
Model categories were introduced as the foundation

of homotopy theory by Quillen in 1967.

Definition. A model category is a complete and co-

complete category K together with three classes of

morphisms C, F and W such that

(1) W has the 2-out-of-3 property and is closed

under retracts,

(2) (C,F ∩W) and (C ∩W,F) are weak factoriza-

tion systems.

Morphisms from C, F , W , C∩W and F∩W are called

cofibrations, fibrations, weak equivalences, trivial cofi-

brations and trivial fibrations.

The model structure is determined by cofibrations

and trivial cofibrations alone.

K[W−1] is the homotopy category of K.
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Approximately 10 years ago, J. H. Smith introduced

combinatorial model categories as model categories

where K is locally presentable and both C and C ∩W

are generated by a set of morphisms. One can say

that they are model categories determined by a set

of data.

While SSet is a combinatorial model category, Top

is not. The reason is that it is not locally presentable.

J. H. Smith has suggested to replace Top by ∆-

generated topological spaces. A topological space

X is ∆-generated if its subset S ⊆ X is open iff

f−1(S) is open for each continuous map f : ∆n → X,

n = 0, 1, . . . .
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∆-generated spaces form the closure of simplices ∆n

under colimits in Top. They are analogous to com-

pactly generated spaces where one takes the colimit

closure of all compact Hausdorff spaces (they are usu-

ally called k-spaces). They were used to cure one dis-

advantage of Top: topological spaces are not carte-

sian closed. The point of J. H. Smith is that the

category Top∆ of ∆-generated spaces is also locally

presentable. Then, together with the usual model

category structure of Top, Top∆ is a combinatorial

model category. He has never given any proof of his

claim and, up to now, nobody was able to supply it.

It is instructive to look at the non-published Notes

on Delta-generated spaces of D. Dugger.

3



Given any small full subcategory S of Top one can

form S-generated spaces. The category TopS of

these spaces is cocomplete and S is dense in it. As-

suming Vopěnka’s principle, any such category is lo-

cally presentable.

Theorem 1. Let K be a fibre-small topological cat-

egory and S a small full subcategory of K. Then

the category KS of S-generated spaces is locally pre-

sentable.
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The proof is based on my result from 1981 saying

that each fibre-small topological category is the cat-

egory of models of a suitable large (= given by a

class of relation symbols) infinitary theory T . We

express T as a union of an increasing chain of small

subtheories Ti, which yields the chain

Mod(T0) → Mod(T1) → . . .Mod(Ti) → . . .

of left adjoints to reducts

Mod(Tj) → Mod(Ti).

The point is that these left adjoints are full embed-

dings and Mod(T ) is its union. Then KS is calcu-

lated in some Mod(Ti) which is locally presentable.

Thus KS is locally presentable.
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I do not know whether this argument works in Haus-

dorff or in compact Hausdorff spaces. The only miss-

ing thing is that the left adjoints above are full em-

beddings. Observe that Theorem 1 implies that K

has the filtration consisting of coreflective full sub-

categories which are locally presentable. It suffices to

express K as a union of an increasing chain of small

full subcategories Si and pass to KSi
.
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A distinguished advantage of a locally presentable

category are the following two facts.

Theorem 2. Let K be a locally presentable category

and I a set of morphisms. Then (cof(I), I�) is a

weak factorization system.

Theorem 3. Let K be a locally presentable category

and I a set of morphisms. Then (colim(I), I⊥) is a

factorization system.

Here, cof(I) is the closure of I under pushout, trans-

finite composition and retract while colim(I) is the

colimit closure of I in K→. Further, I� consists of

morphisms g having the right lifting property w.r.t.

each f ∈ I while I⊥ consists of morphisms g having

the unique right lifting property w.r.t. each f ∈ I.
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Here, f�g (f⊥g) means that that in each commuta-

tive square

A
u //

f

��

C

g

��
B v

// D

there is a (unique) diagonal d : B → C with df = u

and gd = v.

(cof(I), I�) is called a weak factorization system

because each morphism h of K has a factorization

h = gf with f ∈ cof(I) and g ∈ I�. Moreover,

cof(I) = �(I�).

We say that this factorization system is cofibrantly

generated by I. This completes the definition of a

combinatorial model category.
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I� is an accessible full subcategory of K→ and the

resulting weak factorization is functorial and acces-

sible. It means that there is an accessible functor

F : K→ → K

and natural transformations

α : dom → F β : F → cod

such that

h = αhβh

is the weak factorization of h.

The accessibility of I� in K→ follows from the fact

that f�g iff g is injective to (f, idB) : f → idB in

K→ where f : A → B.
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A weak factorization of the codiagonal

∇ : K + K
γK

−−−−−→ C(K)
σK

−−−−−→ K

yields the cylinder functor C : K → K which is ac-

cessible. We denote by

γ1K , γ2K : K → C(K)

the compositions of γK with the coproduct injec-

tions. Now, given two morphisms f, g : K → L,

we say that f and g are homotopic and write f ∼ g

if there is a morphism h : C(K) → L such that the

following diagram commutes

K + K
(f,g) //

γK

##HH
HHHH

HHHH
HHH

L

C(K)

h

==
{{{{{{{{{{{{
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The homotopy relation ∼ is clearly reflexive, sym-

metric and compatible with the composition. But, it

is not transitive in general and we denote its transi-

tive hull by ≈. We say that h : K → L is a homotopy

equivalence if there is g : L → K such that gh ≈ idK

and hg ≈ idL. Thus, we have a homotopy theory for

each weak factorization system.

In a combinatorial model category, F and F ∩W are

accessible subcategories of K→. Both the fibrant re-

placement functor Rf and the cofibrant replacement

functor Rc are accessible. Recall that

K → Rf (K) → 1

is a (trivial cofibration, fibration)-factorization and

0 → Rc(K) → K

is a (cofibration, trivial fibration) one. Hence the

replacement functor R = RfRc is accessible.
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The following result is due to J. H. Smith, but he

has not presented a proof.

Theorem 4. In a combinatorial model category K,

W is an accessible subcategory of K→.

Let H be the category of homotopy equivalences f

together with a homotopy inverse g and the witness-

ing homotopies h1, . . . , hn. Let

K→
R // K→

V

OO

// H

OO

be a pseudopullback. Thus V is accessible. Since

W is the full image of the projection V → K→, it

satisfies the smallness condition in the definition of

an accessible category. Since it is known that W

is always closed under λ-filtered colimits in K→ for

some λ, it is accessible.
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Theorem 5. (J. H. Smith) Let I be a set of mor-

phisms in a locally presentable category K. Then

C = cof(I) and W make K a combinatorial model

category if and only if

(1) W has the 2-out-of-3 property and is closed un-

der retracts,

(2) (I)� ⊆ W,

(3) cof(I) ∩W is closed under pushout and trans-

finite composition, and

(4) W satisfies the solution set-condition at I.

The Smith’s proof of sufficiency was presented by T.

Beke in 2000. Necessity follows from Theorem 4.

The last two theorems imply that classes W are closed

under small intersections.
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Assuming Vopěnka’s principle, (4) is automatic and

thus classes W are closed under all intersections.

In particular, the smallest class WI satisfying (1)-

(3) yields a combinatorial model category structure.

Together with W. Tholen, we introduced this con-

struction in 2000 and called it left-determined. The

same construction was independently considered by

D.-C. Cisinski who proved, without any set theory,

that one gets a combinatorial model category in the

special case when K is a Grothendieck topos and

cof(I) = Mono.
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WI is constructed, starting from I� by a transfinite

iteration of taking the closure of X under (1) and

the cofibrant closure of cof(I)∩X . The starting full

subcategory I� ⊆ K→ is accessible but one cannot

expect that the two closures preserve this property.

But they preserve the property of being a full image

of an accessible functor into K→. This is quite tricky

for the cofibrant closure because one has to use the

fact that transfinite compositions form an accessible

subcategory of K→. It follows from a remarkable

result of Makkai and Paré that the Grothendieck

construction of an accessible pseudo-functor is ac-

cessible. Since full images of accessible functors are

closed under small unions, each Wi on the way to WI

is such a full images. Whenever WI satisfies (4) it

is accessible and thus the construction stops at some

ordinal i. On the other hand, if the construction

stops at some i, WI is a full image of an accessible

functor and thus it satisfies (4).

15



We have just seen that a class C of cofibrations in a

combinatorial model category K is an image of an ac-

cessible functor into K→. However, C does not need

to be accessible. It suffices to find a cofibrantly gen-

erated weak factorization system (C, C�) such that

C is not accessible. One can complete it to a com-

binatorial model category by putting W = K→ (the

greatest one).

In the category Pos of posets, take C consisting of

split monomorphisms. It yields a weak factoriza-

tion system cofibrantly generated by split monomor-

phisms between finite posets. The closure of split

monomorphisms under λ-filtered colimits in K→ pre-

cisely consists of λ-pure monomorphisms. It is easy

to see that, for each regular cardinal λ, there is a

λ-pure monomorphism which does not split.
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Consequently, one cannot expect that the full sub-

category Kc consisting of cofibrant objects is always

accessible, which is true for the full subcategory Kf

of fibrant objects. An interesting example is the cat-

egory Ab of abelian groups and C cofibrantly gener-

ated by

0 → Z.

Cofibrant objects are then free abelian groups whose

accessibility is set-theoretical. It follows from the

existence of a compact cardinal and contradicts the

axiom of constructibility.

Thus the full subcategory

Kcf = Kc ∩ Kf

does not need to be accessible. Remind that the

homotopy category K[W−1] is equivalent to the quo-

tient K/ ≈.
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We have just discussed accessibility of cofibrantly

generated classes of morphisms. There is a converse

question asking whether a cofibrantly closed acces-

sible class of morphisms is cofibrantly generated. It

cannot be true in general because pure monomor-

phisms in a locally finitely presentable category are

always accessible and cofibrantly closed. If they are

cofibrantly generated there is enough pure injectives,

which is not always true. On the other hand, the

class of all morphisms in a locally presentable cate-

gory is always cofibrantly generated and M. Hébert

has recently shown that it cane be generalized to each

accessible category with pushouts.
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In this connection, I want to mention the problem

asked by G. Maltsiniotis. Let C be the largest cofi-

brantly closed class of morphisms in Cat whose push-

outs preserve weak equivalences. Is C cofibrantly

generated? In the positive case, these cofibrations

together with weak equivalences form a left proper

combinatorial model category structure on Cat where

all objects are cofibrant. The Thomason model cat-

egory structure does not have the last property.
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