
Constructively completely distributive lattices in presheaf
categories

Francisco Marmolejo ∗

An ordered set L is a sup lattice if and only if the down-segment embedding of
L into its complete lattice of down-sets, ↓ :L → DL, has a left adjoint ∨ :DL → L.
Since [3] a complete lattice has been said to be constructively completely distributive
(CCD) if ∨ :DL → L has itself a left adjoint. In [4] there is a characterization of
sup-lattices in terms of functors L :Cop → sup (sup the category of sup-lattices and
sup-preserving arrows with respect to the base topos Set). We produce a similar
characterization of CCD lattices in terms of fuctors L :Cop → ccd (ccd the category
of ccd lattices and arrows that preserve both, suprema and infima). Since L takes
values in ccd we have, for every f :B → C in C an adjoint string ∨

f
a Lf a ∧

f
. This

characterization hinges on the (surprising) apperance of a right adjoint to ∧
f

and on
a condition called complete Frobenius reciprocity.
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