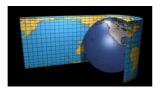
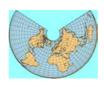
Projecções Cartográficas

Projecções azimutais

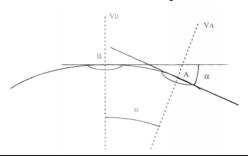

- Projecção azimutal polar ou normal (ponto de tangência é o polo)
- Projecção azimutal equatorial ou transversa (ponto de tangência é o equador):
- Projecção azimutal oblíqua (ponto de tangência é algures entre o equador e o polo)


Projecções cilíndricas

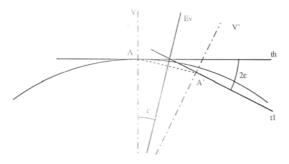


- Projecção cilíndrica normal (o eixo do cilindro coincide com o eixo polar da esfera)
- Projecção cilíndrica transversa (o eixo do cilindro é perpendicular ao eixo polar da esfera)
- Projecção cilíndrica oblíqua (o eixo do cilindro é inclinado relativamente ao eixo da esfera)

Projecções cónicas



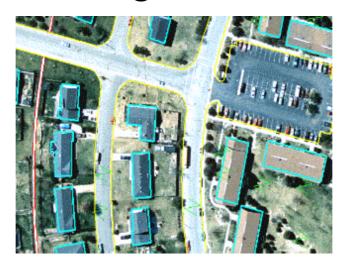
- Projecção cónica normal (o eixo do cone coincide com o eixo polar da esfera)
- Projecção cónica transversa (o eixo do cone é perpendicular ao eixo polar da esfera)
- Projecção cónica oblíqua (o eixo do cone é inclinado relativamente ao eixo da esfera)


Nivelas tóricas

- Princípios de utilização de nivelas tóricas
 - A tangente à linha média no centro da bolha é horizontal.
 - Quando se bascula uma nivela de um arco α em torno do seu centro de curvatura a bolha desloca-se, ao longo da linha média de um arco de amplitude α.

Nivelas tóricas

- Princípios de utilização de nivelas tóricas
 - Quando se roda uma nivela de 200 grados em torno de um eixo quase vertical, eixo esse que faz um ângulo ε com a vertical, a bolha desloca-se ao longo da linha média de um arco de amplitude 2ε.


Limbos

- Círculos graduados de 0 a 400g.
- Nos teodolitos mais recentes, denominados de *teodolitos electrónicos*, existe um sistema electo-óptico para leitura dos limbos.

Noções de altimetria

- Cota de um ponto: distância medida ao longo da vertical do lugar do ponto a uma superfície de referência
- Altitude ortométrica (Altitude): Cota do ponto quando a superfície de referência considerada é o geóide
- Altitude geodésica: Comprimento do segmento normal ao elipsóide definido pelo ponto e pela sua projecção sobre o elipsóide
- Altitude dinâmica de um ponto é a altitude ortométrica à latitude 45° da superficie de nível que o contém

Fotogrametria

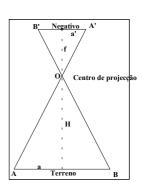
Fotogrametria

 Fotogrametria é a disciplina que se ocupa da medição, análise e interpretação de fotografias com vista à classificação e determinação da posição e dimensões dos objectos nelas representados.

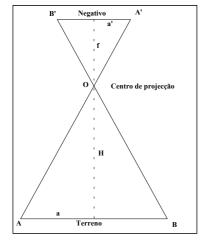
História

- 1849 Primeiras experiências destinadas à utilização de fotografias aéreas em cartografia topográfica recorrendo a balões.
- 1901 Primeiro equipamento para restituição analógica de pares estereoscópicos.
- 1913 Primeira cobertura aérea com finalidades cartográficas.

Fotogrametria

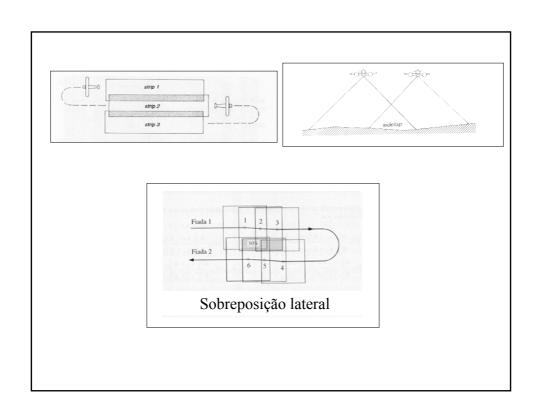

- Fotogrametria métrica determinação da posição de pontos.
- Fotogrametria interpretativa identificação de objectos.

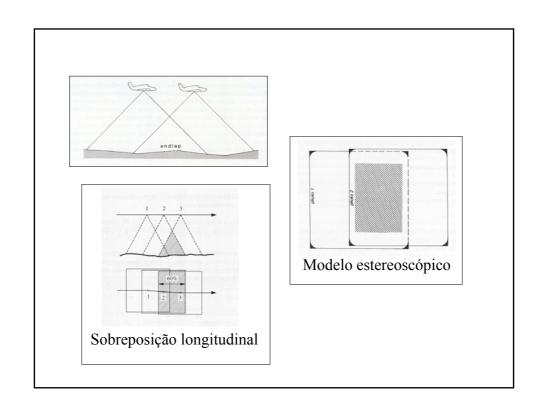
Fotogrametria

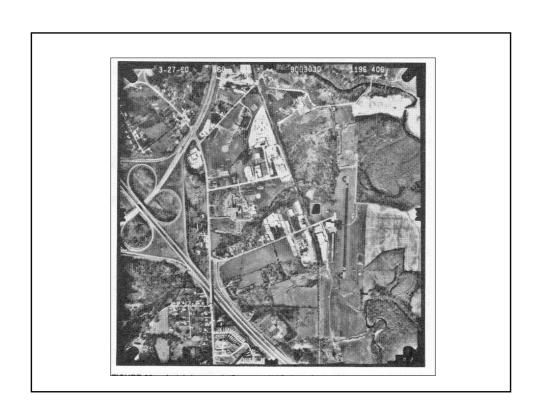

- Fotogrametria aérea as fotografias são tiradas com um câmara fotográfica colocada num avião que sobrevoa a região a cartografar.
- Fotogrametria terrestre as fotografias são tiradas de pontos fixos com posição conhecida.

Fotografia

- A cartografia resulta de uma projecção ortogonal.
- A fotografia obtém-se com uma projecção central.
 - Objectos na mesma vertical não estão sobrepostos na imagem fotográfica.
 - A fotografia não pode ser directamente usada como cartografia.

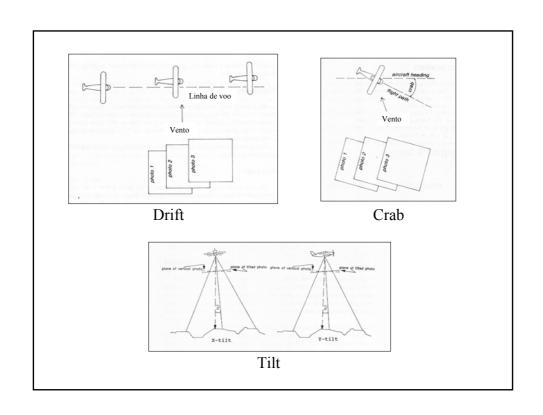

Fotogrametria aérea

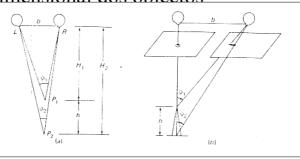



$$\frac{a'}{f} = \frac{a}{H} \Rightarrow \frac{a'}{a} = \frac{f}{H}$$

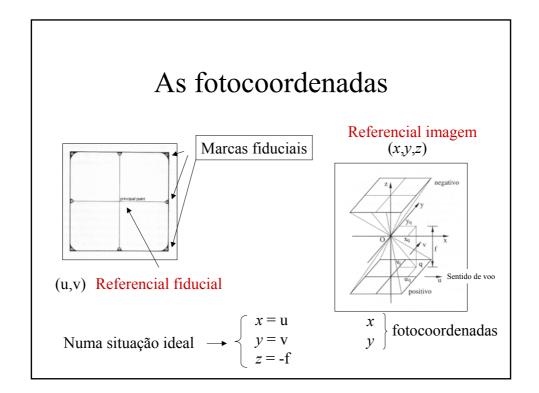
Escala da fotografia

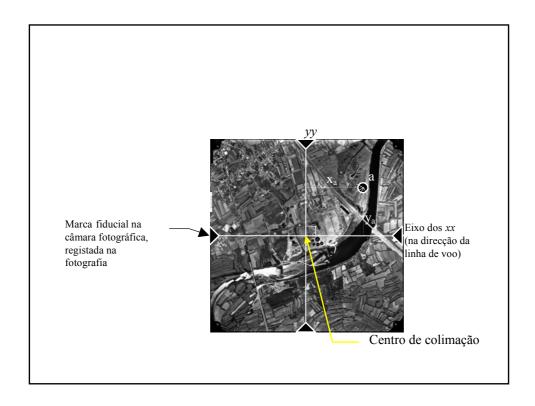
$$\boxed{\frac{1}{E} = \frac{a'}{a} = \frac{f}{H}}$$




As câmaras métricas aerotransportadas

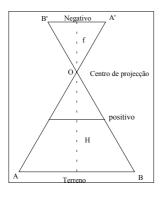
- Câmaras de imagem analógica (filme)
- Câmaras Digitais (CCD)
- São dotadas com:
 - Um dispositivo que arrasta o negativo durante a exposição com vista a compensar o movimento do avião.
 - Um sistema de suspensão que isola a câmara das vibrações da plataforma.
 - Um sistema de orientação e nivelamento que compensa a atitude da plataforma durante o voo.




Estereoscopia

• Capacidade de ter uma precessão tridimensional dos objectos

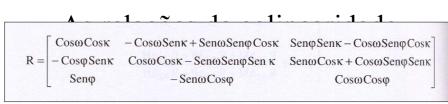
$$\Phi_1 > \Phi_2$$

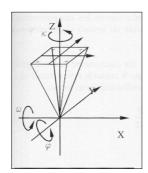


As relações de colinearidade

- No instante da exposição fotográfica encontram-se sobre a mesma recta:
 - Um ponto do terreno
 - A sua imagem fotográfica
 - O centro do sistema óptico da câmara
- É possível estabelecer relações geométricas entre as coordenadas topográficas (M,P,H) e as fotocoordenadas (*x*,*y*) do ponto.

As relações de colinearidade




$$\begin{cases} x = -f \; \frac{R_{11}\Delta M + R_{12}\Delta P + R_{13}\Delta H}{R_{31}\Delta M + R_{32}\Delta P + R_{33}\Delta H} \\ \\ y = -f \; \frac{R_{21}\Delta M + R_{22}\Delta P + R_{23}\Delta H}{R_{31}\Delta M + R_{32}\Delta P + R_{33}\Delta H} \end{cases}$$

$$\Delta M=M-M_0$$
 $\Delta P=P-P_0$ $\Delta H=H-H_0$

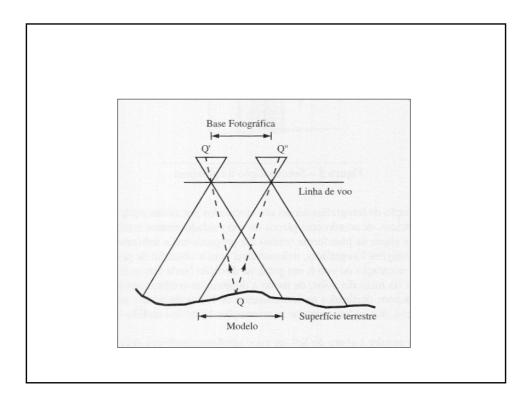
 M_0 , P_0 , H_0 – Coordenadas topográficas do centro do sistema óptico da câmara.

$$R = \begin{bmatrix} Cos\langle M, x \rangle & Cos\langle M, y \rangle & Cos\langle M, z \rangle \\ Cos\langle P, x \rangle & Cos\langle P, y \rangle & Cos\langle P, z \rangle \\ Cos\langle H, x \rangle & Cos\langle H, y \rangle & Cos\langle H, z \rangle \end{bmatrix}$$

- ω ângulo de rotação da imagem em torno do eixo dos xx que torna yy horizontal;
- φ ângulo de rotação em torno da nova posição do eixo dos yy que torna o eixo dos xx também horizontal e consequentemente o eixo dos zz vertical;
- κ ângulo de rotação em torno da posição vertical do eixo dos zz que torna o eixo dos yy coincidente com o Norte Cartográfico.

As relações de colinearidade

- A posição topográfica de uma imagem fotográfica fica definida pelos seguintes sete parâmetros:
 - As coordenadas topográficas do centro do sistema óptico da câmara no instante da exposição (M₀, P₀, H₀).
 - Os <u>três ângulos de rotação</u> que traduzem a orientação da câmara relativamente ao sistema de referência topográfico no instante da exposição (ω, φ, κ)
 - A distância focal da câmara (f).


 $\{M0, P0, H0, \omega, \varphi, \kappa, f\}$

O posicionamento fotogramétrico

 As relações de colinearidade permitem exprimir as coordenadas topográficas de um ponto em função das suas fotocoordenadas

$$\Delta M = -\Delta H \, \frac{R_{11} \, x + R_{21} \, y - R_{31} \, f}{R_{13} \, x + R_{23} \, y - R_{33} \, f}, \quad \Delta P = -\Delta H \, \frac{R_{12} \, x + R_{22} \, y - R_{32} \, f}{R_{13} \, x + R_{23} \, y - R_{33} \, f}$$

- <u>Não é possível</u> determinar as coordenadas topográficas do ponto (problema indeterminado).
- O problema é ultrapassado recorrendo à imagem do mesmo elemento em duas fotos diferentes.

Fototriangulação

- As coordenadas topográficas (M, P, H) de um ponto Q do terreno visível num par estereoscópico podem ser determinadas conhecendo:
 - As fotocoordenadas das imagens de um ponto Q do terreno num par estereoscópico (i)
 - Os parâmetros das imagens do par (ii)

$$i) \begin{cases} (x_1, y_1) & & \\ (x_2, y_2) & & \\ \end{cases} (M_1, P_1, H_1, \omega_1, \phi_1, \kappa_1, f) \\ (M_2, P_2, H_2, \omega_2, \phi_2, \kappa_2, f)$$

Fototriangulação

 A resolução deste sistema em ordem a M, P e H permite calcular as coordenadas do ponto Q.

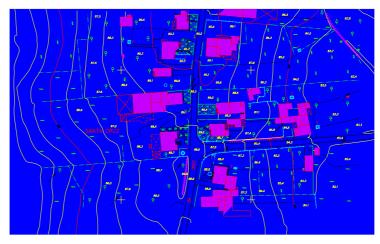
$$\begin{cases} \Delta M_1 = -\Delta H_1 \, \frac{R_{11}^1 \, x_1 + R_{21}^1 \, y_1 - R_{31}^1 \, f}{R_{13}^1 \, x_1 + R_{23}^1 \, y_1 - R_{33}^1 \, f} \\ \Delta P_1 = -\Delta H_1 \, \frac{R_{12}^1 \, x_1 + R_{22}^1 \, y_1 - R_{32}^1 \, f}{R_{13}^1 \, x_1 + R_{23}^1 \, y_1 - R_{32}^1 \, f} \\ \Delta P_2 = -\Delta H_2 \, \frac{R_{12}^2 \, x_2 + R_{23}^2 \, y_2 - R_{33}^2 \, f}{R_{13}^2 \, x_2 + R_{23}^2 \, y_2 - R_{33}^2 \, f} \end{cases}$$

Orientação das fotografias

- Orientação interna
 - Consiste em determinar os parâmetros de transformação entre as fotocoordenadas das marcas fiduciais existentes na câmara fotográfica e que ficam registadas na fotografia e as suas coordenadas imagem.
- Orientação relativa
 - Destina-se a encontrar a posição relativa da câmara na altura das exposições de duas fotografias consecutivas.
 - Só após a orientação relativa é possível observar, em relevo um modelo estereoscópico.
- Orientação absoluta
 - Destina-se a referenciar o modelo estereoscópico relativamente ao referencial cartográfico.
 - Faz-se a partir de pontos que, reconhecidos e identificados

Determinação de Alturas

• Um <u>objecto linear</u>, situado no terreno em <u>posição vertical</u>, aparece na imagem como um <u>segmento de recta</u> em posição radial relativamente pal.

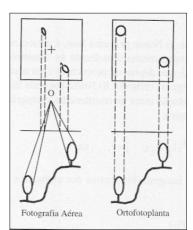

Determinação de Alturas

- O comprimento c do segmento imagem é calculado em função das fotocoordenadas do topo (X_T, Y_T) e da base (X_B, Y_B) do objecto. $c = \sqrt{(x_T x_B)^2 + (y_T y_B)^2}$
 - A altura b pode ser estimada através de:

a – altura de voo

$$b = \frac{c \times a}{\sqrt{x_T^2 + y_T^2}}$$

Consiste na compliação de la latera de CAD/CAM (Computer Assisted Drafting/Computer Assisted Mapping)



Ortofotografias

- As fotografias aéreas do terreno apresentam deformações geométricas devidas essencialmente aos seguintes factores:
 - A fotografia é obtida com uma projecção central;
 - A atitude da plataforma que transporta a câmara;
 - Ao relevo do terreno.

Ortofotografias

- Chama-se
 ortorectificação ao
 processo de
 transformação de uma
 imagem fotográfica
 numa imagem
 semelhante à que
 resultaria de uma
 projecção ortogonal.
- O resultado é uma ortofotografia.

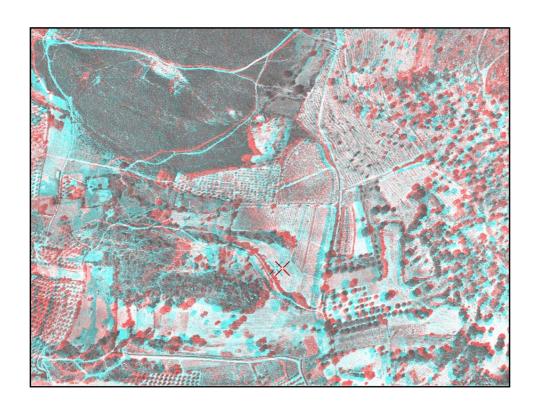
Ortofotocartas

- O processo de ortorectificação utiliza:
 - Os parâmetros de orientação da imagem fotográfica
 - Um modelo do relevo da região
- À imagem ortorectificada pode ser sobreposta outra informação, como curvas de nível e toponímia, dando origem às ortofotocartas ou ortofotoplantas.

Ortofotocartas

- A grande diferença entre uma <u>ortofotocarta</u> e uma <u>carta topográfica</u> reside na classificação da imagem topográfica:
 - Por exemplo numa ortofotocarta é dificil distinguir entre uma linha de caminho de ferro de uma estrada.
- A ortofotocarta pode apresentar lacunas tais como
 - zonas de sombra;
 - zonas que na fotografia original estavam tapadas pelo topo de edificios e que após a rectificação ficam sem informação.

Fotogrametria terrestre
A partir de um par de fotografías métricas tiradas de pontos diferentes é possível determinar as coordenadas de pontos representados em ambas as fotografías.


Detecção Remota

• São utilizadas imagens numéricas obtidas por sensores remotos.

Detectam a radiação electromagnética electromagnética pelos objectos

Sistema de Posicionamento Global GPS (Global Positioning System)

Posicionamento

- Desde sempre o homem usou a posição dos corpos celestes como ponto de referência para se orientar sobre a Terra.
- A ideia base do GPS é a substituição dos astros por satélites artificiais com características mais adequadas ao posicionamento.

Componentes do GPS

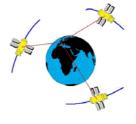
- Componente espacial
 - O sistema apoia-se numa constelação de 24 satélites, a cerca de 20 200 km de altitude e dando uma volta à Terra em cada 12 horas.

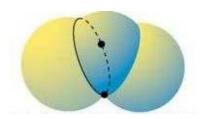
Componentes do GPS

- Componente de controlo
 - Estações monitoras;
 - Recebem continuamente a informação enviada pelos satélites
 - Fornecem dados para a estação de controlo calcular as novas posições dos satélites e as correcções a fazer aos relógios atómicos de bordo.
 - Estação de controlo.
 - Estações emissoras de dados para os satélites;

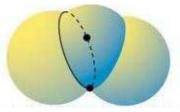
Componentes do GPS

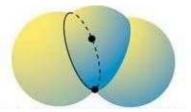
- Componente do utilizador
 - Receptores dos sinais emitidos pelos satélites.


Princípios Básicos de Funcionamento


• As coordenadas de um ponto na Terra são obtidas através de medição das distâncias desse ponto a vários satélites.

Princípios Básicos de Funcionamento

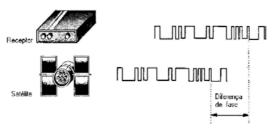

• Essas distâncias correspondem aos raios de esferas centradas nos satélites e que passam pelo ponto em causa.


Princípios Básicos de Funcionamento

• Como a posição dos satélites (centros das esferas) pode ser conhecida em cada instante, teóricamente, basta a intersecção de 3 esferas para obter as coordenadas tridimensionais do ponto.

Princípios Básicos de Funcionamento

• Da intersecção de 3 esferas resultam, em geral, 2 pontos mas normalmente apenas um é aceitável como solução do problema.



Determinação da Distância ao Satélite

- A distância é obtida através da medição do tempo que um sinal electromagnético emitido pelo satélite demora a atingir o ponto a posicionar.
- O emissor (no satélite) e o receptor (no ponto a coordenar) geram o mesmo sinal de forma sincronizada.

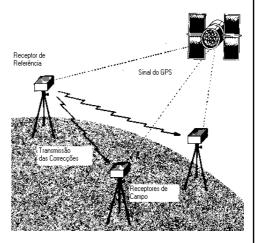
Determinação da Distância ao Satélite

 Quando o receptor recebe um sinal do satélite, basta compará-lo com o seu próprio sinal para através da diferença de fase obter o tempo do trajecto.

Determinação da Distância ao Satélite

- Como a velocidade do sinal é muito grande, o tempo tem de ser medido com grande precisão, por isso os satélites estão equipados com relógios atómicos.
- Os relógios dos receptores são bastante menos precisos que os relógios atómicos dos satélites, o que torna necessária a recepção do sinal de um 4º satélite.

Condicionantes do Sistema


- O efeito de refracção na travessia da ionosfera e da atmosfera induzem atrasos no sinal
- Podem existir obstáculos em redor do receptor, o que perturba ou impossibilita a recepção e pode provocar reflexões do sinal.

Condicionantes do Sistema

- A configuração dos satélites "visíveis" pode não ser a mais favorável num dado momento, para um certo lugar.
- Quando possível poderão utilizar-se os sinais de mais de 4 satélites, o que permite fazer a correcção e o ajustamento das observações.

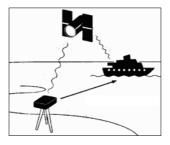
GPS Diferencial

 Neste caso é usado um receptor adicional, posicionado num ponto de coordenadas conhecidas.

GPS Diferencial

- O receptor de referência permite calcular as correcções necessárias a aplicar em cada instante, num dado lugar.
- Essas correcções são depois utilizadas para fazer o cálculo das coordenadas dos pontos onde foram colocados os outros receptores.

GPS Diferencial

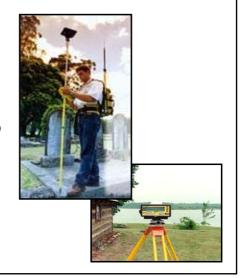

- Este processo torna viável o uso do GPS em situações onde é exigida grande precisão.
- Conseguem-se obter precisões da ordem do centímetro e até milímetro.

Aplicações

 O cidadão comum pode usar sem grandes dificuldades um receptor de GPS para determinar as coordenadas de um ponto praticamente em qualquer zona do planeta, 24 horas por dia e sob quaisquer condições climatéricas

Aplicações

• Navegação



Aplicações

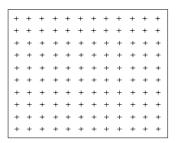
- Topografia
- Geodesia
- Hidrografia
- Apoio fotogramétrico e aerotriangulação
- Etc...

Sistemas GLONASS e GALILEU

- GLONASS
 - Sistema russo equivalente ao GPS
- GALILEU
 - Sistema europeu a ser lançado em breve.

Modelos Digitais do Terreno

Construção de um Modelo Digital do Terreno

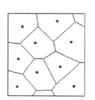

- Conhecida a altitude de pontos do terreno
- Interpolar o valor da altitude para todo o espaço geográfico

$$z = f(M, P)$$

• Sendo f uma função, para cada valor de (M,P) só pode existir um valor de z.

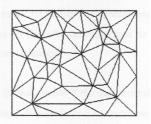
Construção de um Modelo Digital do Terreno

• Grelha regular (GRID)



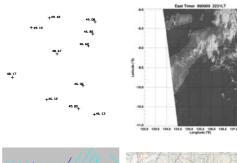
Construção de um Modelo Digital do Terreno

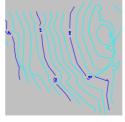
- Pontos irregularmente espaçados
 - É construída uma triangulação de Delaunay
 - Polígonos de Voronoi



Construção de um Modelo Digital do Terreno

• Triangulação de Delaunay

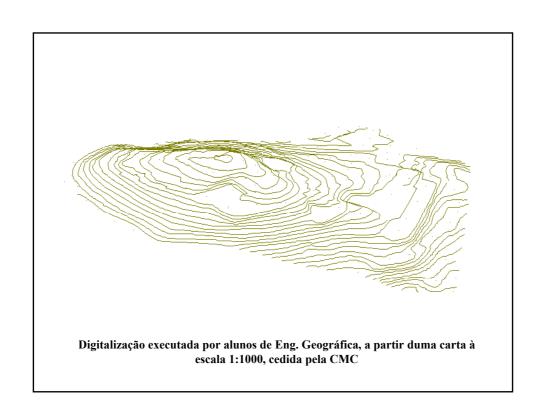


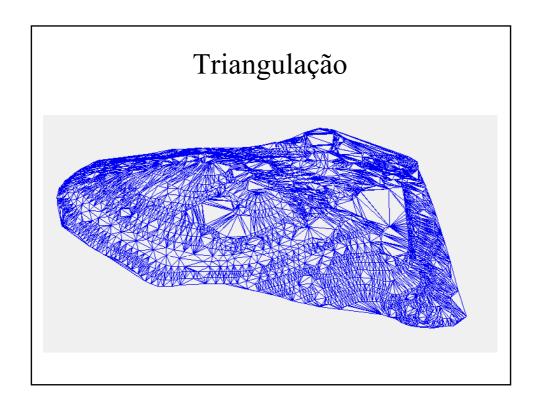

Vantagens e desvantagens

	Vantagens	Desvantagens
Grelhas rectangular (GRID)	O seu manuseamento em computador é simples; É mais simples construir modelos de interpolação para grelhas rectangulares.	A densidade de pontos não pode ser aumentada para se adaptar à complexidade do relevo; É necessário um grande número de pontos para ser possível fazer a representação do relevo com determinada precisão; Não conseguem descrever características estruturais do terreno como características topográficas.
Rede Irregular de Triângulos (TIN)	Permitem representar o terreno com maior fiabilidade. São necessários menos pontos para se construir um MDT com determinada precisão.	 São mais complexos e mais dificeis de manusear; É mais dificil construir o modelo de interpolação.

Fontes de Dados

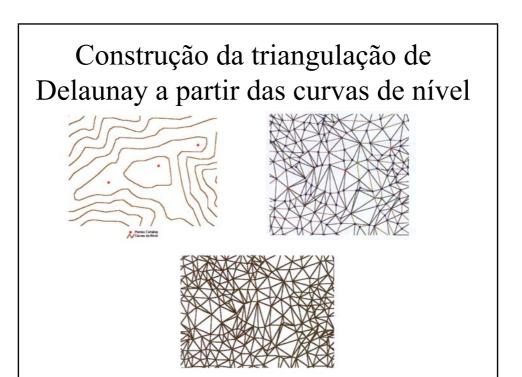
- Pontos cotados
 - obtidos por exemplo por métodos topográficos
- · Curvas de nível
 - obtidas por exemplo por
 - processos fotogramétricos
 - ou digitalização de cartas

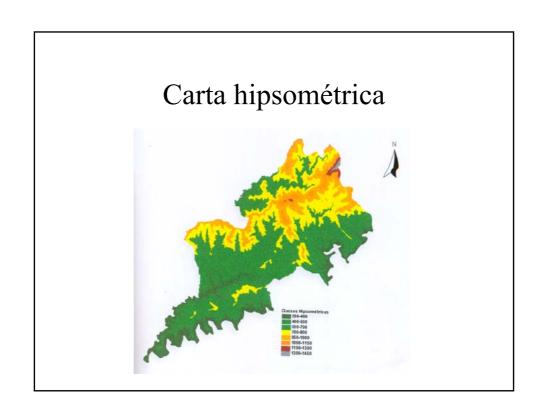


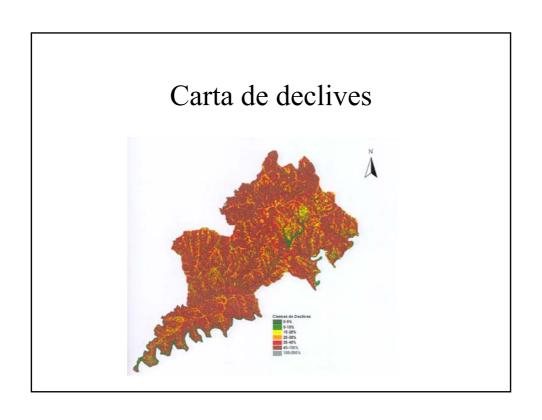


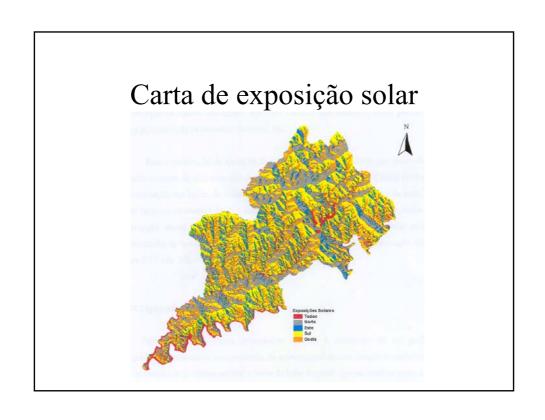
Criação de um Modelo Digital de Terreno do terreno do Observatório Astronómico

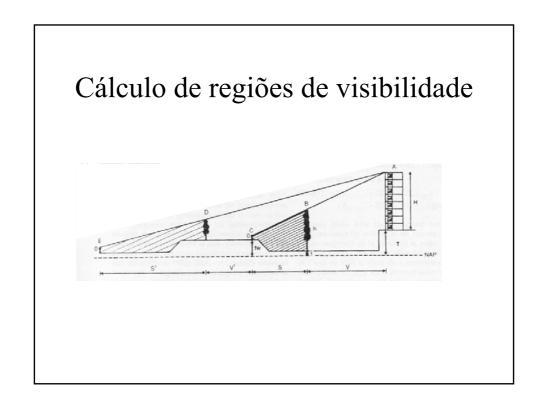
 Utilizando as curvas de nível e pontos cotados do Observatório Astronómico da Universidade de Coimbra.

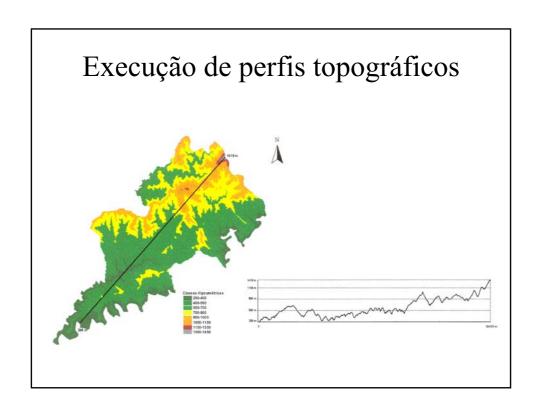


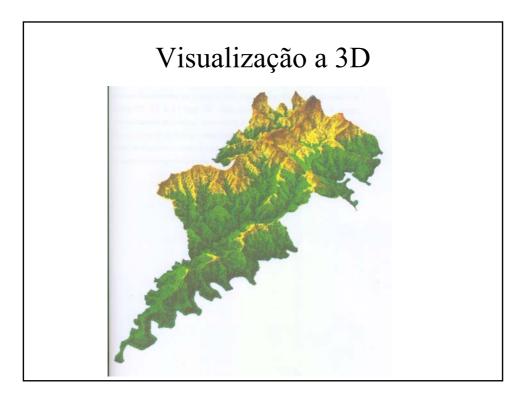

Modelo Digital de Terreno do Concelho da Pampilhosa da Serra

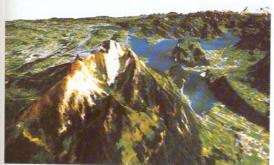


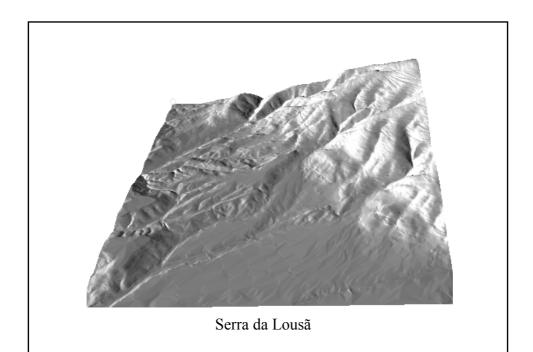

Concelho da Pampilhosa da Serra





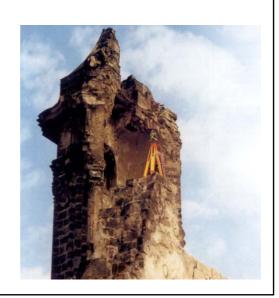






Outras Aplicações dos Modelos Digitais de Terreno

- Cálculo de movimentos de terra (volumes de aterro e escavação) para a execução de obras de engenharia.
- Visualização do aspecto de uma paisagem


Aplicações da TOPOGRAFIA

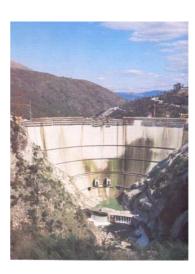
Secção de Engenharia Geográfica do Departamento de Matemática da Faculdade de Ciências e Tecnologia da Universidade de Coimbra

Objectivos da Topografia

 Recolha e tratamento de dados geográficos para o posicionamento planimétrico e altimétrico de pontos à superfície da Terra (abrangendo regiões de diâmetro geralmente inferior a 10 Km).

Aplicações da Topografia

- Levantamentos de pormenor de terrenos, fachadas, etc.
- Implantação de obras
- Controlo de deformações de estruturas
- Apoio fotogramétrico
- · Apoio ao Cadastro
- •

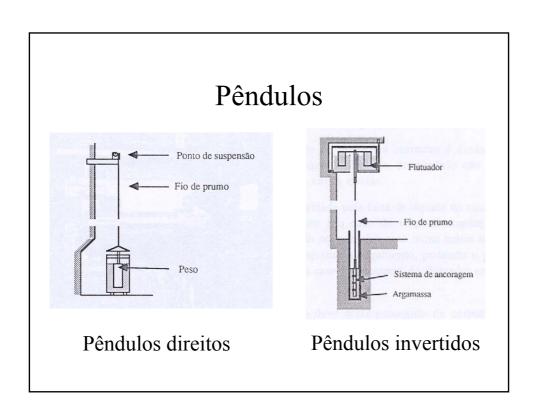

Controlo de estruturas

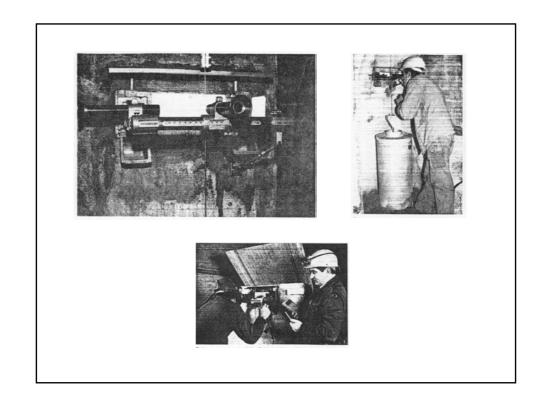
- Controlo das deformações sofridas por construções
 - Barragens
 - Viadutos

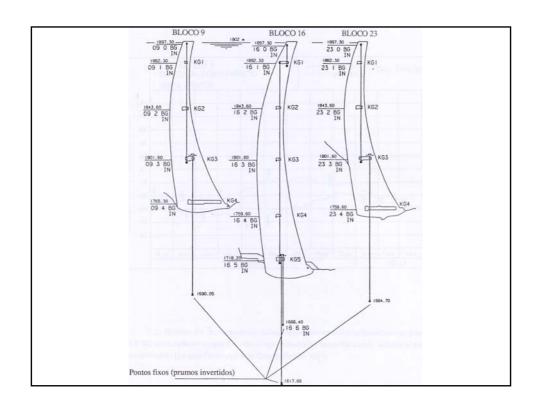
- ..

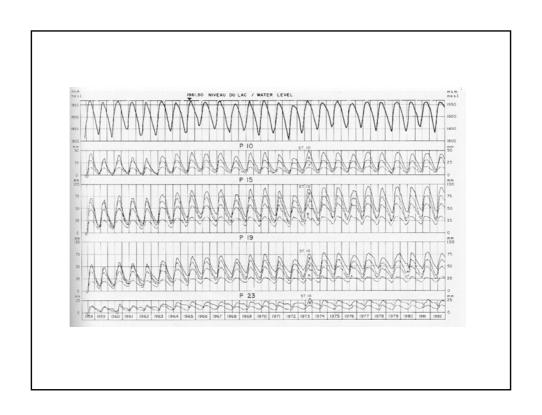
- Controlo de deslocamentos
 - Terrenos com possibilidade de sofrer deslizamentos

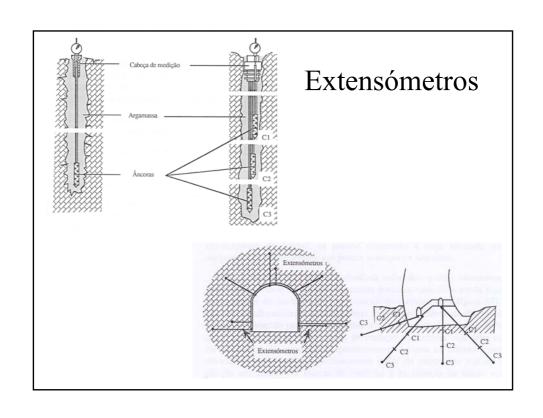
- ...




Controlo de deformações em barragens


- Métodos mecânico-físicos
 - Pêndulos
 - Extensómetros


– ...


- Métodos geodésicos
 - Triangulação
 - Poligonação
 - Nivelamento
 - Apenas medição de ângulos
 - Apenas medição de distâncias
 - Alinhamentos

