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1

General tools

“A major task of mathematics is to harmonize the continuous and the discrete, to include them in one com-
prehensive mathematics, and to eliminate obscurity from both.” (E.T. Bell, Men of Mathematics)

1.1 Introduction

Motion is described by differential equations, which are derived from the laws of physics. In the simplest
case, they read m% = F(t,z, %)—Newton’s second law. These equations contain within them not just
a statement of the current acceleration experienced by the object(s), but all the physical laws relevant to
the particular situation. Finding these laws and their consequences for the motion has been a major part
of physics since the time of Newton. For example, the equations tell us the space in which the system
evolves (its phase space, which may be ordinary Euclidean space or a curved space such as a sphere); any
symmetries of the motion, such as the left—right or forwards—backwards symmetries of a pendulum; and
any special quantities such as energy, which for a pendulum is either conserved (if there is no friction) or
decreases (if there is friction). Finally and most importantly, the laws describe how all motions starting
close to the actual one are constrained in relation to each other. These laws are known as symplecticity
and volume preservation.

“A gyroscope is an emissary from a siz-dimensional symplectic world to our three-dimensional one; in its
home world its behavior looks simple and natural.” (Yuri Manin)

Standard methods for simulating motion, called numerical integrators, take an initial condition and
move the objects in the direction specified by the differential equations. They completely ignore all of the
above hidden physical laws contained within the equations. Since about 1990, new methods have been
developed, called geometric integrators, which obey these extra laws. Since this is physically natural, we
can hope that the results will be extremely reliable, especially for long-time simulations.

Before we tell you all the advantages, three caveats:

e The hidden physical law usually has to be known if the integrator is going to obey it. For example, to
preserve energy, the energy must be known.

e Because we're asking something more of our method, it may turn out to be computationally more
expensive than a standard method. Amazingly (because the laws are so natural?) sometimes it’s
actually much cheaper.

e Many systems have multiple hidden laws, for which methods are currently known which preserve any
one law but not all simultaneously.

Now the advantages:

e Simulations can be run for enormously long times, because there are no spurious non-physical effects,
such as dissipation of energy in a conservative system;

e By studying the structure of the equations, very simple, fast, and reliable geometric integrators can
often be found;
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¢ In some situations, results can be guaranteed to be qualitatively correct, even when the motion is chaotic.
This allows one to study systems in a “quick and dirty” mode and explore the system thoroughly, while
retaining reliability;

e For some systems, even the actual quantitative errors are much smaller for short, medium, and long
times than in standard methods.

Chapter 2 discusses a case where all of these nice features are realized: the solar system.

The first lecture is about general tools which will be useful later on, the second discusses the question
“why bother?”, and the third to sixth lectures are about how to preserve various specific properties.

These lectures were delivered at ANODE, the Auckland Numerical ODEs workshop, in July 1998.
Naturally, they are tailored to our own research interests. They are intended to be suitable for a student’s
first exposure to the subject, and we have preserved their informality. We are very grateful to John
Butcher for inviting us to speak, to all the organizers of ANODE, and especially to Nicolas Robidoux
for transcribing the lectures. ANODE and the authors are supported by the Marsden Fund of the Royal
Society of New Zealand, the Australian Research Council and the EPSRC. The written form was prepared
at the MSRI, Berkeley, supported in part by NSF grant DMS-9701755.

1.2 The exact flow of an ODE, and general properties of integrators

We first define the exact flow (or solution) of an ordinary differential equation (ODE) and discuss what
properties one would like an integrator to have. Let z(t) be the exact solution of the system of ordinary
equations (ODEs)t

d
d—j = f(z), 2(0)=z0, z€R™. (1.1)
The exact flow ¢, is defined by
2(t+7) = pr(@(t) Vit T
For each fixed time step 7, ¢ is a map from phase space to itself, i.e. ¢, : R™ — R™.
Three properties of exact flows

(i) (Self-adjointness) The flow has the continuous group property

11 0 Pry = Pri4r, VT, T2 ER (1.2)
In particular,
prop_.=1d (1.3)
Hence the exact flow is self-adjoint:
pr =1 (1.4)
(ii) (Taylor expansion)
. dz , 1 d%z
z(7) = z(0) +TE(O) +7 §W(O) .
Substitute
dz
o (z)
d*x dz
=S = S
Hence
1
7 (o) = o +7f (o) + 577 (df (x0)) f(w0) + .. (1.5)

t Nonautonomous ODEs dx/dt = f(x,t) can be formulated autonomously as dz/dt = f(z,Zm+1), dTm+1/dt = 1. The
geometric integrator is applied to this “extended” system (if possible), and then ¢ = x,,,+1 substituted.
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(iii) (Formal exact solution)

T filx) g2
pr() = 7 i HOE ()

= exp(7f)(2)

It’s impossible to construct integrators with the continuous group property (1.2) for any reasonably
general class of ODEs. The closest one can come is to preserve self-adjointness.

(1.6)

Properties of integrators

In general we don’t know the flow ¢,, so we seek maps 1, that approximate ¢,. We call such ¢,
integrators. Some properties of integrators:
(i) (Self-adjointness) It is useful for 1, to be self-adjoint, i.e.,

1/}T = "/}:1

(ii) (Order of an integrator) The order of accuracy of v, is p, if the Taylor series of ¢, and the
exact flow ¢, agree to order p:

¥r (@) = pr(z) = O(rP*)
(iii) (Consistency) A necessary property of 1, is that it be consistent, i.e., first order accurate, i.e.,
U, (x) = 2+ 7f(x) + O(1?).

Note: It is not difficult to show that every self-adjoint integrator is of even order.
There are three types of integrators:

(i) Integrators that form a group
(ii) Integrators that form a symmetric space
(iii) Integrators that form a semigroup

1.3 Integrators that form a group

Suppose we have a set G of integrators which may or may not be consistent. If, for all integrators 1,
and x, in G, we have

Yrox- €G
and
Yl eq,

we say the integrators form a group. That is, they are a group where the group operation is composition
of maps.
Examples of integrators that can form a group are
(i) symplectic integrators (Lecture 3)
(ii) symmetry-preserving integrators (Lecture 4)
(iii) volume-preserving integrators (Lecture 5)
(iv) integral-preserving integrators (Lecture 6)

For example, for the group of integral-preserving integrators there is a real function I(z) (the integral)
such that I(xz) = I(p,(z)) for all z: the value of the integral I is preserved by the integrator. Therefore
it is also preserved by ¢, o x, and by ¢ !: the integrators form a group.{

These groups are infinite-dimensional groups of diffeomorphisms. They share many but not all of the
properties of Lie groups; various extensions of the concept of Lie groups from finite to infinite dimensions
have been proposed. One approach is the theory of “Lie pseudogroups” of diffeomorphisms. Cartan
discovered in 1913 that in a sense there are just 6 fundamental Lie pseudogroups: the group of all
diffeomorphisms; those preserving a symplectic, volume, or contact structure; and those preserving a
symplectic or volume structure up to a constant. These correspond to different generic types of dynamics.

T If o7 ! exists, which it does for the methods of Lecture 6, but not necessarily for projection methods.
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How to construct integrators that form a group

The main way to construct integrators that form a group is through splitting methods. Splitting
methods work for all cases (1)-(4) above, and are discussed further in Lecture 3.

We illustrate splitting for integral-preserving integrators. Assume we don’t know an integral-preserving
integrator for the vector field f, but f can be split into two vector fields f; and f,, each with the same
integral as f:

f(@) = fi(z) + fa(x)

and assume that we do know integral preserving integrators 1)1 (resp. 1) for fi (resp. f2) separately.
Then we obtain an integral-preserving integrator ¢ for f by composition:

1/}7' = 1/}2,7' o 1/)1,7'
This is a consistent method for f, because it is the map 9, : x — x" given by
=z +1fi(x) + O
" =z +1hH) +O0(r?)
=z +7(fi(2) + fa(2)) + O(1%)
Splitting methods are very easy to program—one merely calls routines for ¢; and 15 in turn.
Thus the problem becomes:
(i) How to split vector fields while staying in the appropriate class;
(ii) How to construct integrators in the appropriate group;

(iii) How to compose those integrators so as to get an integrator of the original vector field of the
desired order.

Each of these will be considered in these lectures.

1.4 Integrators that form a symmetric space

Suppose we have a set G of integrators with the property that, for all integrators 1, and x, in G, we
have

Y, o xT o), €G. (1.7)
Then G is an example of the algebraic object known as a symmetric space, a set G together with a binary
operation % obeying the axioms
THT =1
zx(zxy) =y
rx(y*2z) = (z*xy)*(x*2)
rxy =y = y =z for all y sufficiently close to =

In our case the integrators G form a symmetric space by taking

Yr * Xr ::¢TOX:10¢T-

Notice that every group also forms a symmetric space, but not vice versa: a group may have subsets
which are closed under (1.7) but not under simple composition.
The two most important examples of integrators that form a symmetric space are
(i) Self-adjoint integrators.
(ii) Integrators that possess time-reversal symmetry (Lecture 4).

Proof of (1): Let 6, = 1, o x; ! 0,. Then

_ _ —1
0—}— = (¢—‘r ° X—-lr ° ¢—T)
=¢ lox o9}
= d)r o X;l o 1/}T
=9,.



8 General tools

How to construct integrators that form a symmetric space

There are two main ways:
(i) (Projection methods) If ¢, is any integrator, then the “projection”
Xr = 1/)7'/2 o 1/}:71-/2

is self-adjoint.
(ii) (Splitting methods) If f can be split into two vector fields

f(z) = fi(z) + fa(2)

such that we have self-adjoint integrators ¢»; and o for f; and fo separately, then we obtain a
self-adjoint integrator ¢ for f from the symmetric composition

Vr = Y1072 020 0Py )0

These are generalized to other symmetric spaces in Lecture 4. The projection is almost miraculous,
because it starts with any integrator. There is no analogous projection for groups.

1.5 Integrators that form a semigroup

A set G of integrators forms a semigroup if for all integrators ¢, and x, in G, we have ¥, o x, € G,
but not necessarily -1 € G.
These arise from properties that only hold for forwards time:
(i) systems with a Lyapunov function (Lecture 6)
(ii) systems which contract phase space volume

For example, if the Lyapunov function is decreasing as ¢ increases, it is increasing as t decreases, and
even the flow ¢! = p_, does not have the Lyapunov property. This means one cannot use backwards
time steps when composing these integrators, which can be proved to limit the order of composition
methods to 2.

1.6 Creating higher order integrators: composition methods

Having obtained a geometric integrator ¢, a higher order method can be obtained from the composition
XT = ¢anT¢:in_1T¢an_2T¢:iH_3T st
-1 -1
e ¢an_3r¢—an_gr¢an_1r¢—anr

which has been chosen to be self-adjoint, i.e. x,r = X:i- Here the number of integrators n and the
coefficients a,, can be adjusted to obtain the desired order. High order methods can also be designed in
the context of splitting methods, using the two flows o1, and ¢s , of f; and f, respectively. One uses
the composition

PLpirP2yT - P1 BT

However, these two approaches turn out to be equivalent [7].

Example 1 If ¢ is self-adjoint, then a fourth-order integrator is obtained as follows:

Xr = "/}'y'r o "/}(1—27)7— o 1/)77
where v := (2 — 21/3)-1,

This example is generalized in Theorem 2 below. Note that 1 — 2y < 0.
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An example of composition methods: the generalized Yoshida method

Theorem 2 (Yoshida, Qin, and Zhu) Let ¢ be a self-adjoint integrator of order 2n. Then

Ll _\_
Xr = ¢~/T o ¢(172’Y)T o ¢’YT; v = (2 - 22"+1) 1

is a self-adjoint integrator of order 2n + 2.

Proof Let
1/)T(f) = ‘p‘r(f) ot

Then, using the flow property of the exact flow ¢,

¢7T o ¢(1727)‘r o '(/}'yr = (p‘r(f)“‘
(72n+1 + (1 _ 2,}/)2n+1 + 72n+1) 6T2n+1 4.,

which has order 2n + 1 if v is as given in the theorem. However, it is self-adjoint by construction, so it
has even order, hence the order is 2n + 2. l
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Why preserve structure?

2.1 Introduction

Let’s start with an example of a simulation of the outer solar system by Jack Wisdom and coworkers.
Part of its appeal is the long history of modelling the solar system. The people who do this are not
from the numerical analysis community, but they have their own history of methods which they have
developed and tweaked.

In the 1980’s, a special-purpose supercomputer, the “Digital Orrery”, simulated the outer planets for
845 million years. With a lot of tweaking, an energy error of about 10™° was achieved with a time step
of 45 days (a six month calculation!). A calculation with a very high order symmetric multistep method
achieved an energy error of about 107!° in a 3 million year simulation, with a time step of 0.75 days.
In a completely different approach, Laskar (1990) used classical perturbation theory (expanding in mass
ratios and eccentricities about circular orbits) to eliminate the fast (annual) frequencies. This required
250,000 terms, but a time step of 500 years could be taken.

All of these attempts were roundly routed by the calculation of Jack Wisdom et al., using a very simple,
elegant symplectic integrator. Their billion year simulation with a time step of 7.5 days gave an energy
error of only 2 x 1071, Moreover, only one force evaluation was used per time step, making the method
very fast.

Roughly speaking, they wrote the ODE as a sum of uncoupled Kepler 2-body problems and the potential
which couples the planets: f = fi+ f2 = fiepler + feoupling. Each f; is a Hamiltonian system, and the flow
¢r,; of each can be found exactly and quickly (the 2-body problems using an elegant method of Gauss).

10-8 T T T T
AR -'II' '| ] i -.;_" ¥ 1-..] ']. " .*' " ;| '_.1 .'|. i
ory 0 g b g Ll . | |.l..-lj' : I:.h Pt I" |
A HMT | HH R Iy ] i i :.I i
-10-8 . . : :
0 20 40 [i14] 20 106G
L[10%yeary|

Fig. 2.1. Energy error of leapfrog applied to the whole solar system over 10® years (Wisdom et al.)

10
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Fig. 2.2. Energy error after application of corrector x-.

The time stepping is simply the simplest composition 1, = ¢, >0 ¢, 1—a form of the “leapfrog” method.
Since the flow of Hamiltonian ODEs is symplectic, and symplectic maps form a group, 1, is symplectic.
Moreover, they found a “corrector” x, such that

Xrothr o X, = - + O(m?7?)

where m = | f2/ f1| & 1073 is the mass ratio between Jupiter and the sun. (The result after n time steps
is xr 0™ o x !, so that x, only needs to be evaluated once, no matter how long the simulation.) This
method:

is symplectic;

is one-step;

is explicit;

is second order;

uses one force evaluation per time step;

exploits classical analysis, namely the exact solution of the 2-body problem;

preserves total linear and angular momentum;

is self-adjoint and reversible;

has an extra factor of m? = 10~¢ in its local truncation error, compared to classical methods;
for moderate times (x 2 x 107 years), has linear growth of global errors, compared to quadratic growth
for classical methods;

e has bounded energy errors for long times.

This is almost a dream situation, where geometric integration has lead to a simple method with vastly
improved local (time 7), global (time T'), and structural (time oo) errors. This calculation discovered
chaos in the outer solar system with a Lyapunov time, the time for the separation between nearby
orbits to grow by a factor e, of 20 million years. Over the billion year calculation, they would separate
by €°® ~ 1022, and integration errors would be magnified by this amount also. Thus, the final angular
positions of the planets are not expected to be accurate. However, we can be confident that the qualitative
or statistical properties of the solution are correct.

2.2 Phase space and phase flow
“In phase space, no one can hear you scream.” (Caltech T-shirt)

The fundamental idea to keep in mind is to think in phase space. It’s a simple idea but one which you
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Fig. 2.3. Inclination of Pluto over 10° years, showing chaos. Even after 10° years the inclination has reached a
new maximum.

have to keep reminding yourself of: a simple definition in a dynamical systems class just isn’t enough.
Considering that differential equations were studied for 200 years before Poincaré adopted this point of
view, this may not be too surprising.
“Consider the fluid molecules which initially form a certain figure Fy; when these molecules are displaced,
their ensemble forms a new figure which will be deformed in a continuous manner, and at the instant t the

envisaged ensemble of molecules will form a new figure F.”
(Poincaré, Celestial Mechanics, 1899)

In a trajectory ¢i(xo), one thinks of the initial condition zq as fixed, and the time ¢ increasing; in the

flow map (), one thinks of all initial conditions x flowing forward for some fixed time 7. We’ll only
consider one-step methods, so that the numerical approximation for one time-step 7 is a map

¥, R™ = R™.

Now classical approximation theory, e.g. for Runge-Kutta methods, shows that chaos always wins: the
best bound that can be obtained in general for a method of order p is
eAT 1

A
The precise value of A depends on the Lipschitz constant of the vector field and on the method, but
A > 0 and consequent exponential growth of error cannot be avoided in general. But dynamical systems
theory teaches that ¢ can be “close” to ¢ in other ways: their phase portraits may be qualitatively or
even quantitatively similar; the stability of their orbits may be the same; for strange attractors, their
Lyapunov exponents or fractal dimensions may be close.

The pendulum: theory

Y17 (2) = pr(@)| < (AH)PC

Systems can have many geometric or structural properties. Before we get into definitions, let’s look at
the planar pendulum. It is a two-dimensional system with phase space R?, and dynamics

¢=p, p=—sing (2.1)

where ¢ is the angle of the pendulum, and p its angular momentum. (Here we are taking ¢ € R, the

covering space of the actual angle.) Here are some of the properties of the pendulum:

e It conserves the total energy H= %pQ — cosq. That is, its flow stays on the level sets of this function.
Because this is a two-dimensional system, these level sets are curves in the plane.

e Being a Hamiltonian system, its flow is symplectic. For two-dimensional systems, this is equivalent to
being area-preserving.
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Fig. 2.4. Phase portrait and flow of the pendulum (from Hairer and Wanner). The area of each cat is preserved
in time, the manifestation of symplecticity. Energy, whose levels sets are the curves shown, is preserved. Rotation
by 180° ((q,p) — (—q, —p)) is a symmetry, while flipping up-down (p — —p) is a reversing symmetry.

e It has one discrete symmetry and one discrete reversing symmetry (see Lecture 4). The symmetry,
(¢,p) = (—¢q, —p), maps the vector field into itself; the reversing symmetry, (g, p) — (¢, —p), maps the
vector field into minus itself. Imagining flowing along one of the solution curves, you can see that the
motion of the reflected points is constrained.

Because this is such a simple system, preserving any of these three properties gives a geometric in-
tegrator with good long-time behavior for almost all initial conditions. A picture of its phase portrait
will look very similar to the true phase portrait; we’ll see examples of this in Section 2.7. By contrast,
standard methods (e.g. Euler’s method) destroy the qualitative phase portrait completely.

2.3 Philosophy of geometric integration

In any numerical study, one should
e examine any geometric or structural properties of the ODE or its flow;
e design numerical methods which also have these structural properties; and
e examine the consequences, hopefully over and above the immediate ones.

This encourages us to

e confront questions of phase space and degrees of freedom;
e think about the significance of local, global, and qualitative errors; and
e think about the kinds of tools and functions allowed in numerical analysis.

For example, multistep methods do not define a map on phase space, because more than one initial
condition is required. They can have geometric properties, but in a different (product) phase space, which
can alter the effects of the properties. (See Fig. 2.12.) This puts geometric integration firmly into the
“single step” camp. If a system is defined on a sphere, one should stay on that sphere: anything else
introduces spurious, non-physical degrees of freedom.

The direct consequences of geometric integration are that we are

e studying a dynamical system which is close to the true one, and in the right class; and
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bl ——

Fig. 2.5. Phase portrait of a symplectic integration, from Channell and Scovel. 10° time steps for 10 different
initial conditions are shown. Smooth curves (“KAM tori”) correspond to regular, quasiperiodic motion; clouds
correspond to chaotic motion.

e this class may have restricted orbit types, stability, and long-time behavior.

In addition, because the structural properties are so natural, some indirect consequences have been
observed. For example,

e symplectic integrators have good energy behavior;

e symplectic integrators can conserve angular momentum and other conserved quantities;

e geometric integrators can have smaller local truncation errors for special problems, and smaller global
truncation errors for special problems/initial conditions (even though they’re larger in the “generic”
case);

e some problems (particle scattering, isospectral problems) can have errors tending to zero at long times.

Here’s a pictorial survey showing what you can expect from geometric integration. Fig. 2.5 appears
in Channell and Scovel [3], one of the first symplectic integration papers. Orbits starting on the smooth
curves (“invariant circles”) stay on them forever. Of course, the orbit may be going around the circle at
the wrong speed, but the “orbital error” does not grow in time. Compare this to the traditional approach
to numerical integration, with its overwhelming emphasis on the estimation and control of local errors.
The idea that errors grow in time and, once committed, cannot be undone, was deeply ingrained. Pictures
like Fig. 2.5 did a lot to revise this traditional point of view.

Other orbits in Fig. 2.5 are chaotic, and their position errors grow exponentially. But, they can never
jump across the invariant circles, and because it’s the right kind of chaos (namely, the solution of some
nearby Hamiltonian system), statistical observations of this chaos will have small errors.

2.4 Types of geometric properties

Study the list in the Table. The left hand column gives properties of vector fields, and the right
hand column gives the corresponding properties of their flow. It’s the right hand property that must be
preserved by the integrator. Usually the flow properties are named the same as the ODE property.

(The standard example of a Lie group G is the set of orthogonal 3 x 3 matrices, ATA = I, which
represent rotations. Its Lie algebra g is the set of antisymmetric 3 x 3 matrices. G is a manifold whereas
g is a linear space, a much simpler object to work with.)

To bring some order to this table, consider the following features.

e Is the structure linear in some sense?
All of the ODE properties are linear in f, but all of the flow properties are nonlinear in ¢, except
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ODE z = f(z) flow ¢, derivative dy;
Hamiltonian f=JVH(z), J = (701]0) de™ Jdp = J (symplectic)
Poisson f=J()VH(z deTJdp =Jog

source-free V-f=0 detdp = 1 (volume preserving)
symmetric dS.f=foS Sop=¢oS

reversible —dR.f =foR Royp l=¢oR

Lie group f=al@)r,r€G acg p €G

isospectral f=1b(z),z], z,beg eigenvalues A(z) constant
integral f-VvIi=0 I(x(t)) = I(x(0))

dissipative f-vv<o V(z(t)) < V(z(0))

Table 2.1. Special classes of ODEs, and the corresponding properties of their flows.

for linear symmetries. Symplecticity, Poisson, and reversibility are quadratic; volume preservation and
isospectrality are degree m when z € R™.

e Does the structure appear explicitly or implicitly in the ODE?
Hamiltonian, Poisson, Lie group, and isospectral ODEs are explicit (e.g. f = JVH generates all
Hamiltonian ODEs); the rest are implicit—there are side conditions which f has to satisfy.

e Does the flow property depend on ¢ or dp?
Symplecticity, Poisson, and volume preservation depend on the Jacobian dyp. This makes them harder
to preserve.

These will be explored further in the other lectures. Briefly, it is easier to work on linear and explicit
properties, so we concentrate on bringing all flow properties into this form. (See §3.1 on splitting.) This
has been achieved for all the properties in the Table, but not for some of their nonlinear generalisations
and combinations.

A major justification for geometric integration comes from backward error analysis. This theoretical
tool writes the integrator ¥, as the time-r flow of some vector field f, i.e. v (f) = c,oT(f). If the method
is of order p, we have f = f 4+ O(7?). Then, in many cases one can argue that since ¢, is in some class
(e.g. symplectic), the perturbed vector field must be in the appropriate class too (e.g. Hamiltonian). So
we know that by studying the dynamics of the method, we are at least studying dynamics in the right
class. The reliability of the results then depends on the “structural stability” of the original system: a
difficult problem, but a standard one in dynamical systems.

In the Hamiltonian case, f = JVH for some Hamiltonian I;V, which is conserved by the method. Since
we don’t know H and can only measure the original energy H, it (H) will be seen to oscillate, but (if the
levels sets of H and H are bounded) will not drift away from its original level.

Technically, one suspends the map v, to a time-dependent flow . (g(z,t)), from which, when ¢, is
analytic, nearly all the time dependence can be removed by a change of variables, giving f(z)+O(e~1/7,t).
This introduction of an exponentially small nonautonomous term is inevitable, because most maps, even
those close to the identity, are not actually flows. If the time step is too large these exponentially small
terms can actually pollute the calculation, and one observes, for example, the energy drifting.

2.5 Miscellaneous topics

Some other branches of geometric integration are

e ODEs on manifolds, such as homogeneous spaces. Although ultimately one can only compute in a
linear space, it’s best to formulate the method on the manifold and transfer to coordinates as late as
possible. A special case is when the manifold is a Lie group [4]; Lie group methods are one of the major
themes in geometric integration which we don’t have space to discuss here.
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Fig. 2.6. Flow on a family of invariant tori. From V.I. Arnol’d, Small denominators and problems of stability
of motion in classical and celestial mechanics, Uspehi Mat. Nauk (Russ. Math. Surv.) 18 (1963) no. 6 (114)
91-192.

e Mapping methods approximate the equations in z as well as in ¢, for example, by Taylor series. Maps
defined by series can then be manipulated analytically.

e When evaluating Lyapunov exponents one should try to preserve their structure, e.g., that the Jacobians
used are symplectic or volume-preserving.

e For partial differential equations one can either discretize in space first, seeking a finite-dimensional
version of, e.g., the Hamiltonian structure, or discretize space-time directly.

e One can discretize phase space itself and study lattice maps, a form of cellular automata. This has
been used in studies of the effect of roundoff error.

e Instead of trying to construct special methods that preserve particular properties, one can see how
well standard methods do. Usually the property has to be fairly robust, e.g., dissipation of the type
d|z|? /dt < 0 for |z| > R is studied, instead of dV//dt < 0 for all z. This approach is thoroughly treated
in Stuart and Humphries, Dynamical Systems and Numerical Analysis.

2.6 Growth of global errors

The global error is ’QZJ-,T/T(CU) — ¢, (z) where T is a large, but fixed, time. Geometric integrators are not
expressly designed to control the global error. Nevertheless, sometimes it grows linearly in a symplectic
integrator and quadratically in a standard integrator. This will make the symplectic integrator superior
if T is large enough.

This property has been observed in many systems of different types. It is associated with preservation
of invariant tori by the method. An invariant torus is a subset of initial conditions, topologically a torus,
which orbits starting on stay on for all forwards and backwards time. A torus is preserved if the integrator
has an invariant torus of its own, which tends to the torus of the ODE as 7 — 0.

Invariant tor:

Invariant tori are ubiquitous in dynamics. They’re found in:
e Hamiltonian systems (tori have dimension n/2);
e reversible systems (when orbits intersect the symmetry plane; tori often have dimension n/2);
e volume-preserving systems (tori have any dimension < n).

They are important because they

e form positive-measure families of neutrally stable orbits, which
e mostly persist under small perturbations of the system;
e form “sticky sets,” dominating behavior of nearby orbits on intermediate time scales

Nearby orbits diverge like

e O(1) on same torus



2.7 The pendulum: numerical experiments 17

Fig. 2.7. Cross-section of the tori in Fig 2.6 after perturbation (Arnol’d). Some are destroyed and replaced by
chaos, some persist.

e O(T) on a nearby or perturbed torus
e O(T?) if O(T) drift across tori
e O(T,e*T) on nearby chaotic orbits; A depends on the order of resonance, but can be very small.

Therefore, in an integrator we should try to preserve tori of the correct dimension. In a standard method,
they are not preserved, and orbits drift transversely, leading to O(T?) growth of global errors. If the
torus is preserved, orbits only move around the torus at a slightly wrong angle or speed, leading to O(T)
errors.

It turns out to be an extraordinarily subtle question to determine when which tori persist under which
perturbations. Finally, in the 1960’s, conditions were found by Kolmogorov, Arnol’d, and Moser under
which most tori do persist under appropriate perturbations, although some are destroyed. This forms
the subject of KAM theory.

For Hamiltonian systems, an appropriate perturbation is Hamiltonian, so the results apply to symplectic
integrators.

In between invariant tori, or if tori were destroyed by taking too large a time step, orbits can be chaotic.
But, because of the nearby tori, exponential separation can be very slow, and the linear error growth can
dominate for long times.

2.7 The pendulum: numerical experiments

We illustrate the above points on the simplest meaningful example, the pendulum (Eq. (2.1)). The
simplest symmetric, reversible, self-adjoint symplectic method is leapfrog:

"= +17
qa =q 2 p
p =p—rsing
1
q/I:ql+§Tp/

The results of this method are shown in Fig. 2.8 for a small time step (7 = 0.1) and in Fig. 2.9 for a
much larger time step (7 = 1). Even for the larger time step, the left-right and up-down symmetries are
preserved, as are most of the invariant circles, as promised by KAM theory for symplectic integrators.
Chaos is significant only in a small neighbourhood of the homoclinic orbit connecting (7, 0) and (—,0).

A symplectic method which is not symmetric or self-adjoint is shown in Fig. 2.10; the lack of symmetry



18

Why preserve structure?

-2

Fig. 2.8. 1000 times ime step 7 = 0.1.

-2

4

Fig. 2.10. A nonsymmetric symplectic integration of the pendulum, 7 = 0.1.
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Fig. 2.11. 10° time steps of leapfrog at 7 = 1, showing a chaotic orbit.
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Fig. 2.12. A symplectic multistep method: the torus has dimension 2 instead of 1 as in Figs. 2.8-2.10. A single
orbit is shown, with the first 50 time steps marked by x.

is plain to see. In this case, invariant circles are still preserved. In higher-dimensional systems, there is
a more complicated interaction between symplecticity and reversibility.

What is the effect of the chaos created by the numerical integrator? Fig. 2.11 shows one chaotic orbit
of leapfrog at the large time step 7 = 1, obtained with initial condition (¢, p) = (0,1.8). It was found to
have a large Lyapunov exponent of 10~2. By T ~ 100, the chaos would dominate the numerical errors.
by contrast, with initial condition (g, p) = (0, 1.6), the Lyapunov exponent is already reduced to 1077,
and phase errors (moving around the circle at the wrong speed) would dominate until T ~ 107. Thus,
even when the numerical orbit does not lie on an invariant torus, the preservation of some invariant tori
nearby helps a great deal.

In Section 2, we talked about the importance of staying in the right phase space. The multistep
method ,41 = 7,1 + 27f(x,) is a map on the product phase space R? x R2. It can be shown to be
symplectic in this larger space, but its KAM tori have dimension 2, instead of 1 as in the real system.
When projected to the original phase space, they fill out a solid region, instead of a curve—a disaster for
long-time simulations. This effect is illustrated in Fig. 2.12.

2.8 Summary

Systems may have many geometric or structural features. Integrators must balance costs, local, global,
and long-time errors, stability, and structural preservation. You can’t expect to do well at all of these
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simultaneously! Also, numerical studies can have different goals. Demanding very small local errors for a
large class of ODEs tilts the balance in favour of highly-developed standard methods; seeking reliability
over long times with simple, fast methods tilts in favour of geometric integrators.

The remaining lectures look at preserving different properties. Here we sum up what is known about
preserving several properties at once.

(i)

Symplecticity and energy: If, by “integrator”, we mean that the method is defined for all Hamilto-
nian ODEs, then by a theorem of Ge, this is impossible. For exceptional (“completely integrable”)
problems, such as the free rigid body, this can be done.

Symplecticity and integrals apart from energy: Not known, although doable in principle.
Symplecticity and linear symmetries: Achieved by, e.g., the implicit midpoint rule.

Poisson and linear symmetries: Not known.

Volume preservation and linear symmetries: Not known.

Integrals and linear symmetries: Sometimes possible using the Harten, Lax and Van Leer discrete
gradient (see Lecture 6).

Volume and an integral: Can be done by splitting for all systems with some integrals and for some
systems with any integrals. Not known in general.

Extending the concept of geometric integration to PDEs is much less developed. Work has been done,
e.g., on integral preservation [7], symmetry preservation [8], and Lagrangian (variational) structure [9].

1.
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Symplectic integrators: A case study of the
molecular dynamics of water.

“Chemistry is a science, but not Science; for the criterion of true science lies in its relation to mathemat-
ics” (Kant)

“Chemistry will only reach the rank of science when it shall be found possible to explain chemical reactions
in the light of their causal relations to the welocities, tensions and conditions of equilibrium of the con-
stituent molecules; that the chemistry of the future must deal with molecular mechanics by the methods and
in the strict language of mathematics, as the astronomy of Newton and Laplace deals with the stars in their
courses” (Du Bois Reymond)

This quote (from D’Arcy Thompson’s On Growth and Form) could not be more apt: symplectic

integrators, developed to deal with the stars in their courses, are now applied to the velocities of molecules.

There are many fine surveys of symplectic integration, so here we’ll discuss Poisson systems, or non-

canonical Hamiltonian systems, and how they arose in a study of water. Water, the “king of polar
fluids,” has many strange phases and anomalous properties, which statistical mechanics has a hard time
explaining. Therefore people turn to numerical simulations.

3.1 Splitting

Recall the problem of splitting—how can we write f = f; + fo so that the f; retain some properties of

f? The idea is to represent all f in the given class explicitly by a “generating function.” Then we split
the generating function. This can be done for Hamiltonian systems by splitting the Hamiltonian. Look
at Table 2.1: Hamiltonian systems are expressed explicitly.

Example 3 Hamiltonian systems. The generating function is the Hamiltonian H.

f:JVH:JV(ZHi) — JVH, + ...+ JVH,.

Properties due to J, which is not split, are retained—symplecticity. Properties due to H, which is split,
are lost—conservation of H.

Example 4 Systems with an integral. The generating function is the skew-symmetric matrix function J.

f=JVH = (ZJZ»)VH:J1VH+...+J,LVH

Properties due to J, which is split, are lost—symplecticity. Properties due to H, which is not split, are
retained—conservation of H.

We’ll return to systems with an integral in Lecture 6, and see how to apply splitting to volume-preserving
systems in Lecture 4.

21
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3.2 Poisson systems
Consider a standard, canonical Hamiltonian system.
0 I
T V.H(x) < N, 0)
It only has this special form when written in special variables. If we apply an arbitrary change of variables,
writing the system in terms of y = g(z), it becomes
y=dg-z
=dg- JV.H(z)
=dg-J-dg'V,H(z)
= J(y)VyH(y),
where
J=dg-J-(dg)"
H(y) = H(x).
This is an example of a “Poisson system,” the most obvious change being that the matrix J now depends
on y. However, the class of Poisson systems is invariant under changes of variables. Since the history
of mathematics and of physics is a history of requiring invariance under more operations, it seems we
should study Poisson systems in their own right.
(There are many other motivations for the introduction of Poisson systems, from PDEs, systems on
Lie groups and other manifolds, and symmetry reduction.)
An important special case are the “Lie”-Poisson systems. Let 2 € R™ be an element of a Lie algebra.

Let [z, 2;] = Y j; ci;xx be the Lie bracket. Let Ji; = [z, 2;], so that the entries of .J are linear functions
of . Then

i = J(z)VH(z)

or
. k aH
ozx;
gk ’
is called a Lie-Poisson system.

Example 5 The free rigid body in R®. The variables are 7, 73, 73, the angular momenta of the body
in body-fitted coordinates.

0 T3 —T9
J = —T3 0 1
9 —T 0
1 (72 72 2
H=-(2L4y22 23
2 <11 + I + Ig)

Here the Lie algebra is so(3), the antisymmetric 3 x 3 matrices.

3.3 Splitting into solvable pieces

Earlier we showed how to split a vector field into appropriate pieces, and how to compose their flows.
But, it is still important to be able to apply a geometric integrator to each piece. Here we achieve this
by requiring the pieces to be (easily) integrable.

Observation I'If J;; =0for 1 <4i,j <k <nand H=H(z,...,2), then the ODEs are

3

(90
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or
a':'—{ 0 1=1,2,...,k
! Zj’lcijxlfj(zl,...,wk) i=k+1,....m
which are linear with constant coefficients, hence easily solved (although the coefficients depend para-
metrically on the other variables x1,...,xg).

Observation II Systems with H = ). H;(z;) can be split into easily solved parts. The rigid body has
this form.

Observation III Quadratic Hamiltonians can be diagonalized, i.e., put in the form of Observation II,
and hence split.
3.4 Molecular dynamics

The basic steps in a molecular dynamics simulation are the following.
(i) Take a large sea of particles.
(if) Impose boundary conditions (e.g. 3D periodic) and impose constancy of any three out of the four
quantities pressure, volume, temperature, and number of particles; the fourth is determined.
(iii) Find a classical model of the interparticle forces.
(iv) Move the particles for a long time.
(v) Collect statistics of the motion.

Applications are to exploring states of matter (phase transitions, liquid, liquid crystal, colloidal),
protein folding, the design of large organic molecules and drugs, nanotechnology. It’s a big field.

Current limits are about 10® simple atoms on a supercomputer, 10° simple atoms on a workstation,
and 10%2-10% water molecules on a workstation. For water, even 27 = 3 x 3 x 3 molecules with periodic
boundary conditions are enough to see solid, liquid, and gas phases.

What’s the best way to move the particles? The method should

e obey the physical laws;
e exhibit the correct statistical equilibrium in the face of chaos; and
e be fast and cheap, since forces are expensive to evaluate.

In fact, the forces are so expensive that users don’t want to evaluate them more than once per time
step. For decades they’ve been using the Verlet method for point masses:

1
H = kinetic + potential = 5192 +V(q),

n+1 = qn + TPn

Prt1 = Pn — TVV (qn11)
We now know that it’s so good because it’s the simplest symplectic integrator, and comes from splitting
the Hamiltonian.

How can we extend the Verlet algorithm to non-symmetric molecules like water? Many approaches
have been considered.

e Move each atom separately. This involves modelling the interatomic forces, which means simulating
the many modes of vibration within each molecule. Their time scale is very short and they are not
believed to affect the macroscopic properties of water, which rules out this approach.

e Model as a rigid body. This is the preferred option. It can be done in various ways:

e Consider the molecule as a set of particles subjected to constraints on interatomic distances and angles.
This is possible, but constraints lead to expensive, implicit methods. They are needed for problems
involving flexible chains such as proteins.

e Model as a rigid body, with orientation represented by Euler angles or unit quaternions. The Hamilto-
nian in these variables is complicated and nonseparable; this makes symplectic methods expensive. In
the most popular variant, unit quaternions are used and the ODEs are passed to a black-box solver.

e Represent orientation by a 3 x 3 orthogonal matrix, and update this by rotations only.

This last is what we now do. First, let’s look at the free rigid body.
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Fig. 3.1. The phase portrait of the free rigid body (from Bender & Orszag, Advanced Mathematical Methods for
Scientists and Engineers.) Orbits on a sphere of constant angular momentum |7| are shown. There are three
pairs of fixed points, corresponding to rotation about each of the three principal axes; two are stable and one is
unstable. To observe passage along the “homoclinic orbit” joining the unstable pair, hold a hammer with the
head horizontal and toss so it rotates once about a left-right axis.

3.5 The free rigid body
Let the angular momentum vector be 7, the orientation be Q@ € SO(3), i.e. QTQ = Id; the Hamiltonian

for the free rigid body is
1 /72 7% 72
Ho> (M T _ 75\
2 <11 + I, + I3

The phase portrait for this system is shown in the famous Figure 3.1.
As noted above, splitting methods work excellently for Lie-Poisson systems with Hamiltonians of this
2
type. The flow of H = 57 is
7(t) = Rm(0)
Q(t) = Q(0)R"
where
1 0 0 -
R=1|0 cosf —sinf |, Gztl—l.
0 sinf cosf !
This decomposes the motion into three elementary rotations. The method is fast, accurate, reversible
and symplectic. @) is always orthogonal up to round-off error, because it is updated only by rotations.

How does this fit into a full simulation of water? For each molecule the variables are the ¢, the position
of the centre of mass; p, the linear momentum; ); and 7. The total energy has the form

H = Trotation (71') + Ttranslation(p) + V(q, Q)

together with the constraints Q7 Q = Id. We apply a Verlet-like splitting into kinetic and potential parts.
For each molecule, we have
Potential part:

¢=0
Q=0
p:_%_‘(; =:f (force)

7 =(QTf) xx (torque)
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where z is the point at which the force acts. Since the positions and orientations are here held constant,
these equations are easy to solve.
Kinetic part:

q=p
Q=Q (skew(I~'m))
p=0

f=axI'x

where I = diag([1, I, I3) is the inertia tensor. The centres of mass undergo free, straight-line motion,
while the orientations move as a free rigid body. The latter could be solved explicitly, although this has
never been implemented in a production code; in practice, we approximate its flow by the previously-given
splitting method.

Composing these pieces gives an analogue of the Verlet method for this non-canonical Hamiltonian
system. The final method uses only one force evaluation per time step, but is still explicit, symplectic,
reversible, and conserves total linear and angular momentum (because each piece does). As expected
for such a method, energy errors are bounded in time. When implemented in the existing research code
ORIENT using existing error criteria, this method was about ten times faster than the old method (2-level
leapfrog with Bulirsch-Stoer extrapolation).

References

Hamzltonian systems
For an introduction to Hamiltonian and Poisson systems, see
1. Peter J. Olver, Applications of Lie groups to differential equations, Springer, New York, 1986
and to their dynamics,

2. D.K. Arrowsmith and C.M. Place, Dynamical systems: differential equations, maps, and chaotic behavior,
Chapman & Hall, New York, 1992.

Splitting

3. R.I. McLachlan and G.R.W. Quispel, Generating functions for dynamical systems with symmetries, inte-
grals, and differential invariants, Physica D 112 (1997), 298-309.

Molecular dynamics
4. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, Oxford Science, Oxford, 1987.

5. A. Dullweber, B. Leimkuhler, and R. McLachlan, Split-Hamiltonian methods for rigid body molecular
dynamics, J. Chem. Phys. 107 (15), 5840 (1997).



4

Symmetries and reversing symmetries

4.1 Symmetries of ODEs

A symmetry is a map h : R™ — R™ from phase space to itself, such as z — —z. In a system with
symmetries, the vector field at the two points x and h(z) are related to each other. This is shown for
the pendulum in Fig. 2.4. Under the 180° rotation (g,p) +— (—q, —p), arrows (the vector field) map to
arrows: a symmetry. Under the reflection p — —p, arrows map to arrows if we also reverse their direction:
a reversing symmetry. The analogous properties for flows can be seen by tracing along the flow lines.

Symmetries and reversing symmetries both reduce the possible complexity of the phase portrait, and
should be preserved.

In reversible Hamiltonian systems, reversing symmetries are a bit easier to preserve than symplecticity
(although one can have both, if desired). For example, for simple mechanical systems there are explicit,
variable-step-size reversible methods.

Consider the ODE & = f(x) under the change of variables y = h(z). The new system is

g =F(y):= ((dh- H)().
Definition 6 The vector ﬁeldj has symmetry h if f = f, i.e., if dh - f = fh. The vector field f has
reversing symmetry h if f = —f, i.e., dh- f = —fh, and [ is called reversible.
The notation fh indicates composition, i.e., (fh)(z) = f(h(z)).

Example 7 The pendulum. For the vector field
f:4¢=p, p=—sing
we have
hi:§=q D=-p=q=—P p=sing.
—a reversing symmetry;
he: §=—q¢, P=p=q=—p, p=sing.
—a reversing symmetry; and so

hiohy: ¢=—q, p=-p=q=p, p=—sing
is a symmetry. So the pendulum has “reversing symmetry group” (the group of all symmetries and
reversing symmetries)
T = {id, hy, ho, hiha}.
In general, half of the elements of I' are symmetries, and the composition of two reversing symmetries
is a symmetry.
We will use S for a symmetry and R for a reversing symmetry.

Definition 8 The fized set of S is
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The fixed set is invariant under the flow of f. So preserving symmetries is one way of staying on a
submanifold.

Example 9 A nonlinear symmetry. For the pendulum, the elements of T" were all linear maps. Here is
an example of a matrix ODE with a nonlinear symmetry. It is related to the famous Toda lattice. Let

X, Lo € R™*",
X = B(XLoX 1) X,
B(L)=L, - L_,

where L, (L_) is the upper (lower) triangular part of L. This system has h(X) = X7 as a symmetry.
The fixed set is X = h(X) = X T or XXT =1, ie.,, X € O(n), the orthogonal group. A symmetry-
preserving integrator for this system would also have O(n) as an invariant set.

4.2 Symmetries of maps

Definition 10 A map ¥ has h as a symmetry if hyp = Yh, i.e.,
¥ = Nutp:= h™'h.
A map ¢ has h as a reversing symmetry if hip =" L1h, i.e.
Y = NyIp := h™ '~ th.

The important property of the operators N}, T is how they act on compositions of maps. N}, acts as
an automorphism, i.e.

Nu(h1¢pa) = (Natp1) (Nnha),

while 7 acts as an antiautomorphism, i.e.

I(t2) = (Preha) ™" = 93 o7 = (Tohe) (Tehn)

For a map, having a (reversing) symmetry is equivalent to being in the fixed set of an (anti)automorphism.
Therefore, we study how to construct maps in such fixed sets. We shall see that for antiautomorphisms
this is relatively simple, while for automorphisms it is unsolved.

Thus, paradoxically, we know how to construct reversible integrators, (which is good, because re-
versibility brings good long-time behavior, e.g., through invariant tori), but not symmetric integrators,
which looks at first sight simpler.

4.3 Covariance

Why are Runge-Kutta methods called linear methods? One explanation is that they are linearly
covariant. Consider methods v which associate to each ODE f a map ¢, (f), where 7 is the time step.

Definition 11 A method v is h-covariant if the following diagram commutes.
i=f@) =)
! . Lo
That is, if
b =Kntp = h™'((dh- F)h™H)h

where Kp, is an automorphism.
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In words, we get the “same” integrator whether we take the ODE in variables x or y. Notice that if A is
a symmetry of f, then f = f, and hence h is a symmetry of ). So an h-covariant method is automatically
h-symmetric, even if we don’t know what the symmetry is!

So, we should classify methods by their covariance group.

Example 12 FEuler’s method
Yr(f) iz =z +7f(2)

(or, more generally, any Runge-Kutta method), is covariant under any affine map © = Ay + b.
Example 13 The ezact solution ¢, (f) is covariant under all maps x = h(y).

Example 14 The splitting method for ¢ = f(p), p = g(q),

Ur(f)1d =q+71f(p), ¥ =p+79(d)
is covariant under all maps ¢ = h1(q), p = ha(p). It is not even covariant under linear maps which couple
the q, p variables.

When composing symmetric or reversible methods, we can use the properties

(i) The fixed sets of automorphisms form a group.
(ii) The fixed sets of antiautomorphisms form a symmetric space.

Property (1) is immediate, while property (2) follows from the following

Lemma 15 (The Generalized Scovel Projection.) Let A_ be an antiautomorphism with order 2,
i.e. A2 =id. Let x = A_x, i.e. x € fix A_. Then

Yy A_yp € fix A V.
Proof A_(xA_v) = A2 pA_xA_tp = pxA_qp. O

Example 16 For any (anti)automorphism A, we have A(id) = id and hence A(x™') = A(x)~'. There-
fore, x € fix A_ = x~! € fix A_. Taking 1) = A_1 gives the symmetric space property 1)x~"1) € fix A_.

Example 17 xy = id = Y A_¢ € fix A_. This gives a way of constructing elements fized under any
antiautomorphism, starting from any element.

Example 18 With A 1), := "L and x = id, this builds self-adjoint methods of the form v,y _L.

-7

Example 19 With A_¢ = h="~'h, h? = id, and x = id, this builds reversible methods of the form
Yh~1p~th.

4.4 Building symmetric methods
This is unsolved except in two simple cases.
(i) If the method is h-covariant and h is a symmetry, then the method is h-symmetric.
(ii) If the symmetry group H is linear and the map v belongs to a linear space, then we can average
over H:

— 1
= — h
% ‘H|Zw

heH

is H-symmetric.

Since preserving symmetries is difficult, we should try not to destroy symmetries in the first place, by
doing non-symmetric splittings, for example.
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Fig. 4.1. The discrepancy for 13 = ‘01101001’ applied to Example 9, where the base method 1)y is Euler. Notice
how the symmetry error is drastically reduced every 2, then every 4, then every 8 time steps.

Hamzltonian systems

A symplectic integrator preserves an integral I if it preserves the symmetry associated with that
integral, namely, the flow of JVI.

Example 20 Angular momentum I = q x p. Here JVI has the form ¢ = a(q), p = b(p), whose flow has

Y

the form of Example 14. Therefore, splitting methods for H = £p? + V/(q) preserve angular momentum.

Example 21 Quadratic integrals are associated with linear symmetries, so are preserved by any linearly
covariant symplectic integrator, such as the midpoint rule (by Noether’s theorem).

4.5 Building reversible methods

Here the situation is much nicer.

Theorem 22 Let T be a group of automorphisms and antiautomorphisms. Let ¢ be fized under the
automorphisms. Then

Yp=pAgp
is fived under A, for all g € ', where A_ is any antiautomorphism in I

For example, if all symmetries are linear, then we can use this theorem to construct integrators having
the full reversing symmetry group.

4.6 Approximately preserving symmetries

The composition used in Lemma 15 is so nice that it would be nice to use it for symmetries as well as
reversing symmetries. Although it doesn’t eliminate the symmetry error, it does reduce it by one power
of the time step.

Theorem 23 Let Ay be an automorphism of order 2. Let 1, be a method with ¥ = Ay + O(0). Let
1 = AL, Then vy = Ay + O(79), where 6 = O(1).

Proof The proof is an illustration of backward error analysis and manipulation of flows considered as
exponentials. We write the map v as the flow of a vector field consisting of a part S which has the
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symmetry and a part M which does not:

b =exp(1S + dM).
Therefore,

Ai1p =exp(7S + 0N)
for some vector field N. Now
b1(Aph) T = (Y A P) (Arpy)

=Y At (Agg) !

=exp([rS + M, 7S+ éN]+...)

= exp(Td[S,N — M]+...)

U

Usually, the initial symmetry error § will be O(7P*!) for a method of order p, and this composition
reduces it to O(7P*2). The idea can be applied iteratively: if

Ynt1 = ¢HA+¢71)
then 1), has symmetry error O(7"4). This gives methods of the form

o =Y Ay Apypp = 01107,
Y3 = ‘011010017,

and so on, given by the initial elements of the famous ‘Thue-Morse’ sequence.

In the matrix example given previously, it is desired to leave the fixed set X X7 = I invariant. This
could be done by, e.g., the midpoint rule, but this is implicit and, given the form of the ODE, very
expensive. Instead, one can use a simple explicit method for v, and reduce the symmetry error to any
desired order using v,,. This leaves X orthogonal to any desired order.
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Volume-preserving integrators

Remember that the ODE

dx
T f(z)
is source-free (or divergence-free) if
ofi _
Vef= Z ox;

for all z. Let df = (0f;/0x;) be the derivative of f and A = J¢,/dz be the Jacobian of its flow. A
evolves according to
dA
=dfA, A0
S = A, A0) =
and one can show that

%detA = tr(df) det(A).

Consequently, if V - f = tr(df) = 0, then det A = 1 for all time; the flow is volume preserving.

Volume preserving systems may be seen as one of the very few fundamental types of dynamics; their
flows belong to one of the “Lie pseudogroups” of diffeomorphisms. They arise in tracking particles in
incompressible fluid flow, in perturbations of Hamiltonian systems, and in discretizations of the wave
equations of mathematical physics; volume preservation (and not symplecticity, for example) is the key
conservation law underlying statistical mechanics. An example comparing volume- and non-volume-
preserving integration is shown in Figs. 5.1-5.3.

The integrator v, is volume preserving (VP) if

31/%,;’ _
det < oz, ) =1

for all . There are two general ways to construct VP integrators:

(i) the splitting method, and
(ii) the correction method.

5.1 Volume-preserving splitting method

Starting with the system of ODEs

Pt @)

Az,

W = fm(m)

31



32 Volume-preserving integrators

4.5

35

Fig. 5.1. Orbit of the 3D “ABC” flow computed with a second-order volume-preserving integrator. The system
is © = Asinz 4+ Csiny, y = Bsinxz + Acosz, 2 = Csiny + Bcosz, with parameters A = B =1, C = 2 and
initial conditions (2,5,0). The phase space T* is here viewed along the z-axis, the long axis of the torus. The
integration time is 750, equivalent to 240 circuits of the z-axis, and the time step is 7 = 0.1. The orbit lies on a
torus and its regular, quasiperiodic behaviour is apparent.

5.5

45

35F-

Fig. 5.2. Asin Fig. 5.1, but computed with the a non-volume preserving second order Runge-Kutta method with
the same time step. The computed flow is not quasiperiodic and the amplitude of the motion gradually decreases
(the last 3% of the orbit is shown in bold). However, this method does preserve the 16 linear symmetries of the
ODE [4.2], which may explain why the results are better than in Fig. (5.3)

we substitute

fule) = [ g,

OTm

m—1

I
i=1 Oz;
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45

Fig. 5.3. As in Fig. 5.1, but computed with MATLAB’s ODE45 routine. The use of time-adaptivity has broken
the spatial symmetries, with drastic consequences.

with appropriately chosen constants of integration, to get the equivalent form

d

e
AT, —
T = f (@)

iy _ " [ 0f;
T= % e den

Now we split f, writing f as the sum of the m — 1 vector fields

dz; _ . .

dt - 0 t ;é J,m
da; _

a fi(@)
dﬂ?m _ afJ
o —‘/a—xjdzm

for j=1,...,m — 1. Note that:
(i) Each of these m — 1 vector fields is source-free.
(ii) We have split one big problem into m — 1 small problems. But we know the solution to each small
problem! They each correspond to a two-dimensional Hamiltonian system

d:l?j o aHj
At Own,
da:m _ BH]
W __&zzj

with Hamiltonian H; := [ f;(z)dzy,, treating z; for i # j,m as fixed parameters. Each of these 2D
problems can either be solved exactly (if possible), or approximated with any symplectic integrator
;. Even though ¢; is not symplectic in the whole space R™, it ¢s volume-preserving.
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A volume-preserving integrator for f is then given by
V=11 othy 0. . Pm_1.

Example 24 (for illustration only) The 3D Volterra system

WL (e )
— =x1(xy —
at 1(Z2 3
d
% = 172(333 - 171)
d
% = 173(331 - 172)
is source-free, and splits as
dill‘l
— = XXy — T T
at 122 173
dill‘g 3
= :0 ,
i fi
dill‘g 1
e —ZIax3 + 53:3
dill‘l
it N—
dt
@ = IoT3 — Tok f2
at 273 271 ;
dill‘g 1 2
— =x1T3— =T
dt 17T 9T

where volume-preserving integrators for fl and f~2 are given by the implicit midpoint rule,

B + B -
517’:33+Tf1<w CE>, $/1:$I+Tf2<$ T -

2 2
Note that the 22 terms were not in the original system, but on combining the two steps they cancel.

The splitting is an example of a generating function method: we construct source-free f’s without any
side conditions.

5.2 The volume-preserving correction method

The simplest case is the semi-implicit method

Ty =z + 7f1(%)

w;*n—l =ZTm-1+ Tfm—l(i)

’

Tom =/ mJ(a?)da::n

!
J :=det <Ba:2>
Ox; ij=1,..,m—1

= (21, ., Tm_1,2]).

where

and

For a proof of consistency and volume-preservation, see [3].
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Example 25 (for illustration only) For the 3D Volterra system

dzry
E = 331(332 - 173)
dxs
E = 332(333 - 171)
dxs
E = 333(331 - 172)
we get
Ty = x1 + 121 (T2 — T5)
Th = xo + Ty (T — 21)
and

1 I
Oz Oz
1 1

dzy  Ozy

J — (9:21 (9:22

811 Bzg
|14 7(z2 — ) T
N —TXo 14+ 7(zf — 21)

=1+ 7(x2 —21) + T2 (2275 + 2125 — T7)

and the last component of the method is z3 = fzg Jdx} or

2
T 2
! ! 2 2 13
z3 = x5 + T3 (T2 — 1) + 5 <x2173 + 125 — 3% ) :
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Integrators that preserve integrals and/or
Lyapunov functions

Definition 26 I(z) is a (first) integral or a conserved quantity of an ODE if
d
—I(x(t)) =0
L1t

for solutions z(t) of the ODE % = f(z), z € R™.

By the chain rule, this requires ) % dd’”ti = 0 for all solutions z(¢), or equivalently

dr
d:L‘Z'

filw)=f-VI=0

for all z.
Definition 27 V(z) is a Lyapunov function if

d
— <0.
dtV(a:) <0

Equivalently,
f-VV <0 forall x € R™.

ODEs with one or more first integrals occur frequently in physics. Many examples come from two main
classes:

(i) Hamiltonian systems. For example, the pendulum

dill‘l
i
a7’
dzs .
— = —sin(x
dt (z1)
where z; is the angular position of the pendulum and z, its angular momentum, has the first

integral

1
I(zy,20) = 513% — cos(z1).

(ii) Poisson systems. For example, the free rigid body with moments of inertia Iy, I, and I3, and
angular momentum 7, my, 73 in body-fixed coordinates,

d71'1 1 1
E?Z(z‘g>““
dﬂ'g 1 1
E?Z(g‘ﬁ)“m

d71'3 1 1
— === |m7
dt I, L) '?

_ .2 2 2
I(my,ma,m3) = ] + 75 + 735,

has the first integral

36
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Fig. 6.1. An orbit of the Kepler 2-body problem with the eccentricity of the Hale-Bopp comet, computed with
an integral-preserving method (left) and Runge-Kutta (right).

which is the body’s total angular momentum.

6.1 Preserving a first integral

Before presenting the theory, here is a picture. Fig. 6.1 shows an orbit in the Kepler problem; it’s an
ellipse. This remains true if you use an integral preserving method. With a standard method such as
Runge-Kutta, the orbit spirals down to the origin.

The general method we present is as follows:

(i) For every ODE with a first integral I(x), we construct an equivalent “skew-gradient system”;

(ii) we discretize the skew-gradient system to a “skew discrete-gradient system”;

(iii) we show that the skew discrete-gradient system has the same integral I(z).

More specifically,
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(i) Given the system 4 = f(z) and first integral I(z) such that & 7(z(t)) = 0, we construct the
equivalent skew gradient system
dx

— =8vI, ST=-5,;
dt

(ii) we discretize this to the skew discrete gradient system

-z

= SVI(z,z'),

T

where V is a “discrete gradient;”
(iii) we show that I(z') = I(z).

Constructing an equivalent skew gradient system

We want to solve SVI = f for the antisymmetric matrix S, where f and the integral I are given.
Because I is an integral,

One solution for S is
fVDT = (v T
VI

but S is not unique. In particular, if the critical points of I (points where VI(z) = 0) are nondegenerate,
then there is an S which is as smooth as f and VI. Sometimes, as in Poisson systems, S is already known
and does not need to be constructed.

Discretizing the skew-gradient system to a skew discrete-gradient system

S =

A discrete gradient V1 is defined by the two axioms
I(z') - I(z) = (VI) - (z' — 2)
Vi(z,2') = VI(z) + O(z' — z).
For any such discrete gradient we can construct the skew discrete-gradient system
!

r —X

=SVI

T

where S is any consistent antisymmetric matrix, such as S(z,z') = S((z + z')/2).
This discretization has the same integral I:

VI)-(z' —z)

I(z") = I(z) = (
r(VI)TS(VT)
0

Examples of discrete gradients

The problem is reduced to finding discrete gradients V satisfying the axioms. The general solution is
known. Here are two particular solutions:
(i) (Ttoh and Abe)

Vi(z,a'); = (I(z9) = I(@U=Y)) / (a} — ),
where

i) . l i .
:L‘() T (xls---axiaxz+la---axm)'

(ii) (Harten, Lax and Van Leer)

Vi(z,a) = / VI(e+ £ — x)) de
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Fig. 6.2. Evolution of an integral I(z) in a 3D system with three fourth-order methods. QT4: Integral preserving;
RK4: Classical Runge-Kutta; LM4: linear multistep.

Numerical example preserving one integral
Consider the system

dz

o = VA + (14 0.1y% + 3* + 0.1y°)

d

d_g; = —z% + 22— 0.12%°

dz 3

— =—z—xy—yz

dt y—y

which has first integral
22yt 22
I=—+= i

s Tttty

but is not Hamiltonian or Poisson. I(x) has compact level surfaces, so staying on them means that the
numerical integration is stable. This system is written as a skew-gradient system as

e 0 z(1+0.1y?) y
— 1y | =] -2(1+0.1y? 0 z | VI
dt

z -y —z 0

and a comparison between a skew-discrete gradient integrator and two classical methods is shown in Fig.
6.2.

6.2 Preserving a Lyapunov function

An integral is a function that is preserved in time, dI/dt = 0. A Lyapunov function decreases in time,
dV/dt < 0. These also arise frequently:

(i) Gradient systems (these arise in dynamical systems theory)

Z—f =—-VV(z)

Here 42 = —(VV)TVV = —|VV|? <0, so V is a Lyapunov function.

(ii) Systems with dissipation For example, the damped pendulum with friction a > 0,
d.’Bl
dt
d.’EQ
dt

= —sin(z1) — axs
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has Lyapunov function V(z1,z2) = S22 — cos(z1), because

2
d
v = —ar3 <0.

dt

(ili) Systems with an asymptotically stable fixed point Here the construction of the Lyapunov
function is a standard (although difficult) problem in dynamical systems.

These systems can be discretized very similarly to systems with an integral. Namely,

(i) Given the system 4 = f(z) with Lyapunov function V, we construct the equivalent “linear-
gradient system”
dz
=LVV
dt

where L is negative semidefinite, i.e. 7 Lv < 0 for all vectors v;
(ii) we take the linear-discrete gradient system

' —x

=LVV(z,z"),

T

(iii) we show that V(z') <V (z).

Note that L is not necessarily symmetric. This is important, because as the dissipation tends to zero,
we want L to smoothly tend to an antisymmetric matrix, to recover the integral-preserving case.

Constructing an equivalent l’inear-gmdient system

We want to solve LVV = f where f and V are given, = f-VV <0, and L is a negative semidefinite
matrix. One solution is
FVV)T = (V)T + (f - VV)I
VV|?

One can check that vT Lv = |v|?(f - VV)/|VV|? < 0, so that L is negative semi-definite, and that
LVV = f. As with skew-gradient systems, the matrix L is not unique, and special care is required near
critical points of V.

L=

The linear-discrete gradient system

By analogy with the integral-preserving case, we check that the linear-discrete gradient system has the
same Lyapunov function as the original system:

V(') - V(z) = (VV) - (a' - x)

The damped pendulum
=L
—= = —sin(z1) — azs

with Lyapunov function V(z1,22) = — cos(z1), can be written in the linear-gradient form

)-8 ) ()



6.2 Preserving a Lyapunov function 41

Fig. 6.3. The damped pendulum, computed with a linear-discrete gradient method. Orbits spiral in correctly
even if the dissipation rate tends to zero.

(Note that L is negative semi-definite, because the eigenvalues of its symmetric part are 0 and —«.) Using
the Ttoh—Abe discrete gradient we get the discretization

1(“73_“71) = LVV

T\ 2hH — 2o
0 1 7cos(zmll)_4;clos(m1)
= 1 y
-1 —a zytws ’
2

whose phase portrait is sketched in Fig. 6.3. The behaviour of the non-dissipative Fuler’s method is
quite different. It increases energy near p = 0 for all time steps 7. Globally, for 7 >~ 2« orbits move
out across the separatrix; and for a <~ 7 <~ 2a there are spurious asymptotically stable periodic orbits
inside the separatrix.

Extensions and generalizations

(i) The above methods can be generalized to ODEs with any number of integrals and/or Lyapunov
functions.

(ii) There are discrete gradient methods of order 2, but higher order is desirable. For systems with
an integral, this can be done by composition. For Lyapunov functions, the maps form only a
semigroup, so the order cannot be increased beyond 2 by composition.

(iii) Given a system in skew- or linear-gradient form, the matrix can be split, leading to 2D systems
with the same integral or Lyapunov function.

(iv) Satisfactory treatment of nonautonomous ODEs is still an open problem.
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