Extensions in the theory of lax algebras

Christoph Schubert *

Given a unital quantale V and a lax extension \overline{T} to Mat(V) of a Set-functor T, a natural transformation $\alpha : S \longrightarrow T$ induces a lax extension \overline{S} of S as the initial lift of α . When α comes from a monad morphism $\alpha : \mathbb{S} \longrightarrow \mathbb{T}$, this process yields a concrete functor $F_{\alpha} : Alg(\mathbb{T}, V) \longrightarrow Alg(\mathbb{S}, V)$. In the case where \overline{T} is the Kleisli extension of T, we put forth sufficient conditions for α to induce an isomorphism. Since $Alg(\mathbb{T}, V)$ can be obtained as a tower extension of $Alg(\mathbb{T}, 2)$, this isomorphism is seen to depend essentially on the relation that holds between $Alg(\mathbb{S}, 2)$ and $Alg(\mathbb{T}, 2)$.

 $^{^* \}rm Joint$ work with Gavin Seal