Categorical logics extending Birkhoff's equational logic

Lurdes Sousa

Center for Mathematics of the University of Coimbra School of Technology of IPViseu

V PORTUGUESE CATEGORY SEMINAR COIMBRA, OCTOBER 17, 2008

- J. Adámek, M. Sobral and L. Sousa, A Logic of Implications in Algebra and Coalgebra, Algebra Universalis (2008)
- J. Adámek, M. Hébert and L. Sousa, A Logic of Orthogonality, Archivum Mathematicum (2006)
- J. Adámek, M. Hébert and L. Sousa, A Logic of Injectivity, J. of Homot. and Rel. Struct. (2007)
- J. Adámek, M. Hébert and L. Sousa, The Orthogonal Subcategory Problem and the Small Object Argument, Applied Cat. Struct. (2008)

Birkhofft's deduction system for equations

$$(1) \frac{1}{u = u}$$

$$(2) \quad \frac{u=v}{v=u}$$

$$(3) \quad \frac{u=v, \ v=w}{u=w}$$

(4)
$$\frac{u_1 = v_1, u_2 = v_2, \dots, u_n = v_n}{f(u_1, u_2, \dots, u_n) = f(v_1, v_2, \dots, v_n)},$$

for all n-ary symbols f in Σ .

(5)
$$\frac{u=v}{u^{\sigma}=v^{\sigma}}$$
, for all substitutions σ .

Deduction system for implications

(R. Quackenbush, Proc. Amer. Math. Society 103 (1988))

Axiom 1:

$$\mathcal{P} \Rightarrow u = v$$

if \mathcal{P} contains u = v

Axiom 2:

$$\mathcal{P} \Rightarrow u = u$$

Symmetry:

$$\mathcal{P} \Rightarrow u = v$$

$$\mathcal{P} \Rightarrow v = u$$

Transitivity:

$$\mathcal{P} \Rightarrow u = v, \, \mathcal{P} \Rightarrow v = w$$

$$\mathcal{P} \Rightarrow u = w$$

Congruence:

$$\mathcal{P} \Rightarrow u_1 = v_1, \ldots, \mathcal{P} \Rightarrow u_n = v_n$$

$$\mathcal{P} \Rightarrow f(u_1, \dots, u_n) = f(v_1, \dots, v_n)$$

Invariance:

$$\mathcal{P} \Rightarrow u = v$$

$$\mathcal{P}^{\sigma} \Rightarrow u^{\sigma} = v^{\sigma}$$

Cut:

$$\mathcal{P} \Rightarrow s_i = t_i (i = 1, ..., n), \{s_i = t_i\}_{i=1}^n \Rightarrow u = v$$

$$\mathcal{P} \Rightarrow u = v$$

Finitary Injectivity Logic

Formulas: finitary epimorphisms

Semantic: A is a model of f if A is injective w.r.t. f

Inference rules:

IDENTITY	id_A
COMPOSITION	$\frac{e, e'}{e' \cdot e}$
CANCELLATION	$\frac{e' \cdot e}{e}$
PUSHOUT	$ \frac{e}{e'} \text{for every pushout} \frac{e}{f \bigvee_{e'}} \frac{e}{\bigvee_{e'}} $

Finitary Orthogonality Logic

Formulas: finitary morphisms

Semantic: A is a model of f if A is orthogonal to f

Inference rules:

IDENTITY

COMPOSITION

PUSHOUT

WEAK

CANCELLATION

$$\frac{u \cdot t \quad v \cdot u}{t}$$

$$\frac{s}{t}$$

if
$$\xrightarrow{f}$$
 \xrightarrow{g} is a coeq. s. t. $f \cdot s = g \cdot s$

Injectivity Logic

Formulas: morphisms

Semantic: A is a model of f if A is injective w.r.t. f

Inference rules:

IDENTITY
$$\operatorname{id}_A$$

TRANSFINITE
$$\frac{h_i,\,i\in\alpha}{h} \xrightarrow[h]{h_1} \xrightarrow[h_2]{h_2} \cdots$$
COMPOSITION
$$\frac{e'\cdot e}{e}$$
CANCELLATION
$$\frac{e}{e} \xrightarrow[f]{for\ every\ pushout} \xrightarrow[f]{e} \xrightarrow[f]{e}$$

In locally presentable categories, the Injectivity Logic and the Orthogonality Logic are always complete for sets of morphisms and, moreover, for quasi-presentable classes.

For classes in general:

The completeness of the Orthogonality Logic for all classes of morphisms is equivalent to the Vopěnka Principle.

The Injectivity Logic is not always complete (independently of set-theorical large cardinals principles).