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Abstract

We propose in this paper a distributed packed storage format that exploits the symmetry
or the triangular structure of a dense matrix. This format stores only half of the matrix while
maintaining most of the efficiency compared to a full storage for a wide range of operations.
This work has been motivated by the fact that, contrary to sequential linear algebra libraries
(e.g. LAPACK [4]), there is no routine, no format that handles packed matrices in the current
parallel distributed libraries available. The proposed algorithms exclusively use the existing
ScaLAPACK [6] computational kernels which proves the generality of the approach, provides
easy portability of the code, efficient re-use of existing software. The performance results
obtained for the Cholesky factorization show that our packed format performs as good or better
than the ScaLAPACK full algorithm for small numbers of processors. For larger number of
processors, the ScaLAPACK full storage routine performs slightly better until each processor
runs out of its memory.

Keywords: scientific computing, dense linear algebra, parallel distributed algorithms,
ScalLAPACK, packed storage format, Cholesky factorization, QR factorization.

1 Introduction

Even though the current parallel platforms provide increasing memory capacity, they are also used
to solve ever larger dense linear systems. This is the case for instance in geosciences or electromag-
netic computations where the usual problem size is several hundreds of thousands requiring several
tens of Gbytes. It is now possible to perform these calculations since the distributed memory
parallel machines available today offer several Gbytes memory per processor. But when the dense
matrices involved in these computations are symmetric, Hermitian or triangular, it could be worth
exploiting the structure by storing only half the matrix.

The ScaLAPACK [6] library has been designed to perform linear algebra parallel calculations on
dense matrices. Contrary to the serial library LAPACK [4], ScaLAPACK does not currently sup-
port packed format for symmetric, Hermitian or triangular matrices [10]. A parallel solver has been
studied in [5] that solves linear least squares problems encountered in gravity field calculations using
the normal equations method. This solver also handles large symmetric linear systems in complex
arithmetic resulting from Boundary Element Method (BEM) modelling of electromagnetic scat-
tering. This solver uses about half the memory required by ScaLAPACK and gives performance
results similar to ScaLAPACK on moderately parallel platforms (up to 32 processors). Neverthe-
less, its parallel performance is less scalable than ScalLAPACK on higher processor counts because
it uses a one-dimensional block cyclic distribution [6, p. 58]. The distributed packed storage for-
mat proposed in this paper uses ScaLAPACK and PBLAS [7] routines. Each of these routines
exploits the good load balancing of the two-dimensional block cyclic distribution [17, 19] as it is
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implemented in ScaLAPACK [6, p. 58]. Moreover the calls to these routines in the applications
that exploit this format will ensure the portability of software built upon them since these libraries
are supported by all current parallel platforms. We shall see that, thanks to the set of routines
we provide, building applications using matrices in distributed packed form is easy for users who
are familiar with ScaLAPACK and gives good performance while saving a significant amount of
memory compared with the full storage of the matrix.

This paper is organized as follows. In Section 2, we give an overview of the existing packed
formats. The purpose of Section 3 is to describe the implementation of the distributed packed
storage that we intend to use in parallel algorithms based on PBLAS or ScaLAPACK kernel
routines. In Section 4, we explain how the Cholesky factorization can be implemented using the
distributed packed format, this includes the descriptions of algorithms and a performance analysis
on the IBM pSeries 690 and the CRAY XD1 cluster. Finally, some concluding comments are given
in Section 5.

2 Generalities on packed storage formats

The sequential libraries LAPACK or BLAS [11] provide a packed storage for symmetric, hermitian
or triangular matrices. This format allows us to store half the matrix by addressing only the
lower-triangular or upper-triangular part of the matrix, this part being held by columns.

ailp a2 a3
For instance, the upper triangle of A = * age ae3 | will be stored compactly in the matrix

* * ass

AP (A Packed) such that AP = [ ai1,0a12,0a92,0a13, a23, 433 ]
For symmetric matrices, either the lower triangle or the upper triangle can be stored. In both
cases, the triangle is packed by columns but one may notice that this is the same as storing the
opposite triangle by rows. This packed storage format has been implemented in several routines
of the Level-2 BLAS and LAPACK for:

- solving symmetric indefinite or symmetric/Hermitian positive definite linear systems,

- computing eigenvalues and eigenvectors for symmetric or symmetric-definite generalized
eigenproblems (with condition number estimation and error bounds on the solution),

- multiplying symmetric/Hermitian matrices and solving triangular systems.

Unfortunately, this format gives poor performance results when used in dense linear algebra com-
putations since the algorithms are not able to make optimal use of the memory hierarchy. Blocked
operations cannot be performed which prevents the use of Level-3 BLAS, and causes a dramatic
loss of efficiency compared to the full storage (see e.g [2]). Another approach was used successfully
in the IBM library ESSL [1] that consists of writing Level-3 BLAS for packed format. Still another
approach was used in [3] that defines a Recursive Packed Cholesky that operates on a so-called
Recursive Packed Format (RPF) and requires variants of TRSM and SYRK that work on RPF.

In the framework of serial implementations, one can use blocking techniques and then store the
lower-triangular or upper-triangular part of the blocked matrix. For instance, the blocked matrix

A A Az
A= x Aoy Aoz can be stored in the blocked packed matrix
% * A33

[ Ai1, A1z, Aga, Ars, Aos, Ass |

or

[ Au1, Arg, Az, Agg, Ags, Ass |

For serial implementations, the authors of [2] define a so-called Upper (resp. Lower) Blocked Hy-
brid Format. In both formats, the blocks are ordered by columns to permit efficient operations



on blocks using Level-3 BLAS (e.g blocked Cholesky algorithm in [2]) and the diagonal blocks are
stored in packed format so that exactly half of the matrix is stored.

Regarding parallel implementations for distributed memory architectures, out-of-core parallel
solvers were implemented in several projects [13, 14, 15, 18] where only the blocks of one tri-
angular part are stored. But for parallel in-core implementations, there is presently no satisfying
packed storage available for dense matrices. A packed storage for symmetric matrices distributed
in a 1-D block cyclic column distribution is used in [5] for a least squares solver based on the
normal equations approach. In this implementation the blocks are ordered by columns and stored
in a block-row array, resulting in extra-storage due to the diagonal blocks that are fully stored. All
blocks are manipulated using Level-3 BLAS or LAPACK blocked routines but communication is
performed by MPI primitives whereas the distributed packed format that we propose in this paper
relies on the ScaLAPACK communication layer BLACS [12].

Two algorithms using 2-D block cyclic data layouts are described in [16] for packed Cholesky
factorization for distributed memory computing. There is currently no code available for these
algorithms but their implementation would be based on Level-3 BLAS and BLACS.

A preliminary study on a packed storage extension for ScaLAPACK has been carried out in [9]. In
this format only the lower (or upper) part of each block column of the matrix is stored into a panel
considered as a separate ScaLAPACK matrix. This packed storage stores also the entire diagonal
blocks. We can find in [9] experiments on the Cholesky factorization and symmetric eigensolvers.
Our approach is an extension of this format.

3 Distributed packed format

3.1 Definitions

ScalLAPACK proposes a data layout based on a two-dimensional block cyclic distribution. In this
type of distribution, a matrix of size n is divided into blocks of size s (if we use square blocks)
that are assigned to processors in cyclic manner according to a p x g process grid. We refer to [6]
for more details about this data layout. The blocks of size s that are spread among processors are
called elementary blocks and the blocks of size p.s x ¢.s corresponding to the p x ¢ process grid
are called grid blocks.

In order to be stored in a distributed packed format, a matrix is first partitioned into larger
square blocks of size b such that b is proportional to [.s where [ is the least common multiple of p
and ¢ (b > l.s). We define these blocks as “distributed blocks”.

In the remainder of this paper, the algorithms will be expressed in terms of distributed blocks
that will be simply called “blocks”. Note that the distributed block performs naturally what is
defined in [20] as algorithmic blocking or tile for out-of-core implementations [14].

The following figure summarizes the hierarchy between the elementary block (hosted by one
process), the grid block (corresponding to the process grid), and the distributed block (square
block consisting of grid blocks). It shows the three kinds of blocks that we get when we consider
a 2 x 3 process grid, s = 1, b = 6 and each block is labeled with the number of process that stores it.

Of1(2(0]1]2
314(5(|3[4]|5
0[1]2 . Of1|2(0]1]2 T
@ : elementary block, sT1T5 : grid block, sTaT5 3T 15 : distributed block.
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We consider here a matrix A partitioned into distributed blocks A;; and A can be either sym-
metric or upper triangular or lower triangular. We propose to store A compactly in a distributed
packed format that consists in storing the blocks belonging to the upper or the lower triangle of A



in a ScaLAPACK matrix ADP (A Distributed Packed).
The blocks of A will be stored horizontally in ADP so that the entries in the elementary, grid
and distributed blocks are contiguous in memory and then will map better to the highest levels of
cache.

Let us consider the following symmetric matrix A described using distributed blocks, that is

An Ale A3Tl
A= Ao Ago A§2
Az Az Asz

We provide two ways of storing A using our distributed packed format. In the Lower distributed
packed format, the lower triangle of A is packed by columns in ADP i.e:

ADP =] A1n Az Asi Ay Az Ass .
In the Upper distributed packed format, the upper triangle of A is packed by rows in ADP i.e:

ADP = [ A AL, AL Asy AL, Ags ]

The distributed packed storage for upper and lower triangular matrices follows from that of a

Ay A Agg
symmetric matrix since the upper triangular blocked matrix A = 0 Ay Ao is stored
0 0 Ass

in a packed distributed format as

ADP = Ai1 A Az Asy Aoy Asg |

Ay 0 0
and the lower triangular blocked matrix A = Ay Axn 0 will be stored as
Azr Az Asz

ADP = [ A11 A21 A31 A22 A32 A33 } .

We point out that the matrix ADP corresponds “physically” to a ScaLAPACK array that is laid
out on the px ¢ mesh. We also specify that, contrary to LAPACK where upper and lower triangular
matrices are both packed by columns, our distributed packed format is different for upper and lower
triangular matrices since they are respectively packed by rows and columns. Note also that the
diagonal blocks are full blocks and thus do not exploit the triangular or symmetric structure.
Throughout this paper we will use the following designations and notations. The distributed packed
format will be simply referred to as the packed format and an implementation using this format
as a packed implementation. We denote by N = 7 the number of block rows in A. The packed
structure ADP will be described using the A;; as previously or will be denoted as the blocked
matrix [ B1 By By By Bs Bg } A block By, = A;j in ADP will be addressed through the
indirect addressing INDGET that maps (7, j) to k (this mapping depends whether a lower or an
upper packed storage is chosen).

3.2 Tuning parameters

In order to obtain the best Gflops performance, one may determines the dominant operation(s)
involved in the computation in terms of floating-point operation count (e.g the matrix-matrix
multiplication performed by the Level-3 routine DGEMM in the sequential Cholesky factoriza-
tion). Then we try to optimize the efficiency of this dominant operation by tuning the program



parameters. In parallel implementations, these user-tunable parameters are often the size s of an
elementary block size and the values of p and ¢ in the process grid.

If the DGEMM routine is the dominant operation, then s is generally determined as being the
value that enables us to obtain the best sustained performance for a matrix-matrix product of size
s on the target machine. This parameter is closely related to the machine characteristics and to
the memory hierarchy constraints (level 1,2,3 cache or TLB).

The optimal values for the parameters p and g generally depend on the type of algorithm that
is implemented. In [8] optimal values for the ratio % are proposed for the LU, Cholesky and QR
factorizations performed by ScaLAPACK.

Performance tuning can sometimes become more complicated when the dominant operation
(i.e the operation that must be optimized) changes with the distribution parameters or when the
dominant operation in terms of flops is not the dominant operation in terms of time. In that case,
a heuristic needs to be found that will often lead to a compromise (not degrading the most efficient
routine while improving the less efficient one).

Finally, a parameter that influences the performance of a packed implementation is the size of
b. As seen in Section 3.1, we have b > [.s. b may be chosen significantly larger than [.s but in that
case it would demand more memory storage because the diagonal blocks would be bigger. The
ratio between the memory storage required by a block size b and that required by a block size [.s
is given by )

n.n 2 n., n 2 n+
“= (b(b + 1P ) / (l.s(l.s + 1)) ) Cn4ls
Then the increase (in percentage) of the memory storage when using a blocking of size b instead of
using a blocking of size [.s is expressed by a — 1 i.e erllz In the rest of this paper, this quantity
is referred to as extra-storage.

Remark 1. We did not compare the required storage using a blocking size b with the “ideal”
storage corresponding to the LAPACK packed storage described in Section 2 since we store here
the entire diagonal blocks and our parallel implementation is based on distributed blocks whose
minimum size is [.s x [.s for easy use of ScaLAPACK routines. Indeed, in our packed distributed
storage, the choice b = [.s is optimal from a memory point of view but in general, an optimal
packed storage would store n(n + 1)/2 entries of the matrix.

Let p be the maximum extra-storage that we are ready to accept. Then the maximum value of
b will be such that b < p(n + 1.s) + l.s. We will see that the choice of b will represent a trade-off
between the performance (if large b improve the dominant operations) and the memory storage (b
must be consistent with the maximum extra-storage that we are ready to afford).

4 Application to the Cholesky factorization

Based on the distributed packed storage defined in Section 3.1, we describe in this section how
a packed distributed Cholesky factorization can be designed on top of PBLAS and ScaLAPACK
kernels.

4.1 Description of the algorithms

The packed implementation of the Cholesky factorization is based on the Level-3 PBLAS routines
PDGEMM (matrix-matrix product), PDSYRK (rank-k update), PDTRSM (solving triangular
systems with multiple right-hand-sides) and on the ScaLAPACK routine PDPOTRF(Cholesky
factorization). We present in this section the packed implementations of the right-looking and left-
looking variants of the Cholesky factorization that are given respectively in Algorithms 1 and 2.



Note that Algorithm 1 operates on the lower triangular part of the matrix while Algorithm 2 op-
erates on the upper triangular part.

B, BT BT
The symmetric positive definite matrix partitioned into distributed blocks | By By BT is
Bs Bs Bg

stored in a lower distributed packed format as [ By By Bs By Bs; Bg } that we also denote
by B1:6~

We notice in both algorithms that the PDGEMM and the PDTRSM instructions involve rectangu-
lar matrices. In the implementations, these instructions are performed using a loop that performs
the multiplication of the b x b blocks one by one because it exhibited better performance in the
experiments.

We also point out that when b is minimum (b = [.s) then N is maximum and thus the number of
synchronizations involved in Algorithm 1 is maximum (these synchronizations occur for instance
in the routine PDPOTF2 that performs the unblocked Cholesky factorization inside PDPOTRF
due to the broadcast of the ”INFO” output parameter). This explains why, even if taking b = l.s
requires less memory storage, in practice this value of b will rarely be chosen.

Algorithm 1. : Packed right-looking Cholesky
fori=1:N
j = INDGET(i, )
Bj « chol(B;) (PDPOTRF)
Bji1j4n—i < Bji1j4n—iB; " (PDTRSM)
forii=i+1: N
k = INDGET (i, i)
By «— By, — BjH?;_iBJTHFi (PDSYRK rank-b update)
Bit1:kt N—ii — BryrktN—ii—Bji14ii-ijrN—i B,y (PDGEMM)
end (%i-loop)
end (i-loop)




Algorithm 2. : Packed left-looking Cholesky
fori=1:N
j=INDGET(i,1)
forit=1:7-1
k=INDGET(ii,1)
Bj « Bj — ByBF' (PDSYRK rank-b update)
BJT+1:j+N—z'i — BJT—H:j+N—ii - B£+1:k+N—iBg (PDGEMM)
end (%i-loop)
Bj « chol(Bj) (PDPOTRF)
BjT+1;j+N—z' - BjT+1;j+N—z'Bj_T (PDTRSM)

end (i-loop)

4.2 Tuning

Both algorithms were implemented on an IBM pSeries 690 (2 nodes of 32 processors Power-
4/1.7 GHz and 64 Gbytes memory per node) and linked with the PBLAS and ScaLAPACK
libraries provided by the vendor (in particular the Pessl library).

As in a sequential blocked Cholesky algorithm, the matrix-matrix multiply performed by the
routines PDGEMM or PDSYRK represents the major part of the computation. Both routines call
essentially the Level-3 BLAS routine DGEMM that gives good performance for s > 128 for our
platform. The value of s = 128 will be taken in all following experiments.

4.2.1 Influence of the distributed block size

We now examine the influence of b on the performance on the kernel routines used in our packed
implementation.

Figure 1 represents the unitary performance of each routine on a matrix of size b using a 4-by-4
process grid. The curves show that the performance increases with b. However we notice that a
spike occurs for b = 8192 and a smaller one for b = 4096. Since b = 8192 corresponds to local array
per processor that has a leading dimension of 2048, the main spike is explained by cache misses
occurring when we access to two consecutive double-precision real in a row of an array whose
leading dimension is a multiple of 2048 (due to the size of the IBM pSeries 690 L1 cache). The
spike observed for b = 4096 corresponds to secondary cache misses. Details on this phenomenon
are given in [5].

Regarding Algorithm 1, the repartition of floating-point operations among the different routines
depends on the problem size n and on the block size b. But the performance of each routine can
also depend on b and on the number of processors involved in the computation.

Table 1 gives for a particular example the number of floating-point operations and the time spent in
each routine for our packed implementation and for the full storage ScaLAPACK factorization. We
notice that the PDTRSM routine performs 8.1% of the operations and takes 41% of the time. This
shows that, as observed in Figure 1, PDTRSM is far less efficient than PDGEMM and PDSYRK.
We note that the number of floating-point operations corresponding to the Cholesky factorization of
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Figure 1: Performance of PBLAS routines involved in the Cholesky factorization (16 processors).

the diagonal blocks is negligible, as mentioned in [5]. These operations are performed by PDPOTRF
in the packed implementation and by PDPOTF2 in ScaLAPACK. The corresponding figures are not
mentioned in Table 1 because they do not represent a significant time in the global factorization.
Then a heuristic for tuning the parameter b may consist in choosing an “acceptable” ratio r

packed solver (b = 5120) | ScaLAPACK (s = 128)

PBLAS routine % operations | % time | % operations | % time
PDGEMM and PDSYRK 91.9 58 99.8 92
PDTRSM 8.1 41 0.2 0.7

Table 1: Breakdown of operations and time for right-looking Cholesky (n = 81920, 64 processors).

of operations performed by the PDTRSM routine. The floating-point operations performed by
PDTRSM are:

N-1

. N(N -1
Zib3:b3 ( )
i=1

2
3
Hence, since the Cholesky factorization involves "?3 = (N; ) operations, we have
W1
2N2  —

Thus we get N =2 > 3HVO=24r 511d the maximum value for b is:

4rn

bmam = -
3+V9—24r

As seen in Section 3.2, we have b < p(n + l.s) + l.s and then the chosen value for b will be
min(bmaz, p(n +1.5) + 1.s).



4.2.2 Influence of the process grid

The p x g process grid can also have an influence on the performance of the code. In a packed
implementation, the choice of a roughly squared grid (% < § < 1) proposed in [8] for the full
storage Cholesky factorization is not necessarily the best grid choice for the packed format because
the operation that slows down the global performance of the program is the PDTRSM routine.
Figure 2 shows for a 16 processor grid that the PDTRSM routine applied to one block of size b is
more efficient when using a rectangular grid such that § > 1 whatever the value of b is. Table 2

25

-
«

-

Performance per processor [Gflops]

&= 4x4 grid
O 2x8grid
8x2 grid

0 I I I I I I I
1024 2048 3072 4096 5120 6144 7168 8192 9216 10240
Problem size b

Figure 2: Performance of PDTRSM for different process grids (16 processors).

summarizes the tuning parameters and the heuristics for the packed Cholesky implementation on
the IBM pSeries 690.

parameter heuristic suggested value (IBM pSeries 690)
s sustained performance of DGEMM 128
D, q § >1 depends on processor count
b accepted extra-storage p b < min(:ﬂ_\‘;ﬁbmm, pn+1.s)+1s)
accepted PDTRSM operations r

Table 2: Tuning parameters/heuristics for packed Cholesky implementation (IBM pSeries 690).

4.3 Parallel performance results

In the following results, the processor count varies from 1 to 64 and the corresponding problem
size n has been determined so that each processor uses about the same amount of memory (with
n = 10240 for 1 processor, which corresponds to a storage of about 840 Mbytes per processor for
ScaLAPACK). For each problem size, the size b of the distributed block has been determined using
the heuristic given in Section 4.2. We first compute for each problem size the maximum value of
b that can be obtained by accepting a maximum of 10% of memory extra-storage p and 15% of
operations performed by the routine PDTRSM. Then b is adjusted to the nearest number that
is lower to the maximum value, proportional to l.s and a submultiple of n. The resulting values
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of b are given in Table 3. The actual extra-storage corresponding to the chosen value of b is the

quantity a — 1 = erllz that has been defined in Section 3.2.

problem size n | 10240 | 14336 | 20480 | 28672 | 40960 | 61440 | 81920
p X q grid I1x1 | 2x1 | 4x1 | 4x2 | 8x2 | 8x4 |16x4
block size b 1024 1024 2048 2048 4096 6144 10240
extra-storage | 8.6% ™% 73% | 5.3% | 7.3% | 82% | 9.7%

Table 3: Tuned block size for p = 0.1 and r = 0.15.

We present below performance results obtained by the right-looking implementation (Algo-
rithm 1 described in Section 4.1) rather than the left-looking one (Algorithm 2) since it gives in
our experiments factorization times that are slightly better for high processor count. The selected
values of b are those displayed in Table 3. In accordance with Section 4.2, the grid parameters are
such that 2 > 1 and more precisely 2 < 2 < 4 since it provides experimentally better results. In
that table, tpsckeq is the resulting factorization time.

In Table 4 the performance of the packed solver is compared with that of a ScaLAPACK Cholesky
factorization storing the whole matrix but performing the same number of operations (routine
PDPOTRF). The corresponding factorization time ts.q; is obtained using a p X ¢ process grid in
accordance with [8] i.e such that % < § < 1. The difference in performance is then measured by

. toacked—tse
computing the overhead -2ecked——scal

tscal

n 10240 | 14336 20480 28672 | 40960 | 61440 | 81920
# procs 1 2 4 8 16 32 64
tpacked 102 127 194 290 474 912 1298
pXq 1 2x1 4x1 4x2 8x2 | 8x4 | 16x4
tscal 106 153 219 321 471 890 1178
pXq 1 1x2 2x2 2 x4 4x4 | 4x8 | 8x8
overhead | —3.8% | —17% | —11.4% | —9.7% | 0.6% | 2.5% 10%

Table 4: Cholesky factorization time (sec) for packed solver and ScaLAPACK.

We notice in Table 4 that the factorization times are better than ScaLAPACK for less than 32
processors and similar to ScaLAPACK for 32 processors. For 64 processors, there is an overhead
of 10%. This overhead can be diminished by considering larger blocks. Table 5 shows that the
performance increases with b but that it also requires more memory.

block size b 10240 | 20480
factorization time (sec) 1298 | 1234
overhead with ScalaPACK | 10% 5%
extra-storage 9.7% | 22%

Table 5: Performance vs extra-storage (n = 81920, 16 x 4 procs).

In order to evaluate the scalability of the packed solver and of the ScaLAPACK Cholesky, we
plot in Figure 3 the Gflops performance of both algorithms. Since each algorithm maintains a
constant memory use per processor, these curves measure what is referred to as isoefficiency or
isogranularity in [6, p. 96]. We notice that the packed solver is more efficient for small processor
count. Performance degrades for both algorithms when the number of processors increases but the
ScalLAPACK routine is slightly faster for 32 and 64 processors.

Remark 2. Since the memory required by the packed implementation depends on the chosen
value for b, it is interesting to compare in detail in Table 6 the memory per processor in Mbytes
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Figure 3: Isogranularity of packed Cholesky solver and ScaLAPACK on IBM pSeries 690.

required by the packed solver and by the ScaLAPACK routine PDPOTRF for the experiments
summarized previously in Table 4 and Figure 3. The quantities mentioned here do not include the
work arrays used by ScaLAPACK computations. Note that an optimal storage that stores exactly
n(n + 1)/2 entries would require about 419 Mbytes.

The experiments described in this paragraph have been performed on nodes of IBM pSeries 690
with 2 Gbytes memory per processor. Due to the memory required by PDPOTRF (more than 850
Mbytes), we could not achieve these comparisons on nodes having 1 Gbytes memory per processor
(because part of the memory is also used by the system). This confirms again the limitation due
to the full storage for symmetric matrices.

n 10240 | 14336 | 20480 | 28672 | 40960 | 61440 | 81920
# procs 1 2 4 8 16 32 64
block size b 1024 | 1024 | 2048 | 2048 | 4096 | 6144 | 10240

Mbytes for packed solver | 461 440 461 440 461 519 472
Mbytes for PDPOTRF 839 822 839 822 839 943 839
saved memory 45% | 46% | 45% 46% | 45% | 45% | 44%

Table 6: Memory required per processor by the packed solver and ScaLAPACK (Mbytes).

Remark 3. By using 4 nodes of the IBM pSeries 690 (32-way SMP each) available at the CINES;,
we could evaluate how the performance of the packed solver degrades when running on 128 proces-
sors and with the same memory per processor as previously. We present in Table 7 the performance
obtained for n = 114688 and 16 x 8 processors. The best factorization time corresponds to about
twice the time obtained using 64 processors. We notice that there is here no interest in choosing
a block size larger than 16384 since the performance degrades and it requires more storage.

Regarding the Cholesky factorization, some other experiments were performed. They deserve
to be mentioned here because they have influenced some choices made for the implementation
described previously.
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block size b 16384 | 28672
factorization time (sec) | 2741 | 3043
Gflops per proc. 1.43 1.29

extra-storage 12.3% | 22.8%

Table 7: Performance of packed implementation using 128 (16 x 8) processors (n = 114688).

The first experiment investigated was about the influence of the structure of the ScaLAPACK
array for the packed structure. As mentioned in Section 3 the distributed blocks are stored row-
wise in the ScaLAPACK array ADP. This choice is justified by the fact that the operations in
Algorithm 1 are performed by column and thus the blocks are contiguous in memory. In Figure 4,
we use 16 processors on the same node of the IBM machine and plot the performance in Gflops
of a packed implementation of the Cholesky factorization using either a row-wise or column-wise
storage scheme for the distributed blocks. It confirms that a block-row storage provides better
performance, thanks to a better data locality.

T T
—e— row-wise storage
column-wise storage

n INg N
~ © ©
I

N
)

Performance per processor [Gflops]
N
Ul

24
2.3
22
21
2 L L L L L L
512 1024 2048 4096 5120 8192 10240 20480
Block size

Figure 4: row-wise storage vs column-wise storage in the distributed packed format.

Some experiments were also performed in order to compare the right-looking and the left-
looking variants of the packed implementation (using an horizontal structure for ADP).
In the left-looking variant, the matrix A is stored compactly using the Upper distributed packed
format. This enables us to have memory contiguity of the blocks belonging to a same block-row
in Algorithm 2. Table 8 contains the factorization times obtained for both algorithms and shows
that the left-looking implementation is slightly better when using less than 16 processors and that
the right-looking implementation provides better results when using more than 32 processors.

4.4 Experiments on clusters

Several experiments were performed on the CRAY XD1 cluster at CERFACS (120 AMD Opteron
2.4 GHz, 240 Gbytes memory, scientific library acml 3.0).

We consider problem sizes similar to those defined in Section 4.3 for the IBM pSeries 690 i.e by
considering a constant memory per processor.
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n 10240 | 14336 | 20480 | 28672 | 40960 | 61440 | 81920

# procs 1 2 4 8 16 32 64
block size b 256 256 512 1024 | 1024 | 5120 | 5120
left-looking 87 123 194 283 465 966 1578
right-looking 90 146 222 306 548 1092 1442

Table 8: Factorization time (sec) for left-looking and right-looking variants of the packed distrib-
uted Cholesky.

As shown in Figure 5, the sustained peak rate of a serial matrix-matrix product DGEMM on this
machine is about 4 Gflops. Taking s = 128 is here again satisfactory because it provides a DGEMM
rate of 3.8 Gflops.

4500

4000~ 4

3500 q

3000 7

2500 q

2000~ q

1500 4

Performance of DGEMM [Mflops]

1000 - 4

500~ 7

0 I I I I I I I I
0 8 16 24 32 40 48 56 64

matrix size (multiple of 16)

Figure 5: Performance of serial matrix-matrix multiply DGEMM on one processor of the CRAY
Cluster XD1.

Since the PBLAS routine PDGEMM represents the major part of the computation in a parallel

Cholesky factorization, we also tune the parameters of this routine for several problem sizes.
Figure 6 shows that, in contrast to the IBM pSeries 690, the performance of PDGEMM degrades
significantly when the problem size increases for a given number of processors (here 4). This can
be explained by the slower communication system on this platform. This encourages us to choose
smaller block sizes than in Section 4.3 for the packed implementation.
We also notice that a p x g rectangular grid such that p > ¢ gives better results than a square grid.
This has a consequence on the choice of grid for the Cholesky factorization. Table 9 contains the
factorization times obtained for PDPOTRF using p X ¢ process grids with p = ¢ and p > ¢q. We
observe that a rectangular grid provides a performance that is twice that of a square grid when
we consider 4 or 16 processors. That leads us to consider the same grids for ScaLAPACK and the
packed solver.

After tuning the grid shapes for ScaLAPACK, we now compare the performance of the packed
implementation and the ScaLAPACK routine PDPOTREF. Table 10 shows that ScalLAPACK per-
formance is slightly better than that of the packed solver for more than 8 processors. The overhead
Lpacked tecal g glways lower than 14 % and can be considered as acceptable.

tscal
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Figure 6: Performance of PDGEMM routine for 2 grid shapes on the CRAY Cluster XD1.

n 20480 | 40960 | 81920

pXq 2x2 | 4x4 | 8x8
Factorization time (sec) | 574 1073 | 2292
pXq 4x1 | 8x2 | 16x4
Factorization time (sec) | 255 561 1622

Table 9: Influence of the process grid on ScaLAPACK PDPOTRF performance (CRAY XD1).

n 10240 | 14336 | 20480 | 28672 | 40960 | 61440 | 81920 | 107520
procs 1 2 4 8 16 32 64 112
pXq 1 2x1 4x1 4x2 8x2 8x4 16x4 28x4

b 128 256 512 512 1024 1024 | 2048 3584

tpacked 113 168 270 419 616 1127 1473 2022
tscal 153 184 278 370 561 1005 1399 1776
overhead | —26% | —9% | —3% | 13% 10% 12% 5% 14%

Table 10: Cholesky factorization time (sec) for packed solver and ScaLAPACK (CRAY XD1).

The isogranularity of each algorithm measured in Gflops per second is depicted in Figure 7.
Similarly to the IBM pSeries 690, the packed solver is more efficient for small processor count and
the ScaLAPACK Cholesky provides better Gflops rates when using more than 8 processors while
having similar behaviour when the number of processors increases.

To summarize these experiments on the cluster, we note that the tuning of the distributed
block is simplified because of the monotonic decrease in performance of the PDGEMM routine
(see Figure 6). This implies that we should use small blocks for the packed implementation. This
has the advantage of requiring minimal memory.

On the other hand, the performance of the ScaLAPACK routine PDPOTRF is improved by con-
sidering rectangular grids that are not common for the Cholesky factorization.

Then PDPOTRF gives slightly better performance than the packed solver when using more than
8 processors (up to 14% for 112 processors).
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Figure 7: Isogranularity of packed Cholesky solver and ScaLAPACK on CRAY XD1 Cluster.

5 Conclusion

The distributed packed storage defined in this paper allows us to handle symmetric and triangular
matrices in parallel distributed environments using ScaLAPACK and Level-3 PBLAS routines.
The example of the Cholesky factorization shows that choosing the optimal distributed block
size leads to a trade-off between performance and memory. Some heuristics have been proposed
that provide Gflops performance similar to ScaLAPACK while requiring much less memory. In
general, the performance of our packed implementations relies on the performance of the underlying
ScalLAPACK kernel routines. The good results that we obtained encourage us to extend this
packed storage to other linear algebra calculations involving symmetric or triangular matrices. An
improvement might result from extending to blocked parallel implementations the Rectangular
Full Packed storage that was recently defined in [16] for serial implementations. Such a format
could enable us to minimize the storage required by the diagonal blocks but it will be necessary
to evaluate the performance of the ScaLAPACK kernel routines on this format. This will be the
topic of further studies.
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