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For a composition-closed and pullback-stable class S of morphisms in a category C containing all
isomorphisms, we form the category Span(C,S) of S-spans (s, f) in C with first “leg” s lying in S, and
give an alternative construction of its quotient category C[S−1] of S-fractions. Instead of trying to turn
S-morphisms “directly” into isomorphisms, we turn them separately into retractions and into sections in a
universal manner, thus obtaining the quotient categories Retr(C,S) and Sect(C,S). The fraction category
C[S−1] is their largest joint quotient category.

Without confining S to be a class of monomorphisms of C, we show that Sect(C,S) admits a quotient
category, Par(C,S), whose name is justified by two facts. On one hand, for S a class of monomorphisms
in C, it returns the category of S-spans in C, also called S-partial maps in this case; on the other hand,
under a mild additional hypothesis on S, but without constraining S to be a class of monomorphisms
in C, one can show that Par(C,S) is a split restriction category (in the sense of Cockett and Lack). A
further quotient construction produces even a range category (in the sense of Cockett, Guo and Hofstra),
RaPar(C,S), which is still large enough to admit C[S−1] as its quotient.

Both, Par and RaPar, are the left adjoints of global 2-adjunctions. When restricting these to their “fixed
objects”, one obtains precisely the 2-equivalences by which their name givers characterized restriction and
range categories, as categories C suitably structured by a class S of monomorphisms in C. Hence, their
mono constraint for the classes S emerges naturally in our more general context.
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