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Abstract

Some fundamental questions about infinite-vertex (free) profinite semi-
groupoids are clarified, putting in evidence differences with the finite-
vertex case. This is done with examples of free profinite semigroupoids
generated by the graph of a subshift. It is also proved that for minimal
subshifts, the infinite edges of such free profinite semigroupoids form a
connected compact groupoid.
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1 Introduction

Since the 1960’s that the theory of finite semigroups and their pseudovarieties
has seen substantial developments motivated by its applications in computer
science through the theories of finite automata and regular languages [9, 17, 18,
23]. Since the mid 1980’s, profinite semigroups, and particularly relatively free
profinite semigroups, have been shown to play an important role in the study
of pseudovarieties: free profinite semigroups over a pseudovariety V capture
the common properties of semigroups in V; formal equalities between elements
of free profinite semigroups over V serve to define subpseudovarieties of V; V-
recognizable languages are the traces over finite words of the clopen subsets
of free profinite semigroups over V [5]. Yet, one of the main difficulties in the
profinite approach is that, in general, very little is known about the structure
of relatively free profinite semigroups.
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Symbolic dynamics first came into this picture as a toolkit to exhibit ele-
ments of relatively free profinite semigroups with suitable properties [2, 7] and to
explore structure features of such semigroups [7, 4]. Conversely, profinite conju-
gacy invariants have been found in relatively free profinite semigroups and some
finite computable conjugacy invariants for sofic subshifts were deduced [14, 15].

Through the work of Tilson [34], see also [31], finite categories and semi-
groupoids (categories without the requirement of local identities) have been
shown to play a crucial role in the study of certain operations on pseudovari-
eties, such as various forms of semidirect products. The merger of this idea with
the profinite approach was first attempted in [8]. At first sight, there is for cate-
gories and semigroupoids a similar theory of pseudovarieties and their relatively
free profinite structures over given profinite graphs [22, 8]. But, as this paper
shows, there are some significant differences in case the set of vertices is infinite.
In many applications, the finite-vertex case is sufficient [3, 35]. Nevertheless,
the general case is also of interest [6, 29].

This paper brings together symbolic dynamics and relatively free profinite
semigroupoids. The latter are used to establish some profinite conjugacy in-
variants, a theme which will be further explored in forthcoming papers. The
former serves as a tool to construct examples which clarify some difficulties in
the theory of profinite semigroupoids, which is the main subject of this work.

Given a profinite graph Γ, let Γ+ denote the semigroupoid freely generated by
Γ and ΩΓSd the profinite semigroupoid freely generated by Γ. For a subshift X ,
the graph Σ(X ) of the shift function on a subshift X , whose discrete connected
components are the orbits of X , is a profinite graph. Using examples from this
special class of graphs, we exhibit profinite graphs Γ such that Γ+ is not dense
in ΩΓSd. Their existence is apparently noted here for the first time. This leads
to the consideration of the iterative procedure of taking the topological closure
of the subsemigroupoid generated by a graph. Starting in Γ+, this procedure,
iterated transfinitely, eventually stops in ΩΓSd, but we prove there are examples
where an arbitrarily large countable ordinal number of steps is required. In these
examples Γ is the graph of a countable two-letter subshift.

On the other hand it is straightforward to prove that if X is a subshift of finite
type then Σ(X )+ is dense in the free profinite semigroupoid generated by Σ(X ).
This result also holds for minimal subshifts, but the proof is much more involved.
It is a derivative of the development of techniques for obtaining upper bounds
for the number of steps, starting at Σ(X ), needed to reach the free profinite
semigroupoid generated by Σ(X ) through the operation of taking the topological
closure of a subsemigroupoid generated by a graph. The core idea is that we can
label in a natural way the edges of Σ(X ) and extend this labeling in a canonical
way to the projective limit of the free profinite semigroupoids generated by finite
approximations of Σ(X ) called Rauzy graphs. The free profinite semigroupoid
generated by Σ(X ) embeds into this projective limit (we do not know if they are
actually always equal). The set M (X ) of edge labels in such a projective limit is
the set of elements of the free profinite semigroup over the alphabet of X whose
finite factors belong to the set L(X ) of finite blocks in X . On the other hand
the topological closure L(X ) in the free profinite semigroup is precisely the set
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of edge labels in the topological closure of Σ(X )+. In this framework, we prove
that if M (X ) = L(X ) then Σ(X )+ is dense in the free profinite semigroupoid
generated by Σ(X ).

Many results are valid not only for free profinite semigroupoids, but also
for their counterparts relatively to proper subpseudovarieties under suitable as-
sumptions.

This paper is divided in six sections. Section 2 presents some preliminaries on
semigroups, subshifts and graphs. Section 3 is dedicated to the construction of a
good definition of relatively free profinite semigroupoids generated by profinite
graphs. Section 4 specializes to relatively free profinite semigroupoids generated
by the graph of a subshift. There we study fundamental properties of the label-
ing map which we apply in Section 5 to investigate upper and lower bounds for
the ordinal number of steps, starting at Σ(X ), needed to reach ΩΣ(X )Sd using
the algebraic and topological operators we mentioned. Finally, in section 6 we
focus on the case where X is minimal, and as a consequence of our main results
we prove that ΩΣ(X )Sd \ Σ(X )+ is a connected compact groupoid.

Our basic reference for symbolic dynamics is the book of Lind and Mar-
cus [24]. For background on profinite semigroups and semigroupoids see the
introductory text [5].

The authors thank K. Auinger and B. Steinberg for the communication of
an example of G. Bergman, which, as B. Steinberg pointed out, shows that a
residually finite compact semigroupoid is not necessarily a projective limit of
finite semigroupoids. They also thank the referee for giving helpful comments
that improved the presentation of the paper.

2 Preliminaries

2.1 Some remarks about topology

Throughout this article all topologies are considered to be Hausdorff. In absence
of confusion, finite sets are endowed with the discrete topology. Familiarity with
nets is assumed. Let I be a directed set (that is, I is endowed with a partial order
≤ such that for every i, j ∈ I there is k ∈ I such that i ≤ k and j ≤ k). A directed
system of topological spaces (Xi)i∈I is a family (ϕj,i : Xj → Xi)i,j∈I, i≤j of
continuous maps such that ϕi,i is the identity map and ϕj,i◦ϕk,j = ϕk,i whenever
i, j, k ∈ I, i ≤ j ≤ k. The corresponding projective limit is the topological space

lim←−
i∈I

Xi = {(si)i ∈
∏

i∈I Xi | i ≤ j ⇒ ϕj,i(sj) = si}.

Note that if ϕi is the canonical projection of lim←−i∈I
Xi into Xi, then ϕi =

ϕj,i ◦ϕj . If the maps ϕj,i are onto then we speak about an onto directed system
and an onto projective limit. It is well known that lim←−i∈I

Xi is a closed subset
of
∏

i∈I Xi, which is nonempty if the spaces Xi are compact, and that the
canonical projections of an onto projective limit are onto: see [19, Section 3.2],
for instance. The following proposition is easy to prove.
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Proposition 2.1. Let Y be a subset of lim←−i∈I
Xi. If for every i ∈ I there is

k ≥ i such that the canonical projection of Y into Xk is onto, then Y is dense
in lim←−i∈I

Xi.

2.2 Pseudovarieties of semigroups

We require some very basic knowledge about the definitions of semigroup, topo-
logical semigroup, alphabet, rational language. This that can be found in [23, 27,
12]. Anyway, we shall recall some of the terminology and notation. For instance,
given a semigroup S which is not a monoid, S1 denotes the monoid obtained
from S by adding an extra neutral element 1; if S is a monoid then S1 = S. The
length of a word u is denoted by |u|. The cardinal of a set X is also denoted by
|X|. As usually, the free semigroup generated by an alphabet A is denoted by
A+, the empty word is denoted by 1, and A∗ is the monoid A+ ∪ {1}. Recall
that a language L of A+ is recognized by a semigroup S if there is some semi-
group homomorphism ϕ : A+ → S such that L = ϕ−1ϕ(L). If C is a class of
semigroups, then we say L is C -recognizable if L is recognized by some element
of C .

A pseudovariety of semigroups is a class of finite semigroups closed under
taking homomorphic images, subsemigroups and finite direct products. Denote
by VA+ the set of V-recognizable languages, and by V the family (VB+)B where
B runs in the class of finite alphabets. Eilenberg proved that the correspondence
V→ V is a lattice isomorphim between the set of pseudovarieties of semigroups
and the set of the so called varieties of rational languages, thus opening a vast
research program linking the algebraic theory of finite semigroups with the com-
binatorial theory of languages.

In contrast with Birkhoff’s varietal theory of free algebras [11], a theory
of free objects in a pseudovariety V leads to the consideration of topological
semigroups. A map ψ : X → F separates two elements x and y of the set X
if ψ(x) 6= ψ(y). A topological semigroup S is residually in V if every pair of
distinct elements of S is separated by a continuous semigroup homomorphism
into a semigroup of V. We say that a topological semigroup S is pro-V if it
is compact and residually in V. A semigroup is pro-V if and only if it is the
projective limit of an onto directed system of semigroups of V [26]. If V is the
class S of all finite semigroups then one usually uses the designation profinite
instead of pro-S. We shall use the fact that for every element s of a profinite
semigroup the sequence (sn!)n converges to an idempotent denoted by sω [5,
pg. 20].

A map κ from A into a topological semigroup T is a generating map of T if
the subsemigroup of T generated by κ(A) is dense in T . A pro-V semigroup T is a
free pro-V semigroup generated by A, with generating map κ : A→ T , if for every
map ϕ from A into a pro-V semigroup S there is a unique continuous semigroup
homomorphism ϕ̂ : T → S satisfying ϕ̂ ◦ κ = ϕ (which means Diagram (2.1)
commutes).
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By the usual abstract nonsense, up to isomorphism of topological semigroups,
there is no more than one free pro-V semigroup generated by A. In fact there
is always such a semigroup: roughly speaking, it is the projective limit of all
A-generated semigroups of V. It is denoted by ΩAV. By relatively free profinite
semigroup we mean a semigroup of the form ΩAV, for some pseudovariety V.
If V has nontrivial semigroups then A embeds into ΩAV, and if V contains the
pseudovariety N of finite nilpotent semigroups (semigroups whose idempotents
are all equal to a zero element) then A+ embeds as a dense subset of ΩAV, and
the elements of A+ are isolated points in ΩAV; for these reasons the elements
of ΩAV are also called pseudowords (or profinite words), and the elements of
ΩAV \A+ are the infinite pseudowords. The following proposition [1, Theorem
3.6.1] establishes an important connection between the topology of ΩAV and
V-recognizable languages, when V contains N.

Proposition 2.2. Let V be a pseudovariety of semigroups containing N. Let
A be a finite alphabet. A language L of A+ is V-recognizable if and only if
its topological closure in ΩAV is open. The topology of ΩAV is generated by
the topological closures of V-recognizable languages of A+, and is defined by a
metric.

2.3 Two special types of pseudovarieties

A semigroup whose subgroups are trivial is called aperiodic. Let A be the pseu-
dovariety of finite aperiodic semigroups. Note that N ⊆ A. A variety of lan-
guages V is closed under concatenation product if VA+ contains the concate-
nation of its elements, for every finite alphabet A. We say that a pseudova-
riety of semigroups is closed under concatenation if the corresponding variety
of languages is closed under concatenation product. The pseudovarieties closed
under concatenation are precisely those of the form A©m V, where ©m denotes
the Mal’cev product (see [27] for the definition of the Mal’cev product); this
result is a particular instance of a more general result from [13], which in turn
generalizes a similar result from [32] proved for pseudovarieties of monoids. In
particular, A is contained in every pseudovariety closed under concatenation and
is itself a pseudovariety closed under concatenation.

Lemma 2.3. Let V be a pseudovariety of semigroups containing N. The multi-
plication in ΩAV is an open map for every finite alphabet A if and only if V is
closed under concatenation.

Proof. Let V be the variety of V-recognizable languages. Then {L |L ∈ VA+} is
a basis for the topology of ΩAV, by Proposition 2.2. Therefore {L×K |L,K ∈
VA+} is a basis for the topology of ΩAV × ΩAV. For all subsets P and Q of
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A+ we have P · Q = PQ. Hence the multiplication in ΩAV is an open map if
and only if LK is open for every L,K ∈ VA+. The set LK is open if and only
if LK ∈ VA+, by Proposition 2.2. Hence the multiplication in ΩAV is an open
map if and only if VA+ is closed under concatenation.

Given an alphabet A and k ≥ 1, consider the alphabet Ak of words on A
of length k; to avoid ambiguities, we represent an element w1 · · ·wn of (Ak)+

(with wi ∈ Ak) by 〈w1, . . . , wn〉; for k ≥ 0 the map Φk from A+ to (Ak+1)∗ is
given by

Φk(a1 · · · an) =

{
1 if n ≤ k,
〈a[1,k+1], a[2,k+2], . . . , a[n−k−1,n−1], a[n−k,n]〉 if n > k,

where ai ∈ A and a[i,j] = aiai+1 · · · aj−1aj .
For every pseudovariety of semigroups W, the class L W of all finite semi-

groups whose subsemigroups that are monoids belong to W is a pseudovari-
ety of semigroups. Let V be a pseudovariety of semigroups containing L I,
where I is the pseudovariety of singleton semigroups. We say that V is block
preserving if for every finite alphabet A and nonnegative integer k, the map
Φk : A+ → (Ak+1)∗ has a unique continuous extension from ΩAV to (ΩAk+1V)1,
which we denote by ΦV

k . The first author proved that the pseudovariety S of
all finite semigroups is block preserving [1, Lemma 10.6.11]. In [1, Chapter 10]
one can see there are close connections between the map Φk and the semidirect
products of the form V ∗ D, where D is the pseudovariety of semigroups whose
idempotents are right zeros (we shall not need to recall the definition of semidi-
rect product: the interested reader may consult [1, Chapter 10] for details).
Using these connections, the second author proved that every pseudovariety of
semigroups V such that L I ⊆ V and V = V ∗D is block preserving [16, Proposi-
tion 1.59]. Moreover, it is easy to prove the converse using Proposition 2.2, the
characterization of L I-recognizable languages, and Straubing’s characterization
of W ∗ D-recognizable languages for a pseudovariety W of semigroups [33].

Since V ∗D = (V ∗D)∗D, it is very easy to give examples of block preserving
pseudovarieties. Namely L V is block preserving for every pseudovariety V of
semigroups, since L V = (L V) ∗ D.

There are several examples of pseudovarieties of semigroups that are simul-
taneously block preserving and closed under concatenation. If H is a pseu-
dovariety of groups then the pseudovariety H of semigroups whose subgroups
lie in H is such an example. Note that A is among this set of examples, since
A = I. The complexity pseudovarieties Cn, recursively defined by C0 = A and
Cn = A ∗ G ∗ Cn−1 if n ≥ 1, where G is the pseudovariety of finite groups, are
also block preserving and closed under concatenation (see [30] for details and a
recent account on the complexity pseudovarieties). These two sets of examples
have only A in common, since H = L H, while every complexity pseudovariety
different of A is not of the form L V [30].

On the other hand, if L V ( A then L V is not closed under concatenation,
and in [16, Appendix C] we can find some examples of pseudovarieties closed
under concatenation which are not block preserving.
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2.4 Subshifts

Suppose the alphabet A is finite. Let AZ be the set of sequences of letters
of A indexed by Z. The shift in AZ is the bijective map σA (or just σ) from
AZ to AZ defined by σA((xi)i∈Z) = (xi+1)i∈Z. The orbit of x ∈ AZ is the set
O(x) = {σk(x) | k ∈ Z}. We endow AZ with the product topology with respect
to the discrete topology of A. Note that AZ is compact, since A is finite. A
symbolic dynamical system of AZ is a nonempty closed subset X of AZ that
contains the orbits of its elements. Symbolic dynamical systems are also called
shift spaces or subshifts.

Two subshifts X ⊆ AZ and Y ⊆ BZ are topologically conjugate if there is a
homeomorphism ϕ : X → Y commuting with shift: ϕ ◦ σA = σB ◦ ϕ. Such a
homeomorphism is also called a topological conjugacy. Since we will consider no
other form of conjugacy, we drop the reference to its topological nature.

Let x ∈ AZ. By a factor of (xi)i∈Z we mean a word xixi+1 · · ·xi+n−1xi+n

(briefly denoted by x[i,i+n]), where i ∈ Z and n ≥ 1. If X is a subset of AZ then
we denote by L(X ) the set of factors of elements of X , and by Ln(X ) the set of
elements of L(X ) with length n. A subset K of a semigroup S is factorial if it
is closed under taking factors, and it is prolongable if for every element u of K
there are a, b ∈ S such that aub ∈ K. It is easy to prove that the correspondence
X 7→ L(X ) is a bijection between the subshifts of AZ and the nonempty factorial
prolongable languages of A+ [24, Proposition 1.3.4].

Let X be a subshift of AZ and V a pseudovariety of semigroups containing
N. Since K ∩ A+ = K for every language K of A+ (where K is the closure
of K in ΩAV), the correspondence X 7→ L(X ) is one-to-one. This suggests
the exploration of the algebraic-topological properties of ΩAV (in general much
richer than those of A+) to obtain information about X . This program has been
implemented by both authors in previous papers [4, 5, 14, 15]. The following
result has not appeared before, and its interest is obvious in this context.

Proposition 2.4. Let V be a pseudovariety of semigroups closed under con-
catenation. If L is a factorial language of A+ then L is a factorial subset of
ΩAV.

For proving Proposition 2.4 we first prove a useful lemma.

Lemma 2.5. Let S be a topological semigroup whose topology is defined by a
metric. Suppose the multiplication is an open map. Let u, v ∈ S. Let (wn)n be a
sequence of elements of S converging to uv. Then there is a subsequence (wnk

)k

and sequences (uk)k, (vk)k such that wnk
= ukvk for all k, and limuk = u and

lim vk = v.

Proof. We denote by B(t, ε) the open ball in S with center t and radius ε.
Let k be a positive integer. Since the multiplication is an open map, the set
B
(
u, 1

k

)
B
(
v, 1

k

)
is an open neighborhood of uv. Hence there is pk such that

wn ∈ B
(
u, 1

k

)
B
(
v, 1

k

)
if n ≥ pk. Let nk be the strictly increasing sequence

recursively defined by n1 = p1 and nk = max{nk−1 + 1, pk} if k > 1. For
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each positive integer k there are uk ∈ B
(
u, 1

k

)
and vk ∈ B

(
v, 1

k

)
such that

wnk
= ukvk. We have limuk = u and lim vk = v.

Proof of Proposition 2.4. Suppose uv ∈ L. Let (wn)n be a sequence of elements
of L converging to uv. By Lemmas 2.3 and 2.5 there are a subsequence (wnk

)k

and sequences (uk)k, (vk)k such that wnk
= ukvk for all k, limuk = u and

lim vk = v. Since wnk
∈ A+, necessarily uk, vk ∈ A+. And since wnk

∈ L and L
is factorial in A+, we have uk, vk ∈ L. Hence u, v ∈ L.

2.5 Prefixes and suffixes of pseudowords

Take [1, Sections 3.7 and 5.2] as reference for this subsection. By a prefix of an
element t of a semigroup T we mean a left factor of t, that is, an element p of
T such that s = px for some x ∈ T 1. Dually, a suffix is a right factor.

Let w be a word of A+ and n a positive integer. If |w| ≥ n then we denote
by tn(w) (respectively in(w)) the unique suffix (respectively prefix) of w with
length n; if |w| < n then we let tn(w) = in(w) = w. If V is a pseudovariety
of semigroups containing D, then the map tn : A+ → A+ has a unique exten-
sion to a continuous homomorphism from ΩAV to A+ relatively to the discrete
topology of A+. We also denote this extension by tn. Replacing D by its dual
pseudovariety, usually denoted by K, similar considerations hold for in. The
least pseudovariety containing D and K is L I.

We denote by N the set of nonnegative integers, and by Z− the set of negative
integers. Endow AN ∪A+ (respectively AZ− ∪A+) with the topology defined as
follows: AN (respectively AZ−) is closed and endowed with the product topology,
the elements of A+ are isolated points, and a sequence (un)n of elements of A+

converges to an element x of AN (respectively AZ−) if and only if for all k
the words ik(un) and x[0,k−1] (respectively tk(un) and x[−k,−1]) are equal for
all sufficiently large n. The topological space AN ∪ A+ becomes a compact
semigroup if we declare the elements of AN as left zeros and the remaining
possible products as given by concatenation. In this way, AN∪A+ is isomorphic
with ΩAK. The dual characterization holds for ΩAD.

Take the natural identification between AZ and AZ− ×AN. Endow AZ ∪A+

with the topology where AZ is closed and endowed with the product topol-
ogy, the elements of A+ are isolated points, and a sequence (un)n of elements
of A+ converges to an element x of AZ if and only if (un, un)n converges to
(x]−∞,−1], x[0,+∞[) in AZ− ×AN. Consider in AZ ∪A+ the following multiplica-
tion: for w ∈ A+, x, x′ ∈ AZ− and y, y′ ∈ AN, we have

(x, y) · w = (xw, y), w · (x, y) = (x,wy), (x, y) · (x′, y′) = (x′, y).

With this multiplication, AZ ∪ A+ becomes a compact semigroup isomorphic
with ΩAL I.

If V contains L I then ΩAK is pro-V. Let w 7→ −→w denote the canonical
projection of ΩAV in ΩAK, that is, the unique continuous homomorphism from
ΩAV to ΩAK extending the identity in A. Dually, denote by w 7→ ←−w the
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Figure 1: Presentation of the even subshift.

canonical projection of ΩAV in ΩAD. Note that in(w) = in(−→w ) and tn(w) =
tn(←−w ) for all n. An element (x, y) of AZ− ×AN will also be denoted by x.y.

For a word u, the left infinite sequence . . . uuuu is denoted by u−∞; dually,
u+∞ = uuuu . . .; and u−∞.v+∞ denotes the bi-infinite sequence . . . uuuu.vvvv . . ..
Finally, u∞ denotes u−∞.u+∞.

2.6 Graphs

By a graph we mean a directed multigraph, that is a disjoint union G = VG∪EG

of a set VG of vertices with a set EG of edges together with two incidence maps
α, ω from EG to VG . The pictorial meaning of the incidence maps is best
described by writing α(e) e−−→ω(e), (or alternatively e : α(e) → ω(e)), and
by saying that e goes from α(e) to ω(e), or that the edge e starts at α(e) and
ends at ω(e), and so on. Two edges e and f on a graph are co-terminal if
α(e) = α(f) and ω(e) = ω(f). The set of edges from a vertex x to a vertex y
is denoted by EG(x, y). Two edges e and f are said to be consecutive (in this
order) if ω(e) = α(f). A path on a graph is a finite sequence of consecutive
edges. Occasionally we also consider the empty path at a vertex.

A function between graphs is a graph homomorphism if it maps vertices to
vertices, edges to edges, and respects incidence maps. A graph homomorphism
is faithful if it maps co-terminal edges injectively, and it is quotient if it is
bijective in the set of vertices and onto in the set of edges.

A labeled graph on A is a pair (G , λ) where G is a graph and λ is a mapping
assigning to each edge of G a letter of A. One can regard a labeled graph as an
automaton whose vertices are all both initial and final states. A subshift X is
called sofic if the language L(X ) is recognized by a finite labeled graph. In fact,
X is sofic if and only if L(X ) is a rational language. Such a graph is said to be
a presentation of the symbolic system. The graph of Figure 1 labeled with the
letters a and b presents a familiar sofic system called the even subshift.

Let X be a subshift of AZ. The Rauzy graph of order n of X [28] is the
graph Σn(X ) where the vertices are the elements of Ln(X ), the edges are the
elements of Ln+1(X ), and the incidence maps are given by α(a1a2 · · · anan+1) =
a1a2 · · · an and ω(a1a2 · · · anan+1) = a2 · · · anan+1.

By a (compact) topological graph we mean a graph G endowed with a (com-
pact) topology such that αG and ωG are continuous maps, and VG and EG are
closed sets. Note that VG and EG are also open sets, since G is the disjoint
union of VG and EG . The product of topological graphs is a topological graph
with respect to the product topology.
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For a subshift X , let Σ(X ) denote the graph whose set of vertices is X , whose
set of edges is {(x, σ(x)) ∈ X × X |x ∈ X}, and such that the edge (x, σ(x))
starts in x and ends in σ(x). Considering in EΣ(X ) the topology induced from
the product topology of X ×X , the maps α and ω are continuous, whence Σ(X )
has a structure of topological graph determined by the topology of X . We call
Σ(X ) the graph of X . If two subshifts are conjugate then Σ(X ) and Σ(Y) are
isomorphic topological graphs.

A compact graph is profinite if every pair of distinct elements is separated
by a continuous graph homomorphism into a finite graph. This is equivalent to
being the projective limit of an onto directed system of finite graphs.

Let n and m be positive integers such that m ≥ n. The following map,
denoted by πm,n, is an onto graph homomorphism:

Σ2m(X ) → Σ2n(X )

x[−m,m−1] ∈ L2m(X ) 7→ x[−n,n−1] ∈ L2n(X ), x ∈ X ,
x[−m,m] ∈ L2m+1(X ) 7→ x[−n,n] ∈ L2n+1(X ), x ∈ X .

The family of graph homomorphisms {πm,n |n ≤ m} defines an onto directed
system. Its projective limit and Σ(X ) will be identified, according to the fact
that the map

Σ(X ) → lim←−Σ2n(X )

x 7→ (x[−n,n−1])n

(x, σ(x)) 7→ (x[−n,n])n, x ∈ X .

is a continuous graph isomorphism. The graph Σ(X ) is therefore profinite.

3 Relatively free profinite semigroupoids

3.1 Semigroupoids

Let S be a graph with a nonempty set of edges. Denote by DS the set of pairs
of consecutive edges of S. We say S is a semigroupoid if the set of edges of S
is endowed with a partial binary operation “ · ” usually called composition, such
that:

1. given edges s and t of S, the product s · t is an edge which is defined if
and only if (s, t) ∈ DS ;

2. if (s, t) ∈ DS then α(s · t) = α(s) and ω(s · t) = ω(t);

3. if (s, t) ∈ DS and (t, r) ∈ DS then (s · t) · r = s · (t · r).

The product s · t of two consecutive edges will be denoted by st whenever it is
clear that we are not speaking about the path made of s and t.

A subgraph T of a semigroupoid S is a subsemigrupoid of S if T is a semi-
groupoid whose composition is the restriction of the operation of S. Given a

10



Figure 2: The homomorphic image of S in T is not a subsemigroupoid.

nonempty subgraph X of the semigroupoid S, the intersection of all subsemi-
groupoids of S containing X is a semigroupoid, called the subsemigroupoid of S
generated by X, and denoted by 〈X〉. Note that V〈X〉 = VX and that

E〈X〉 =
⋃
n≥1

{s1s2 · · · sn | s1, s2, . . . , sn are consecutive edges of X}. (3.1)

Given two semigroupoids S and T , a homomorphism of semigroupoids from
S to T is a homomorphism of graphs ϕ : S → T such that ϕ(s · t) = ϕ(s) · ϕ(t)
for every (s, t) ∈ DS . If the restriction of ϕ to the set S of vertices is injective
then for every subsemigroupoid R of S the set ϕ(R) is a subsemigroupoid of T .
However, it may happen that ϕ(S) is not a subsemigroupoid of T .

Example 3.1. Consider the graphs S and T represented in Figure 2. The set
DS is empty, hence S is a semigroupoid for the empty binary operation. On the
other hand, DT = {(c, d)} and T is a semigroupoid for the operation (c, d) 7→
e. Since DS = ∅, any graph homomorphism from S to T is a semigroupoid
homomorphism. That is the case of the map ϕ : S → T such that ϕ(y1) =
ϕ(y2) = y and ϕ(s) = s for all s ∈ S \ {y1, y2}. The graph ϕ(S) is not a
subsemigroupoid of T , because ϕ(c) · ϕ(d) = c · d = e /∈ ϕ(S).

Given a set C, it is convenient to identify C with the graph G(C) with a
single vertex x not belonging to C and such that EG(C)(x, x) = C. Accordingly,
if H is a graph, a graph homomorphism from H to C will be understood as
a map from EH to C. Likewise, a semigroup S will be identified with the
semigroupoid having G(S) as underlying graph and whose composition is the
semigroup operation of S. Conversely, if T is a semigroupoid and ET (x, x) 6= ∅,
then ET (x, x) is a semigroup for the composition operation, called the local
semigroup of T in x.

Let Γ be a graph. The graph Γ+ is the graph whose vertices are those of
Γ and whose edges from a vertex x to a vertex y are the paths of Γ from x to
y. Note that Γ is a subgraph of Γ+. Under the operation of concatenation of
paths, Γ+ is the free semigroupoid generated by Γ. In fact, if Γ is a set then Γ+ is
actually the free semigroup generated by Γ. Given a homomorphism ϕ of graphs
from Γ to a semigroupoid S, we shall denote by ϕ+ the unique semigroupoid
homomorphism from Γ+ to S extending ϕ.

A congruence on a semigroupoid S is an equivalence relation θ on S such
that:

1. if x is a vertex of S then x/θ = {x}.

11



2. for all edges s and t of S, if s θ t then s are t co-terminal edges;

3. for all edges s, t and r of S, if s θ t and ω(r) = α(s) then rs θ rt;

4. for all edges s, t and r of S, if s θ t and α(r) = ω(s) then sr θ tr.

The relation identifying co-terminal edges is a congruence, called co-terminality
congruence. If θ is a congruence on a semigroupoid S then the quotient graph
S/θ is naturally endowed with a structure of semigrupoid. The usual isomor-
phism theorems hold in this context. It is important to note that if θ is an
equivalence relation on S identifying distinct vertices albeit satisfying the re-
maining three conditions we gave for defining a congruence, then it may be
impossible to endow the graph S/θ with a semigroupoid structure. For in-
stance, in Example 3.1 the quotient graph S/Kerϕ is not a semigroupoid be-
cause c1/Kerϕ and c2/Kerϕ are consecutive edges, but there is no edge in
S/Kerϕ from α(c1/Kerϕ) to ω(c2/Kerϕ).

Let G be a topological graph. Then, for any x, y ∈ VG , the set EG(x, y)
is closed; the set DG is also closed. If the topology of VG is the discrete one
then EG(x, y) and DG are open. A (compact) topological semigroupoid is a
semigroupoid S whose underlying graph is a (compact) topological graph and
whose composition is continuous, which means that if (si, ti)i∈I is a net of
elements of DS converging to (s, t), then (siti)i∈I converges to st (note that DS

is closed, hence (s, t) belongs to DS). The product of topological semigroupoids
is a topological semigroupoid with respect to the product topology and to the
composition defined componentwise.

3.2 The closed subsemigroupoid generated by a graph

Let R be a topological semigroupoid and X a nonempty subgraph of R. Let Q
be the set of closed subsemigroupoids of R containing X. Note that R ∈ Q.
Let dXe be the intersection of all elements of Q. Then dXe ∈ Q. We say that
dXe is the closed subsemigroupoid of R generated by X. It is routine to check
that if DR is open then dXe = 〈X〉.

Proposition 3.2. For a two-letter alphabet {a, b}, let Z be the sofic subshift of
{a, b}Z presented in Figure 3. Suppose Σ(Z)+ is a subsemigroupoid of a compact
semigroupoid S such that Z is a topological subspace of VS. Then Σ(Z)+ is not
a subsemigroupoid of S.

Figure 3: A sofic subshift Z such that Σ(Z)+ is not a subsemigroupoid of any
compact semigroupoid in which Σ(Z)+ embeds.
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Proof of Proposition 3.2. For each positive integer n, let sn be the unique edge
of Σ(Z)+ from a−∞.b+∞ to σn(a−∞.b+∞), and let tn be the unique edge of
Σ(Z)+ from σ−n(b−∞.a+∞) to b−∞.a+∞. Since S is compact, the sequences
(sn)n and (tn)n have accumulation points s and t in S, respectively. Due to the
continuity of α and ω, we have

α(s) = a−∞.b+∞, ω(s) = b∞ = α(t), ω(t) = b−∞.a+∞.

Since s and t are consecutive edges, the product s · t exists in S.
Suppose Σ(Z)+ is a subsemigroupoid of S. Then, since s, t ∈ Σ(Z)+, we have

s · t ∈ Σ(Z)+. Hence, there is a net (ei)i∈I of edges of Σ(Z)+ converging to s · t.
Due to the continuity of α and ω, the nets (α(ei))i∈I and (ω(ei))i∈I converge
to a−∞.b+∞ and b−∞.a+∞, respectively. Note that a−∞.b+∞ and b−∞.a+∞

are isolated points of Z, hence there is i ∈ I such that α(ei) = a−∞.b+∞ and
ω(ei) = b−∞.a+∞. But in Σ(Z)+ there is no edge from a−∞.b+∞ to b−∞.a+∞.
We thus reach a contradiction, which shows that s · t /∈ Σ(Z)+.

Later on we shall verify that the semigroupoid Σ(Z)+ indeed embeds into a
compact semigroupoid (cf. Proposition 3.24). Once this is done, Proposition 3.2
gives an example of a nonempty subgraph X of a compact semigroupoid R such
that 〈X〉 $ dXe: just take X = Σ(Z)+ and note that 〈Σ(Z)+〉 = Σ(Z)+.

Returning to an abstract setting, letX be a nonempty subgraph of a topolog-
ical semigroupoid R. Consider the following definition, by transfinite recursion,
of sets denoted by dXeβ , where β is an ordinal:

• dXe0 = X;
• dXeβ+ is the closure in R of the subsemigroupoid generated by dXeβ ;
• if β is a limit ordinal then dXeβ =

⋃
γ∈βdXeγ .

Note that X ⊆ dXeβ ⊆ dXe for every ordinal β, which is easily proved by
transfinite induction.

For the sake of conciseness, in the following lines the set dXeβ is denoted
by yβ .

Lemma 3.3. Let β0 be an ordinal such that yβ+
0

= yβ0 . Then dXe = yβ0 .

Proof. We have 〈yβ0〉 ⊆ 〈yβ0〉 = yβ0 , thus yβ0 ∈ Q. Moreover, yβ0 ⊆ dXe.

Lemma 3.4. If d is a cardinal greater than the cardinal of dXe then there is
an ordinal β0 belonging to d such that yβ+

0
= yβ0

.

Proof. Let β and γ be distinct ordinals. Then β ∈ γ or γ ∈ β. Suppose β ∈ γ.
Then β+ ⊆ γ. One can easily prove by transfinite induction that the operator
y preserves order, thus yβ+ ⊆ yγ . Similarly, if γ ∈ β then yγ+ ⊆ yβ . Anyway,
we have (yβ+ \ yβ) ∩ (yγ+ \ yγ) = ∅. Therefore the following correspondence is
a well-defined function:

f : dXe → d

x 7→

{
β if β ∈ d and x ∈ yβ+ \ yβ ,

0 in the remaining cases.
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Suppose the lemma is false. Then, by Lemma 3.3, for every ordinal β belonging
to d, there is an element xβ of yβ+ \ yβ . Note that xβ ∈ dXe, since yγ ⊆ dXe
for every ordinal γ. Therefore β = f(xβ), for every ordinal β belonging to
d. Hence f is onto, and therefore d ≤ |dXe|. This contradicts the hypothesis
|dXe| < d.

Lemma 3.5. Let R and S be topological semigroupoids. Consider a nonempty
subgraph X of R such that R = dXe. Let ψ and η be continuous homomorphisms
of semigroupoids from R to S. If ψ|X = η|X then ψ = η.

Proof. By Lemmas 3.4 and 3.3, it is sufficient to prove by transfinite induction
that ψ|yβ

= η|yβ
for every ordinal β, which is a pure routine task.

3.3 Pseudovarieties of semigroupoids

A semigroupoid S is a divisor of a semigroupoid T if there are a faithful ho-
momorphism ϕ : R → T and a quotient homomorphism ϕ : R → S for some
semigroupoid R. A pseudovariety of semigroupoids is a class of finite semi-
groupoids containing the trivial semigroup and the divisors and finite direct
products of its elements1. The intersection of semigroupoid pseudovarieties is
also a semigroupoid pseudovariety. The pseudovariety generated by a class C
of finite semigroupoids is the intersection of those pseudovarieties containing C ,
and its elements are the divisors of finite direct products of members of C (cf. [8,
Section 2]). The pseudovariety of semigroupoids generated by a pseudovariety
V of semigroups, called the global of V, is denoted by gV.

Let V be a pseudovariety of semigroupoids. A topological semigroupoid
S is residually in V if every pair of distinct elements of S is separated by a
continuous semigroupoid homomorphism into a semigroupoid of V. We say
that a topological semigroupoid S is pro-V if it is compact and residually in V.
If V is the class of all finite semigroupoids then S is said to be residually finite
and profinite, respectively.

Note that the projective limit of a directed system of compact semigroupoids
is a compact semigroupoid. We call a directed system of quotient homomor-
phisms of semigroupoids a directed quotient system.

Theorem 3.6 (cf. [22, Theorem 4.1]). Let V be a pseudovariety of semigroupoids.
Let S be a finite-vertex topological semigroupoid. Then S is pro-V if and only

1 Tilson’s original definition [34] includes the need of a pseudovariety of semigroupoids to
contain the finite disjoint unions of its elements. This results from Tilson’s preference for an
equational theory with graph-identities on finite connected graphs. In [8] it is not imposed any
restriction about connectedness. However, in the same article the definition of semigroupoid
pseudovariety is Tilson’s one. Tilson’s hypothesis about unions can be dropped in order to
have a coherent equational theory with graph-identities over non-connected graphs. Indeed
the proof of the version of Theorem 2.7 of [8] for semigroupoids works without change if we do
not require that pseudovarieties of semigroupoids are closed under finite disjoint unions; on
the other hand, if we adopt Tilson’s definition, then for a proper equational theory one must
restrict to connected graphs. Anyway, choosing or not Tilson’s definition is irrelevant for our
purposes.
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if S is isomorphic to a projective limit of a directed quotient system of semi-
groupoids of V, if and only if S is isomorphic to a projective limit of a directed
system of semigroupoids of V.

The hypothesis of finiteness of the number of vertices is essential in Theo-
rem 3.6. Indeed, in a personal communication, B. Steinberg observed that an
unpublished example due to G. Bergman (which is already mentioned in [29])
is in fact an example of a residually finite compact semigroupoid which is not
the projective limit of finite semigroupoids.

The consolidate of a semigroupoid S is the semigroup Scd whose elements
are the edges of S and, if S has pairs of nonconsecutive edges, an extra element
0, the product in Scd of two consecutive edges of S being their composition, and
the remaining products being equal to 0. If S is a topological semigroupoid then
we endow Scd with the topology of ES together with 0 as an isolated point.

Remark 3.7. If S is a finite-vertex topological semigroupoid then Scd is a topo-
logical semigroup.

Proof. Let (si, ti)i∈I be a net of pairs of elements of Scd converging to (s, t).
If st = 0 then (s, t) /∈ DS . Since DS is closed and 0 is an isolated point, the

set
U =

(
(ES × ES) \DS

)
∪ ES × {0} ∪ {0} × ES ∪ {(0, 0)}

is an open neighborhood of (s, t) in Scd × Scd. Hence there is i0 ∈ I such that
if i ≥ i0 then (si, ti) ∈ U , thus siti = 0. Therefore (siti)i∈I converges to st.

If st 6= 0 then (s, t) ∈ DS . Since DS is open, there is i0 ∈ I such that
if i ≥ i0 then (si, ti) ∈ DS , thus siti ∈ ES . By the definition of topological
semigroupoid, the net (siti)i∈I converges to st.

The semigroup B2 is the syntactic semigroup (see [23] for the definition) of
the language (ab)+ on the two-letter alphabet {a, b}.

Proposition 3.8. Let V be a pseudovariety of semigroups containing B2. Let
S be a finite semigroupoid. Then S ∈ gV if and only if Scd ∈ V.

See [8, Corollary 7.7] for a proof of Proposition 3.8. The converse implication
is trivial, and it follows from it that gS is the pseudovariety Sd of all finite
semigroupoids.

Suppose ϕ : S → T is a continuous quotient homomorphism of topological
semigroupoids. Clearly 0 ∈ Scd if and only if 0 ∈ Tcd. Consider the map
ϕcd : Scd → Tcd such that ϕcd(s) = ϕ(s) for every s ∈ ES , and ϕcd(0) = 0 if
0 ∈ Scd. Then ϕcd is a continuous homomorphism. If ϕ : S → T separates s
and t then so does ϕcd. Conversely, if a semigroup homomorphism ψ : Scd → F
separates s and t then so does ψ ◦ γ, where γ : S → Scd is the identity map on
the edges. These simple facts justify the following corollary of Proposition 3.8.

Corollary 3.9. Let V be a pseudovariety of semigroups containing B2. Let S
be a finite-vertex topological semigroupoid. Then S is pro-gV if and only if Scd

is pro-V.
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3.4 Relatively free profinite finite-vertex semigroupoids

Consider a nonempty graph Γ and a pseudovariety V of semigroupoids. A
map κ from Γ into a topological semigroupoid T is a generating map of T if
dκ(Γ)e = T . A pro-V semigroupoid T is a free pro-V semigroupoid generated
by Γ, with generating map κ : Γ → T , if for every graph homomorphism ϕ
from Γ into a pro-V semigroupoid S there is a unique continuous semigroupoid
homomorphism ϕ̂ : T → S satisfying ϕ̂ ◦κ = ϕ. Note that it suffices to consider
semigroupoids S such that S = dϕ(Γ)e, and in particular if Γ is finite-vertex
then one may always suppose S is finite-vertex.

By the usual abstract nonsense, up to isomorphism of topological semi-
groupoids, there is no more than one free pro-V semigroupoid generated by Γ.
For the case where Γ is finite-vertex, we describe in the following lines a semi-
groupoid that turns out to be the free pro-V semigroupoid generated by Γ. Note
that when Γ is a one-vertex graph and V = gW for some pseudovariety W of
semigroups, such a semigroupoid is the free pro-W semigroup generated by EΓ.
Let ConΓV be the set of congruences θ on Γ+ such that Γ+/θ belongs to V.
If ϑ is the co-terminality congruence then Γ+/ϑ divides the trivial semigroup,
hence ConΓV is nonempty if and only if Γ is finite-vertex. The intersection of
congruences is also a congruence, hence ConΓV endowed with the partial order
⊇ is a directed set. The family

{qθ,ρ : Γ+/θ → Γ+/ρ | ρ, θ ∈ ConΓV, ρ ⊇ θ}

is a directed system of quotient homomorphisms. Its projective limite is a pro-
V semigroupoid, denoted by ΩΓV. If Γ is finite then ConΓV is countable, and
therefore the topological space ΩΓV is defined by a metric [36, Theorem 22.3].

Let ι : Γ→ ΩΓV be the map defined by ι(a) = ([a]θ)θ∈ConΓV. The subsemi-
groupoid of ΩΓV generated by ι(Γ) is the set ι+(Γ+), denoted by ΩΓV.

Theorem 3.10 (cf. [22, Theorem 6.3]). Let V be a pseudovariety of semi-
groupoids and let Γ be a finite-vertex graph. The semigroupoid ΩΓV is a free
pro-V semigroupoid generated by Γ, with generating map ι.

Lemma 3.11. Let Γ be a graph and u a path on Γ. Then there is a semigroup S
in N and a semigroupoid homomorphism ϕ : Γ+ → S such that ϕ−1ϕ(u) = {u}.

Proof. Let Λ be the set of edges of Γ which are factors of u. Let F be the set of
paths of Λ with length less than or equal to that of u. Then I = E+

Γ \F is an ideal
of E+

Γ (for the definition of semigroup ideal and Rees quotient see [23]). The
Rees quotient E+

Γ /I belongs to N. The natural semigroupoid homomorphism
ϕ : Γ+ → EΓ

+/I satisfies ϕ−1ϕ(u) = {u}.

Proposition 3.12. Let V be a pseudovariety of semigroupoids and let Γ be a
finite-vertex graph. If V contains nontrivial semigroups then ι : Γ→ ΩΓV is an
embedding. If V contains N, then ι+ is a semigroupoid isomorphism from Γ+ to
ΩΓV, and the elements of ΩΓV are isolated points of ΩΓV.
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Proof. Let u and v be distinct edges of Γ. Suppose V contains a nontrivial
semigroup S. Then there is a graph homomorphism ψ : Γ → S such that
ψ(u) 6= ψ(v). There is a unique continuous semigroupoid homomorphism ψ̂ :
ΩΓV→ S such that ψ̂ ◦ ι = ψ, thus ι(u) 6= ι(v). Hence ι is an embedding.

Suppose V contains N. The map ι+ : Γ+ → ΩΓV is a quotient semigroupoid
homomorphism. We want to prove it is injective. Let u and v be distinct
edges of Γ+. By Lemma 3.11 there are a semigroup S in N and a semigroupoid
homomorphism ϕ : Γ+ → S such that ϕ(u) 6= ϕ(v). Since N ⊆ V, there
is a unique continuous semigroupoid homomorphism ϕ̂ from ΩΓV to S such
that ϕ̂ ◦ ι = ϕ|Γ. Then ϕ̂ ◦ ι+ = ϕ, thus ι+(u) 6= ι+(v). Therefore ι+ is an
isomorphism.

We identify Γ+ with ΩΓV through ι+. Take an arbitrary edge u of Γ+. Let
(uτ )τ∈T be a net of edges of Γ+ converging to u. Let ϕ be as in Lemma 3.11.
Since ϕ̂ is continuous and ϕ̂|Γ+ = ϕ, there is τ0 ∈ T such that if τ0 ≤ τ then
ϕ(uτ ) = ϕ(u). Since ϕ−1ϕ(u) = {u}, if τ0 ≤ τ then uτ = u. Since Γ+ is dense
in ΩΓV, this proves the last assertion.

3.5 Relatively free profinite semigroupoids generated by
profinite graphs

Let Γ be a nonempty profinite graph. A pro-V semigroupoid T is a free pro-V
semigroupoid generated by Γ, if there is a continuous generating map κ : Γ →
S such that for every continuous graph homomorphism ϕ from Γ into a pro-
V semigroupoid S there is a unique continuous semigroupoid homomorphism
ϕ̂ : T → S satisfying ϕ̂ ◦ κ = ϕ. Note that, up to isomorphism of topological
semigroupoids, there is at most one free pro-V semigroupoid generated by Γ.
We shall prove in this section that such a semigroupoid always exists when Γ is
profinite. If Γ is finite, then we already know this is true by Theorem 3.10.

From hereon, Γ is a projective limit of finite graphs defined by a directed
system {δj,i : Γj → Γi | i, j ∈ I, i ≤ j} of onto graph homomorphisms. The
canonical projection Γ→ Γi is denoted by δi.

Lemma 3.13. If ϕ is a continuous graph homomorphism from Γ into a finite
graph S then the set Iϕ = {i ∈ I | ∀x, y ∈ Γ, δi(x) = δi(y) ⇒ ϕ(x) = ϕ(y)} is
nonempty.

Proof. Suppose Iϕ = ∅. Then for every i ∈ I there are xi, yi ∈ Γ such that
δi(xi) = δi(yi) and ϕ(xi) 6= ϕ(yi). Since Γ is compact, the nets (xi)i∈I and
(yi)i∈I have subnets (xλ(j))j∈J and (yλ(j))j∈J converging to some elements x
and y of Γ, respectively. Since ϕ is continuous and S is finite, ϕ(x) 6= ϕ(y).
Hence x 6= y. Therefore there is k ∈ I such that δk(x) 6= δk(y). The set
{(u, v) ∈ Γk × Γk |u = v} is closed in Γk × Γk. Hence, since

lim
j∈J

(δk(xλ(j)), δk(yλ(j))) = (δk(x), δk(y)),

there is j0 ∈ J such that if j0 ≤ j then δk(xλ(j)) 6= δk(yλ(j)). There is j1 ∈ J
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such that j0 ≤ j1 and k ≤ λ(j1). Let l = λ(j1). Then

δl,k(δl(xl)) = δk(xl) 6= δk(yl) = δl,k(δl(yl)).

But this contradicts the equality δl(xl) = δl(yl).

Corollary 3.14. Let ϕ be a continuous graph homomorphism from Γ into a
finite graph S. There is i ∈ I for which there is a unique continuous graph
homomorphism ϕi : Γi → S such that ϕi ◦ δi = ϕ.

Proof. Take i ∈ Iϕ.

If i and j are distinct elements of I such that i ≤ j then, by Theorem 3.10,
there is a unique continuous semigroupoid homomorphism δ̂j,i such the following
diagram is commutative, where ιk denotes the generating map of ΩΓk

V:

Γj
ιj //

δj,i

��

ΩΓj V

δ̂j,i

��
Γi

ιi // ΩΓiV

The family {δ̂j,i : ΩΓj V → ΩΓiV | i, j ∈ I, i ≤ j} is therefore a directed system
of continuous homomorphisms of profinite semigroupoids. Denote by δ̂i the
canonical projection of lim←−j∈I

ΩΓj V on ΩΓiV, and by ι the map from Γ into

lim←−j∈I
ΩΓj V defined by ι(x) = (ιi ◦ δi(x))i∈I . Note that δ̂i ◦ ι = ιi ◦ δi.

Lemma 3.15. Let ϕ be a continuous graph homomorphism from Γ into a finite
semigroupoid S. Then there is a continuous semigroupoid homomorphism ϕ̄
from lim←−j∈I

ΩΓj V into S such that ϕ̄ ◦ ι = ϕ.

Proof. Let ϕi : Γi → S be as in Corollary 3.14. By Theorem 3.10 there is a
unique continuous semigroupoid homomorphism ϕ̂i from ΩΓi

V into S such that
ϕ̂i ◦ ιi = ϕi. The following diagram is commutative:

Γ

ϕ
22

δi
��;

;;
;;

;;
;

ι // lim←−j∈I
ΩΓj V

δ̂i

��
Γi

ιi //

ϕi

%%JJJJJJJJJJJJ ΩΓi
V

ϕ̂i

��
S

It suffices to take ϕ̄ = ϕ̂i ◦ δ̂i.

Theorem 3.16. Let ϕ be a continuous graph homomorphism from Γ into a
semigroupoid S of V. Then there is a unique continuous semigroupoid homo-
morphism ϕ̂ : dι(Γ)e → S such that ϕ̂ ◦ ι = ϕ.
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Proof. It is an immediate consequence of Lemmas 3.15 and 3.5.

By Theorems 3.10 and 3.16, if Γ has a finite number of vertices then ΩΓV
and dι(Γ)e are isomorphic compact semigroupoids. For that reason, there is no
ambiguity in denoting dι(Γ)e by ΩΓV when Γ is a finite-vertex graph. We shall
also denote by ΩΓV the subsemigroupoid of ΩΓV generated by ι(Γ).

Theorem 3.17. Let V be a pseudovariety of semigroupoids and let Γ be a profi-
nite graph. The semigroupoid ΩΓV is a free pro-V semigroupoid generated by Γ,
with generating map ι.

For proving Theorem 3.17 we need some auxiliary results.

Lemma 3.18. If S is a pro-V semigroupoid then there are a family F of semi-
groupoids of V and a continuous embedding Ψ : S →

∏
F∈F F .

Proof. Let P2(S) be the set of the subsets of S with two elements. Since S is
pro-V, for each element {u, v} of P2(S) there is a continuous semigroupoid ho-
momorphism ψ{u,v} from S to a semigroupoid F{u,v} of V such that ψ{u,v}(u) 6=
ψ{u,v}(v). The map

Ψ : S →
∏
{s,t}∈P2(S) F{u,v}

s 7→ (ψ{u,v}(s)){u,v}∈P2(S).

is a continuous embedding of semigroupoids.

Lemma 3.19. Let ψ : S → T be a continuous homomorphism of topological
semigroupoids. Let X be a nonempty subgraph of S. Then, for every ordinal β,

ψ
(
dXeβ

)
⊆ dψ(X)eβ (3.2)

and
ψ
(
〈dXeβ

〉
) ⊆ 〈dψ(X)eβ〉. (3.3)

If ψ|VS
is injective then ψ

(
dXeβ

)
= dψ(X)eβ and ψ

(
〈dXeβ

〉
) = 〈dψ(X)eβ〉.

Proof. Let us prove (3.2) by transfinite induction on β. The case β = 0 is trivial.
Suppose (3.2) is verified. Since ψ is a continuous map of compact spaces, we
have

ψ
(
dXeβ+

)
= ψ

(
〈dXeβ〉

)
= ψ

(
〈dXeβ〉

)
. (3.4)

And since ψ is a homomorphism of semigroupoids, according to equality (3.1)
(page 11) we have

ψ
(
〈dXeβ〉

)
⊆
〈
ψ
(
dXeβ

)〉
. (3.5)

Hence, from (3.4) and (3.2) we deduce

ψ
(
dXeβ+

)
⊆
〈
ψ
(
dXeβ

)〉
⊆
〈
dψ(X)eβ

〉
= dψ(X)eβ+ ,

concluding the successor case of the inductive step of (3.2). The limit case is
immediate.
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By (3.2) and (3.5), we have ψ
(
〈dXeβ

〉
) ⊆

〈
ψ
(
dXeβ

)〉
⊆ 〈dψ(X)eβ〉 for every

ordinal β, which proves (3.3).
If ψ|VS

is injective then the proof of the equalities in the statement is similarly
done, the difference being that in (3.5) we now have an equality.

Corollary 3.20. Let ψ : S → T be a continuous homomorphism of compact
semigroupoids. Let X be a nonempty subgraph of S. Then ψ

(
dXe

)
⊆ dψ(X)e.

If ψ|VS
is injective then ψ

(
dXe

)
= dψ(X)e.

Proof of Theorem 3.17. Let S be a pro-V semigroupoid. Let Ψ and F be as in
Lemma 3.18. For each T ∈ F , let ρT be the canonical projection

∏
F∈F F → T .

Take an arbitrary continuous graph homomorphism ϕ : Γ → S. By Theo-
rem 3.16, for each T ∈ F there is a unique continuous semigroupoid homo-
morphism ζT from ΩΓV to T such that ζT ◦ ι = ρT ◦ Ψ ◦ ϕ. Consider the map
ζ : ΩΓV→

∏
F∈F F such that ζ(u) = (ζF (u))F∈F .

Γ
ι //

ϕ

��

ΩΓV

ζ

��

ζT

''OOOOOOOOOOOOOOO

S
Ψ

//
∏

F∈F F
ρT

// T

(3.6)

Since for all T ∈ F we have ρT ◦ ζ ◦ ι = ζT ◦ ι = ρT ◦ Ψ ◦ ϕ, we conclude
that ζ ◦ ι = Ψ ◦ ϕ, thus Diagram (3.6) commutes. Then, by Corollary 3.20 and
Lemma 3.18,

ζ(ΩΓV) = ζ
(
dι(Γ)e

)
⊆ dζ(ι(Γ))e = dΨ(ϕ(Γ))e ⊆ dΨ(S)e = Ψ(S).

Hence we can consider the map ϕ̂ = Ψ−1 ◦ ζ, a continuous semigroupoid homo-
morphism from ΩΓV to S. Then ϕ̂ ◦ ι = ϕ. The uniqueness of ϕ̂ follows from
Lemma 3.5.

Problem 3.21. Is there some projective limit Γ = lim←−i∈I
Γi of finite graphs

such that ΩΓV 6= lim←−i∈I
ΩΓi

V?

3.6 Pseudovarieties containing the finite nilpotent semi-
groups

If i ≤ j, let δj,i+ be the unique semigroupoid homomorphism for which the
following diagram commutes:

Γj
� � //

δj,i

��

Γ+
j

δj,i
+

��
Γi

� � // Γ+
i
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The family {δj,i+ : Γ+
j → Γ+

i | i, j ∈ I, i ≤ j} is a directed system of semi-
groupoid homomorphisms. Denote by δi+ the canonical projection from lim←−j∈I

Γ+
j

to Γ+
i . The graph Γ is a subgraph of lim←−j∈I

Γ+
j .

Lemma 3.22. The semigroupoids Γ+ and lim←−i∈I
Γ+

i can be identified, in the
sense that the unique semigroupoid homomorphism  from Γ+ to lim←−i∈I

Γ+
i ex-

tending the inclusion is an isomorphism.

Proof. Clearly  is a bijection between the sets of vertices. Let w = w1 · · ·wk

be a path on Γ, where w1, . . . , wk are edges of Γ. Given i ∈ I, we have

δi
+ ◦ (w) = δi(w1) · · · δi(wk). (3.7)

Suppose u = u1 · · ·un and v = v1 · · · vm are paths on Γ, where u1, . . . , un, v1, . . . , vm

are edges of Γ. If (u) = (v) then δi(u1) · · · δi(un) = δi(v1) · · · δi(vm) by (3.7).
Hence n = m and δi+(ul) = δi

+(vl), for any l ∈ {1, . . . , n}. Since i is arbitrary,
we conclude that ul = vl, for any l ∈ {1, . . . , n}. That is, u = v.

On the other hand, let q be an element of lim←−i∈I
Γ+

i . Since the directed
system defining Γ is surjective, for every i ∈ I there are qi,1, . . . , qi,ni ∈ Γ such
that δi+(q) = δi(qi,1) · · · δi(qi,ni). If i ≤ j then, since δi+ = δj,i

+ ◦ δj+, we have

δi(qi,1) · · · δi(qi,ni) = δi(qj,1) · · · δi(qj,nj ).

Therefore

j ≥ i⇒
(
nj = ni and δi(qi,l) = δi(qj,l) ∀l ∈ {1, . . . , ni}

)
. (3.8)

In particular, if i1 and i2 are arbitrary elements of I, then ni1 = ni2 = ni0 , for
every i0 such that i1 ≤ i0 and i2 ≤ i0. Since I is directed, such i0 always exists,
thus the net (ni)i∈I has constant value n. Let F be a finite subset of I. Then
there is k ∈ I such that i ≤ k for any i ∈ F . By (3.8), for all i ∈ F we have
qk,l ∈

⋂
i∈F δ

−1
i δi(qi,l). The set δ−1

i δi(qi,l) is closed for every i ∈ I. Then, since
Γ is compact and

⋂
i∈F δ

−1
i δi(qi,l) 6= ∅ for every finite subset F of I, the set⋂

i∈I δ
−1
i δi(qi,l) is nonempty. Let ql be one of its elements. For l < n,

ω(ql) = (ω(δi(ql)))i∈I = (ω(δi(qi,l)))i∈I = (α(δi(qi,l+1)))i∈I = · · · = α(ql+1).

Since q1, . . . , qn are consecutive edges, we can consider the element (q1 · · · qn)
of the image of . Then

δ+i ((q1 · · · qn)) = δi(q1) · · · δi(qn) = δi(qi,1) · · · δi(qi,n) = δi
+(q).

Since i is arbitrary, we conclude that q = (q1 · · · qn). Hence  is surjective.

Proposition 3.23. Let V be a pseudovariety of semigroupoids and let Γ be a
profinite graph. If V contains nontrivial semigroups then ι : Γ → ΩΓV is an
embedding. If V contains N then ι+ is a semigroupoid isomorphism from Γ+

onto ΩΓV.
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Proof. Suppose V contains nontrivial semigroups. Let u and v be distinct el-
ements of Γ. Then there is i ∈ I such that δi(u) 6= δi(v). The graph homo-
morphism ιi is an embedding, by Proposition 3.12. Hence ιi(δi(u)) 6= ιi(δi(v)).
Since ι(w) = (ιi ◦ δi(w))i∈I , this proves ι is an embedding.

Suppose V contains N. The map ι+ : Γ+ → ΩΓV is a quotient homomorphism
of semigroupoids. We want to prove that it is injective. Let w = w1 . . . wn be a
path on Γ, where w1, . . . , wn are consecutive edges of Γ. Then, for every i ∈ I,

δ̂i(ι+(w)) = δ̂i(ι(w1)) · · · δ̂i(ι(wn)) = ιi(δi(w1)) · · · ιi(δi(wn)) = ιi
+(δi+(w)).

Hence if u and v are edges of Γ+ and ι+(u) = ι+(v) then ιi
+(δi+(u)) =

ιi
+(δi+(v)) for all i ∈ I. From Proposition 3.12 we deduce δi+(u) = δi

+(v)
for all i ∈ I. Then u = v by Lemma 3.22.

We could not prove Proposition 3.23 directly using the arguments in the
proof of Proposition 3.12 because in general one can not expect the homomor-
phism in Lemma 3.11 to be continuous. According to Proposition 3.23, one may
consider Γ+ as a subsemigroupoid of ΩΓV.

Proposition 3.24. For every pseudovariety of semigroupoids V containing N,
there are profinite graphs Γ such that Γ+ is not dense in ΩΓV.

Proof. Take the graph Σ(Z) in Proposition 3.2 and apply Propositions 3.2
and 3.23.

4 Relatively free profinite semigroupoids defined
by subshifts

From here on X designates a generic subshift of AZ and V a pseudovariety of
semigroups containing L I. This allows us to define the maps in and tn with
domain ΩAV. The canonical projection Σ(X ) → Σ2n(X ) will be denoted by
πn. We shall denote by Σ̂(X ) and by Σ̂2n(X ) the semigroupoids ΩΣ(X )gV and
ΩΣ2n(X )gV, respectively. Since gV contains N, we can consider Σ(X )+ as a
subgraph of Σ̂(X ), and Σ2n(X )+ as a subgraph of Σ̂2n(X ), by Proposition 3.23.
Note that since Σ(X ) is a complete conjugacy invariant then so is Σ̂(X ).

4.1 Labeling

Assign to each edge q = a1 · · · a2na2n+1 (where ai ∈ A) of Σ2n(X ) the letter
an, denoted by µn(q). We say that X is a 2n-step subshift of finite type if L(X )
is recognized by the labeled graph (Σ2n(X ), µn). This means that X = {x ∈
AZ : L2n+1(x) ⊆ L(X )}. A system is of finite type if it is 2n-step finite type
for some n.

According to Proposition 3.2, there is a subshift Z such that Σ(Z)+ 6= Σ̂(Z).
This situation is in contrast with the following proposition:
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Proposition 4.1. If X is a finite type subshift then lim←− Σ̂2n(X ) = Σ̂(X ) =

Σ(X )+.

Proof. There is an integer N such that X is 2n-step for every n ≥ N . Consider
a path q = q1 · · · qk in Σ2n(X ). There is x ∈ X such that qi = x[−n+i−1,n+i−1].
Let p be the unique path in Σ(X ) from x to σk(x). We have π̂n(p) = q. Hence
π̂n(Σ(X )+) = Σ2n(X )+, thus π̂n

(
Σ(X )+

)
= Σ2n(X )+. Moreover, Σ2n(X )+ =

Σ̂2n(X ) by Theorem 3.10, because Σ2n(X ) is finite-vertex. The result follows
from Proposition 2.1.

We shall denote by µ the continuous graph homomorphism from Σ(X ) to A
mapping each edge (x, σ(x)) of Σ(X ) to the letter x0. We have µn ◦πn = µ, and
if n ≤ m then µn ◦ πm,n = µm. Since ΩAV is a pro-V semigroup, by Theorem
3.10 there is a unique continuous semigroupoid homomorphism µ̂n from Σ̂2n(AZ)
to ΩAV such that µ̂n|Σ2n(AZ) = µn. If n ≤ m then µ̂n ◦ π̂m,n is a continuous
semigroupoid homomorphism whose restriction to Σ2m(AZ) coincides with µm,
thus µ̂n ◦ π̂m,n = µ̂m. Then

µ̂m ◦ π̂m = (µ̂1 ◦ π̂m,1) ◦ π̂m = µ̂1 ◦ (π̂m,1 ◦ π̂m) = µ̂1 ◦ π̂1.

Therefore if q is an edge of lim←− Σ̂2n(AZ) then the sequence (µ̂n(π̂n(q)))n has a
constant value which we call the label of q and denote by µ̂(q). The mapping
µ̂ thus defined is a continuous semigroupoid homomorphism from lim←− Σ̂2n(AZ)
to ΩAV.

Lemma 4.2. Let q : x[−n,n−1] → y[−n,n−1] be an edge of lim←− Σ̂2n(X ), where
x, y ∈ X . Let u = µ̂(q). If k = min{|u|, n} then x[0,k−1] = ik(u) and y[−k,−1] =
tk(u).

Proof. The result is clear if q ∈ Σ2n(X )+. The general case is straightforwardly
proved once we realize that Σ2n(X )+ is dense in Σ̂2n(X ), which is true by
Theorem 3.10 because Σ2n(X ) is finite-vertex.

Lemma 4.3. Let q : x → y be an edge of lim←− Σ̂2n(X ). Let u = µ̂(q). If
u ∈ ΩAV \ A+ then −→u = x[0,+∞[ and ←−u = y]−∞,−1]. If u ∈ A+ then q is the
unique edge of Σ(X )+ from x to σ|u|(x).

Proof. Let n be a positive integer. We have α(π̂n(q)) = π̂n(α(q)) = x[−n,n−1].
Likewise, ω(π̂n(q)) = y[−n,n−1]. Let k = min{|u|, n}. Since µ̂n(π̂n(q)) = u, by
Lemma 4.2 we have x[0,k−1] = ik(u) and y[−k,−1] = tk(u).

If u /∈ A+ then k = n. Since n is arbitrary, we deduce that −→u = x[0,+∞[ and
←−u = y]−∞,−1].

Suppose u ∈ A+. Let (ql)l be a sequence of elements of Σ2n(X )+ converging
to π̂n(q). Then µ̂n(ql) = u for l sufficiently large. Hence, taking subsequences if
necessary, we may suppose that |ql|l is constant equal to |u|. Since there is only
a finite number of elements of Σ2n(X )+ with length |u|, we deduce that π̂n(q) ∈
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Σ2n(X )+. Hence q ∈ Σ(X )+, because n is arbitrary (cf. Lemma 3.22). Clearly
q is the unique edge of Σ(X )+ from x to σ|q|(x). Finally, |q| = |µ̂(q)| = |u|.

Denote by M n(X ) the set of pseudowords of ΩAV whose finite factors of
length n belong to L(X ). Note that M 2n+1(X )∩A+ is the language recognized
by (Σ2n(X ), µn). As observed in [14, Section 3.2], if V contains L Sl, where Sl
denotes the pseudovariety of finite semilattices, then M n(X ) is both closed and
open. We denote by M (X ) the intersection

⋂
n≥1 M n(X ), which in [14, 15] was

called the mirage of X . One always has L(X ) ⊆M (X ), and the equality holds
if X is of finite type; however if Z is the symbolic system presented in Figure 1
then L(Z) 6= M (Z) if L(Z) is V-recognizable [14].

Clearly, M (X ) is factorial. It is also easy to see that if u ∈ M (X ) then
there are a, b ∈ A such that aub ∈M (X ): if u /∈ A+ and x, y ∈ X are such that
−→u = x[0,+∞[ and ←−u = y]−∞,−1], take a = x−1 and b = y0. And since M (X ) is
closed, one deduces the following:

Lemma 4.4. If u ∈ M (X ) then there are v, w ∈ ΩAV \ A+ such that vuw ∈
M (X ).

Since lim←− Σ̂2n(X ) is a projective limit of a countable family of metric spaces,
its topology is defined by a metric [36, Theorem 22.3]. Hence one can use
sequences instead of nets, as we do in the proof of the following proposition.

Proposition 4.5. Consider a pseudovariety of semigroups V containing L Sl.
Then L(X ) = µ̂

(
Σ(X )+

)
and M (X ) = µ̂

(
lim←− Σ̂2n(X )

)
.

Proof. Clearly µ̂(Σ(X )+) = L(X ), thus L(X ) = µ̂
(
Σ(X )+

)
by continuity of µ̂.

Let q be an edge of lim←− Σ̂2n(X ). Let u = µ̂(q). Consider an arbitrary
positive integer n. Then u = µ̂n(π̂n(q)). Since µ̂n(Σ2n(X )+) ⊆ M 2n+1(X ),
Σ2n(X )+ = Σ̂2n(X ) and M 2n+1(X ) is closed, it follows from the continuity of
µ̂n that u ∈M 2n+1(X ). Therefore u ∈

⋂
n≥1 M 2n+1(X ) = M (X ).

Conversely, suppose u belongs to M (X ). By Lemma 4.4 there are v, w ∈
ΩAV \A+ such that vuw ∈M (X ). Let (vk)k, (uk)k and (wk)k be sequences of
elements of A+ converging to v, u and w, respectively. For eack k, the graph
Σ(AZ) has consecutive paths pk, qk and rk such that µ̂(pk) = vk, µ̂(qk) = uk and
µ̂(rk) = wk. Let n be an arbitrary positive integer. Since vuw ∈ M 2n+1(X )
and M 2n+1(X ) is open, and since v and w have infinite length, there is N such
that if k ≥ N then vkukwk ∈M 2n+1(X ) and vk, wk have length greater than n.
Then the edges forming the path π̂n(qk) belong to L2n+1(X ). Hence π̂n(qk) ∈
Σ2n(X )+. Let q be an accumulation point of (qk)k. Then π̂n(q) ∈ Σ̂2n(X ), for
every n. That is, q ∈ lim←− Σ̂2n(X ). Finally, note that µ̂(q) = u.

4.2 Fidelity

Two co-terminal edges of Σ(X )+ with the same length are equal, by Lemma 4.3.
Next we generalize this property proving that two co-terminal edges of lim←− Σ̂2n(X )
with the same label are equal.
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Proposition 4.6. Let V be a block preserving pseudovariety of semigroups con-
taining B2. Then the homomorphism µ̂n : Σ̂2n(AZ)→ ΩAV is faithful.

Proof. Since Σ̂2n(AZ) has a finite number of vertices, we can consider the topo-
logical semigroup T = (Σ̂2n(AZ))cd (cf. Remark 3.7). By Corollary 3.9, we
know that T is pro-V. Hence there is a unique continuous homomorphism
Θ : ΩA2n+1V → T such that Θ(u) = u for every u ∈ A2n+1 = EbΣ2n(AZ).
By the definition of block preserving pseudovariety, the graph homomorphism
Ψ : Σ̂2n(AZ) → ΩA2n+1V assigning to each edge q of Σ̂2n(AZ) the pseudoword
ΦV

2n[in(α(q)) · µ̂n(q) · tn(ω(q))] is well defined and continuous. One easily verifies
by induction on the length of q that Θ(Ψ(q)) = q, for any q ∈ EΣ2n(AZ)+ . Since Ψ
is a continuous map and Σ2n(AZ)+ = Σ̂2n(AZ), we conclude that Θ(Ψ(q)) = q,
for every q ∈ EbΣ2n(AZ). Clearly, if q1 and q2 are co-terminal edges with the same
label then Ψ(q1) = Ψ(q2), thus q1 = q2.

Corollary 4.7. Let V be a block preserving pseudovariety of semigroups con-
taining B2. Then the homomorphism µ̂ : lim←− Σ̂2n(AZ)→ ΩAV is faithful.

The pseudovariety L Sl contains B2. Conversely, if V is block preserving and
contains some nontrivial semilattice (which is the case if it contains B2, since
B2 has a nontrivial subsemigroup in Sl) then V contains L Sl, but we shall not
need to use this fact.

4.3 Good factorizations

Let q be an edge of lim←− Σ̂2n(X ). Suppose q1, . . . , qn are consecutive edges of
lim←− Σ̂2n(X ) such that q = q1 · · · qn. Let G be a subgraph of lim←− Σ̂2n(X ). If the
set

{∏l
i=k qi | 1 ≤ k ≤ l ≤ n

}
of factors of q is contained in EG then we say

that q1 · · · qn is a good factorization of q in G . Note that q ∈ G if q has a good
factorization in G .

Lemma 4.8. Let V be a pseudovariety of semigroups closed under concatena-
tion. Let u, v, w, t ∈ ΩAV be such that uv = wt. Then there is z ∈ (ΩAV)1 for
which at least one of the following situations occurs: u = wz and zv = t, or
uz = w and v = zt.

Proof. Let (un)n and (vn)n be sequences of elements of A+ converging to u and
v, respectively. The sequence (unvn)n converges to wt. Then, by Lemmas 2.3
and 2.5, there is a subsequence (unk

vnk
)k and sequences (wn)n and (tn)n of

elements of A+ such that unk
vnk

= wktk, limwk = w and lim tk = t. It is clear
that for every k there is zk ∈ A∗ such that one of the following situations holds:
unk

= wkzk and zkvnk
= tk, or unk

zk = wk and vnk
= zktk. Therefore at least

one of the sets

P = {k : unk
= wkzk and zkvnk

= tk}, Q = {k : unk
zk = wk and vnk

= zktk},

is infinite. Suppose P is infinite. Let z be a limit point of the subsequence
(zk)k∈P . Then u = wz and zv = t. Similarly, if Q is infinite then uz = w and
v = zt for some z ∈ (ΩAV)1.
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Theorem 4.9. Consider a pseudovariety of semigroups V closed under concate-
nation. Let q ∈ lim←− Σ̂2n(X ). Suppose µ̂(q) = u1 · · ·un, where ui ∈ ΩAV. For
an ordinal β, let G be one of the graphs dΣ(X )eβ or 〈dΣ(X )eβ〉. If q ∈ G then
there is a good factorization q = q1 · · · qn in G such that µ̂(qi) = ui, for every
i ∈ {1, . . . , n}.

Proof. Consider the following propositions:

P (G , q, n): “Suppose µ̂(q) = u1 · · ·un, where ui ∈ ΩAV. Then there is
a good factorization q = q1 · · · qn in G such that µ̂(qi) = ui, for every
i ∈ {1, . . . , n}.”

R(β): ∀q ∈ dΣ(X )eβ ,∀n, P (dΣ(X )eβ , q, n).

S(β): ∀q ∈ 〈dΣ(X )eβ〉,∀n, P (〈dΣ(X )eβ〉, q, n).

We want to prove R(β)∧S(β) for every ordinal β. We shall do it by transfinite
induction on β. The case β = 0 is trivial, and the limit case of the inductive
step offers no difficulties.

Let us see the successor case. Take an ordinal β such that R(β) ∧ S(β) is
true. Let q ∈ dΣ(X )eβ+ and let µ̂(q) = u1 · · ·un, where ui ∈ ΩAV. Then there
is a sequence (qk)k of elements of 〈dΣ(X )eβ〉 converging to q. By Lemma 2.5,
there is a subsequence (qkl

)l and sequences (ui,l)l of elements of ΩAV converging
to ui such that µ̂(qkl

) = u1,lu2,l · · ·un−1,lun,l. Since S(β) is true, there is a
good factorization q = q1,l · · · qn,l in 〈dΣ(X )eβ〉 such that µ̂(qi,l) = ui,l, for
every i ∈ {1, . . . , n}. Since 〈dΣ(X )eβ〉 is compact, the sequence (q1,k, . . . , qn,k)k

has some subsequence converging to a n-tuple (q1, . . . , qn) of consecutive edges
of 〈dΣ(X )eβ〉. Clearly q1 · · · qn is a good factorization of q in dΣ(X )eβ+ and
µ̂(qi) = ui for every i ∈ {1, . . . , }. Hence R(β+) is true.

Let q ∈ 〈dΣ(X )eβ+〉. There are consecutive edges q1, . . . , ql of dΣ(X )eβ+

such that q = q1 · · · ql. Let λ(q) be the least possible value for l. Next we
prove P (〈dΣ(X )eβ+〉, q, n) by transfinite induction on λ(q)+n. If λ(q) = 1 then
q ∈ dΣ(X )eβ+ , hence P (〈dΣ(X )eβ+〉, q, n) is true for every n, because R(β+)
is true. On the other hand, P (〈dΣ(X )eβ+〉, q, 1) is obviously true, for every q.
Therefore P (〈dΣ(X )eβ+〉, q, n) is true when min{λ(q), n} = 1. For a positive
integer k, suppose P (〈dΣ(X )eβ+〉, q, n) is true when λ(q) + n < k. Let q and
n be such that λ(q) + n = k and min{λ(q), n} > 1. Suppose µ̂(q) = u1 · · ·un,
where ui ∈ ΩAV. Let q1, . . . , qλ(q) be consecutive edges of dΣ(X )eβ+ such that
q = q1 · · · qλ(q). Consider the edge q′ = q1 · · · qλ(q)−1. Since µ̂(q′)µ̂(qλ(q)) =
(u1 · · ·un−1)un, by Lemma 4.8 there is z ∈ (ΩAV)1 for which at least one of the
following conditions holds:

1. µ̂(q′) = u1 · · ·un−1z and zµ̂(qλ(q)) = un,

2. µ̂(q′)z = u1 · · ·un−1 and µ̂(qλ(q)) = zun.

Suppose the first condition holds. Since λ(q′) + n < λ(q) + n, by the induc-
tion hypothesis q′ has a good factorization s1 · · · sn−1t in 〈dΣ(X )eβ+〉 such that
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µ̂(si) = ui (for i ∈ {1, . . . , n − 1}) and µ̂(t) = z (if z = 1 then consider t as
an empty path). Let sn = tqλ(q). Then s1 · · · sn−1sn is a good factorization of
q′qλ(q) = q in 〈dΣ(X )eβ+〉. Since µ̂(si) = ui for every i ∈ {1, . . . , n}, this proves
P (〈dΣ(X )eβ+〉, q, n).

Suppose the second condition holds. Since R(β+) is true, there are edges
r, t ∈ dΣ(X )eβ+ such that qλ(q) = rt, µ̂(r) = z and µ̂(t) = un. We have
λ(q′r) ≤ λ(q′) + 1 ≤ λ(q), thus λ(q′r) + (n − 1) < λ(q) + n. Since µ̂(q′r) =
u1 · · ·un−1, by inductive hypothesis q′r has a good factorization s1 · · · sn−1 in
〈dΣ(X )eβ+〉 such that µ̂(si) = ui, for every i ∈ {1, . . . , n−1}. Hence s1 · · · sn−1t
is a good factorization of q in 〈dΣ(X )eβ+〉 whose i-th factor has label ui. Hence
P (〈dΣ(X )eβ+〉, q, n) holds, concluding the inductive step on λ(q)+n. Therefore
S(β+) is true.

Recapitulating, we proved that R(β+)∧S(β+) is true, concluding the proof
verification of the successor case of the inductive step on β.

Corollary 4.10. Consider a pseudovariety of semigroups V block preserving
and closed under concatenation. For an ordinal β, let G be one of the graphs
dΣ(X )eβ or 〈dΣ(X )eβ〉. Let p, q, r ∈ lim←− Σ̂2n(X ) be such that p = qr. If p ∈ G
then q, r ∈ G.

Proof. If p ∈ G then there is a good factorization p = q′r′ in G such that
µ̂(q) = µ̂(q′) and µ̂(r) = µ̂(r′). By Lemma 4.3, q and q′ are co-terminal, and
r and r′ are also co-terminal. Hence q = q′ and r = r′, since µ̂ is faithful by
Corollary 4.7.

A subshift X is irreducible if for every u, v ∈ L(X ) there is a word w such
that uwv ∈ L(X ) (cf. [24]).

Corollary 4.11. Consider a pseudovariety of semigroups V closed under con-
catenation. If X is irreducible then Σ(X )+ \ Σ(X )+ is a strongly connected
graph.

Proof. Let x and y be arbitrary elements of X . Since X is irreducible, for each
n ≥ 1 there is zn ∈ A+ such that the word wn = x[−n,n]zny[−n,n] belongs
to L(X ). Let w be an accumulation point of (wn)n. Then w = u1u2u3 for
some accumulations points of the sequences (x[−n,−1])n, (x[0,n]zny[−n,−1])n and
(y[0,n])n, respectively. Since w ∈ L(X ) \ A+, there is q ∈ Σ(X )+ \ Σ(X )+

such that µ̂(q) = w, by Proposition 4.5. Then by Theorem 4.9 there is a good
factorization q = q1q2q3 in Σ(X )+ such that µ̂(qi) = ui, for all i ∈ {1, 2, 3}. By
Lemma 4.3, we have α(q2) =←−u1.

−→u2 = x. Similarly, ω(q2) = y. Since µ̂(q2) /∈ A+,
q2 is an edge of Σ(X )+ \ Σ(X )+ from x to y.

The converse of Corollary 4.11 is false. For an example see the subshift of
Proposition 3.2 and the corresponding proof.
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5 The ordinal o(Σ(X ))

Let Γ be a nonempty subgraph of a compact semigroupoid. By Lemmas 3.3
and 3.4 the set of those ordinals β such that |β| ≤ |dΓe| and dΓeβ = dΓe is
nonempty. Its infimum is denoted by o(Γ).

Since Σ(X ) is a conjugacy invariant, the ordinal o(Σ(X )) is also a conjugacy
invariant. According to Proposition 4.1, if X is a finite type subshift then
o(Σ(X )) = 1. In Proposition 3.2, we saw a sofic subshift Z such that o(Σ(Z)) >
1. We proceed to try to determine o(Σ(X )) for some cases, or at least to find
lower and upper bounds for o(Σ(X )).

5.1 The ordinal o(Σ(X )) can be very large

We first need some lemmas on word combinatorics.

Lemma 5.1. Let u, v, z ∈ A+ be such that z2u = vz2 and |u| < |z|. If the
length of z is a prime number then z ∈ a+ for some a ∈ A.

Proof. Since z2u = vz2, there is v′ ∈ A∗ such that zu = v′z. Since |v′| = |u|
and |u| < |z|, the prefix of z with length |u| is v′. Since z2u = vz2, it is also true
that the prefix of z with length |u| is v. Therefore v′ = v and vz2 = z2u = zvz.
Hence vz = zv, which by [23, Corollary 5.3] implies that there is w ∈ A+ and
k, l > 0 such that z = wk and v = wl. Since |z| = k|w| and |z| is prime, we have
k = 1 or |w| = 1. If k = 1 then z = w and |v| = l|w| ≥ |z|, a contradiction.
Hence w ∈ A.

Lemma 5.2. Let z be a word of A+ whose length is a prime number, and
suppose that z is not a power of a letter of A. Let k ≥ 4 and u, v ∈ A+. If
u and v are respectively a suffix and a prefix of some elements of Azk then
uv /∈ Azk.

Proof. Suppose the lemma is false. That means that there are a, b, c ∈ A such
that u is a suffix of azk, v is a prefix of bzk, and uv = czk. Since v 6= 1, there
are i ≥ 0 and a strict prefix v′ of z such that v = bziv′; and there are j ≥ 1 and
a strict suffix u′ of z such that u = u′zj . Hence

czk = u′zjbziv′.

If u′ = 1 then z is a prefix of cz, thus z is a power of the letter c, which is
impossible. Hence u′ 6= 1. We have k|z| = (i+ j)|z|+ |u′|+ |v′|, thus |u′|+ |v′| is
a multiple of |z|. Since 0 < |u′|+ |v′| < |z|+ |z| = |2z|, we have |u′|+ |v′| = |z|.
Therefore i+ j = k − 1. If i ≥ 2 then z2v′ is a suffix of zk, which is impossible
by Lemma 5.1. Therefore j ≥ 2, since k ≥ 4. Since u′ 6= 1, there is u′′ ∈ A∗
such that u′ = cu′′. Then zk = u′′zjbziv′, and u′′z2 is a prefix of zk. Hence
u′′ = 1 by Lemma 5.1. Therefore zk−j = bziv′. If i 6= 0 then bz ∈ zA, thus z is
a power of b, which can not happen. Hence i = 0, j = k − 1 and bv′ = z. But
v′ is a prefix of z, thus bv′ ∈ v′A. This implies v′ ∈ b+, and therefore z ∈ b+,
which is impossible.
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It follows from Lemma 5.2 that the set Azk in its statement is a circular
code [10].

Given v ∈ A∗, denote by ψv the following mapping from AZ to AZ:

. . . x−2x−1.x0x1x2x3 . . . 7→ . . . vx−2vx−1v.x0vx1vx2vx3v . . . .

Note that ψ1 is the identity on AZ. Observe also that ψv ◦ σ = σ|v|+1 ◦ ψv. It
is easy to prove that Xv =

⋃
x∈X O(ψv(x)) is the least subshift of AZ contain-

ing ψv(X ).

Lemma 5.3. Let z be a word of A+ whose length is a prime number, and
suppose z is not a power of a letter. Let k ≥ 4. If x, y ∈ X and n ∈ Z are such
that ψzk(y) = σn(ψzk(x)) then n is a multiple of k|z|+ 1.

Proof. There are q, r ∈ Z such that n = q(k|z| + 1) + r and 0 ≤ r < k|z| + 1.
Note that

ψzk(y) = σn ◦ ψzk(x) = σr ◦ σq(k|z|+1) ◦ ψzk(x) = σr ◦ ψzk ◦ σq(x).

If y = (ai)i∈Z and σq(x) = (bi)i∈Z then

ψzk((ai)i∈Z) = . . . a−3z
ka−2z

ka−1z
k.a0z

ka1z
ka2z

ka3z
k . . . =

σr ◦ ψzk((bi)i∈Z) = . . . b−3z
kb−2z

kb−1z
ku.vb1z

kb2z
kb3z

k . . . .

where u, v are elements of A+ such that b0zk = uv and |u| = r. Since u is
a suffix of a−1z

k and v is a prefix of a0z
k, from Lemma 5.2 we deduce that

r = 0.

Lemma 5.4. Let z be a word of A+ whose length is a prime number, and
suppose z is not a power of a letter. Let k ≥ 4. Let x ∈ X . If (y(n))n is
a sequence of elements of Xzk converging to ψzk(x) then there is a sequence
(x(m))m of elements of X converging to x and a subsequence (y(nm))m such that
y(nm) = ψzk(x(m)), for any m.

Proof. Since y(n) ∈ Xzk , there are x(n) ∈ X and an integer rn such that y(n) =
σrnψzk(x(n)) and 0 ≤ rn < k|z|+1. The sequence (x(n))n has some subsequence
(x(ni))i converging to an element x′ of X . Since (rni)i is a bounded sequence,
it has some subsequence (rnij

)j with constant value C. Then

σCψzk(x′) = lim
j→+∞

σCψzk(x(nij
)) = lim

j→+∞
y(nij

) = ψzk(x).

Hence C = 0, by Lemma 5.3. Since ψzk is injective, we deduce that x′ = x.
Therefore (x(nij

))j converges to x and ψzk(x(nij
)) = y(nij

) for all j.

Let v ∈ A+ and x ∈ X . According to Lemma 4.3, there is a unique path of
Σ(Xv)+ with length |v|+ 1 from ψv(x) to σ|v|+1(ψv(x)) = ψv(σ(x)). Denote it
by
(
ψv(x), ψv(σ(x))

)
. Clearly, the mapping

Ψv : Σ(X ) → Σ(Xv)+

x 7→ ψv(x)
(x, σ(x)) 7→

(
ψv(x), ψv(σ(x))

)
, x ∈ X ,
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is a graph homomorphism. Let Ψ̂v be the unique continuous semigroupoid
homomorphism from Σ̂(X ) to Σ̂(Xv) extending Ψv.

Proposition 5.5. Consider a pseudovariety of semigroups V closed under con-
catenation. Let z be a word of A+ whose length is a prime number, and suppose
that z is not a power of a letter. Let k ≥ 4. For every ordinal β we have

Ψ̂zk(EdΣ(X )eβ
(x, y)) = EdΣ(X

zk )e
β
(ψzk(x), ψzk(y)),

Ψ̂zk(E〈dΣ(X )eβ〉(x, y)) = E〈dΣ(X
zk )e

β
〉(ψzk(x), ψzk(y)),

for all x, y ∈ X .

Proof. For every ordinal β and for every word v, by Lemma 3.19 we know that
Ψ̂v(dΣ(X )eβ) ⊆ dΨv(Σ(X ))eβ and Ψ̂v(〈dΣ(X )eβ〉) ⊆ 〈dΨv(Σ(X ))eβ〉. Hence it
remains to prove the conjunction of the following properties:

P (β) : ∀x, y ∈ X , EdΣ(X
zk )e

β
(ψzk(x), ψzk(y)) ⊆ Ψ̂zk(EdΣ(X )eβ

(x, y)),

Q(β) : ∀x, y ∈ X , E〈dΣ(X
zk )e

β
〉(ψzk(x), ψzk(y)) ⊆ Ψ̂zk(E〈dΣ(X )eβ〉(x, y)).

We shall prove P (β) ∧Q(β) by transfinite induction on β.
By Lemma 5.3, we have ψzk(y) 6= σ(ψzk(x)), thus EΣ(X )(ψzk(x), ψzk(y)) =

∅, which proves P (0). Suppose s ∈ EΣ(X
zk )+(ψzk(x), ψzk(y)). Then ψzk(y) =

σ|s|(ψzk(x)). By Lemma 5.3, there is a positive integer n such that |s| = n(k|z|+
1). Then ψzk(y) = ψzk(σn(x)). Since ψzk is injective, it follows that y = σn(x).
Hence EΣ(X )+(x, y) has an element s′ with length n. The length of Ψ̂zk(s′)
is equal to |s′|(k|z| + 1), by the definition of Ψzk . Hence s and Ψ̂zk(s′) are
elements of EΣ(X

zk )+(ψzk(x), ψzk(y)), with the same length, thus s = Ψ̂zk(s′)
(cf. Lemma 4.3). This proves P (0) ∧Q(0).

Suppose P (β)∧Q(β) is true. Let s be an element ofEdΣ(X
zk )e

β+
(ψzk(x), ψzk(y)).

Then there is a sequence (sn)n of elements of 〈dΣ(X )eβ〉 converging to s. The
sequences (α(sn))n and (ω(sn))n converge respectively to ψzk(x) and ψzk(y).
By Lemma 5.4, taking subsequences if necessary, we may assume that α(sn) =
ψzk(x(n)) and ω(sn) = ψzk(y(n)) for every n, for some sequences (x(n))n and
(y(n))n of elements of X converging to x and y, respectively. Since Q(β) is true,
for each n there is s′n ∈ E〈dΣ(X )eβ〉(x

(n), y(n)) such that sn = Ψ̂zk(s′n). If s′ is a

limit point of (s′n)n then s′ ∈ EdΣ(X )eβ+ (x, y) and Ψ̂zk(s′) = lim sn = s, which
proves P (β+).

For each positive integer l let 〈dΣ(Xzk)eβ+〉l be the set of all edges of Σ̂(X )
of the form q1 · · · ql, where q1, . . . , ql are consecutive edges of dΣ(Xzk)eβ+ . Note
that

〈dΣ(Xzk)eβ+〉 =
⋃
l≥1

〈dΣ(Xzk)eβ+〉l.

Hence Q(β) shall be proved once we prove by induction on l the following
sentence:

Q(β, l) : ∀x, y ∈ X , E〈dΣ(X
zk )e

β+ 〉l(ψzk(x), ψzk(y)) ⊆ Ψ̂zk(E〈dΣ(X )eβ+ 〉l(x, y)).
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The initial step l = 1 corresponds to proposition P (β+), which we know is true.
Suppose l > 1 and that Q(β, l′) is true when l′ < l. Let r be an element of
E〈dΣ(X

zk )e
β+ 〉l(ψzk(x), ψzk(y)). Then there are consecutive edges r1, . . . , rl of

dΣ(Xzk)eβ+ such that r = r1 · · · rl. Since Q(0) is true, we may assume that
r /∈ Σ(X )+. Then there is i ∈ {1, . . . , l} such that ri /∈ Σ(X )+. Since l > 1,
we have i < l or i > 1. Let us suppose that i < l (the case i > 1 is similar).
There is a positive integer m such that ω(ri) = σm(ψzk(x′)) for some x′ ∈ X .
Let u = tm(µ̂(ri)). Since ri /∈ Σ(X )+, the word u has length m. Let (pn)n

and (qn)n be sequences of elements of 〈dΣ(X )eβ〉 converging to ri and ri+1,
respectively. Since (ΩAV)u is open, we may assume that for every n there is
wn ∈ ΩAV such that µ̂(pn) = wnu. By Theorem 4.9, there are edges p′n e
p′′n belonging to 〈dΣ(X )eβ〉 such that pn = p′np

′′
n, µ̂(p′n) = wn and µ̂(p′′n) = u.

For each n, let q′n be the unique edge of Σ(X )+ from σ−m(α(qn)) to α(qn).
Let (p′, p′′, q′) be a limit point of the sequence (p′n, p

′′
n, q

′
n)n. Since (|q′n|)n is

the sequence with constant value m, and since there is a only a finite number
of paths on Σ(X ) with length m, we deduce that q′ is a path of Σ(X ) from
σ−m(ω(q′)) to ω(q′). On the other hand, since µ̂(p′′) = u ∈ A+, by Lemma 4.3
we know that p′′ is the unique path of Σ(X ) from σ−m(ω(p′′)) to ω(p′′). Since

ω(p′′) = ω(ri) = α(ri+1) = lim
n→∞

ω(q′n) = ω(q′),

one concludes that p′′ = q′. Therefore

r = (r1 · · · ri−1p
′)((q′ri+1)ri+2 · · · rl).

Note that p′ ∈ dΣ(X )eβ+ and that

ω(p′) = α(p′′) = σ−m(ω(p′′)) = σ−m(ω(ri)) = ψzk(x′),

whence
r1 · · · ri−1p

′ ∈ E〈dΣ(X
zk )e

β+ 〉i(ψzk(x), ψzk(x′)).

On the other hand, since q′nq
′′
n ∈ 〈dΣ(X )eβ〉 and q′ri+1 is a limit point of the

sequence (q′nq
′′
n)n, we have q′ri+1 ∈ dΣ(X )eβ+ . Therefore

(q′ri+1)ri+2 · · · rl ∈ E〈dΣ(X
zk )e

β+ 〉l−i
(ψzk(x′), ψzk(y)).

Since properties Q(β, i) and Q(β, l − i) hold by the induction hypothesis, we
conclude that

r1 · · · ri−1p
′ ∈ Ψ̂zk(E〈dΣ(X )eβ+ 〉i(x, x

′)),

(q′ri+1)ri+2 · · · rl ∈ Ψ̂zk(E〈dΣ(X )eβ+ 〉l−i
(x′, y)),

thus r1 · · · rl ∈ Ψ̂zk(E〈dΣ(X )eβ+ 〉l(x, y)), proving Q(β, l). Hence Q(β+) is true.
The limit case of the inductive step of the proof of P (β)∧Q(β) is trivial.
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Lemma 5.6. Let z be a word of A+ which is not the power of a letter. Let k
and l be integers such that 0 < k < l, and k|z| + 1 and l|z| + 1 are coprime.
Then there is n0 > 0 such that if n > n0 then Ln((AZ)zk) ∩ Ln((AZ)zl) = ∅.

Proof. What we want to prove can be reformulated as (AZ)zk ∩ (AZ)zl = ∅ (the
statement’s formulation will be convenient later). Suppose (AZ)zk ∩ (AZ)zl 6=
∅. Then there are sequences (ai)i≥1 and (bi)i≥1 of elements of A such that
zka1z

ka2z
ka3 . . . = vzlb1z

lb2z
lb3 . . .. for some v ∈ A+. Since k|z|+1 and l|z|+1

are coprime, there are integers r, s > 1 such that r(k|z|+ 1)− s(l|z|+ 1) = |v|.
Hence

|zka1z
ka2z

k · · · ar−1z
k| = r(k|z|+1)−1 = |v|+s(l|z|+1)−1 = |vzlb1z

lb2z
l · · · bs−1z

l|,

thus zka1z
ka2z

k · · · ar−1z
k = vzlb1z

lb2z
l · · · bs−1z

l. Since 0 < k < l, there is
c ∈ A such that zar−1 = cz, thus z = c|z|, contradicting the hypothesis.

The following lemma can be proved quite similarly.

Lemma 5.7. Let z be a word of A+ which is not the power of a letter. For
every k > 0, there is n0 > 0 such that if n > n0 then Ln((AZ)zk)∩Ln(z∞) = ∅.

Theorem 5.8. Consider a pseudovariety of semigroups V closed under con-
catenation. Let A be a two-letter alphabet. If β is a countable ordinal then there
is a countable subshift X of AZ such that o(Σ(X )) > β.

Proof. Take A = {a, b}. Let Y be the subshift {a∞}. Consider the following
property:

Q(β,X ,Z, c): β is a countable ordinal, X and Z are subshifts of AZ, and
c ∈ A+, such that

1. Y ∪ Z ⊆ X , Y ∩ Z = ∅ and X is countable;

2. b∞ ∈ X and c∞ ∈ Z;

3. the graphs dΣ(Y)e1 and dΣ(Z)e1 are strongly connected;

4. {s ∈ E〈dΣ(X )eβ+ 〉 : α(s) ∈ Y and ω(s) ∈ Z} 6= ∅;

5. {s ∈ E〈dΣ(X )eβ+ 〉 : α(s) ∈ Y and ω(s) ∈ Z} ∩ 〈dΣ(X )eβ〉 = ∅.

We denote the set {s ∈ E〈dΣ(X )eβ+ 〉 : α(s) ∈ Y and ω(s) ∈ Z} byEβ(X ,Y,Z).
Let P (β) be the proposition “∃X ∃Y ∃Z ∃c Q(β,X ,Z, c)”. If Q(β,X ,Z, c)

is true then X is a countable subshift of AZ such that o(Σ(X )) > β. Therefore
the theorem will be proved once we prove P (β) by transfinite induction.

Let us verify the initial step β = 0. Consider the subshifts Z = {b∞} and
X = O(a−∞.b+∞). The set of edges of Σ̂(X ) from a∞ to b∞ does not contain
any element of Σ(X )+ = 〈dΣ(X )e0〉, thus E0(X ,Y,Z)∩ 〈dΣ(X )e0〉 = ∅. On the
other hand, denoting by qn the unique path of Σ(X )+ from σ−n(a−∞.b+∞)
to σn(a−∞.b+∞), if q is an accumulation point of (qn)n then q belongs to
E0(X ,Y,Z). Hence P (0) is true.
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Suppose P (β) holds. Take subshifts X and Z of AZ and a word c of A+

such that Q(β,X ,Z, c) is true. Since |X | < |AZ|, there is z ∈ A+ \ L(X ). If
necessary prolonging z, we can suppose |z| is a prime number. By Dirichlet’s
Theorem [21, Section 16.1], the sequence (n|z|+ 1)n has infinitely many prime
numbers. For each positive integer k, let ek be the k-th positive integer greater
than 3 such that ek|z|+ 1 is prime. We let e0 = 0.

Let h > 0 and c1, . . . , ch ∈ A be such that c = c1 · · · ch. For each nonnegative
integer k, take

tk = ψzek (c)]−∞,−1].ψzek+1 (a∞)[0,+∞[

= . . . c1z
ekc2z

ek . . . ch−1z
ekchz

ekc1z
ekc2z

ek . . . ch−1z
ekchz

ek .azek+1azek+1azek+1 . . . .

Denote by Z ′ the subshift
[⋃

d∈A : d is a factor of cO(z−∞.dz+∞)
]
∪ O(z∞). The

least subshift X ′ containing
⋃

k≥0(Xzek ∪ {tk}) is the set

X ′ =
[ ⋃

k≥0

(Xzek ∪ O(tk))
]
∪ Z ′.

Note that Y ∪Z ′ ⊆ X ′, Y ∩Z ′ = ∅ and that dΣ(Z ′)e1 is strongly connected.
Moreover X ′ is countable. These observations are the first steps for proving
Q(β+,X ′,Z ′, z).

For each k ≥ 0 and n > 0, let qk,n be the unique path on Σ(X ′)+ from
σ−n(tk) to σn(tn). Let qk be an accumulation point of the sequence (qk,n)n.
Then the origin of qk is an element of the orbit of ψzek (c∞), and its terminus is
an element of the orbit of ψzek+1 (a∞). Note that qk ∈ dΣ(X ′)e1.

According to items (3) and (4) describing Q(β,X ,Z, c), there is an edge s0
of 〈dΣ(X )eβ+〉 from an element of Y to an element of α(q0). By the same items,
and by Proposition 5.5, for each k ≥ 1 there is an edge sk of 〈dΣ(Xk)eβ+〉 from
ω(qk−1) to α(qk) (see Figure 4). For each k, the sequence s0q0s1q1s2q2 · · · skqk
is an element of 〈dΣ(X )eβ+〉. Let q be a limit point of (s0q0s1q1s2q2 · · · skqk)k.
Then ω(q) ∈ Z ′ and q ∈ dΣ(X ′)e(β+)+ , thus Eβ+(X ′,Y,Z ′) is nonempty.

Suppose there is an element of Eβ+(X ′,Y,Z ′) belonging to 〈dΣ(X )eβ+〉.
Such an element has some factor p belonging to dΣ(X )eβ+ starting at some
element of X ′ \ Z ′ and ending at some element of Z ′. There is k ≥ 0 such that
α(p) ∈ Uk = O(tk−1) ∪ Xzek ∪ O(tk), where O(t−1) designates the empty set.
By Lemmas 5.6 and 5.7, if k 6= l then Xzek ∩ Xzel = ∅, and Xzek ∩ Z ′ = ∅, for
all k, l ≥ 0. Therefore, relatively to the topology of X ′, the sets Uk and

Vk =
[ ⋃

r≥k+4

(Xzer ∪ O(tr))
]
∪ Z ′,

are open neighborhoods of α(p) and ω(p), respectively. Let (pn)n be a sequence
of edges of 〈dΣ(X )eβ〉 converging to p. Since α and ω are continuous maps,
there is N such that if n ≥ N then α(pN ) ∈ Uk and ω(pN ) ∈ Vk. If necessary
changing the value of k by adding one, we can suppose that

α(pN ) ∈ O(tk−1) ∪ Xzek and ω(pN ) ∈ Xzer ∪ O(tr) ∪ Z ′,
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Figure 4: One step in the proof of Theorem 5.8.

for some r ≥ k + 3.
Let us start by the case k > 0. Let m be a positive integer. Since α(pN ) ∈

O(tk−1) ∪ Xzek , every finite prefix of µ̂(pN ) with sufficiently large length has
some factor belonging to (Azek)m (cf. Lemma 4.3). And since

A∗(Azek)mA∗ = (A∗(Azek)m)(A∗ \AzekA∗),

there are ρm ∈ (ΩAS)(Azek)m and νm ∈ (ΩAS)1\Azek(ΩAS)1 such that µ̂(pN ) =
ρmνm. Note that if m ≥ n then ρm ∈ (ΩAS)(Azek)n. Let ρ and ν be limit points
of the sequences (ρm)m and (νm)m, respectively. Then

ρ ∈
⋂
n≥1

(ΩAS)(Azek)n and ν ∈ (ΩAS)1 \Azek(ΩAS)1.

The pseudoword has factors of length n for all n ≥ 1, thus it is infinite.
By Lemma 4.3 we have ←−ρν = ω(pN )]−∞,−1] ∈ Xzer ∪ O(tr) ∪ Z ′. If ν is fi-
nite then (Azek)n ⊆ L((AZ)zer ) for all n ≥ 1, or (Azek)n ⊆ L(Z ′) for all n ≥ 1.

34



But the first case contradicts Lemma 5.6, and the second contradicts Lemma 5.7.
Hence ν is an infinite pseudoword.

Let x = ←−ρ .−→ν . Since µ̂(pN ) ∈ M (X ′) by Proposition 4.5, we know that
x ∈ X ′. We have

x]−∞,−1] = . . . a−3z
eka−2z

eka−1z
ek , for some a−1, a−2, a−3, . . . ∈ A, (5.1)

and
x[0,ek|z|] /∈ Az

ek . (5.2)

From (5.1) and Lemma 5.7 we deduce that x /∈ Z ′.
Suppose there is l ≥ 0 such that x ∈ Xzel . Then, by (5.1),

(Azek)n ∩ L(Xzel ) 6= ∅, ∀n ≥ 1. (5.3)

Hence k = l, by Lemma 5.6. Therefore there is a sequence (bi)i∈Z of elements
of A and words u, v ∈ A∗ such that uv = b0z

ek and

x = . . . b−3z
ekb−2z

ekb−1z
eku.vb1z

ekb2z
ekb3z

ek . . . (5.4)

By (5.1), there is a suffix w of b−1z
ek such that wu = a−1z

ek . By (5.2) and
(5.4), we have u,w 6= 1. But since ek ≥ 4, this is impossible by Lemma 5.2.
The absurd resulted from supposing that x ∈ Xzel for some l ≥ 0. Therefore
x ∈ O(tl), for some l ≥ 0. Then by (5.1) we have (5.3), thus k = l by Lemma 5.6.

Until now we supposed that k > 0. Next take k = 0. Then z is not a factor
of α(pN ). Since z is a factor of ω(pN )]−∞,−1], and A∗zA∗ = (A+ \A∗zA∗)zA∗,
there are pseudowords ρ ∈ ΩAS \ (ΩAS)1z(ΩAS)1 and ν ∈ z(ΩAS)1 such that
µ̂(pN ) = ρν. Since α(pN ) ∈ X , the word z is not a factor of any prefix of
µ̂(pN ), by Lemma 4.3. Hence ρ is infinite. If ν were finite then z would be a
factor of ω(pN )]−∞,−1] only a finite number of times (by Lemma 4.3), which
is impossible. Hence ν is infinite. Since z is a factor of ←−ρ .−→ν but not of ←−ρ ,
necessarily ←−ρ .−→ν ∈ O(t0).

In any case, k = 0 or k > 0, there are infinite pseudowords ρ, ν such that
µ̂(pN ) = ρν and ←−ρ .−→ν ∈ O(tk). Hence the idempotent f = (azek+1)ω is a factor
of ν, whence µ̂(pN ) = ρ′fν′ for some pseudowords ρ′ and ν′. By Theorem 4.9,
there is a good factorization pN = s1s2 in 〈EdΣ(X )eβ

〉 such that µ̂(s1) = ρ′f and

µ̂(s2) = fν′. Then α(s2) =
←−
f .
−→
f = ψzek+1 (a∞) ∈ Xzek+1 .

Applying to s2 the same arguments that where applied to pN , we conclude
that µ̂(s2) = ρ′′ν′′ for some pseudowords ρ′′ and ν′′ such that

←−
ρ′′.
−→
ν′′ ∈ O(tk+1).

The idempotent

g = (c1zek+1c2z
ek+1 · · · ch−1z

ek+1chz
ek+1)ω

is a factor of ρ′′. Hence, applying again Theorem 4.9, one concludes that there
is a good factorization s2 = s′1s

′
2 in 〈EdΣ(X )eβ

〉 such that ω(s′1) = ←−g .−→g =
ψzek+1 (c∞). Therefore s′1 belongs to E〈dΣ(X )eβ〉(ψzek+1 (a∞), ψzek+1 (c∞)). Then,
by Proposition 5.5, the set E〈dΣ(X )eβ〉(a

∞, c∞) is nonempty. This contradicts
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item (5) describing Q(β,X ,Z, c). The absurd resulted from the assumption
that Eβ(X ′,Y,Z ′) ∩ 〈dΣ(X ′)eβ〉 6= ∅. Hence property Q(β+,X ′,Z ′, z) holds.
Therefore P (β+) is true.

Suppose now that β is a countable limit ordinal and that P (γ) is true for
every ordinal γ ∈ β. For each γ ∈ β, let Xγ , Zγ be subshifts of AZ and let
cγ ∈ A+ be such that Q(β,Xγ ,Zγ , cγ) is true. Since β is countable, the set
X =

⋃
γ∈β Xγ is countable. Hence there is z ∈ A+ such that z /∈ L(X) and |z|

is prime. Likewise in the proof of the successor case of the inductive step, we
define the sequence (ek)k as follows: e0 = 0, and if k > 0 then ek is the k-th
positive integer greater than 3 such that ek|z|+1 is prime. Take an enumeration
γ1, γ2, γ3, . . . of the elements of β. For each nonnegative integer k, let tk =
ψzek (cγk

)]−∞,−1].ψzek+1 (a∞)[0,+∞[. Let D the set of letters d of A such that

{γ ∈ β | cγ ∈ A∗dA∗} is infinite. Let Zβ be the subshift
[⋃

d∈DO(z−∞.dz+∞)
]
∪

O(z∞). Consider the countable subshift Xβ =
[ ⋃

k≥0 (Xγk
)zek
∪ O(tk))

]
∪ Zβ .

Then the proposition Q(β,Xβ ,Zβ , z) is true, which one proves similarly as we
did for the successor case of the inductive step. Therefore P (β) holds for every
ordinal β.

5.2 Upper bounds for o(Σ(X ))

We seek properties on X that imply upper bounds for o(Σ(X )). We attack
this problem using the trivial observation that if dΣ(X )eβ = lim←− Σ̂2n(X ) then
dΣ(X )e = lim←− Σ̂2n(X ) and o(Σ(X )) ≤ β.

Theorem 5.9. Consider a pseudovariety of semigroups V block preserving and
closed under concatenation. Let G be a subgraph of lim←− Σ̂2n(X ) equal to dΣ(X )eβ
or to 〈dΣ(X )eβ〉, for some ordinal β. If µ̂(G) = M (X ) then G = lim←− Σ̂2n(X ).

Proof. Suppose µ̂(G) = M (X ). Consider an edge q : x → y of lim←− Σ̂2n(X ).
Let u = µ̂(q). Then u ∈ M (X ), by Proposition 4.5. We want to prove that
q ∈ G . We have Σ(X )+ ⊆ G , since µ̂(Σ(X )) = L1(X ) 6= M (X ). Hence we
can suppose that q /∈ Σ(X )+. Therefore u /∈ A+, by Lemma 4.3. Let v and w
be accumulation points of (x[−n,−1])n and (y[0,n])n in ΩAV, respectively. Then
vuw ∈M (X ). By hypothesis, there is an edge p of G such that µ̂(p) = vuw. By
Theorem 4.9, there is a good factorization p = p1p2p3 in G such that µ̂(p1) = v,
µ̂(p2) = u and µ̂(p3) = w. By Lemma 4.3, we have α(p2) = ←−v .−→u = x and
ω(p2) = ←−u .−→w = y. Therefore p2 = q, since µ̂ is faithful, by Corollary 4.7.
Hence q ∈ G .

It would be interesting to know if there is some subshift X such that dΣ(X )e 6=
lim←− Σ̂2n(X ). Its existence would solve Problem 3.21. If X is such a system and V

is block preserving and closed under concatenation then, since µ̂(lim←− Σ̂2n(X )) =
M (X ), by Theorem 5.9 there would exist pseudowords in M (X ) quite “far
away” from L(X ), in the sense that they would not belong to µ̂(dΣ(X )eβ) for
every ordinal β.

36



Lemma 5.10. Let (f(k))k be a bounded sequence of integers greater than 1.
Take a sequence (uk,1, uk,2, · · · , uk,f(k)−1, uk,f(k))k of tuples of words of A+ such
that

1. limk→+∞ min{|uk,i|i : 1 ≤ i ≤ f(k)} = +∞,

2. uk,iuk,i+1 ∈ L(X ), for every i ∈ {1, . . . , f(k)− 1}.

Then the accumulation points of the sequence (uk,1uk,2 · · ·uk,f(k)−1uk,f(k))k be-

long to µ̂
(〈

Σ(X )+
〉)

.

Proof. Let wk =
∏f(k)

i=1 uk,i. Let w be an accumulation point of the sequence
(wk)k. Taking subsequences if necessary, on may assume that limk→+∞ wk = w
and that (f(k))k is a constant sequence of value n.

For every i ∈ {1, . . . , n}, let pk,i, sk,i ∈ A∗ be such that uk,i = pk,isk,i and
||pk,i| − |sk,i|| ≤ 1. Let (vk,j)j=1,...,2n be the sequence of words given by:

vk,2i−1 = pk,i, vk,2i = sk,i, i ∈ {1, . . . , n}.

Then wk =
∏2n

j=1 vk,j . Let vk,0 = vk,2n+1 = 1. For each j ∈ {1, . . . , 2n}
the word vk,j−1vk,jvk,j+1 belongs to L(X ), by Condition (2). Hence there are
zk,j ∈ AZ− and tk,j ∈ AN such that zk,jvk,j−1.vk,jvk,j+1tk,j is an element of
X , briefly denoted by xk,j . Let qk,j be the unique edge of Σ(X )+ from xk,j

to σ|vk,j |(xk,j). Note that µ̂(qk,j) = vk,j . Taking subsequences if necessary, we
may assume that the following limit exists:

lim
k→+∞

(qk,1, qk,2, . . . , qk,2n−1, qk,2n) = (q1, q2, . . . , q2n−1, q2n)

Moreover, for every j ∈ {1, . . . , 2n− 1} we have lim
k→+∞

|vk,j | = lim
k→+∞

|vk,j+1| =
+∞, by Condition (1). Hence

ω(qj) = lim
k→+∞

ω(qk,j) = lim
k→+∞

xk,j+1 = lim
k→+∞

α(qk,j+1) = α(qj+1).

Therefore q = q1q2 · · · q2n−1q2n is an edge of
〈
Σ(X )+

〉
. Finally,

µ̂(q) = µ̂(q1)µ̂(q2) · · · µ̂(q2n−1)µ̂(q2n) = lim
k→+∞

vk,1vk,2 · · · vk,2n−1vk,2n = w.

Lemma 5.11. If S is a finite semigroup then for every finite collection s1, . . . , sn

of elements of S there is a subset {i1, . . . , ik} of {1, . . . , n} with at most |S| el-
ements such that s1 · · · sn = si1 · · · sik

.

Proof. Apply the pigeon-hole principle.

Proposition 5.12. Let V be a pseudovariety of semigroups containing L Sl.
Suppose (f(n))n≥1 is an unbounded sequence of positive integers. Let Lf (X )
be the set

⋃
n≥1{u ∈ L(X ) : |u| = f(n)}. Suppose there are families of words

(pu)u∈Lf (X ), (zu)u∈Lf (X ) and (su)u∈Lf (X ) such that:
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1. u = puzusu for every u ∈ Lf (X );

2. for every u, v ∈ Lf (X ), if |u| = |v| then zusv ∈ L(X );

3. lim
n→+∞

(
min

u∈Lf(n)(X )
|pu|
)

= lim
n→+∞

(
min

u∈Lf(n)(X )
|zu|
)

= lim
n→+∞

(
min

u∈Lf(n)(X )
|su|
)

=

+∞.

Then M (X ) = µ̂(dΣ(X )e2).

Proof. Let v ∈M (X ). If v ∈ A+, then v ∈ L(X ) and therefore v ∈ µ̂(Σ(X )+).
Suppose v /∈ A+. Let (vn)n be a sequence of elements of A+ converging to v.

Since M 3f(k)(X ) is an open neighborhood of v, there is an integer Nk such that

n ≥ Nk ⇒ (vn ∈M 3f(k)(X ) and |vn| ≥ 3f(k)).

Let nk be the sequence of integers recursively defined by n1 = N1 and nk =
max{nk−1 + 1, Nk} if k > 1. Then (vnk

)k is a subsequence of (vn)n such that
vnk
∈M 3f(k)(X ) and |vnk

| ≥ 3f(k), for every k. The word vnk
has a factoriza-

tion of the following type:

vnk
= vk,1vk,2 · · · vk,rk−1vk,rk

, |vk,1| = |vk,2| = · · · = |vk,rk−1 | = f(k),
f(k) ≤ |vk,rk

| < 2f(k), rk ≥ 3.

Then

vnk
= pvk,1zvk,1 ·

(
rk−2∏
i=1

svk,i
pvk,i+1zvk,i+1

)
· svk,rk−1vk,rk

.

Let K be a V-recognizable language of A+. Then there is a homomorphism
ϕ : A+ → S from A+ into a semigroup S of V such that K = ϕ−1ϕ(K). By
Lemma 5.11 there exists tk ≤ |S| and a subset {i1, . . . , itk

} of {1, . . . , rk − 2}
such that

ϕ(vnk
) = ϕ

(
pvk,1zvk,1 ·

(
tk∏

j=1

svk,ij
pvk,ij+1zvk,ij+1

)
· svk,rk−1vk,rk

)
. (5.5)

The equality (5.5) suggests that we consider the following tuple:

λk = (pvk,1 , zvk,1 , svk,i1
, pvk,i1+1 , zvk,i1+1 , svk,i2

, pvk,i2+1 , zvk,i2+1 , svk,i3
, . . .

. . . , svk,itk
, pvk,itk

+1 , zvk,itk
+1 , svk,rk−1 , vk,rk

).

The number of components of λk is 3tk + 4 ≤ 3|S|+ 4. The product of any two
consecutive components of λk is either a factor of a word of the form vk,ivk,i+1

— which belongs to L(X ) because |vk,ivk,i+1| < 3f(k) and vnk
∈ M 3f(k)(X )

— or of the form zu1su2 with u1, u2 ∈ Lf(k)(X ). Applying Condition (2), we
conclude that the product of any two consecutive components of λk belongs to
L(X ). On the other hand, since

lim
k→+∞

min{|vk,i| : 1 ≤ i ≤ rk} = lim
k→+∞

f(k) = +∞,
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by Condition (3), we deduce

lim
k→+∞

min{|(λk)i| : 1 ≤ i ≤ 3tk + 4} = +∞.

Let wk =
∏3tk+4

i=1 (λk)i. Then by Lemma 5.10 there is an element w of µ̂
(〈

Σ(X )+
〉)

which is the limit of a subsequence (wkl
)l of (wk)k. Let ϕ̂ be the unique con-

tinuous homomorphism from ΩAV to S extending ϕ. From (5.5) we deduce
that

ϕ̂(v) = lim
l→+∞

ϕ(vnkl
) = lim

l→+∞
ϕ(wkl

) = ϕ̂(w).

Hence
ϕ̂−1ϕ̂(v) ∩ µ̂

(〈
Σ(X )+

〉)
6= ∅. (5.6)

Since ϕ̂−1ϕ(K) is closed and open in ΩAV, and A+ is dense in ΩAV, we have

ϕ̂−1ϕ(K) = ϕ̂−1ϕ(K) ∩A+ = ϕ−1ϕ(K) = K. (5.7)

Therefore, if K contains v then K ∩ µ̂
(〈

Σ(X )+
〉)
6= ∅, by (5.6) and (5.7).

Accordingly to Proposition 2.2 the topology of ΩAV is generated by the closure

of the V-recognizable languages, whence v ∈ µ̂
(〈

Σ(X )+
〉)

= µ̂(dΣ(X )e2).

Corollary 5.13. Let V be a pseudovariety of semigroups containing L Sl. Let
X be a sofic subshift presented by a labeled graph G for which there are a vertex
i and an integer N such that every path on G with length N contains i. Then
M (X ) = µ̂(dΣ(X )e2).

Proof. Let u be an element of L(X ) with length greater than 4N . Take a path q
on G labeled u. Then there are paths q1, q2, q3 and r such that q = q1q2rq3,
|q1| = |q2| = |r| = N e |q3| > N . By hypothesis, there are paths r1 and r2
such that ω(r1) = α(r2) = i and r = r1r2. Let pu, zu and su be the labels
of q1, q2r1 and r2q3, respectively. Consider the map f(n) = n + 4N , n ≥ 1.
The families (pu)u∈Lf (X ), (zu)u∈Lf (X ) and (su)u∈Lf (X ) satisfy the conditions of
Proposition (5.12).

A word u of a language L is uniformly recurrent in L if there is a positive
integer m such that u is a factor of every word of L with length m.

Corollary 5.14. Let V be a pseudovariety of semigroups containing L Sl. Let
X be a subshift such that for each positive integer n there is a word of length n
uniformly recurrent in L(X ). Then M (X ) = µ̂(dΣ(X )e2).

Proof. For each positive integer n let wn be a word of length n uniformly recur-
rent in L(X ). Let g(n) be a positive integer such that every word of L(X ) with
length g(n) has wn as factor. Let (f(n))n be the strictly increasing sequence
recursively defined by f(1) = 2+g(1) and f(n) = max{f(n−1)+1, 2n+g(n)} if
n > 1. For each u ∈ Lf(n)(X ) there are words u1, u2, u3 such that u = u1u2u3,
|u1| = |u3| = n and |u2| ≥ g(n). Then wn is a factor of u2, thus u = puwnsu
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for some words pu and su with length greater or equal to n. Letting zu = wn,
the families (pu)u∈Lf (X ), (zu)u∈Lf (X ) and (su)u∈Lf (X ) satisfy the conditions of
Proposition 5.12.

Corollary 5.15. Whenever V is block preserving and closed under concatena-
tion, and X satisfies the conditions described in Corollary 5.14 or in Corol-
lary 5.13, then o(Σ(X )) ≤ 2.

Proof. Apply Theorem 5.9 together with Corollary 5.14 or Corollary 5.13

The following result gives an example of a subshift Z such that o(Σ(Z)) =
2. Note that the language a+ ∪ a∗ba∗, being factorial and prolongable, is the
language of the finite factors of a unique subshift of AZ.

Proposition 5.16. Consider a block preserving pseudovariety of semigroups V
containing A. Let A be the two-letter alphabet {a, b}. Let Z be the subshift of
AZ such that L(Z) = a+ ∪ a∗ba∗. Then

Σ(Z)+ $
〈
Σ(Z)+

〉
$ dΣ(Z)e2 = Σ̂(Z) = lim←− Σ̂2n(Z). (5.8)

Proof. Suppose baωb ∈ L(Z). The languages L(Z) and ba∗b are A-recognizable,
thus L(Z) ∩ ba∗b is an open neighborhood of baωb by Proposition 2.2. Hence
L(Z) ∩ ba∗b ∩ A+ 6= ∅, because A+ is dense in ΩAV. But L(Z) ∩ ba∗b ∩ A+ =
L(Z) ∩ ba∗b = ∅. Therefore baωb /∈ L(Z).

Since ban!+n belongs to L(Z), there are consecutive paths qn, pn on Σ(Z)
such that µ̂(qn) = ban! and µ̂(pn) = an. Let q and p be accumulation points
of (qn)n and (pn)n respectively. Then q and p are edges of Σ(Z)+ such that
ω(q) = α(p) = a∞, and µ̂(q) = baω. Similarly, there is an edge r of Σ(Z)+
such that α(r) = a∞ and µ̂(r) = aωb. Then q and r are consecutive edges of
Σ(Z)+ such that µ̂(qr) = baωb. Therefore baωb is an element of µ̂

(〈
Σ(Z)+

〉)
not in L(Z).

Next, let u = b(aωb)ω = lim b(an!b)n!. Let Kn be the language b(A+b)n.
Then u ∈ Kn. Suppose u ∈ L(Z)n. The languages Kn and L(Z)n are A-
recognizable, since they are the concatenation of the A-recognizable languages
L(Z), A+ and {b}. Hence Kn∩L(Z)n is open, and since A+ is dense in ΩAV, we
conclude that Kn∩L(Z)n∩A+ 6= ∅. But Kn∩L(Z)n∩A+ = Kn∩L(Z)n = ∅.
Hence u /∈ L(Z)n, for all n. Having in mind Proposition 4.5 and that L(Z)n =(
L(Z)

)n

, we conclude that u /∈ µ̂
(〈

Σ(Z)+
〉)

. On the other hand, u ∈M (Z).
Recapitulating,

L(Z) $ µ̂
(〈

Σ(Z)+
〉)

$ M (Z).

The word an is uniformly recurrent in L(Z). We have L(Z) = µ̂
(
Σ(Z)+

)
and M (Z) = µ̂(dΣ(Z)e2) by Proposition 4.5 and Corollary 5.14. Then we
deduce (5.8) using Theorem 5.9.
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For certain pseudovarieties (like the pseudovariety of all finite semigroups),
the property described in Proposition 5.16 also holds for the even subshift. This
is proved with Corollary 5.13 and similar arguments as detailed in [16].

6 Minimal subshifts

A subshift X is minimal if X does not contain subshifts different from X . The
subshift X is minimal if and only if all words in L(X ) are uniformly recurrent
in L(X ) [20]. Using Corollary 5.14, we shall prove that o(Σ(X )) = 1, whenever
X is minimal and V is block preserving and closed under concatenation.

Two elements of a semigroup are J -equivalent if they are a factor of each
other. A J -class is regular if it contains an idempotent. If moreover it contains
the idempotent factors of its elements then it is called maximal regular. Since
every infinite pseudoword has idempotent factors [1, Corollary 5.6.2], the max-
imal regular J -classes of ΩAV are the J -classes of infinite pseudowords whose
factors not J -equivalent with them are finite words.

Using the uniform recurrence property, it is not difficult to prove that if X
is minimal then L(X ) \ A+ is contained in a regular J -class, which we denote
by J(X ), whenever V ⊆ L Sl. More precisely, the correspondence X 7→ J(X ) is
a bijection between the set of minimal subshifts and the set of maximal regular
J -classes of ΩAV. This was proved in [4] under the hypothesis V = S, but the
proof also holds for V ⊆ L Sl. A rather different proof appears in [16].

The algebraic structure of a semigroup is normally described in terms of
Green’s relations, one of which is the relation J . We describe the others. Two
elements of a semigroup are R-equivalent (respectively, L-equivalent) if they
are a prefix (respectively, suffix) of each other. The intersection of the R- and
L-equivalences is called the H-equivalence and their join, which by associativity
is also their composite in any order, is called the D-equivalence. A D-class
contains an idempotent if and only if each of its R-classes and L-classes contains
an idempotent. The H-classes of a semigroup S which contain idempotents are
precisely the maximal subgroups of S. Green’s Lemma states that if s and st
are R-equivalent then the correspondence x 7→ xt defines a bijection between
the L-classes of s and st. The following propositions are applications of Green’s
Lemma:

Proposition 6.1. For two D-equivalent elements s and t, s R st L t if and
only if there is an idempotent e such that s L e R t.

Proposition 6.2. If e and f are idempotents of a semigroup, then for all x ∈
e/R∩ f/L there is a unique y ∈ f/R∩ e/L such that xy = e and yx = f .

Another application of Green’s Lemma is that all maximal subgroups within
a D-class are isomorphic.

It is well known that, in a compact semigroup, if s is a prefix of t and t is
a factor of s then t is also a prefix of s. This property, which is known as right
stability, together with its dual imply that the D- and J -equivalences coincide.
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For further information and the significance of Green’s relations in semigroup
theory see, for instance, [23].

The following theorem was proved in [4, Theorem 2.6] by the first author in a
substantially different manner. The new proof exemplifies how the semigroupoid
lim←− Σ̂2n(X ) may be useful for studying relatively free profinite semigroups.

Theorem 6.3. Consider a pseudovariety of semigroups V containing L Sl. Sup-
pose X is a minimal subshift. Then J(X ) = M (X ) \A+.

Proof. Since L(X ) \A+ ⊆ J(X ), we have J(X ) ⊆M (X ) \A+.
Let u and v be elements of J(X ) such that uv ∈ M (X ). Let s and p be

accumulation points of the sequences (tn(u))n and (in(v))n, respectively. Then
u = u′s and v = pv′, for some pseudowords u′ and v′. Note also that sp ∈ L(X ).
Since s and p are infinite pseudowords, there are factorizations s = s1es2 and
p = p1fp2 such that e and f are idempotents [1, Corollary 5.6.2]. Consider
the pseudowords x = u′s1e, y = es2p1f and z = fp2v

′′. The elements of the
set W = {e, f, x, y, z} are infinite factors of elements of J(X ), thus W ⊆ J(X ).
Since x = xe, y = ey and ΩAV is stable, we have x L e and y R e. Hence
xy ∈ J(X ), by Proposition 6.1. Similarly, since xy = xyf and z = fz, we have
xyz ∈ J(X ). Note that xyz = uv. Therefore,

(u, v ∈ J(X ) and uv ∈M (X ))⇒ uv ∈ J(X ). (6.1)

Suppose next that u ∈ L(X ), v ∈ J(X ) and uv ∈ M (X ) (the case vu ∈
M (X ) is similar). Since J(X ) is regular, there is an idempotent e such that
v R e. There is t ∈ ΩAV such that v = et. It follows that ev = et = v. Let
w be an accumulation point of the sequence (u in(e))n. Then w ∈ L(X ) \ A+,
and hence w ∈ J(X ); on the other hand, uv = uev = wsv for some suffix
s of e. The pseudoword sv is an infinite factor of v, thus belongs to J(X ).
Hence wsv = uv ∈ J(X ), by (6.1). This concludes the proof of the following
implication:

(u, v ∈ L(X ) ∪ J(X ) and uv ∈M (X ))⇒ uv ∈ L(X ) ∪ J(X ). (6.2)

Let q1, . . . , qn be consecutive edges of Σ(X )+. We shall prove by induction
on n that µ̂(q1 · · · qn) ∈ L(X )∪J(X ). By Proposition 4.5 we have µ̂

(
Σ(X )+

)
=

L(X ). Since L(X ) ⊆ L(X )∪J(X ), the initial step is proved. Suppose n > 1 and
that µ̂(q1 · · · qn−1) ∈ L(X ) ∪ J(X ). Since µ̂(qn) ∈ L(X ) ∪ J(X ) and, by Propo-
sition 4.5, µ̂(q1 · · · qn−1qn) ∈ M (X ), from (6.2) we deduce µ̂(q1 · · · qn−1qn) ∈
L(X ) ∪ J(X ). That is,

µ̂

(〈
Σ(X )+

〉)
⊆ L(X ) ∪ J(X ).

Since µ̂ is continuous, J(X ) is closed and L(X ) ⊆ L(X ) ∪ J(X ), it follows that

µ̂

(〈
Σ(X )+

〉)
⊆ L(X ) ∪ J(X ).

Hence M (X ) \A+ = J(X ), by Corollary 5.14.

42



Corollary 6.4. Consider a pseudovariety of semigroups closed under concate-
nation. If X is a minimal subshift then M (X ) = L(X ).

Proof. We already know that L(X ) ⊆ M (X ) and L(X ) ∩ J(X ) 6= ∅. The set
L(X ) is factorial, by Proposition 2.4, thus J(X ) ⊆ L(X ). Since M (X ) ∩A+ =
L(X ), the result follows from Theorem 6.3.

Corollary 6.5. Consider a pseudovariety of semigroups block preserving and
closed under concatenation. If X is a minimal subshift then lim←− Σ̂2n(X ) =

Σ̂(X ) = Σ(X )+.

Proof. Apply Corollary 6.4, Proposition 4.5 and Theorem 5.9.

The two previous corollaries exhibit properties of minimal subshifts shared
by finite type subshifts (cf. Proposition 4.1). However, differently with the
finite type case, it is not reasonable to expect a proof of Corollary 6.5 using
Proposition 2.1. Let us see why. Suppose there is a positive integer n such that
π̂n(Σ̂(X )) = Σ̂2n(X ). Then

L(X ) = µ̂
(
π̂n(Σ̂(X ))

)
= µ̂

(
Σ̂2n(X )

)
= M 2n+1(X ).

That is, L(X ) = M 2n+1(X ) ∩A+, thus X is of finite type. But if |A| > 1 then
there are ℵ0 finite type subshifts of AZ, while there are 2ℵ0 minimal subshifts
of AZ [25, Chapter 2].

Lemma 6.6. Suppose X is a minimal subshift. Let u, v ∈ J(X ). Then u R v
if and only if −→u = −→v . Dually, u L v if and only if ←−u =←−v .

Proof. Suppose −→u = −→v . Let w be an accumulation point of the sequence
(in(u))n. By hypothesis in(u) = in(v), for every n. Hence w is a common prefix
of u and v. By the J -maximality of J(X ) and the stability of ΩAV, we conclude
that w, u, v are R-equivalent. The converse is immediate.

A semigroupoid C is a category if for every vertex x of C there is an edge 1x

such that 1xs = s and t1x = t, for all edges s and t of C such that α(s) = x
and ω(t) = x. A groupoid is a category G such that for every edge s : x → y
there is an edge s′ : y → x for which ss′ = 1x and s′s = 1y. Note that the local
semigroups of groupoids are groups.

The graph Σ̂(X ) \ Σ(X )+ will be briefly denoted by Σ̂∞(X ). Note that
Σ̂∞(X ) is a closed subsemigroupoid of Σ̂(X ).

Theorem 6.7. Consider a pseudovariety of semigroups block preserving and
closed under concatenation. If X is a minimal subshift then Σ̂∞(X ) is a con-
nected groupoid.

Proof. Every minimal subshift is irreducible, hence Σ̂∞(X ) is strongly connected
by Corollary 4.11. It remains to prove that Σ̂∞(X ) is a groupoid.

Let z be an arbitrary element of X . Since Σ̂∞(X ) is strongly connected,
there are edges from z to z, hence one can consider the local semigroup Sz of
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Σ̂∞(X ) at z. Since Sz is compact, it contains at least one idempotent εz [12,
Theorem 3.5].

Let q : x→ y be an arbitrary edge of Σ̂∞(X ). Then
−−−−→
µ̂(εxq) = x[0,+∞[ =

−−→
µ̂(q),

and so µ̂(εxq) is R-equivalent to µ̂(q) by Lemma 6.6. Therefore µ̂(q) = µ̂(εxq)w
for some w ∈ (ΩAV)1. Hence

µ̂(εxq) = µ̂(εx)µ̂(q) = µ̂(εx)µ̂(εxq)w = µ̂(ε2xq)w = µ̂(εxq)w = µ̂(q).

Then εxq = q, since µ̂ is faithful. Dually qεy = q. This proves Σ̂∞(X ) is a
category.

By Proposition 6.2, there is v ∈ µ̂(εx)/L∩ µ̂(εy)/R such that vµ̂(q) = µ̂(εy)
and µ̂(q)v = µ̂(εx). Since µ̂(εx) and µ̂(εx) are idempotents, v ∈ µ̂(εx)/L ∩
µ̂(εy)/R implies that v = µ̂(εy)vµ̂(εx). By Proposition 4.5 there is an edge p of
Σ(X )+ such that µ̂(p) = v. Then by Theorem 4.9 there is a good factorization
p = p1p2p3 in Σ(X )+ such that µ̂(p1) = µ̂(εy), µ̂(p2) = v and µ̂(p3) = µ̂(εx).
We have α(p2) =

←−−−
µ̂(εy).−→v =

←−−−
µ̂(εy).

−−−→
µ̂(εy) = y, by Lemma 4.3. Hence q and

p2 are consecutive. And µ̂(qp2) = µ̂(q)v = µ̂(εx). Similarly, ω(p2) = x and
µ̂(p2q) = vµ̂(q) = µ̂(εy). Since qp2 and εx are co-terminal and equally labeled,
one has qp2 = εx, because µ̂ is faithful. Similarly, p2q = εy.

In a forthcoming paper we will show that the local groups of Σ̂∞(X ) are
isomorphic to the maximal subgroup of J(X ). Note that this implies that the
maximal subgroup of J(X ) is a conjugacy invariant, a fact that is a particular
case of a more general result proved by the second author using rather different
methods [14]. The maximal subgroup of J(X ) has been computed for several
classes of minimal subshifts by the first author [4]. Hopefully, the groupoid
Σ̂∞(X ) may add a new geometric perspective on J(X ), and X itself.
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