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ABSTRACT: In an election process, p parties compete for ¥ seats in a parliament.
After votes are cast, the electoral result may be thought of as an element z € RP.
Given z, the so-called largest remainders method determines the number a; of seats
party i gets in the parliament. The electoral cell determined by (ai,...,ap) is the
closure of the set of all results = that determine a; seats for party i, 1 < < p. The
electoral cells are convex polytopes and tile a hyperplane of R?.

In this paper we give a description of the electoral cells. For a single cell we identify
and classify the cell’s faces, completely describe its face lattice, and determine its
group of automorphisms. It turns out that each face of dimension d arises from a
d-unit-cube by a compression along a diagonal.
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1. Introduction

The results in this paper came as an aftermath of two of the problems in
H. Steinhaus’ famous book Mathematical Snapshots [6]. We have in mind the
“elections problems” contained in pages 72-73 and 210 of the 1999 edition of
[6]. In the first of those problems (page 72-73 of [6]) Steinhaus considers the
outcome of an electoral process where 3 parties compete for a given number
of seats in a parliament, the seats being assigned to the parties by the so-
called proportional largest remainders method (to be explained below); the
4-party conterpart is considered later in the book [6, p. 210].

The natural generalization of the Snapshots elections problems goes as
follows: p parties compete for ¥ seats in a parliament; after the electors
cast their votes, the total number N of votes (abstentions not counted) is
decomposed into p parts, say N = N; + --- + N, where NN; is the number
of votes in party 7. The quota of party i is the number z; := (N;/N)E. We
assume that this election is based on a proportional method of seat assignment
(cf. [2, p. 25]); this means x; represents the (approximate) fraction of the ¥
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seats obtained by party i. This party will directly obtain |x;] (the integer
part of z;) seats in the parliament, and its partisans expect to obtain one
more seat if its remainder, r; := x; — |x;], is high enough when compared
with the other parties remainders. Of course, the sum s of all remainders,

Si=ri+ -+,

is the number of seats not directly assigned to the parties; it is an integer
such that 0 < s < p.

Among the many algorithms in use (cf. [2, p. 25 ff]) to assign the remaining
s seats to the p parties, the Snapshots adopt the most ‘natural’ one of them,
which is known by many names, e.g., Hamilton’s method, or the natural
quota, or largest remainders method: the parties are ordered according to
their remainders, in nonincreasing order, and one more seat is given to each
one of the best s parties on that arrangement.

In the sequel, the p-tuple x = (z1, ..., 2,) is called the result of the electoral
process. Eventual ties on the remainders may imply a stalemate in this
process; in such cases, the result z is said to be undetermined; in all other
cases, we say the result is determined. It is obvious that z is determined
iff the s-th largest remainder is strictly greater than the (s 4 1)-th greatest
remainder.

Clearly x is an element of R?, with rational coordinates of sum ¥. Moreover,
in the real world, for a fixed number N of votes there is only a finite number
of possible electoral results. We eliminate this inconvenience by accepting as
ideally feasible electoral results all the real p-tuples, of sum ¥, even those
with irrational coordinates. Everything will take place on the hyperplane of
the x’s with sum ¥, that we denote by $Hx:

Oy ={reRl:z+ - +z,=3%}

So, Hamilton’s method assigns to each result x € $y a p-tuple of integers,
say a = (a1,...,ay) € Hx, where g; is the number of seats obtained by party
¢. In this paper we are mainly concerned with the

Electoral Cell Problem. Given the p-tuple of nonegative integers

a=(ay,...,ap) € Ny, describe the ‘electoral cell’ corresponding to a,
i.e., the set of all electoral results x that assign a,...,a, seats in the
parliament to the parties 1,...,p, respectively.

In the case of 3 parties, the Snapshots [6, p. 73] represent each electoral
result (z1, 22, 23) by a point R inside an equilateral triangle of height ¥, where
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the Cartesian coordinates now play the role of, say, ‘triangular coordinates’
(see figure 1).

figure 1 figure 2

In this triangular representation, Steinhaus says, each ‘electoral cell’ is rep-
resented by a regular hexagon, and these hexagons determine the honeycomb
tiling of the triangle, as the second figure shows for a 5-seat parliament: the
triangle has height 5, and R lies inside the cell corresponding to a = (2,1, 2).

The Snapshots briefly discuss, later on, on page 210, the 4-party case; the
problem is modeled in ‘tetrahedral coordinates’: on a reference regular tetra-
hedron of hight ¥, we choose one face for each party; the electoral result
(21,29, x3,24) is then identified with the point R located at distance z; of
party ¢’s face, for each i. The Snapshots then refer the electoral cells as “a
tiling composed of reqular tetrahedra and reqular octahedra”. As a matter of
fact, in the 4-party case, the cells are regular rhombic dodecahedra, tiling
the tridimensional space in a simple, well-known manner (the Voronoi tiling
of the face-centered cubic lattice Az [1, pp. 112, 459]), as figures 3 and 4
suggest for a 5-seat parliament. In figure 3 we represent the reference tetra-
hedron partly covered by rhombic dodecahedra; in figure 4 the tetahedron is
completely covered; if we cut the complex of figure 4 by the plane of one of
the faces of the tetrahedron, we obtain the honeycomb covering of that face,
as shown in figure 2.
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For p parties, the electoral cells turn out to be the Dirichlet-Voronoi cells
for the lattice A, (see, e.g., [1, 3]), so each cell is a convex polytope of
dimension p — 1. For a single cell we identify the cell’s faces and completely
describe its face lattice. Among other things, we determine the baricenter,
diagonals and axes of each face, and its group of automorphisms. All faces
of a given dimension are geometrically equal; in fact, each face of dimension
d arises from a d-unit-cube by a compression along a diagonal.

2. Electoral Cells and Voronoi Tilings

For concepts related to the theory of polytopes we send the reader to
[4]. The following notation will be used throughout: p is a fixed positive
integer; (-|-) is the usual inner product in R?; for S C {1, ...,p}, |S| denotes
the cardinality of S, and S° is the complementary set {1,...,p}\S. In the
sequel, as in the ‘Electoral Cell Problem’, a = (a1,...,a,) denotes a p-tuple
of integers.

The set of all x in $Hy with nonnegative entries is a regular simplex S of
dimension p — 1. The facets of § are the simplices &5, := SN {x : 2, = 0}.
The distance of z € S to the facet ®, is called the k-th simplicial coordinate
of x in S. It is an easy exercise to show that this distance is 'z, where
a = 4/1 — 1/p. This shows that we may represent each such x by a point R
in the regular simplex a8 such that xy, is the k-th simplicial coordinate of R in
a8. This generalizes the Snapshots’ triangular and tetrahedral coordinates.

Moreover, this shows that the electoral cells as defined in the ‘Electoral Cell
Problem’, and the corresponding tiling of &, are homothetic (with factor «)
to their representations in simplicial coordinates in the simplex aS. So the
Cartesian and the simplicial representations are essentially the same. In the
sequel, we shall consider only the Cartesian setting.

Theorem 2.1. Let x be a real p-tuple of sum ¥. Then x belongs to the
electoral cell corresponding to a if and only if, for all i # j:

(a; — i) + (2 —a;) < 1. (1)

Proof. Assume x determines a. Clearly |z; — a;| < 1, for all ¢; this implies
(1) in case z; > a; or z; < a;. If z; < a; and z; > a;j, the remainders are
ri =1—a;+x; and r; = z; —a;; in this case we have r; > r;, i.e,, (1) holds,
because party ¢ was assigned an extra seat, and party j wasn’t.

Conversely, assume (1) holds. As = and a have the same sum, there exist
i and j such that x; < a; and x; > a;; therefore |z, — ar| < 1, for all £.
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Define: P* :={i:z; < ¢;} and P~ := {j:z; > a;}. The remainders are
ri=1+z;—a; forie Pt and r; =z; —a; for j € P~. So the sum of
all remainders is the cardinality of P*. As (1) implies r; > r; for all i € P*
and j € P~, the largest remainders method assigns one extra seat to each
party in P*, and no extra seat to the parties in P~. So x determines a. O

We shall work with the closure of the electoral cells. We get rid of parties
and deputies and define, for any integer p-tuple a, the a-cell, denoted €,, as
the set of all x such that:

‘r1_|_..._|_;1;p:a1_|_..._|_ap
(ai—xi)—i—(xj—aj)gl, for all i #j.

As €, is bounded and = = a satisfies (2) holds with strict inequalities, &, is
a convex polytope of dimension p — 1. Clearly, &, = a 4+ &, and the family
of a-cells contained in the hyperplane $)g is a lattice tiling of the hyperplane
9o, with prototile & [3, p. 756]. It is easy to check, using definition (2),
that this is the Dirichlet-Voronoi tiling determined by the lattice A,_; of all
integral points of $9 ([1, p. 459], [3, p.756]). So Hamilton’s method assigns,
to each result x of sum ¥, the integral point of sum ¥ which is closest to x
in the Euclidean metric (see [5, p.248]).

(2)

3. Remainders and Vertices of ¢

According to (2), z € & iff 1 +--- + 2, =0, and z; < 1 4 ;, for i # j.
We may characterize &, its relative interior and boundary, and its vertices
in a simple way, by means of remainders:

Theorem 3.1.
(a) Let x € RP have zero sum, and let s be the number of negative coor-

dinates of x. Then x € &, iff there exist real numbers, ri,...,r,, and a
permutation matriz P, such that 1 >r >2--- 21,20 and
Pz = (ry,r9,...,1p) — (1,...,1,0,...,0). (3)

S

This representation is uniquely determined by x.
(b) A point x of €y belongs to the relative boundary of € iff rs = rsi1.
(c) A point x of €y belongs to the relative interior of o iff rs > rsi1;
(d) A point x of & satisfies |vx| < 1—1/p, for all k;
(e) A point x of € is a verter of & iff x #0, and 11 =--- =1,.
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Proof. (a) is a reformulation of the last remainders method. We just
sketch the ‘only if’ part of the proof. For xz € &y, define r; := x; if x; > 0,
and rj := 1+ 2; if ; < 0. To get (3), reorder the z};’s in such a way that
the respective r;’s come out in nonincreasing order. The other details follow
from the inequalities z; < 1 + z;, and the uniqueness of (3) is obvious.

(b) We may assume that z is already reordered to match the right hand
side of (3). Let z lie in the relative boundary of &€p. This is equivalent to
r, = 1+ x, for some u,v. We then have z, > 0 and z, < 0; therefore
v<s<wu and r, = r,. This proves r; = r5,1. The converse follows by
reversing the argument.

(c) is a simple consequence of (b).

(d) Let us fix k. As —x € €, we may assume, without loss of generality,
that zr > 0. From z; > 1 — 1/p we get the following contradiction: from
xp < 14 x; we have x; > —1/p, for i # k, and so z has a positive sum.

(e) We assume that z coincides with the right hand side of (3). To prove
the ‘only if’ part, we show that z is not a vertex of €y, whenever (i) z = 0,
or (ii) two of the r; are distinct. Case (i) is obvious. In case (ii), there exists
t, 0 <t < p, such that r; > ;1. Define

wi=(—€...,—€n,...,1),
( : UNEN)
where € and 7 are positive and 1 = te/(p —t). Then w has zero sum. Now
define two perturbations of z, say: 2" := x +w, and 2~ := 2 — w. Let € be
small enough so that, for all i # j:
S <l4a].
Note that, in case x; = 14 x;, we have r; = rj; therefore: ¢,j <t, or¢,j > t;
this implies a:]+ = 14z and z; =1+z; . Conclusion: for such small positive
€, x and 2~ belong to €. Thus z is not a vertex of €.
Conversely, we show that the vectors

o= (5502) = (L, 1,0,...,0), (4)

s

zj<l+mz = [2f <l4+zf and =z

for 0 < s < p, are vertices of €y. Assume that, for a given w € RP, the
two vectors vy + w are in €. We have [v; £ w]; — [vs £ w]; < 1, for all i, j.
Looking at these inequalities in the cases 1 < s < j, we get Fw; < Fw;,
that is, w; = w;. So the coordinates of w are pairwise equal; as w has zero
sum, we must have w = 0. So w is a vertex. O
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The following lemma will be useful in computing dimensions.
Lemma 3.2. The p — 1 vertices defined in (4) are linearly independent.

Proof. Consider the (p — 1) x p matrix

1 1 1 ... 1 11
(] 1 2 2 2 ... 2 111
213 3 3 ... 3 |-|1111 ,
Vi P . . . .
p—1 p—1 p—-1 ... p-1 1111 1

Let M be the submatrix of the last p — 1 columns:

11 1 ... 1 1
1 2 2 2 ... 2 11
M==(3 3 3 ... 3 — |1 11
p—1 p-1 p—1 ... p-1 111...1

v~

L
If we multiply M, on the left, by the inverse of L, we obtain €, —I,_;, where
Q, denotes the (p — 1) x (p — 1) matrix with all entries equal to 1/p. As
Q, has eigenvalues 1 —1/p and 0, Q, — I, is nonsingular; therefore M is
nonsingular. This proves the lemma. O

We have seen that the vertices of €y are the vectors obtained by permu-
tations on the entries of the vy defined in (4). In other words, each proper,
nonempty subset S of {1,...,p} determines a vertex, denoted by U(S), given
by

s/p, ifigs,
where s denotes the cardinality of S. All vertices of €y are of this kind. To
this, we add the conventions U(@) = U({1,...,p}) := 0. We often simplify
the notation, using Us for V(S), and U, instead of V({t}) (the context
will make these notations clear). A straightforward calculation shows that
V(S U{t}) = V(S) + DV, in case t is not an element of S. From this, and
induction, we get the useful formula

Q}{ul ..... uk} = mul —I_ Tt + muk ) (6)

[Q?(S)]Z.:: { s/lp—1, ifies (5)
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where wuy, ..., u; are distinct indices. This implies (S¢) = —0(S), and for
any subsets S and T of {1,...,p},
BV(S)+V(T)=VSUT)+B(SNT). (7)

Theorem 3.3. &, is the orthogonal projection of the unit p-cube [0, 1]P into
the subspace 9o of all x of zero sum.

Proof. The projection onto $)g is given by

TAeeda g
p ) ) )

The vertices of [0, 1]” are the 2P p-tuples of 0’s and 1’s. If w is such a vertex,
it is easy to see that proj(w) = Ur, where T is the set of indices ¢ such
that w; = 0. As the projection of any polytope is the convex hull of the
projections of its vertices, and any vertex of &y is the image of a vertex of
[0, 1], the proposition is true. O

4. The Faces of ¢

In this section, we completely determine the lattice of faces of €y, and the
scheme of € in the sense of [4, p.90]. For i # j, let H;; be the hyperplane of
equation x; = 1+ z;. € has dimension p — 1 and is bounded by the p®> —p
hyperplanes H;;. Any set of the form

F = Hiljl N---N %itjt N <& (8)
is, therefore, a face of €y, and any face of €y may be represented in this way.

Clearly, F' is a proper face iff t > 1. Given a proper face (8) we define the
sets:

proj(z) = = —

I:={iy,...,i:} e J:={j1,---,Jt}-
Theorem 4.1. The vertex Vg lies in F iff SO 1 and SNJ = 3.

Proof. Let us be given Ug € F, i € I and j € J; then U5 € H;;, that is,
[Vs]; = 1+ [Vs]; so we have [Ts], > 0 and [Vs]; < 0; by definition (5)
we must have i € S and j &€ S. The proof that i € S,j € S implies Ug € F
is also easy. a

So the face (8) depends only on the sets I and J and not on the manner
the iy, j» are arranged in pairs. Accordingly, from now on we shall denote
the face (8) by §(I,.J), or Frs, and the symbols §, I and J will consistently
have the above meanings.
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Theorem 4.2. Let I and J be nonempty subsets of {1,...,p}.
(a) The face §1y is nonempty iff I and J are disjoint;
(b) The face F1y has dimension d:=p—|I| —|J|;
(c) The face Fr; has 2% vertices;
(d) Given nonempty subsets, I'.J" C {1,...,p} we have Fpy C Fr; if
and only if: I' D1 and J' D J;

(e) (I,J)w §1s is a one-to-one mapping from the set of of pairs (I,.J),
with I1,.J nonempty disjoint subsets of {1,...,p}, onto the set of proper,
nonempty faces of €y;

(f) The number of faces of €y of dimension d, with 0 < d <p—1, is

o (-

€ has a total of 37 —2PTL + 1 of proper, nonempty faces.

Proof. (a) is an immediate consequence of Theorem 4.1.

(b) z lies in the face (8) iff x satisfies the identities z;, = 1 + z;,, for
v =1,...,t, and the inequalities z; < 14 x; for all 7, j. Therefore, all x;’s
[all z;,’s] are pairwise equal. This means that §;; is contained in the flat
determined by the following |I| + |J| equations:

Ti = Ty tawel, 1w
Tj = Ty j,UEJ, j?év (9)
xi1:1+$]'1

ZZI‘Z:O

It is easy to check that the equations (9) are linearly independent. Therefore,
the flat (9) has dimension d := p — |I| — |J|, and so the dimension of §;
is < d. To prove that §;; has dimension > d, it is enough to find d + 1
affinely independent vertices of §;;. To do so we may assume, without loss
of generality, that I = {1,...,s} e J={s+d+1,s+d+2,...,p}; with
this reduction, the d + 1 vertices vs, Vsy1, ..., Vs+d, as given in (4), all lie in
1. Finally, by Lemma 3.2, these vertices are linearly independent.

(c) is obvious from the previous results.

(d) may be obtained from the formula §;; N §xz = Sruk.sur, that the
reader may easily prove by checking that both sides of the identity have the
same vertices. The formula implies that Fpj; C §rs is equivalent to Fpp =
Srur,gugr; and the latter identity is equivalent to (I',J") = (TUI', JU.J'), as
you may prove using the dimension result (b).
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The rest of the proof is left to the reader. O

5. The form of a proper face

In this section we give some geometrical features of the proper faces of .
In particular we determine the ‘inner diagonals’ of a face, and then show that
any face may be obtained by a linear ‘compression’ applied to a unit cube of
appropriate dimension.

We have seen that the vertices of the face §; are the (I U K'), where K
is any subset of (1 U J)°.

Theorem 5.1. The face §ry is centrally symmetric, and its center of symme-
try is cry:== (V1 —Vy)/2. For each K C (IUJ), define K* :=(IUJ)\K.
Then Uy and Vg« are opposite vertices of §ry.

Proof. The unordered pairs {U(IUK), U(IUK*)} (for all K C (ITUJ)°)

form a disjoint partition of the set of vertices of F;;. Using formulas (6)-(7)
we obtain

V(IUK)+V(IUK")=20(I)+ V(K UK")
=20(I)—-V(IUJ)=0;—D,.
This shows that the segment
[B(ITUK), B(ITUK")] (10)

has ¢;; as mid point. So the theorem follows. a

The segment (10) is said to be an inner diagonal of the face §;;. With
some boring, straightforward calculations we may get an explicit value for
the length of an inner diagonal:

legth of (10) = || V(I U K) — V(I U K™)
= [[w() — B =+ = VA= (A= 2K,
where k is the cardinality of K, and d is the dimension of §;;. Therefore,

[B(I), B(J)] is the shortest inner diagonal and its length is /d(1 — d/p).

Theorem 5.2. A proper face §1; is a d-parallelotope. More explicitly, for
any K C (I UJ)¢, §rg —B(IUK) is the following d-parallelotope (recall
K*:=(IUJUK)):

Fry—B(TUK) =) "[0,0] - _[0,Ty]. (11)

te K* keK
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Proof. The proper face §;; has 2d facets, namely the following
S(TU{z}, ) e S, JU{z}), (12)

where z runs over (I U J)¢. Combining (7) with Theorem 4.1, if Ug is a
vertex of the latter facet in (12), then Vg + U, is a vertex of the former
facet, and all vertices of the latter are translates, by U,, of vertices of the
former. Moreover, each vertex of §; is a vertex of one of the facets (12). So,
each facet in (12) is a translate of the other (by +%2,), and §;; is the convex
hull of the union of these two facets. Therefore

§17 =81, JU{z}) + [0, v({z})] (13)
=3 U{z}J) = [0, 0({z})]- (14)

We now go by induction on d. For d = 0 the theorem is trivial. For a
positive d, one of the sets K, K* is nonempty. Assume K is nonempty, and
let z € K. By induction, we apply formula (11) with sets I, J, K replaced by
I'Uu{z}, J, K\{z}, respectively:

FIU{z}, )= BIUK) =Y [0,B]— > [0,3,]

teK* keK\{z}

Combining this identity with (14) gives (11). The case of nonempty K* is
similarly treated. O

We now single out with no proofs some simple consequences of the above
results. If a segment [a,b] is an edge of a polytope, we say that the two
p-tuples +(a — b) are the vectors along the edge [a, b].

Corollary 5.3. Let S and T be nonempty proper subsets of {1,...,p}.

(i) The segment [V, V] is an edge of € iff one of the sets S, T is obtained
from the other by removing one element.

(ii) The degree of a vertex Vg, i.e., the number of edges of &y emerging
from Vg, is either p or p — 1. It is p—1 iff S is a singleton or S° is a
singleton.

(iii) The vectors along the edges of a given face iy, are the vectors £,
for z€ (IUJ)". O

Given a nonzero D € R, and 6 € [0, 1], the #-compression along D is the
linear operator in R”, x — 2/, that transforms D in D' := 0D, and fixes
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all elements of the subspace orthogonal to D. In case § > 1 we call such
operator the -elongation along D. Clearly

@)

¥=z+(0-1) :
D2

Now we fix a proper face §;s, and consider the elongation with the following
parameters:

90 = 1/\/1—d/p and DO = Q]JC—QII.

This is an elongation along the shortest inner diagonal of Fr;, (U7, V|

Theorem 5.4. The 6y-elongation along the shortest inner diagonal of §rs
transforms §ry into a unit d-cube.

Proof. We have (0,|0.) = d,. — 1/p, (the Kronecker ‘delta’). Therefore
(BSIB(T) = [SNT|—|S]-T|/p.
From this general formula we get the image of i, by the #-elongation:

0y — 1)/d| D if TuJ

W, =W, + [(6o—1)/d] Dy, }wg
[(90—1)/(d—p)]D0, ifwelul.

More boring computation then yields, for w,z & I U J: (,/|0.") = b, .

Now, apply our elongation to both members of (11) with, say, K = &:

31/ —B(I) = Z [0,0/].

tgIUJ

As we have seen, the d vectors ;' form an orthonormal set. So the right
hand side of the last identity is a unit d-cube. O

Note that each face §;; may be elongated in many ways to be transformed
into a unit cube. In general, we may choose any face §rg containing §;; and
then elongate §rs along the shortest inner diagonal of §rg, with parameter
6 =1/+/1 — €/p, where € is the dimension of Frs. Then Frg transforms into
a unit e-cube; so all its faces, including §;s, are transformed into unit cubes
of appropriate dimensions.
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6. The Automorphisms of ¢,

An automorphism of € is a linear operator of the space $y that transforms
&o onto itself. It is easy to determine the group Aut €y of automorphisms of
€. For that purpose, we let S be the convex hull of the p vertices Uy, ...,0,
of € [cf. notation (5)-(6)], and denote by H the convex hull of SU (-S).
Note that, by Corollary 5.3, H is the convex hull of the vertices of &; of degree
p—1. As an automorphism of a polytope is a degree preserving mapping, we
have Aut ¢y C AutH. S is a regular simplex centered at the origin of $y. So
the automorphisms of S are the mappings of the kind $g — $Ho, z — =M,
where M is a p X p permutation matrix.

Lemma 6.1. The image of S under an automorphism of H is either S or
—S.

Proof. Let ¢ be an automorphism of H. For each vertex w of S, p(w) is
one of the 2p vertices £, ..., £%,. Let K be the set of the £ such that Uy
is a vertex of ¢[S]. Then the other vertices of p[S]| are the —U; for t ¢ K.
The sum of the vertices of S, and the sum of the vertices of ¢[S] are both 0;
therefore, >, - U = 0. So the face conv{; : k € K} of S is either empty
or it is S itself. The lemma follows. O

This lemma shows that Aut H = Aut SU[— AutS]. As & is invariant under
permutations of the RP’s coordinates and —&y = &, we obtain

Theorem 6.2. Aut€; = AutH = AutSU [— AutS]. 0

7. Examples in Low Dimensions

Case p = 3.
In this case, & is a regular hexagon in the plane x; + 22 + 23 = 0. S is an
equilateral triangle, and €y = H. Check figures 2 and 4.

figure 5
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Case p = 4.

The cell € is a regular rhombic dodecahedron. S and —S are regular
tetrahedra, and H is a cube; S, —S and H are depicted in figure 5. The
vertices of the cube are those of the dodecahedron of degree 3. The convex
hull of the vertices of degree 4 is an octahedron (see figure 6). Obviously, the
cube and the dodecahedron have the same automorphisms (Theorem 6.2).

figure 6 figure 7

8. Neighbouring Cells

In this section we briefly present some simple, expected facts on the rela-
tionship between €, and those cells €, that intersect €;. We just mention
the facts and leave the proofs as exercises. Here, @ = (ay,...,a,) denotes a
p-tuple of integer coordinates of sum 0.

(1) &, intersects € iff any coordinate of a is 0, 1 or —1.

(2) In that case, the intersection of €, with €y is the face §1; of €y, where
I'={i:a;=1} and J:={j: a; = —1}.

(3) So, the dimension of &, N &y is the number of zero entries of a.

(4) k1 is the intersection of € with a neighbouring cell iff |K| = |L|.

(5) The dimension of the intersection of two neighbour cells has the same
parity as p.

(6) The set §1; is a face of (\IIE‘\J\) distinct cells &,.

(7) The total number of cells €, whose intersection with €y has dimension
d is (?)(".F), where k denotes (p — d)/2.
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