Sifted Inductive Completion over Cartesian Closed Bases

Panagis Karazeris *

A sifted weight over a cartesian closed basis \mathcal{V} that is strongly lfp as such is considered to be a functor, whose left Kan extension along the Yoneda embedding preserves (conical) finite products and cotensors with strongly finitely presentable (sfp) objects. We assume that the functor $V: \mathcal{V}_o \to \text{Set}$ preserves colimits. Then the sifted completion of a \mathcal{V} -category \mathcal{A} has as underlying ordinary category the ordinary sifted completion of \mathcal{A}_o . We exploit this in order to characterize the situation where $\text{Sind}(\mathcal{A})$ is complete. As a corollary we show that a \mathcal{V} -category is a sifted inductive completion and cocomplete iff it is a sifted inductive completion and complete iff it is a sifted inductive completion of small \mathcal{V} -category with coproducts and tensors with sfp objects. All the above can be generalized to \mathbb{D} -inductive completions for a sound doctrine \mathbb{D} .

References

- F. Borceux, C. Quinteiro and J. Rosický, A theory of enriched sketches, Theory and Applications of Categories 4 (1998), 47–72.
- [2] P. Karazeris and J. Velebil, *Representability relative to a doctrine*, in preparation.
- [3] G. M. Kelly, Structures defined by finite limits in the enriched context, Cahiers de Topologie et Géométrie Différentielle XXIII-1 (1982), 3–42.