On Morita Equivalence of Categories

Bertalan Pécsi

october 2007.

Heteromorphisms

Def. 1.1. Category \mathbb{H} is a *bridge* $\mathbb{A} \rightleftharpoons \mathbb{B}$, if

· \mathbb{A} , \mathbb{B} are disjoint, full subcategories of \mathbb{H} ,

 $\cdot \quad \mathsf{ObA} \cup \mathsf{ObB} = \mathsf{ObH}.$

 \mathbb{H} is *directed bridge* $\mathbb{A} \Rightarrow \mathbb{B}$, if moreover

 $\cdot (b \mid a)_{\mathbb{H}} = \emptyset$ for all $a \in Ob\mathbb{A}, b \in Ob\mathbb{B}$.

Let \mathbb{H}, \mathbb{K} be bridges $\mathbb{A} \rightleftharpoons \mathbb{B}$. A functor $T : \mathbb{H} \to \mathbb{K}$ is a *bridge morphism*, if $\cdot T \upharpoonright_{\mathbb{A}} = \operatorname{id}_{\mathbb{A}}$ and $T \upharpoonright_{\mathbb{B}} = \operatorname{id}_{\mathbb{B}}$.

Prop. 1.2. Directed bridges $\mathbb{A} \Rightarrow \mathbb{B}$ are just the profunctors (i.e. functors $\mathbb{A}^{op} \times \mathbb{B} \rightarrow \mathbb{S}$ et), corresponding (bridge morphisms \iff nat. transformations).

Examples:

Let $\mathbb A$ be arbitrary, and $\mathbb B \leqslant \mathbb A$ be a full subcat.

bridge	heteromorphisms
\mathbb{S} et $\Rightarrow \mathbb{G}$ rp	functions $S \to G$
$\mathbb{A}b\times\mathbb{A}b\Rightarrow\mathbb{A}b$	bilinear morphisms $A \times B \to C$
$\mathbb{A} \Rightarrow \mathbb{A} \times \mathbb{A}$	cones $a < c$
$\mathbb{S}et \Rightarrow \mathbb{S}et^{op}$	relations between A and B
$\mathbb{B} \rightleftharpoons \mathbb{A}$	copies of arrows $b \to a \& a \to b$

A bridge between monoids is just a category with 2 objects.

Profunctors

Theorem 1.3. Let $\mathbb{L} : \mathbb{A} \Rightarrow \mathbb{B}$ be a profunctor. $\cdot \mathbb{L}$ is induced by a functor $\mathbb{A} \to \mathbb{B}$ iff $\mathbb{B} \leq \mathbb{L}$ is reflective. $\cdot \mathbb{L}$ is induced by a functor $\mathbb{B} \to \mathbb{A}$ iff $\mathbb{A} \leq \mathbb{L}$ is coreflective. $\cdot \mathbb{L}$ is induced by an adjunction $\mathbb{A} \to \mathbb{B}$

iff $\mathbb{B} \leq \mathbb{L}$ is reflective and $\mathbb{A} \leq \mathbb{L}$ is coreflective.

Def. 1.4. Composition of $\mathbb{F}_{\mathbb{A} \Rightarrow \mathbb{B}}$ and $\mathbb{G}_{\mathbb{B} \Rightarrow \mathbb{C}}$: $(a + c)_{\mathbb{F} \cdot \mathbb{G}} := \{\langle f, g \rangle \mid a \xrightarrow{f} b \xrightarrow{g} c, b \in \mathbb{ObB} \}_{/\sim}$ where $\langle f \beta, g \rangle \sim \langle f, \beta g \rangle$ for $\beta \in \mathbb{MorB}$. \rightsquigarrow the bicategory Prof (of categories, profunctors, bridge morphisms).

Note. A bridge $\mathbb{H} : \mathbb{A} \rightleftharpoons \mathbb{B}$ is determined by its parts $\mathbb{H}^{>} : \mathbb{A} \Rightarrow \mathbb{B}, \quad \mathbb{H}^{<} : \mathbb{B} \Rightarrow \mathbb{A},$ and compositions $\mathbb{H}^{>} \cdot \mathbb{H}^{<} \to \mathbb{A}, \quad \mathbb{H}^{<} \cdot \mathbb{H}^{>} \to \mathbb{B}.$

Equivalences

Def. 2.1. $\mathbb{H} : \mathbb{A} \rightleftharpoons \mathbb{B}$ is an *equivalence bridge*, if $\forall a \in \mathsf{Ob}\mathbb{A} \exists b \in \mathsf{Ob}\mathbb{B} : a \cong b$ in \mathbb{H} , and $\forall b \in \mathsf{Ob}\mathbb{B} \exists a \in \mathsf{Ob}\mathbb{A} : a \cong b$ in \mathbb{H} .

Theorem 2.2. $\mathbb{A} \simeq \mathbb{B}$ iff $\exists \mathbb{A} \rightleftharpoons \mathbb{B}$ equiv. bridge.

Note. Axiom of choice is used in constructing a functor from an equivalence bridge. (cf. Makkai: "Avoiding the Axiom of Choice...") **Def. 2.3.** $\mathbb{M} : \mathbb{A} \rightleftharpoons \mathbb{B}$ is a *Morita bridge*, if every morphism is composition of heteromorphisms.

Def. 2.4 (*Idempotent completion*).

- · $Ob(\mathbb{A}^{id}) := \{e \in Mor\mathbb{A} \mid e^2 = e\},\$
- $\cdot \ (e \mid f)_{\mathbb{A}^{id}} := \{ \alpha \mid e\alpha f = \alpha \}.$

Theorem 2.5. The followings are equivalent: a) There are profunctors $\mathbb{F}_{A \Rightarrow \mathbb{B}}$, $\mathbb{G}_{A \Rightarrow A}$, such that $\mathbb{F} \cdot \mathbb{G} \cong \mathbb{A}$ and $\mathbb{G} \cdot \mathbb{F} \cong \mathbb{B}$. b) There is a Morita bridge $\mathbb{M} : \mathbb{A} \rightleftharpoons \mathbb{B}$. c) $\mathbb{A}^{id} \simeq \mathbb{B}^{id}$. **Theorem 2.5.** The followings are equivalent: a) There are profunctors $\mathbb{F}_{A \Rightarrow \mathbb{B}}$, $\mathbb{G}_{A \Rightarrow \mathbb{B}}$, $\mathbb{B}_{B \Rightarrow A}$, such that $\mathbb{F} \cdot \mathbb{G} \cong \mathbb{A}$ and $\mathbb{G} \cdot \mathbb{F} \cong \mathbb{B}$. b) There is a Morita bridge $\mathbb{M} : \mathbb{A} \rightleftharpoons \mathbb{B}$. c) $\mathbb{A}^{id} \simeq \mathbb{B}^{id}$.

Proof. a) \Rightarrow b): $\mathbb{M} := \mathbb{F} \cup \mathbb{G}$ can be made a bridge by Lemma 2.6. Let $f : A \to B$, $g : B \to A$ be an equivalence in a bicategory, with isomorphisms φ and ψ . $fg \to 1_A$ $gf \to 1_B$ Then $\exists \psi' : f \cdot \psi' = \varphi \cdot f$ and $\psi' \cdot g = g \cdot \varphi$. $gf \to 1_B$ $fgf \to f$ $gfg \to g \cdot \varphi$.

b) \Rightarrow c): Consider \mathbb{M}^{id} .

c) \Rightarrow b): Let $\mathbb{H} : \mathbb{A}^{id} \rightleftharpoons \mathbb{B}^{id}$ be an equivalence bridge. Set $\mathbb{M} := \mathbb{H} \upharpoonright_{\mathbb{A} \cup \mathbb{B}}$. It is a Morita bridge.

b) \Rightarrow a): Consider the parts of M: $\mathbb{F} := \mathbb{M}^{>}$ and $\mathbb{G} := \mathbb{M}^{<}$. They give an equivalence by Lemma 2.7. Let $\mathbb{K} : \mathbb{A} \rightleftharpoons \mathbb{B}$ be a bridge, with surjective composition $\chi : \mathbb{K}^{>} \cdot \mathbb{K}^{<} \rightarrow \mathbb{A}$. Then χ is isomorphism. A next level in abstraction

Def. 3.1. In a bicategory,

$$\langle \begin{array}{c} f \\ A \rightarrow B \end{array}, \begin{array}{c} g \\ B \rightarrow A \end{array}, \begin{array}{c} \varphi \\ fg \rightarrow 1_A \end{array}, \begin{array}{c} \psi \\ gf \rightarrow 1_B \end{array} \rangle$$
 is a *bridge*, if
 $\cdot f \cdot \psi = \varphi \cdot f$ and $\psi \cdot g = g \cdot \varphi$.
 $\begin{array}{c} fgf \rightarrow f \end{array}$

Examples:

Let Bimod be the bicategory of (rings, bimodules). Then $_{R}(R^{1\times n})_{R^{n\times n}}$ with $_{R^{n\times n}}(R^{n\times 1})_{R}$

is a bridge in \mathbb{B} imod.

By lemma 2.6 every equivalence in a bicategory can be made a bridge.

Note that lemma 2.7 also holds in \mathbb{B} imod.

Question.

Search for more examples of bridges.

Bertalan Pécsi ELTE University, Budapest

aladar@renyi.hu http://www.renyi.hu/~aladar