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The categorical Galois theory, originally developed by Janelidze [9, 1, 10], gives
a unifying setting for most of the formerly introduced Galois type theorems [1], even
generalizing most of them. It neatly gives a common ground for Magid’s Galois theory
of commutative rings [14, 7, 2], Grothendieck’s theory of étale covering of schemes, and
central extension of groups (see Chapter 5 of [1]). Furthermore, Janelidze’s Galois
theory has found several developments, applications and examples in new settings
since its introduction [1, 8, 6, 4, 15, 11, 13].

The most elementary observation on factorization systems and Janelidze-Galois
theory is that, in the suitable setting of finitely complete categories, the notion of
absolute admissible Galois structure coincides with that of a semi-left exact reflective
functor/adjunction [3, 1].

Our original aim was to get 2-dimensional analogues for the basic concepts (and
results) of absolute Galois theory. As a guinding template, we used the fact mentioned
above and the theory of simple 2-monads developed in [5]. Therefore our first step was
to develop a suitable counterpart notion to that of semi-left exact reflective functor
compatible with the notion of simple 2-adjunctions of [5].

At this point, the notion of lax comma 2-categories comes into play as a fundamen-
tal aspect of our work. Even being a recurrent notion in the literature, we couldn’t
find a systematic study covering the understanding we needed to suitably develop our
theory.

Among the basic aspects on lax comma 2-categories, we have the following: they
can be defined as Gray-limits, they have several change of base functors going on, and
they are “simple” examples of 2-categories of lax algebras (and hence we could use as
our basic tool the theorems of [12]).

The main aim of this talk is to establish some of these facts on lax comma 2-

categories.

This is joint work with Maria Manuel Clementino.
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