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Abstract. We derive closed formulas for the condition number of a linear function of the total
least squares solution. Given an over determined linear systems Ax = b, we show that this condition
number can be computed using the singular values and the right singular vectors of [A, b] and A. We
also provide an upper bound that requires the computation of the largest and the smallest singular
value of [A, b] and the smallest singular value of A. In a numerical example, we compare these values
with the condition estimate given in [17].
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1. Introduction. Given a matrix A ∈ Rm×n (m > n) and an observation vector
b ∈ Rm, the standard over determined linear least squares (LS) problem consists in
finding a vector x ∈ Rn such that Ax is the best approximation of b. Such a problem
can be formulated using what is referred to as the linear statistical model

b = Ax+ ε, A ∈ Rm×n, b ∈ Rm, rank(A) = n,

where ε is a vector of random errors having expected value E(ε) = 0 and variance-
covariance V (ε) = σ2I.

In the linear statistical model, random errors affect exclusively the observation
vector b while A is considered as known exactly. However it is often more realistic
to consider that measurement errors might also affect A. This case is treated by the
statistical model referred to as Errors-In-Variables model (see e.g [17, p. 230] and [5,
p. 176]), where we have the relation

(A+ E)x = b+ ε.

In general it is assumed in this model that the rows of [E, ε] are independently and
identically distributed with common zero mean vector and common covariance matrix.
The corresponding linear algebra problem, discussed originally in [12], is called the
Total Least Squares (TLS) problem and can be expressed as:

min
E,ε
‖(E, ε)‖F , (A+ E)x = b+ ε, (1.1)

where ‖·‖F denotes the Frobenius matrix norm. As mentioned in [17, p. 238], the
TLS method enables us to obtain a more accurate solution when entries of A are
perturbed under certain conditions.

In error analysis, condition numbers are considered as fundamental tools since
they measure the effect on the solution of small changes in the data. In particular the
conditioning of the least squares problem was extensively studied in the numerical
linear algebra literature (see e.g [5, 7, 8, 10, 15, 16, 18, 19, 23]). Recently, the more
general case of the conditioning of a linear function of an LS solution was studied
in [2, 4, 9]. Also one can find in [3] algorithms using the software libraries LAPACK [1]
and ScaLAPACK [6] as well as physical applications.

As far as we are aware, there is no closed formula for the conditioning of the
TLS problem. In this paper, we propose to derive an exact formula for the condition
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number of the TLS problem when perturbations of (A, b) are measured using a product
norm. To be as general as possible, we consider again here the condition number of
LTx, linear function of the TLS solution. The common situations correspond to the
special cases where L is the identity matrix (condition number of the TLS solution) or
a canonical vector (condition number of one solution component). The conditioning
of a nonlinear function of a TLS solution can also be obtained by replacing in the
condition number expression LT by the Jacobian matrix at the solution.

2. Definitions and notations.

2.1. The total least squares problem. Let A ∈ Rm×n and b ∈ Rm, with
m > n. Following [17], we consider the two singular value decompositions of A,
and [A, b] : A = U ′Σ′V

′T and [A, b] = UΣV T . We also set Σ = diag(σ1, . . . , σn+1),
Σ′ = diag(σ′1, . . . , σ

′
n), where the singular values are in nonincreasing order, and define

λi = σ2
i , and λ′i = σ

′2
i .

We consider the total least squares problem expressed in Equation (1.1) and
we assume in this text that the genericity condition σ′n > σn+1 holds (for more
information about the ”nongeneric” problem see e.g [17, 20]). From [17, Theorems 2.6
and 2.7], it follows that the TLS solution x exists, is unique, and satisfies

x =
(
ATA− λn+1In

)−1
AT b. (2.1)

In addition,
[
x
−1

]
is an eigenvector of [A, b]T [A, b] associated with the simple eigen-

value λn+1, i.e σ′n > σn+1 guarantees that λn+1 is not a semi-simple eigenvalue of
[A, b]T [A, b]. As for linear least squares problems, we define the total least squares
residual r = b−Ax, which enables us to write

λn+1 =
1

1 + xTx

[
xT , −1

] [ATA AT b
bTA bT b

] [
x
−1

]
=

rT r

1 + xTx
. (2.2)

As mentioned [17, p. 35], the TLS solution is obtained by scaling the last singular
vector vn+1 of [A, b] until its last component is −1 and, if vi,n+1 denotes the ith
component of vn+1, we have

x = − 1
vn+1,n+1

[v1,n+1, . . . , vn,n+1]T . (2.3)

The TLS method involves an SVD computation and the computational cost is higher
than that of a classical LS problem (about 2mn2 + 12n3 as mentioned in [13, p.
598], to be compared with the approximately 2mn2 flops required for LLS solved via
Householder QR factorization).

2.2. Condition number of the TLS problem. To measure the perturbations
on data A and b, we consider the product norm defined on Rm×n×Rm by ‖(A, b)‖F =√
‖A‖2F + ‖b‖22 and we take the Euclidean norm ‖x‖2 for the solution space Rn. In

the following, the n× n identity matrix is denoted by In.
Let L be a given n × k matrix, with k ≤ n. We suppose here that L is not

perturbed numerically and we consider the mapping

g : Rm×n × Rm −→ Rk
(A, b) 7−→ g(A, b) = LTx(A, b) = LT (ATA− λn+1In)−1AT b,
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Since λn+1 is simple, g is a Fréchet-differentiable function of A and b, and the generic-
ity assumption ensures that the matrix (ATA−λn+1In)−1 is also Fréchet-differentiable
in a neighborhood of (A, b). As a result, g is Fréchet-differentiable in a neighborhood
of (A, b).

Then the condition number as defined in [11, 21] of LTx, linear function of the
TLS solution can be expressed as

K(L,A, b) = max
(∆A,∆b)6=0

‖g′(A, b).(∆A,∆b)‖2
‖(∆A,∆b)‖F

. (2.4)

In the remainder, the quantity K(L,A, b) will be simply referred to as the TLS con-
dition number, even though the proper conditioning of the TLS solution corresponds
to a special where L is the identity matrix.

Remark 1. The case where g(A, b) = h(x), with h being a differentiable nonlinear
function mapping Rn to Rk is also covered because we have

g′(A, b).(∆A,∆b) = h′(x).(x′(A, b).(∆A,∆b)),

and LT would correspond to the Jacobian matrix h′(x).

3. Explicit formula for the TLS condition number.

3.1. Fréchet derivative. In this section, we compute the Fréchet dérivative of
g under the genericity assumption, which enables us to obtain an explicit formula for
the TLS condition number in Proposition 2.

Proposition 1. Under the genericity assumption, g is Fréchet differentiable in
a neighborhood of (A, b). Setting Bλ = ATA− λn+1In, the Fréchet dérivative of g at
(A, b) is expressed by

g′(A, b) : Rm×n × Rm −→ Rk

(∆A,∆b) 7−→ LTB−1
λ

(
AT + 2xrT

1+xT x

)
(∆b−∆Ax) +

LTB−1
λ ∆AT r.

(3.1)

Proof: The result is obtained from the chain rule. Since λn+1, expressed in Equa-
tion (2.2), is a simple eigenvalue of [A, b]T [A, b] with corresponding unit eigenvector

1√
1+xT x

[
xT −1

]T we know that, up to first order in ∆A and ∆b, λn+1 can be

written [22] λn+1 + ∆λ, where

∆λ =
1

1 + xTx

[
xT −1

] [∆ATA+AT∆A ∆AT b+AT∆b
bT∆A+ ∆bTA ∆bT b+ bT∆b

] [
x
−1

]
=

2
1 + xTx

(
xT∆ATAx− xT∆AT b− xTAT∆b+ bT∆b

)
=

2
1 + xTx

(
−xT∆AT r + (bT − xTAT )∆b

)
=

2
1 + xTx

(
−rT∆Ax+ rT∆b

)
,

yielding

∆λ =
2rT (∆b−∆Ax)

1 + xTx
. (3.2)
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Considering B−1
λ , using (3.2) and applying the chain rule, we obtain a first order

expansion B−1
λ + ∆B−1 with

∆B−1 = −B−1
λ

(
∆ATA+AT∆A−∆λIn

)
B−1
λ

= −B−1
λ

(
∆ATA+AT∆A− 2rT (∆b−∆Ax)

1 + xTx
In

)
B−1
λ .

The chain rule now applied to g(A, b) leads to g(A, b) + LT δ, with

δ = −B−1
λ

(
∆ATA+AT∆A−∆λIn

)
B−1
λ AT b+B−1

λ ∆AT b+B−1
λ AT∆b

= −B−1
λ

(
∆ATA+AT∆A−∆λIn

)
x+B−1

λ

(
∆AT b+AT∆b

)
= B−1

λ

(
AT +

2xrT

1 + xTx

)
(∆b−∆Ax) +B−1

λ ∆AT r,

and left multiplying δ by LT gives the result.
2

We now introduce the vec operation that stacks all the columns of a matrix into
a long vector: for A = [a1, . . . , an] ∈ Rm×n, vec(A) = [aT1 , . . . , a

T
n ]T ∈ Rmn×1. Let

P ∈ Rmn×mn denote the permutation matrix that represents the matrix transpose by
vec(BT ) = Pvec(B). We remind also that vec(AXB) = (BT ⊗ A)vec(X), where ⊗
denotes the Kronecker product of two matrices [14, p. 21].

Let us now express the matrix representing g′(A, b), denoted by Mg′ . Since
g′(A, b).(∆A,∆b) ∈ Rk, we have g′(A, b).(∆A,∆b) = vec(g′(A, b).(∆A,∆b)) and set-
ting in addition Dλ = LTB−1

λ

(
AT + 2xrT

1+xT x

)
∈ Rk×m, we obtain from (3.1)

g′(A, b).(∆A,∆b) = vec
(
Dλ (∆b−∆Ax) + LTB−1

λ ∆AT r
)

=
(
−xT ⊗Dλ

)
vec(∆A) +

(
rT ⊗ (LTB−1

λ )
)

vec(∆AT ) +Dλ∆b

=
[
−xT ⊗Dλ +

(
rT ⊗ (LTB−1

λ )
)
P, Dλ

] [vec(∆A)
∆b

]
.

Then we get

Mg′ =
[
−xT ⊗Dλ +

(
rT ⊗ (LTB−1

λ )
)
P, Dλ

]
∈ Rk×(nm+m).

But we have ‖(∆A,∆b)‖F =
∥∥∥∥[vec(∆A)

∆b

]∥∥∥∥
2

and then, from Proposition 1 and using

the definition of K(L,A, b) given in Expression (2.4), we get the following proposition
that expresses the TLS condition number in terms of the norm of a matrix.

Proposition 2. The condition number of g(A, b) is given by

K(L,A, b) = ‖Mg′‖2 ,

where

Mg′ =
[
−xT ⊗Dλ +

(
rT ⊗ (LTB−1

λ )
)
P, Dλ

]
∈ Rk×(nm+m).
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3.2. Adjoint operator and algorithm. ComputingK(L,A, b) reduces to com-
puting the spectral norm of the k × (nm + m) matrix Mg′ . For large values of n or
m, it is not possible to build explicitly the generally dense matrix Mg′ . Iterative
techniques based on the power method [16, p. 289] or on the Lanczos method [13]
are better suited. These algorithms involve however the computation of the product
of MT

g′ by a vector y ∈ Rk. We describe now how to perform this operation.
Using successively the fact that B−Tλ = B−1

λ , (A⊗B)T = AT ⊗BT , vec(AXB) =
(BT ⊗A)vec(X) and PT = P−1 we have

MT
g′y =

[
−x⊗DT

λ + PT
(
r ⊗ (B−Tλ L)

)
DT
λ

]
y

=
[
−(x⊗DT

λ )vec(y) + PT
(
r ⊗ (B−1

λ L)
)

vec(y)
DT
λ y

]
=
[
P−1

(
Pvec

(
−DT

λ yx
T
)

+ vec
(
B−1
λ LyrT

))
DT
λ y

]
=
[
P−1

(
vec
(
(−DT

λ yx
T )T

)
+ vec

(
B−1
λ LyrT

))
DT
λ y

]
=
[
P−1vec

(
−xyTDλ +B−1

λ LyrT
)

DT
λ y

]
,

and since for any matrix B we have P−1vec(B) = vec(BT ), we get

MT
g′y =

[
vec
(
−DT

λ yx
T + ryTLTB−1

λ

)
DT
λ y

]
. (3.3)

This leads us to the following proposition.
Proposition 3. The adjoint operator of g′(A, b) using the scalar products

trace(AT1 A2) + bT1 b2 and yT y respectively on Rm×n × Rm and Rk is

g
′∗(A, b) : Rk −→ Rm×n × Rm

y 7−→
(
−DT

λ yx
T + ryTLTB−1

λ , DT
λ y
) (3.4)

In addition, if k = 1 we have

K(L,A, b) =
√
‖−DT

λ x
T + rLTB−1

λ ‖2F + ‖Dλ‖22 (3.5)

Proof: Let us denote by < (A1, b1), (A2, b2) > the scalar product trace(AT1 A2) +
bT1 b2 on Rm×n × Rm. We have for any y ∈ Rk,

yT (g′(A, b).(∆A,∆b)) = yTMg′

[
vec(∆A)

∆b

]
= (MT

g′y)T
[
vec(∆A)

∆b

]
= vec

(
−DT

λ yx
T + ryTLTB−1

λ

)T
vec(∆A) + (DT

λ y)T∆b.

Using now the fact that, for matrices A1 and A2 of identical sizes,
vec(A1)Tvec(A2) = trace(AT1 A2), we get

yT (g′(A, b).(∆A,∆b)) = trace
(
(−DT

λ yx
T + ryTLTB−1

λ )T∆A
)

+ (DT
λ y)T∆b

= <
(
−DT

λ yx
T + ryTLTB−1

λ , DT
λ y
)
, (∆A,∆b) >

= < g
′∗(A, b).y, (∆A,∆b) >,
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which concludes the first part of the proof.
For the second part, we use

K(L,A, b) = ‖Mg′‖2 =
∥∥MT

g′

∥∥
2

= max
y 6=0

∥∥∥∥[vec
(
−DT

λ yx
T + ryTLTB−1

λ

)
DT
λ y

]∥∥∥∥
2

‖y‖2

Since k = 1, we have y ∈ R, and K(L,A, b) =
∥∥∥∥[vec

(
−DT

λ x
T + rLTB−1

λ

)
vec(DT

λ ),

]∥∥∥∥
2

and the

result follows from the relation vec(A1)Tvec(A1) = traceAT1 A1 = ‖A1‖2F .
2

Remark 2. The special case k = 1 recovers the situation where we compute the
conditioning of the ith solution component. In that case L is the ith canonical vector
of Rn and, in Equation (3.5), LTB−1

λ is the ith row of B−1
λ and Dλ is the ith row of

B−1
λ

(
AT + 2xrT

1+xT x

)
.

Using (3.1) and (3.4), we can now write in Algorithm 1 the iteration of the power
method ( [16, p. 289]) to compute the TLS condition number K(L,A, b).

Algorithm 1 : Condition number of TLS problem
y = (1, . . . , 1)T

repeat
(An, bn) =

(
−DT

λ yx
T + ryTLTB−1

λ , DT
λ y
)

ν = ‖(An, bn)‖F
(An, bn)← ( 1

ν ·An,
1
ν · bn)

y = LTB−1
λ

(
AT + 2xrT

1+xT x

)
(bn −Anx) + LTB−1

λ ATn r

end
K(L,A, b) =

√
ν

3.3. Closed formula. Using the adjoint formulas obtained in Section 3.2, we
now get a closed formula for the total least squares conditioning.

Theorem 1. We consider the total least squares problem and assume that the
genericity assumption holds. Setting Bλ =

(
ATA− λn+1In

)
, then the condition num-

ber of LTx, linear function of the TLS solution, is expressed by

K(L,A, b) = ‖C‖
1
2
2 ,

where C is the k × k symmetric matrix

C = (1 + ‖x‖22)LTB−1
λ

(
ATA+ λn+1(In −

2xxT

1 + ‖x‖22
)

)
B−1
λ L.

Proof: We have K(L,A, b)2 =
∥∥MT

g′

∥∥2

2
= max‖y‖2=1

∥∥MT
g′y
∥∥2

2
. If y is a unit vector

in Rk, then using Equation (3.3) we obtain∥∥MT
g′y
∥∥2

2
=
∥∥vec

(
−DT

λ yx
T + ryTLTB−1

λ

)∥∥2

2
+ +

∥∥DT
λ y
∥∥2

2

= ‖−DT
λ yx

T + ryTLTB−1
λ ‖

2
F +

∥∥DT
λ y
∥∥2

2

= ‖DT
λ yx

T ‖2F + ‖ryTLTB−1
λ ‖

2
F − 2 trace(xyTDλry

TLTB−1
λ ) +

∥∥DT
λ y
∥∥2

2
.
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For all vectors u and v, we have ‖uvT ‖F = ‖u‖2 ‖v‖2. Moreover we have

trace
(
(xyTDλr)(yTLTB−1

λ )
)

= trace
(
(yTLTB−1

λ )(xyTDλr)
)

= yTLTB−1
λ xrTDT

λ y.

Thus∥∥MT
g′y
∥∥2

2
= ‖x‖22

∥∥DT
λ y
∥∥2

2
+ ‖r‖22

∥∥B−1
λ Ly

∥∥2

2
− 2 yTLTB−1

λ xrTDT
λ y +

∥∥DT
λ y
∥∥2

2

= (1 + xTx)yTDλD
T
λ y + ‖r‖22 y

TLTB−2
λ Ly − 2 yTLTB−1

λ xrTDT
λ y

= yT
(

(1 + xTx)DλD
T
λ + ‖r‖22 L

TB−2
λ L− 2LTB−1

λ xrTDT
λ

)
y,

i.e
∥∥MT

g′

∥∥2

2
= ‖C‖2 with

C = (1 + xTx)DλD
T
λ + ‖r‖22 L

TB−2
λ L− 2LTB−1

λ xrTDT
λ . (3.6)

Replacing Dλ by LTB−1
λ

(
AT + 2xrT

1+xT x

)
, Equation (3.6) simplifies to

C = LTB−1
λ

(
(1 + xTx)ATA+ ‖r‖22 In + 2AT rxT

)
B−1
λ L. (3.7)

But AT rxT = AT (b − Ax)xT = AT bxT − ATAxxT and, since from Equation (2.1)
we have AT b = Bλx, we get AT rxT = Bλxx

T − ATAxxT = (ATA − λn+1In)xxT −
ATAxxT = −λn+1xx

T . From Equation (2.2) we also have ‖r‖22 = λn+1(1 + xTx) and
thus Equation (3.7) becomes

C = LTB−1
λ

(
(1 + xTx)ATA+ λn+1(1 + xTx)In − 2λn+1xx

T
)
B−1
λ L

= (1 + ‖x‖22)LTB−1
λ

(
ATA+ λn+1(In −

2xxT

1 + ‖x‖22
)

)
B−1
λ L.

2

4. TLS condition number and SVD.

4.1. Closed formula and upper bound. Computing K(L,A, b) using Theo-
rem 1 requires the explicit formation of the normal equations matrix ATA which is
a source of rounding errors and also generates an extra computational cost of about
mn2 flops. In practice the TLS solution is obtained by Equation (2.3) and involves
an SVD computation. In the following theorem, we propose a formula for K(L,A, b)
that can be computed with quantities that may be already available from the solution
process. In the following 0n,1 (resp. 01,n) denotes the zero column (resp. row) vector
of length n.

Theorem 2. Let V and V ′ be the matrices whose columns are the right singular
vectors of respectively [A, b] and A associated with the singular values (σ1, . . . , σn+1)
and (σ′1, . . . , σ

′
n). Then the condition number of LTx, linear function of the TLS

solution is expressed by

K(L,A, b) = (1 + ‖x‖22)
1
2

∥∥∥LTV ′D′ [V ′T , 0n,1
]
V
[
D, 0n,1

]T∥∥∥
2
, where

D′ = diag
(

(σ
′2
1 − σ2

n+1)−1, . . . , (σ
′2
n − σ2

n+1)−1
)

and D = diag
(

(σ2
1 + σ2

n+1)
1
2 , . . . , (σ2

n + σ2
n+1)

1
2

)
.

When L is the identity matrix, then the condition number reduces to

K(L,A, b) = (1 + ‖x‖22)
1
2

∥∥∥D′ [V ′T , 0n,1
]
V
[
D, 0n,1

]T∥∥∥
2
.
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Proof: From [A, b] = UΣV T , we have [A, b]T [A, b] = V Σ2V T =
∑n+1
i=1 σ

2
i viv

T
i and

[A, b]T [A, b] + λn+1In+1 =
n+1∑
i=1

σ2
i viv

T
i + λn+1

n+1∑
i=1

viv
T
i

=
n+1∑
i=1

(σ2
i + λn+1)vivTi

=
n∑
i=1

(σ2
i + σ2

n+1)vivTi + 2λn+1vn+1v
T
n+1,

leading to

[A, b]T [A, b] + λn+1In+1 − 2λn+1vn+1v
T
n+1 =

n∑
i=1

(σ2
i + σ2

n+1)vivTi (4.1)

From Equation (2.3), we have vn+1 = −vn+1,n+1

[
x
−1

]
and, since v is a unit vector,

v2
n+1,n+1 = 1

1+‖x‖22
. Then Equation (4.1) can be expressed in matrix notation as[

ATA AT b
bTA bT b

]
+ λn+1

[
In 0n,1

01,n 1

]
− 2λn+1

1 + ‖x‖22

[
xxT −x
−xT 1

]
=

n∑
i=1

(σ2
i + σ2

n+1)vivTi

(4.2)
The quantity ATA + λn+1(In − 2xxT

1+‖x‖22
) corresponds to the left-hand side of Equa-

tion (4.2) in which the last row and the last column have been removed. Thus it can
also be written

ATA+ λn+1(In −
2xxT

1 + ‖x‖22
) =

[
In, 0n,1

]( n∑
i=1

(σ2
i + σ2

n+1)vivTi

)[
In

01,n

]
,

and the matrix C from Theorem 1 can be expressed

C = (1 + ‖x‖22)LT
[
B−1
λ , 0n,1

]( n∑
i=1

(σ2
i + σ2

n+1)vivTi

)[
B−1
λ

01,n

]
L. (4.3)

Moreover from A = U ′Σ′V
′T , we have ATA = V ′Σ

′2V
′T =

∑n
i=1 σ

′2
i v
′
iv

′T
i and

Bλ = ATA− λn+1In

=
n∑
i=1

σ
′2
i v
′
iv

′T
i − σ2

n+1

n∑
i=1

v′iv
′T
i

=
n∑
i=1

(σ
′2
i − σ2

n+1)v′iv
′T
i

= V ′D′−1V
′T .

Hence B−1
λ = V

′−TD′V
′−1 = V ′D′V

′T and
[
B−1
λ , 0n,1

]
= V ′D′

[
V

′T , 0n,1
]
.

We also have
∑n
i=1(σ2

i + σ2
n+1)vivTi = V

[
D

01,n

] [
D, 0n,1

]
V T .
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Then, by replacing in Equation (4.3), we obtain C = (1 + ‖x‖22)Ṽ Ṽ T with Ṽ =
LTV ′D′

[
V

′T , 0n,1
]
V
[
D, 0n,1

]T . As a result, using Theorem 1,

K(L,A, b)2 = ‖C‖2 = (1 + ‖x‖22)
∥∥∥Ṽ Ṽ T∥∥∥

2
= (1 + ‖x‖22)

∥∥∥Ṽ ∥∥∥2

2
.

When L = In, we use the fact that V ′ is an orthogonal matrix and can be removed

from the expression of
∥∥∥Ṽ ∥∥∥2

2
.

2

In many applications, an upper bound would be sufficient to give an estimate of the
conditioning of the TLS solution. The following corollary gives an upper bound for
K(L,A, b).

Corollary 1. The condition number of LTx, linear function of the TLS solution
is bounded by

K̄(L,A, b) = (1 + ‖x‖22)
1
2 ‖L‖2

(σ2
1 + σ2

n+1)
1
2

(σ′2
n − σ2

n+1)
.

Proof: This result comes from the inequality ‖AB‖2 ≤ ‖A‖2 ‖B‖2, followed by
‖D′‖2 = maxi(σ

′2
i − σ2

n+1)−1 = (σ
′2
n − σ2

n+1)−1 and ‖D‖22 = maxi(σ2
i + σ2

n+1) =
(σ2

1 + σ2
n+1).

2

4.2. Numerical example. We consider A ∈ R30×10 and b ∈ R30 whose values
are random numbers (uniform distribution). x is the TLS solution computed with
Matlab (machine precision 2.22 · 10−16) using an SVD of [A, b] and Equation (2.3).
We study here the condition number of x (i.e L is the identity matrix).

In Table 4.1, we compare the exact value of K(L,A, b) given in Theorem 2, the
upper bound K̄(L,A, b) given in Corollary 1, and the upper bound obtained from [17,
p. 212] and expressed by

κ(A, b) =
9σ1

σn − σn+1

(
1 +

‖b‖2
σ′n − σn+1

)
1

‖b‖2 − σn+1
.

As observed in Table 4.1, K̄(L,A, b) is an estimate of better order of magnitude than
κ(A, b).

Table 4.1
Exact value and estimates for the condition number of the TLS solution.

Computed quantity K(L,A, b) K̄(L,A, b) κ(A, b)

Obtained value 6.22 · 100 5.97 · 101 4.21 · 103
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5. Conclusion. We proposed sensitivity analysis tools for the total least squares
problem when the genericity condition is satisfied. We provided closed formulas for
the condition number of a linear function of the TLS solution when the perturbations
of data are measured normwise. We also described an algorithm based on an adjoint
formula and we expressed this condition number and an upper bound of it in terms
of the SVDs of [A, b] and A.
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