DEPARTAMENTO DE MATEMÁTICA DA UNIVERSIDADE DE COIMBRA TRATAMENTO MATEMÁTICO DAS OBSERVAÇÕES

Ano de 2001/2002 Folha 8

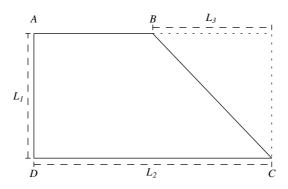
1. Mediu-se várias vezes a altura de um poste com uma fita de aço obtendo-se os seguintes resultados:

Nº da medição	1	2	3	4	5	6	7	8	9	10
Valor obtido	31.29	31.24	31.27	31.26	31.36	31.25	31.26	31.27	31.28	31.24

Determine a média da amostra recolhida bem como a sua variância e desvio padrão.

2. Determine a capacidade esperada de um depósito cilíndrico, sabendo que se fizeram várias medições, todas nas mesmas condições e independentes, da sua altura h e do raio da base r, tendo-se obtido os seguintes resultados (em metros):

3. (a) Indique como pode determinar o valor esperado da área do trapézio com vértices A, B, C e D, sabendo que se conhecem os comprimentos indicados na figura e que estes comprimentos são independentes.



(b) Determine o valor esperado da referida área, sabendo que para se determinar os comprimentos L_1 , L_2 e L_3 se fizeram várias observações, todas nas mesmas condições, tendo-se obtido os seguintes resultados (em metros):

L_1	L_2	L_3
31.68	35.24	10.12
31.59	35.26	10.10
31.62	35.21	10.15
31.64	35.21	10.13
31.62	35.20	10.11

4. Atendendo a que, para duas variáveis X e Y, são conhecidas as seguintes amostras

determine: (a) o coeficiente de correlação e comente o resultado obtido; (b) a matriz cofactor.

5. Considere duas variáveis aleatórias X e Y que representam comprimentos e para as quais se conhecem a seguintes amostras (em metros):

- (a) Determine a matriz de covariâncias das variáveis X e Y.
- (b) Determine o coeficiente de correlação.
- (c) Calcule a matriz cofactor.
- 6. Sejam X e Y duas variáveis aleatórias. Seja Z = X aX + Y bY, em que a e b são constantes.
 - (a) Determine o valor mais provável de Z.
 - (b) Suponha que foram obtidas independentemente as seguintes amostras:

Determine uma estimativa para E(Z) e para σ_Z^2

- 7. Para determinar a área de um terreno rectangular, e o respectivo desvio padrão, mediu-se o comprimento e a largura do terreno tendo-se obtido:
 - comprimento = 100 m, desvio padrão = 0.50 m;
 - largura = 40 m, desvio padrão = 0.30 m.

Determine uma estimativa para as quantidades pretendidas considerando que o comprimento e a largura do terreno estão não correlacionados.

- 8. Mediram-se independentemente três distâncias adjacentes ao longo da mesma linha, tendo-se obtido os resultados:
 - $x_1 = 51.00 \text{ m}, \quad \sigma_1 = 0.05 \text{ m};$
 - $x_2 = 36.50 \text{ m}$, $\sigma_2 = 0.04 \text{ m}$;
 - $x_3 = 26.75 \text{ m}$, $\sigma_3 = 0.03 \text{ m}$.

Calcule uma estimativa para a distância total e o seu desvio padrão.

9. Considere um triângulo de lados a, b e c e seja α o ângulo formado por a e b. Suponha que se mediram os comprimentos destes dois últimos lados (em centímetros) e a amplitude de α tendo-se obtido os valores:

Supondo que as observações são independentes determine uma estimativa para o valor mais provável do comprimento do lado c e uma estimativa para o desvio padrão para este valor (teorema de Carnot: $c = \sqrt{a^2 + b^2 - 2ab\cos\alpha}$).

- 10. Suponha que se mediram três ângulos α_1, α_2 e α_3 e que os desvios padrão são, repectivamente, 2", 3" e 5". Determine a matriz de covariância dos ângulos $\beta_1 = \alpha_2 \alpha_1$ e $\beta_2 = \alpha_3 \alpha_2$.
- 11. Para determinar o comprimento de uma linha poligonal mediram-se independentemente os seus três segmentos tendo-se obtido os seguinte resultados (em metros):

Determine uma estimativa para o comprimento da linha poligonal e para o seu desvio padrão.