apply splitting to volume-preservingsystems in Lecture 4.

21



22 Symplectic integrators3.2 Poisson systemsConsider a standard, canonical Hamiltonian system._x = JrxH(x); J = � 0 I�I 0� :It only has this special form when written in special variables. If we apply an arbitrary change of variables,writing the system in terms of y = g(x), it becomes_y = dg � _x= dg � JrxH(x)= dg � J � dgTryH(x)= eJ(y)ry eH(y);where eJ = dg � J � (dg)TeH(y) = H(x):This is an example of a \Poisson system," the most obvious change being that the matrix J now dependson y. However, the class of Poisson systems is invariant under changes of variables. Since the historyof mathematics and of physics is a history of requiring invariance under more operations, it seems weshould study Poisson systems in their own right.(There are many other motivations for the introduction of Poisson systems, from PDEs, systems onLie groups and other manifolds, and symmetry reduction.)An important special case are the \Lie"-Poisson systems. Let x 2 Rm be an element of a Lie algebra.Let [xi; xj ] =Pmk=1 ckijxk be the Lie bracket. Let Jij = [xi; xj ], so that the entries of J are linear functionsof x. Then _x = J(x)rH(x)or _xi =Xj;k ckijxk @H@xjis called a Lie-Poisson system.Example 5 The free rigid body in R3 . The variables are �1, �2, �3, the angular momenta of the bodyin body-�tted coordinates. J = 0@ 0 �3 ��2��3 0 �1�2 ��1 0 1AH = 12 ��21I1 + �22I2 + �23I3 �Here the Lie algebra is so(3), the antisymmetric 3� 3 matrices.3.3 Splitting into solvable piecesEarlier we showed how to split a vector �eld into appropriate pieces, and how to compose their 
ows.But, it is still important to be able to apply a geometric integrator to each piece. Here we achieve thisby requiring the pieces to be (easily) integrable.Observation I If Jij = 0 for 1 � i; j � k < n and H = H(x1; : : : ; xk), then the ODEs are_x = � 0 �� ��� �0�



3.4 Molecular dynamics 23or _xi = � 0 i = 1; 2; : : : ; kPj;l clijxlfj(x1; : : : ; xk) i = k + 1; : : : ;mwhich are linear with constant coe�cients, hence easily solved (although the coe�cients depend para-metrically on the other variables x1; : : : ; xk).Observation II Systems with H =PiHi(xi) can be split into easily solved parts. The rigid body hasthis form.Observation III Quadratic Hamiltonians can be diagonalized, i.e., put in the form of Observation II,and hence split. 3.4 Molecular dynamicsThe basic steps in a molecular dynamics simulation are the following.(i) Take a large sea of particles.(ii) Impose boundary conditions (e.g. 3D periodic) and impose constancy of any three out of the fourquantities pressure, volume, temperature, and number of particles; the fourth is determined.(iii) Find a classical model of the interparticle forces.(iv) Move the particles for a long time.(v) Collect statistics of the motion.Applications are to exploring states of matter (phase transitions, liquid, liquid crystal, colloidal),protein folding, the design of large organic molecules and drugs, nanotechnology. It's a big �eld.Current limits are about 108 simple atoms on a supercomputer, 105 simple atoms on a workstation,and 102{103 water molecules on a workstation. For water, even 27 = 3 � 3� 3 molecules with periodicboundary conditions are enough to see solid, liquid, and gas phases.What's the best way to move the particles? The method should� obey the physical laws;� exhibit the correct statistical equilibrium in the face of chaos; and� be fast and cheap, since forces are expensive to evaluate.In fact, the forces are so expensive that users don't want to evaluate them more than once per timestep. For decades they've been using the Verlet method for point masses:H = kinetic + potential = 12p2 + V (q);qn+1 = qn + �pnpn+1 = pn � �rV (qn+1)We now know that it's so good because it's the simplest symplectic integrator, and comes from splittingthe Hamiltonian.How can we extend the Verlet algorithm to non-symmetric molecules like water? Many approacheshave been considered.� Move each atom separately. This involves modelling the interatomic forces, which means simulatingthe many modes of vibration within each molecule. Their time scale is very short and they are notbelieved to a�ect the macroscopic properties of water, which rules out this approach.� Model as a rigid body. This is the preferred option. It can be done in various ways:� Consider the molecule as a set of particles subjected to constraints on interatomic distances and angles.This is possible, but constraints lead to expensive, implicit methods. They are needed for problemsinvolving 
exible chains such as proteins.� Model as a rigid body, with orientation represented by Euler angles or unit quaternions. The Hamilto-nian in these variables is complicated and nonseparable; this makes symplectic methods expensive. Inthe most popular variant, unit quaternions are used and the ODEs are passed to a black-box solver.� Represent orientation by a 3� 3 orthogonal matrix, and update this by rotations only.This last is what we now do. First, let's look at the free rigid body.



24 Symplectic integrators

Fig. 3.1. The phase portrait of the free rigid body (from Bender & Orszag, Advanced Mathematical Methods forScientists and Engineers.) Orbits on a sphere of constant angular momentum j�j are shown. There are threepairs of �xed points, corresponding to rotation about each of the three principal axes; two are stable and one isunstable. To observe passage along the \homoclinic orbit" joining the unstable pair, hold a hammer with thehead horizontal and toss so it rotates once about a left-right axis.3.5 The free rigid bodyLet the angular momentum vector be �, the orientation be Q 2 SO(3), i.e. QTQ = Id; the Hamiltonianfor the free rigid body is H = 12 ��21I1 + �22I2 + �23I3 � :The phase portrait for this system is shown in the famous Figure 3.1.As noted above, splitting methods work excellently for Lie-Poisson systems with Hamiltonians of thistype. The 
ow of H = �212I1 is �(t) = R�(0)Q(t) = Q(0)RTwhere R = 0@ 1 0 00 cos � � sin �0 sin � cos � 1A ; � = t�1I1 :This decomposes the motion into three elementary rotations. The method is fast, accurate, reversibleand symplectic. Q is always orthogonal up to round-o� error, because it is updated only by rotations.How does this �t into a full simulation of water? For each molecule the variables are the q, the positionof the centre of mass; p, the linear momentum; Q; and �. The total energy has the formH = T rotation(�) + T translation(p) + V (q;Q)together with the constraints QTQ = Id. We apply a Verlet-like splitting into kinetic and potential parts.For each molecule, we havePotential part: _q = 0_Q = 0_p = �@V@q =: f (force)_� = (QT f)� x (torque)



3.5 The free rigid body 25where x is the point at which the force acts. Since the positions and orientations are here held constant,these equations are easy to solve.Kinetic part: _q = p_Q = Q �skew(I�1�)�_p = 0_� = � � I�1�where I = diag(I1; I2; I3) is the inertia tensor. The centres of mass undergo free, straight-line motion,while the orientations move as a free rigid body. The latter could be solved explicitly, although this hasnever been implemented in a production code; in practice, we approximate its 
ow by the previously-givensplitting method.Composing these pieces gives an analogue of the Verlet method for this non-canonical Hamiltoniansystem. The �nal method uses only one force evaluation per time step, but is still explicit, symplectic,reversible, and conserves total linear and angular momentum (because each piece does). As expectedfor such a method, energy errors are bounded in time. When implemented in the existing research codeORIENT using existing error criteria, this method was about ten times faster than the old method (2-levelleapfrog with Bulirsch-Stoer extrapolation). ReferencesHamiltonian systemsFor an introduction to Hamiltonian and Poisson systems, see1. Peter J. Olver, Applications of Lie groups to di�erential equations, Springer, New York, 1986and to their dynamics,2. D.K. Arrowsmith and C.M. Place, Dynamical systems: di�erential equations, maps, and chaotic behavior,Chapman & Hall, New York, 1992. Splitting3. R.I. McLachlan and G.R.W. Quispel, Generating functions for dynamical systems with symmetries, inte-grals, and di�erential invariants, Physica D 112 (1997), 298{309.Molecular dynamics4. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, Oxford Science, Oxford, 1987.5. A. Dullweber, B. Leimkuhler, and R. McLachlan, Split-Hamiltonian methods for rigid body moleculardynamics, J. Chem. Phys. 107 (15), 5840 (1997).



4Symmetries and reversing symmetries
4.1 Symmetries of ODEsA symmetry is a map h : Rm ! Rm from phase space to itself, such as x 7! �x. In a system withsymmetries, the vector �eld at the two points x and h(x) are related to each other. This is shown forthe pendulum in Fig. 2.4. Under the 180� rotation (q; p) 7! (�q;�p), arrows (the vector �eld) map toarrows: a symmetry. Under the re
ection p! �p, arrows map to arrows if we also reverse their direction:a reversing symmetry. The analogous properties for 
ows can be seen by tracing along the 
ow lines.Symmetries and reversing symmetries both reduce the possible complexity of the phase portrait, andshould be preserved.In reversible Hamiltonian systems, reversing symmetries are a bit easier to preserve than symplecticity(although one can have both, if desired). For example, for simple mechanical systems there are explicit,variable-step-size reversible methods.Consider the ODE _x = f(x) under the change of variables y = h(x). The new system is_y = ef(y) := ((dh � f)h�1)(y):De�nition 6 The vector �eld f has symmetry h if f = ef , i.e., if dh � f = fh. The vector �eld f hasreversing symmetry h if f = � ef , i.e., dh � f = �fh, and f is called reversible.The notation fh indicates composition, i.e., (fh)(x) = f(h(x)).Example 7 The pendulum. For the vector �eldf : _q = p; _p = � sin qwe have h1 : eq = q; ep = �p) _eq = �ep; _ep = sin eq;|a reversing symmetry; h2 : eq = �q; ep = p) _eq = �ep; _ep = sin eq;|a reversing symmetry; and soh1 � h2 : eq = �q; ep = �p) _eq = ep; _ep = � sin eqis a symmetry. So the pendulum has \reversing symmetry group" (the group of all symmetries andreversing symmetries) � = fid; h1; h2; h1h2g :In general, half of the elements of � are symmetries, and the composition of two reversing symmetriesis a symmetry.We will use S for a symmetry and R for a reversing symmetry.De�nition 8 The �xed set of S is �x(S) := fx : x = S(x)g:26



4.2 Symmetries of maps 27The �xed set is invariant under the 
ow of f . So preserving symmetries is one way of staying on asubmanifold.Example 9 A nonlinear symmetry. For the pendulum, the elements of � were all linear maps. Here isan example of a matrix ODE with a nonlinear symmetry. It is related to the famous Toda lattice. LetX;L0 2 Rn�n ;_X = B(XL0X�1)X;B(L) = L+ � L�;where L+ (L�) is the upper (lower) triangular part of L. This system has h(X) = X�T as a symmetry.The �xed set is X = h(X) = X�T or XXT = I , i.e., X 2 O(n), the orthogonal group. A symmetry-preserving integrator for this system would also have O(n) as an invariant set.4.2 Symmetries of mapsDe�nition 10 A map  has h as a symmetry if h =  h, i.e., = Nh := h�1 h:A map  has h as a reversing symmetry if h =  �1h, i.e. = NhI := h�1 �1h:The important property of the operators Nh, I is how they act on compositions of maps. Nh acts asan automorphism, i.e. Nh( 1 2) = (Nh 1)(Nh 2);while I acts as an antiautomorphism, i.e.I( 1 2) = ( 1 2)�1 =  �12  �11 = (I 2)(I 1)For a map, having a (reversing) symmetry is equivalent to being in the �xed set of an (anti)automorphism.Therefore, we study how to construct maps in such �xed sets. We shall see that for antiautomorphismsthis is relatively simple, while for automorphisms it is unsolved.Thus, paradoxically, we know how to construct reversible integrators, (which is good, because re-versibility brings good long-time behavior, e.g., through invariant tori), but not symmetric integrators,which looks at �rst sight simpler. 4.3 CovarianceWhy are Runge-Kutta methods called linear methods? One explanation is that they are linearlycovariant. Consider methods  which associate to each ODE f a map  � (f), where � is the time step.De�nition 11 A method  is h-covariant if the following diagram commutes._x = f(x) x=h(y)�! _y = ef(y)# #ex =  � (f)(x) x=h(y)�! ey =  � ( ef)That is, if  = Kh := h�1 ((dh � f)h�1)hwhere Kh is an automorphism.



28 Symmetries and reversing symmetriesIn words, we get the \same" integrator whether we take the ODE in variables x or y. Notice that if h isa symmetry of f , then f = ef , and hence h is a symmetry of  . So an h-covariant method is automaticallyh-symmetric, even if we don't know what the symmetry is!So, we should classify methods by their covariance group.Example 12 Euler's method  � (f) : x 7! x+ �f(x)(or, more generally, any Runge-Kutta method), is covariant under any a�ne map x = Ay + b.Example 13 The exact solution '� (f) is covariant under all maps x = h(y).Example 14 The splitting method for _q = f(p), _p = g(q), � (f) : q0 = q + �f(p); p0 = p+ �g(q0)is covariant under all maps eq = h1(q), ep = h2(p). It is not even covariant under linear maps which couplethe q, p variables.When composing symmetric or reversible methods, we can use the properties(i) The �xed sets of automorphisms form a group.(ii) The �xed sets of antiautomorphisms form a symmetric space.Property (1) is immediate, while property (2) follows from the followingLemma 15 (The Generalized Scovel Projection.) Let A� be an antiautomorphism with order 2,i.e. A2� = id. Let � = A��, i.e. � 2 �xA�. Then �A� 2 �xA� 8 :Proof A�( �A� ) = A2� A��A� =  �A� .Example 16 For any (anti)automorphism A, we have A(id) = id and hence A(��1) = A(�)�1. There-fore, � 2 �xA� ) ��1 2 �xA�. Taking  = A� gives the symmetric space property  ��1 2 �xA�.Example 17 � = id )  A� 2 �xA�. This gives a way of constructing elements �xed under anyantiautomorphism, starting from any element.Example 18 With A� � :=  �1�� and � = id, this builds self-adjoint methods of the form  � �1�� .Example 19 With A� := h�1 �1h, h2 = id, and � = id, this builds reversible methods of the form h�1 �1h. 4.4 Building symmetric methodsThis is unsolved except in two simple cases.(i) If the method is h-covariant and h is a symmetry, then the method is h-symmetric.(ii) If the symmetry group H is linear and the map  belongs to a linear space, then we can averageover H :  := 1jH j Xh2H  his H-symmetric.Since preserving symmetries is di�cult, we should try not to destroy symmetries in the �rst place, bydoing non-symmetric splittings, for example.
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time step numberFig. 4.1. The discrepancy for  3 = `01101001' applied to Example 9, where the base method  0 is Euler. Noticehow the symmetry error is drastically reduced every 2, then every 4, then every 8 time steps.Hamiltonian systemsA symplectic integrator preserves an integral I if it preserves the symmetry associated with thatintegral, namely, the 
ow of JrI .Example 20 Angular momentum I = q � p. Here JrI has the form _q = a(q), _p = b(p), whose 
ow hasthe form of Example 14. Therefore, splitting methods for H = 12p2 + V (q) preserve angular momentum.Example 21 Quadratic integrals are associated with linear symmetries, so are preserved by any linearlycovariant symplectic integrator, such as the midpoint rule (by Noether's theorem).4.5 Building reversible methodsHere the situation is much nicer.Theorem 22 Let � be a group of automorphisms and antiautomorphisms. Let ' be �xed under theautomorphisms. Then  = 'A�'is �xed under Ag for all g 2 �, where A� is any antiautomorphism in �.For example, if all symmetries are linear, then we can use this theorem to construct integrators havingthe full reversing symmetry group.4.6 Approximately preserving symmetriesThe composition used in Lemma 15 is so nice that it would be nice to use it for symmetries as well asreversing symmetries. Although it doesn't eliminate the symmetry error, it does reduce it by one powerof the time step.Theorem 23 Let A+ be an automorphism of order 2. Let  � be a method with  = A+ +O(�). Let 1 :=  A+ . Then  1 = A+ 1 +O(��), where � = O(�).Proof The proof is an illustration of backward error analysis and manipulation of 
ows considered asexponentials. We write the map  as the 
ow of a vector �eld consisting of a part S which has the



30 Symmetries and reversing symmetriessymmetry and a part M which does not:  = exp(�S + �M):Therefore, A+ = exp(�S + �N)for some vector �eld N . Now 1(A+ 1)�1 = ( A+ )(A+  )�1=  A+  �1 (A+ )�1= exp([�S + �M; �S + �N ] + : : :)= exp(��[S;N �M ] + : : :)Usually, the initial symmetry error � will be O(�p+1) for a method of order p, and this compositionreduces it to O(�p+2). The idea can be applied iteratively: if n+1 =  nA+ n;then  n has symmetry error O(�n�). This gives methods of the form 2 =  A+ A+  = `0110'; 3 = `01101001';and so on, given by the initial elements of the famous `Thue-Morse' sequence.In the matrix example given previously, it is desired to leave the �xed set XXT = I invariant. Thiscould be done by, e.g., the midpoint rule, but this is implicit and, given the form of the ODE, veryexpensive. Instead, one can use a simple explicit method for  , and reduce the symmetry error to anydesired order using  n. This leaves X orthogonal to any desired order.ReferencesBackground on symmetries1. J.A.G. Roberts and G.R.W. Quispel, Chaos and time-reversal symmetry: order and chaos in reversibledynamical systems, Phys. Rep. 216 (1992), 63{177.Symmetric integration2. R.I. McLachlan, G.R.W. Quispel and G.S. Turner, Numerical integrators that preserve symmetries andreversing symmetries, SIAM J. Numer. Anal. 35 (1998), no. 2, 586{599.3. A. Iserles, R. McLachlan, and A. Zanna, Approximately preserving symmetries in the numerical integrationof ordinary di�erential equations, Eur. J. Appl. Math. 10(5) (1999), 419{445.4. W. Huang and B. Leimkuhler, The adaptive Verlet method, SIAM J. Sci. Comput. 18 (1997), 239{256.5. H. Munthe-Kaas, G.R.W. Quispel, and A. Zanna, Applications of symmetric spaces and Lie triple systemsin numerical analysis, preprint.



5Volume-preserving integrators
Remember that the ODE dxdt = f(x)is source-free (or divergence-free) if r � f = mXi=1 @fi@xi = 0for all x. Let df = (@fi=@xj) be the derivative of f and A = @'�=@x be the Jacobian of its 
ow. Aevolves according to dAdt = dfA; A(0) = Idand one can show that ddt detA = tr(df) det(A):Consequently, if r � f = tr(df) = 0, then detA = 1 for all time; the 
ow is volume preserving.Volume preserving systems may be seen as one of the very few fundamental types of dynamics; their
ows belong to one of the \Lie pseudogroups" of di�eomorphisms. They arise in tracking particles inincompressible 
uid 
ow, in perturbations of Hamiltonian systems, and in discretizations of the waveequations of mathematical physics; volume preservation (and not symplecticity, for example) is the keyconservation law underlying statistical mechanics. An example comparing volume- and non-volume-preserving integration is shown in Figs. 5.1{5.3..The integrator  � is volume preserving (VP) ifdet�@ �;i@xj � = 1for all x. There are two general ways to construct VP integrators:(i) the splitting method, and(ii) the correction method.5.1 Volume-preserving splitting methodStarting with the system of ODEs dx1dt = f1(x)...dxmdt = fm(x)31
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Fig. 5.1. Orbit of the 3D \ABC" 
ow computed with a second-order volume-preserving integrator. The systemis _x = A sin z + C sin y, _y = B sinx + A cos z, _z = C sin y + B cos x, with parameters A = B = 1, C = 2 andinitial conditions (2; 5; 0). The phase space T3 is here viewed along the z-axis, the long axis of the torus. Theintegration time is 750, equivalent to 240 circuits of the z-axis, and the time step is � = 0:1. The orbit lies on atorus and its regular, quasiperiodic behaviour is apparent.
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Fig. 5.2. As in Fig. 5.1, but computed with the a non-volume preserving second order Runge-Kutta method withthe same time step. The computed 
ow is not quasiperiodic and the amplitude of the motion gradually decreases(the last 3% of the orbit is shown in bold). However, this method does preserve the 16 linear symmetries of theODE [4.2], which may explain why the results are better than in Fig. (5.3)we substitute fm(x) = Z @fm@xm dxm= � Z m�1Xi=1 @fi@xi dxm
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Fig. 5.3. As in Fig. 5.1, but computed with MATLAB's ODE45 routine. The use of time-adaptivity has brokenthe spatial symmetries, with drastic consequences.with appropriately chosen constants of integration, to get the equivalent formdx1dt = f1(x)...dxm�1dt = fm�1(x)dxmdt = �m�1Xi=1 Z @fi@xi dxm:Now we split f , writing f as the sum of the m� 1 vector �eldsdxidt = 0 i 6= j;mdxjdt = fj(x)dxmdt = � Z @fj@xj dxmfor j = 1; : : : ;m� 1. Note that:(i) Each of these m� 1 vector �elds is source-free.(ii) We have split one big problem into m� 1 small problems. But we know the solution to each smallproblem! They each correspond to a two-dimensional Hamiltonian systemdxjdt = @Hj@xmdxmdt = �@Hj@xjwith Hamiltonian Hj := R fj(x)dxm, treating xi for i 6= j;m as �xed parameters. Each of these 2Dproblems can either be solved exactly (if possible), or approximated with any symplectic integrator j . Even though  j is not symplectic in the whole space Rm , it is volume-preserving.



34 Volume-preserving integratorsA volume-preserving integrator for f is then given by =  1 �  2 � : : :  m�1:Example 24 (for illustration only) The 3D Volterra systemdx1dt = x1(x2 � x3)dx2dt = x2(x3 � x1)dx3dt = x3(x1 � x2)is source-free, and splits as dx1dt = x1x2 � x1x3dx2dt = 0dx3dt = �x2x3 + 12x23
9>>>>>=>>>>>; ~f1;dx1dt = 0dx2dt = x2x3 � x2x1dx3dt = x1x3 � 12x23
9>>>>>=>>>>>; ~f2;where volume-preserving integrators for ~f1 and ~f2 are given by the implicit midpoint rule,x0 = x+ � ~f1 �x+ x02 � ; x00 = x0 + � ~f2�x0 + x002 � :Note that the x23 terms were not in the original system, but on combining the two steps they cancel.The splitting is an example of a generating function method: we construct source-free f 's without anyside conditions. 5.2 The volume-preserving correction methodThe simplest case is the semi-implicit methodx01 = x1 + �f1(~x)...x0m�1 = xm�1 + �fm�1(~x)xm = Z x0m J(~x) dx0mwhere J := det�@x0i@xj�i;j=1;:::;m�1and ~x = (x1; : : : ; xm�1; x0m):For a proof of consistency and volume-preservation, see [3].



5.2 VP correction 35Example 25 (for illustration only) For the 3D Volterra systemdx1dt = x1(x2 � x3)dx2dt = x2(x3 � x1)dx3dt = x3(x1 � x2)we get x01 = x1 + �x1(x2 � x03)x02 = x2 + �x2(x03 � x1)and J = ����� @x01@x1 @x01@x2@x02@x1 @x02@x2 �����= ���� 1 + �(x2 � x03) �x1��x2 1 + �(x03 � x1) ����= 1 + �(x2 � x1) + �2(x2x03 + x1x03 � x023 )and the last component of the method is x3 = R x03 Jdx03 orx3 = x03 + �x03(x2 � x1) + �22 �x2x023 + x1x023 � 23x033 � :ReferencesThe splitting method1. Feng Kang and Shang Zai-jiu, Volume-preserving algorithms for source-free dynamical systems, Numer.Math. 71 (1995), 451.2. R.I. McLachlan and G.R.W. Quispel, Generating functions for dynamical systems with symmetries, inte-grals, and di�erential invariants, Physica D 112 (1997), 298{309.The correction method3. G.R.W. Quispel, Volume-preserving integrators, Phys. Lett. 206A (1995), 26{30.4. Z.-J. Shang, Construction of volume-preserving di�erence schemes for source-free systems via generatingfunctions, J. Comput. Math. 12 (1994), 265{272.Error growth5. G.R.W. Quispel and C.P. Dyt, Volume-preserving integrators have linear error growth, Phys. Lett. 242A(1998) 25{30.



6Integrators that preserve integrals and/orLyapunov functions
De�nition 26 I(x) is a (�rst) integral or a conserved quantity of an ODE ifddtI(x(t)) = 0for solutions x(t) of the ODE dxdt = f(x), x 2 Rm .By the chain rule, this requiresP dIdxi dxidt = 0 for all solutions x(t), or equivalentlyX dIdxi fi(x) = f � rI = 0for all x.De�nition 27 V (x) is a Lyapunov function ifddtV (x) � 0:Equivalently, f � rV � 0 for all x 2 Rm :ODEs with one or more �rst integrals occur frequently in physics. Many examples come from two mainclasses:(i) Hamiltonian systems. For example, the pendulumdx1dt = x2dx2dt = � sin(x1)where x1 is the angular position of the pendulum and x2 its angular momentum, has the �rstintegral I(x1; x2) = 12x22 � cos(x1):(ii) Poisson systems. For example, the free rigid body with moments of inertia I1, I2, and I3, andangular momentum �1, �2, �3 in body-�xed coordinates,d�1dt = � 1I2 � 1I3��2�3d�2dt = � 1I3 � 1I1��3�1d�3dt = � 1I1 � 1I2��1�2has the �rst integral I(�1; �2; �3) = �21 + �22 + �23 ;36



6.1 Preserving a �rst integral 37

Fig. 6.1. An orbit of the Kepler 2-body problem with the eccentricity of the Hale{Bopp comet, computed withan integral-preserving method (left) and Runge-Kutta (right).which is the body's total angular momentum.6.1 Preserving a �rst integralBefore presenting the theory, here is a picture. Fig. 6.1 shows an orbit in the Kepler problem; it's anellipse. This remains true if you use an integral preserving method. With a standard method such asRunge-Kutta, the orbit spirals down to the origin.The general method we present is as follows:(i) For every ODE with a �rst integral I(x), we construct an equivalent \skew-gradient system";(ii) we discretize the skew-gradient system to a \skew discrete-gradient system";(iii) we show that the skew discrete-gradient system has the same integral I(x).More speci�cally,



38 Integrals & Lyapunov functions(i) Given the system dxdt = f(x) and �rst integral I(x) such that ddtI(x(t)) = 0, we construct theequivalent skew gradient system dxdt = SrI; ST = �S;(ii) we discretize this to the skew discrete gradient systemx0 � x� = SrI(x; x0);where r is a \discrete gradient;"(iii) we show that I(x0) = I(x).Constructing an equivalent skew gradient systemWe want to solve SrI = f for the antisymmetric matrix S, where f and the integral I are given.Because I is an integral, ddt I = dxdt � rI = fTrI = 0:One solution for S is S = f(rI)T � (rI)fTjrI j2but S is not unique. In particular, if the critical points of I (points where rI(x) = 0) are nondegenerate,then there is an S which is as smooth as f and rI . Sometimes, as in Poisson systems, S is already knownand does not need to be constructed.Discretizing the skew-gradient system to a skew discrete-gradient systemA discrete gradient rI is de�ned by the two axiomsI(x0)� I(x) = (rI) � (x0 � x)rI(x; x0) = rI(x) +O(x0 � x):For any such discrete gradient we can construct the skew discrete-gradient systemx0 � x� = eSrIwhere eS is any consistent antisymmetric matrix, such as eS(x; x0) = S((x+ x0)=2).This discretization has the same integral I :I(x0)� I(x) = (rI) � (x0 � x)= �(rI)TS(rT )= 0Examples of discrete gradientsThe problem is reduced to �nding discrete gradients r satisfying the axioms. The general solution isknown. Here are two particular solutions:(i) (Itoh and Abe) rI(x; x0)i := �I(x(i))� I(x(i�1))�=�x0i � xi�;where x(i) := (x01; : : : ; x0i; xi+1; : : : ; xm) :(ii) (Harten, Lax and Van Leer)rI(x; x0) := Z 10 rI (x+ �(x0 � x)) d�



6.2 Preserving a Lyapunov function 39

Fig. 6.2. Evolution of an integral I(x) in a 3D system with three fourth-order methods. QT4: Integral preserving;RK4: Classical Runge-Kutta; LM4: linear multistep.Numerical example preserving one integralConsider the system dxdt = yz + x(1 + 0:1y2 + y3 + 0:1y5)dydt = �x2 + z2 � 0:1x2y2dzdt = �z � xy � y3zwhich has �rst integral I = x22 + y44 + y + z22 ;but is not Hamiltonian or Poisson. I(x) has compact level surfaces, so staying on them means that thenumerical integration is stable. This system is written as a skew-gradient system asddt 0@xyz1A = 0@ 0 x(1 + 0:1y2) y�x(1 + 0:1y2) 0 z�y �z 01ArIand a comparison between a skew-discrete gradient integrator and two classical methods is shown in Fig.6.2. 6.2 Preserving a Lyapunov functionAn integral is a function that is preserved in time, dI=dt = 0. A Lyapunov function decreases in time,dV=dt � 0: These also arise frequently:(i) Gradient systems (these arise in dynamical systems theory)dxdt = �rV (x)Here dVdt = �(rV )TrV = �jrV j2 � 0, so V is a Lyapunov function.(ii) Systems with dissipation For example, the damped pendulum with friction � � 0,dx1dt = x2dx2dt = � sin(x1)� �x2



40 Integrals & Lyapunov functionshas Lyapunov function V (x1; x2) = 12x22 � cos(x1), becausedVdt = ��x22 � 0:(iii) Systems with an asymptotically stable �xed point Here the construction of the Lyapunovfunction is a standard (although di�cult) problem in dynamical systems.These systems can be discretized very similarly to systems with an integral. Namely,(i) Given the system dxdt = f(x) with Lyapunov function V , we construct the equivalent \linear-gradient system" dxdt = LrVwhere L is negative semide�nite, i.e. vTLv � 0 for all vectors v;(ii) we take the linear-discrete gradient systemx0 � x� = LrV (x; x0);(iii) we show that V (x0) � V (x).Note that L is not necessarily symmetric. This is important, because as the dissipation tends to zero,we want L to smoothly tend to an antisymmetric matrix, to recover the integral-preserving case.Constructing an equivalent linear-gradient systemWe want to solve LrV = f where f and V are given, dVdt = f �rV � 0, and L is a negative semide�nitematrix. One solution is L = f(rV )T � (rV )fT + (f � rV )IjrV j2 :One can check that vTLv = jvj2(f � rV )=jrV j2 � 0, so that L is negative semi-de�nite, and thatLrV = f . As with skew-gradient systems, the matrix L is not unique, and special care is required nearcritical points of V . The linear-discrete gradient systemBy analogy with the integral-preserving case, we check that the linear-discrete gradient system has thesame Lyapunov function as the original system:V (x0)� V (x) = (rV ) � (x0 � x)= �(rV )TL(rV )� 0:Numerical exampleThe damped pendulum dx1dt = x2dx2dt = � sin(x1)� �x2with Lyapunov function V (x1; x2) = 12x22 � cos(x1), can be written in the linear-gradient formddt �x1x2� = � 0 1�1 ���� sin(x1)x2 � = LrV:
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Fig. 6.3. The damped pendulum, computed with a linear-discrete gradient method. Orbits spiral in correctlyeven if the dissipation rate tends to zero.(Note that L is negative semi-de�nite, because the eigenvalues of its symmetric part are 0 and ��.) Usingthe Itoh{Abe discrete gradient we get the discretization1� �x01 � x1x02 � x2 � = LrV= � 0 1�1 ��� � cos(x01)+cos(x1)x01�x1x02+x22 ! ;whose phase portrait is sketched in Fig. 6.3. The behaviour of the non-dissipative Euler's method isquite di�erent. It increases energy near p = 0 for all time steps � . Globally, for � >� 2� orbits moveout across the separatrix; and for � <� � <� 2� there are spurious asymptotically stable periodic orbitsinside the separatrix. Extensions and generalizations(i) The above methods can be generalized to ODEs with any number of integrals and/or Lyapunovfunctions.(ii) There are discrete gradient methods of order 2, but higher order is desirable. For systems withan integral, this can be done by composition. For Lyapunov functions, the maps form only asemigroup, so the order cannot be increased beyond 2 by composition.(iii) Given a system in skew- or linear-gradient form, the matrix can be split, leading to 2D systemswith the same integral or Lyapunov function.(iv) Satisfactory treatment of nonautonomous ODEs is still an open problem.ReferencesDiscrete gradients were introduced for Hamiltonian ODEs in1. O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci. 6 (1996), 449{467.and generalized as presented here in2. R.I. McLachlan, G.R.W. Quispel, and N. Robidoux, Geometric integration using discrete gradients, Phil.Trans. Roy. Soc. 357 (1999), 1021{1045.of which a shorter version appears in3. R.I. McLachlan, G.R.W. Quispel, and N. Robidoux, A uni�ed approach to Hamiltonian systems, Poissonsystems, gradient systems, and systems with Lyapunov functions and/or �rst integrals, Phys. Rev. Lett.81 (1998) 2399{2403.


