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Branched coverings of a locally connected topos

A branched covering ψ : F // E of a locally con-

nected space/topos E is interpreted in topology

(Fox’57) and topos theory (Bunge-Funk’06) as

the complete spread associated to a locally con-

stant covering ϕ of the unbranched part E /S,

where E /S // // E is a pure inclusion.

E /S E//

i
//

G

E /S

ϕ

��

G F
ρ

// F

E

ψ

��

The geometric morphism ρ is pure, and the com-

prehensive factorization 〈ρ, ϕ〉 of the composite

i · ϕ : G // E corresponds to the Lawvere distri-

bution µ = g! · ϕ∗ · i∗ : E // S . The diagram can

be shown to be a pullback.
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Goals

The locally connected assumption on E was sub-
sequently removed from the spread completion
construction in topology (Michael’63) and topos
theory (Bunge-Funk ’07). In the latter, it is re-
placed by that of a quasi locally connected topos.
(All Grothendieck toposes are quasi locally con-
nected.)

My goals here are as follows, for a quasi locally
connected topos E :

1. to investigate the fundamental (pro)groupoid
of E ,

2. to investigate branched coverings of E , and

3. to examine the connection between these two
notions.
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Basic definitions

Let TopS be the 2-category of toposes bounded
over S , geometric morphisms over S , and natural
isomorphisms between (inverse image parts of)
geometric morphisms.

An object E e // S of TopS (with e∗ a e∗ and e∗

finite limits preserving) is said to be locally con-
nected if there is an S -indexed left adjoint

e! a e∗ : S // E .

In particular, the BCC holds, in the sense that, for
any Y

p
//X in S , the transpose (below, right)

of a pullback square (below, left) is again a pull-
back.

A e∗Xm //

B

A

q

��

B e∗Y// e∗Y

e∗X

e∗p

��
e!A X

m̂ //

e!B

e!A

e!q

��

e!B Y//Y

X

p

��

4



The functor E∗ : Loc // E

For any locale X in S , let E∗X be defined so
that, for every object A of E , there are natural
bijections

A //E∗X in E
geometric morphisms E /A // Sh(X) over S

locale morphisms L(A) //X ,

where L(A) is the locale reflection of A.

These bijections are not equivalences of categories
when the 2-cell structure of Loc is taken into ac-
count: we say that locale morphisms m : W //X

and l : W //X satisfy m ≤ l if m∗U ≤ l∗U , for
any U ∈O(X). Then E (A,E∗X) is discrete in this
sense, but Loc(L(A), X) may not be - for in-
stance, take X to be Sierpinski space. Thus, E∗

forgets 2-cells.
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Locally discrete locales

These remarks justify the restriction of our dis-

cusssion to categories of locally discrete locales.

A locale Z is locally discrete if for every locale

X the partial ordering in Loc(X,Z) is discrete.

Likewise, a map Z
p

//B is locally discrete if for

every X
q

//B, Loc/B(q, p) is discrete.

Let LD denote the category of locally discrete

locales. It is easy to verify that LD may be re-

garded as an S -indexed category. As such, LD

has Σ satisfying the BCC, and small hom-objects.
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Zero-dimensional locales

A morphism m : B //A in a topos f : F // S is

S -definable (Barr-Paré ’80) if it can be put in a

pullback square as follows.

f∗J f∗If∗n
//

B

f∗J
��

B A
m //A

f∗I
��

We say that a geometric morphism F
ψ

// E over

S is a spread if it has an S -definable family that

generates F relative to E .

A locale X in S is said to be zero-dimensional if

its topos of sheaves Sh(X) // S is a spread.

Denote by Z the full subcategory of Loc whose

objects are the zero-dimensional locales.
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A counterexample

If Y //X is an etale map of locales and X is

discrete, then Y is discrete. It may seem in-

tuitively true that a similar condition holds for

zero-dimensional locales, but the following exam-

ple (courtesy of Peter Johnstone) shatters this

näıve belief.

Let X = {0} ∪ {1
n | n ≥ 1} with the topology

induced by its inclusion in R. Let Y = X +X/ ∼,

obtained by identifying the two 1
n’s, for every n.

The map Y //X identifying the two 0’s is etale,

X is an object of Z, but Y is not. The topology

on Y is T1, but not Hausdorff.
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A suitable category V of locales

V shall denote an S -indexed category of locales

in S with Σ with the BCC, which in addition

satisfies the following conditions:

(1) S � � // V � � // LD,

(2) If Y //Z is a V-map, and Z is in V, then so

is Y .

(3) If Y is in V, then any locale morphism Y //Z

is a V-map.

(4) V is closed under open sublocales, and

(5) V is closed under pullbacks

Y X
p

//

W

Y

n

��

W Z
q

//Z

X

m

��

where p is etale. That is, if m is a V-map, then

so is n.
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Examples

The categories S , Z, Locprodis, and LD are all

instances of such a V, whereas Loc is not.

Simplification. For the purposes of this lecture,

we may think of V as either S or Z. The S -

maps are usually called etale maps, the Z-maps

are called spreads.
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V-determined toposes

A topos E e // S is said to be V-determined if

there is an S -indexed left adjoint

E! a E∗ : V // E ,

such that the BCC for etale maps in V holds , in

the sense that, for any Y
p

//X etale map in V,

the transpose (below, right) of a pullback square

(below, left) is again a pullback.

A E∗Xm //

B

A

q

��

B E∗Y//E∗Y

E∗X

E∗p

��
E!A X

m̂ //

E!B

E!A

E!q

��

E!B Y//Y

X

p

��

Definition. We call quasi locally connected a Z-

determined topos. (An S -determined topos is

precisely a locally connected one.)
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V-initial geometric morphisms

Consider the transpose α̂ : F ∗ +3ρ∗G∗ of α : ρ∗F ∗ +3G∗

under ρ∗ a ρ∗.

ρ∗ρ∗F ∗ ρ∗G∗ρ∗α
+3

F ∗

ρ∗ρ∗F ∗

ηF ∗

��

F ∗

ρ∗G∗

α̂

 (IIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIII

Definition. G
ρ

// F is V-initial if α̂ is an iso-

morphism. ρ∗ preserves V-coproducts if ηF ∗ is an

isomorphism.

Proposition. An inclusion local homeomorphism

E /A
ϕA // E over S is Z-initial iff (ϕA)∗ preserves

Z-coproducts. An arbitrary geometric morphism

F
ρ

// E over S is S -initial iff ρ∗ preserves S -

coproducts.
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The comprehensive V-factorization

We recall the following crucial result.

Theorem. (Bunge-Funk ’07) For any geomet-
ric morphism F

ϕ
// E , with F a V-determined

topos, there is a ‘unique’ factorization relative to
the V-distribution µ = F! · ϕ∗

F

E

ϕ
##GGGGGGGGGGGGGGGGGGGF X
ρ

// X

E

ψ
{{wwwwwwwwwwwwwwwwwww

into a V-initial first factor F
ρ

// G , followed by a
V-fibration ψ : X // E (where ψ = {µ} is the sup-
port∗ of µ). The middle topos X is V-determined,
∗A construction of the support of a V-distribution can be
given relative to a site presentation of E , but it does not
depend on the chose site.
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Toposes ‘over V’

Note that E∗X (defined earlier for a locale X) is
the interior of the topos pullback below, left. It
exists for any localic geometric morphism.

E S
e //

E × Sh(X)

E
��

E × Sh(X) Sh(X)// Sh(X)

S
��

E S
e //

E /E∗X

E
��

E /E∗X Sh(X)// Sh(X)

S
��

We have a commutative square of toposes above,
right.

For every object D of E , there is a canonical ge-
ometric morphism

ρD : E /D // E /E∗E!D // Sh(E!D).

The zero-dimensional locale E!D is the locale whose
points (if any) are the quasicomponents of D. A
topos E is quasi locally connected iff ρD is a pure
surjection for every D.
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Laxness

1. If G
ρ

// F is a geometric morphism over S ,

then there is a natural transformation

α : ρ∗F ∗ +3G∗.

2. The 2-cell α is an iso if either V = S , or else

V = Z and ρ is a local homeomorphism.

15



The fundamental pushout topos of a quasi

locally connected topos

For an epimorphism U // // 1 in E , denote by GU(E )

the topos defined by the following pushout ∗

Sh(E!U) GU(E )pU
//

E /U

Sh(E!U)

ρU

��

E /U E
ϕU // E

GU(E )

σU

��

,

where E /U
ϕU // E is the canonical local homeo-

morphism, and where ρU is the surjective pure

factor described above.

∗The analogue for a locally connected topos E was intro-
duced and exploited in Bunge ’91 (see also Bunge ’04).

16



Locally constant coverings over Z

Definition. An object A of E is said to be locally

constant over Z, and the corresponding geometric

morphism E /A // E a locally constant covering of

E over Z, provided there is an object U // // 1 of

E , an etale map α : Y //X in Loc with X zero-

dimensional, a morphism η : U //E∗X in E , and

a morphism ζ : A× U //E∗Y in E , for which the

square

U E∗XηU
//

A× U

U

π2

��

A× U E∗Y
ζ

//E∗Y

E∗X

E∗α

��

is a pullback. We say that A is split by U .

Denote by CU(E ) the obvious category of U-split

locally constant coverings of E over Z.
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The fundamental groupoid topos

Theorem. Let E be a Grothendieck topos. Then:
(1) There is an equivalence GU(E ) ∼= CU(E ) which
commutes with σ∗ : GU(E ) // E and the forgetful
CU(E ) // E , both of which are surjections but not
necessarily connected.

(2) The localic point pU : Sh(E!U) // GU(E ) is a
spread and is of effective descent. The fundamen-
tal pushout topos GU(E ) is the classifying topos
of an etale complete zero-dimensional groupoid
π1
U(E ).

(3) The limit topos G (E ) for a generating (non-
strict) filtering 2-system of covers U // // 1 is the
classifying topos of a zero-dimensional progroupoid
π1(E ).

(4) Unlike the locally connected case, there no
implicit Galois theory in the general case.
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Locally Z-trivial coverings

Defintion. An object A of a topos E over V is
said to be a locally Z-trivial object, and the cor-
responding geometric morphism E /A // E a lo-
cally Z-trivial covering provided there is an object
U // // 1 of E , an etale map α : Y //X in Z, a
morphism η : U //E∗X in E , and a morphism

A× U ζ
//E∗Y in E , for which the square

U E∗XηU
//

A× U

U

π2

��

A× U E∗Y
ζ

//E∗Y

E∗X

E∗α

��

is a pullback.

Theorem. Any locally Z-trivial covering of ϕ :
G // E is a Z-fibration (and a local homeomor-
phism). We say that such a geometric morphism
is Z-unramified (or Z-unbranched).
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Branched coverings of a quasi locally connected
topos

Definition. Let E be quasi locally connected over
S . A commutative diagram

E /S E//

i
//

G

E /S

ϕ

��

G F
ρ

// F

E

ψ

��

is said to be a branched covering of E if (1) ψ is a
Z-fibration, (2) i : E /S // // E a Z-initial inclusion,
(3) ϕ : G // E /S a locally Z-trivial covering, and
(4) ρ is Z-initial.

The diagram can be shown to be a pullback. This
is crucial for any notion of a branched covering:
the restriction to the non-singular part is an un-
branched Z-covering, that is, both a local home-
omorphism and a Z-fibration.
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Topological invariants

For any quasi locally connected topos E , there

is an obvious category ZU(E ) of locally Z-trivial

coverings of E split by a given U // // 1 in E , as well

as an also obvious category BU
S(E ) of branched

coverings of E with non-singular part E /S // // E .

Theorem. Let E be a quasi locally connected

topos over S . Then, for each U // // 1 in E , there

is an equivalence BU
S(E ) ∼= ZU(E /S) given, in

one direction, by pulling back along E /S // // E

and, in the other direction, by taking the com-

prehensive Z-factorization of G // E /S // // E .

The inclusion BU
S(E ) � � // CU(E /S) is (in general)

a proper inclusion. In the case of discrete locales

the inclusion is an equivalence.
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An inconvenient truth in the quasi locally
connected case

Let E be a quasi locally connected. Let

j : EZ
� � // E

be the subtopos of sheaves for the largest topol-
ogy for which all objects E∗X for X ∈ Z are
sheaves (use methods of Paré ’80). Clearly, j∗
preserves Z-coproducts and is the smallest such.

Since for each local homeomorpism i : E /S � � // E
is Z-initial iff i∗ preserves Z-coproducts, EZ

� � // E
factors through every Z-initial local homeomor-
phism i : E /S � � // E . However, EZ

� � // E itself can
‘never’ be a local homeomorphism.

It follows that the smallest Z-initial subtopos of
E does not exist in general and that therefore
the intrinsic characterization of branched cover-
ings (Bunge-Funk’06) does not hold in general
either.
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Concluding remarks

1. In the locally connected case, to regard branched

coverings as complete spreads is adequate both

in topology and topos theory since their study

reduces to the fundamental groupoid of the

non-singular parts, hence topological invari-

ants are readily available. In the quasi locally

connected case, there is a divergence between

the two, hence the matter of topological in-

variants is less clear (non existent?).

2. Nevertheless, a van Kampen theorem (‘pushout

to pushout’) of the sort considered by Fox to

be of relevance to knot theory, still holds in

the general setting (basically by the generakl

results of Bunge-Lack ’03).
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3. In the locally connected case there is a ‘univer-
sal knot group’ where the various knot groups
can be effectively compared. This fails in the
quasi locally connected case since the smallest
Z-initial subtopos of a quasi locally connected
topos does not exist in general. In particular,
the intrinsic characterization of branched cov-
erings (Bunge-Funk, Street Fest contribution)
is no longer valid in this generality.

4. In the locally connected case, the fundamental
pushout gives the entire theory of the funda-
mental (pro)groupoid at each stage, including
the Galois theory. This, alas, is no longer the
case in the quasi locally connected case. In
particular, the fundamental groupoid topos is
not a Galois topos.

5. Note, however, that the fundamental pushout,
which (in my view) is the key to the fun-
damental groupoid, is defined in ‘the same’



way for any V, using the comprehensive V-

factorization. Whereas, in the locally con-

nected case, π0(E /U) is discrete (locale of

connected components of U), in the quasi lo-

cally connected case, π0(E /U) is zero-dimensional

(a locale whose opens are the clopen subsets

of U , and whose points are the quasicompo-

nents).

6. From the point of view of (Lawvere) distri-

butions, what changes is the target, which is

the category V of locales in each case. Among

other things, we lose the classifying topos of

distributions on E and the theory of the sym-

metric Kock-Zöberlein topos doctrine.

7. In essence, in order to study branched cover-

ings in the general (quasi locally connected)

case, one has to get out of topos theory.



This study (should it be worthwhile) would in-

volve, instead of toposes of S -valued sheaves

(on zero-dimensional locales), categories of Z-

valued sheaves (also on zero-dimensional lo-

cales).

8. We conclude that the locally connected case

is truly advantageous over the quasi locally

connected (or general) case from many view-

points. This, which was the motivation for the

present investigation with regard to branched

coverings and knot invariants, explains per-

haps why the locally connected (and often also

the connected) assumption is so ubiquitous in

topology.
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