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The categorical Galois theory, originally developed by Janelidze [9, 1, 10], gives

a unifying setting for most of the formerly introduced Galois type theorems [1], even

generalizing most of them. It neatly gives a common ground for Magid’s Galois theory

of commutative rings [14, 7, 2], Grothendieck’s theory of étale covering of schemes, and

central extension of groups (see Chapter 5 of [1]). Furthermore, Janelidze’s Galois

theory has found several developments, applications and examples in new settings

since its introduction [1, 8, 6, 4, 15, 11, 13].

The most elementary observation on factorization systems and Janelidze-Galois

theory is that, in the suitable setting of finitely complete categories, the notion of

absolute admissible Galois structure coincides with that of a semi-left exact reflective

functor/adjunction [3, 1].

Our original aim was to get 2-dimensional analogues for the basic concepts (and

results) of absolute Galois theory. As a guinding template, we used the fact mentioned

above and the theory of simple 2-monads developed in [5]. Therefore our first step was

to develop a suitable counterpart notion to that of semi-left exact reflective functor

compatible with the notion of simple 2-adjunctions of [5].

At this point, the notion of lax comma 2-categories comes into play as a fundamen-

tal aspect of our work. Even being a recurrent notion in the literature, we couldn’t

find a systematic study covering the understanding we needed to suitably develop our

theory.

Among the basic aspects on lax comma 2-categories, we have the following: they

can be defined as Gray-limits, they have several change of base functors going on, and

they are “simple” examples of 2-categories of lax algebras (and hence we could use as

our basic tool the theorems of [12]).

The main aim of this talk is to establish some of these facts on lax comma 2-

categories.

This is joint work with Maria Manuel Clementino.
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[5] M.M. Clementino and I. López Franco. Lax orthogonal factorisation systems.

Adv. Math., 302:458–528, 2016.

[6] M. Gran. Central extensions for internal groupoids in Maltsev categories. PhD
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