Algebra and Combinatorics

 

Latest News
The web page of CMUC moved to http://cmuc.mat.uc.pt

 
   

Members

Seminars

Events

Publications

 
 

details

.: download

Author(s)
Eduardo Marques de Sá; João Eduardo Silveira Gouveia;

Title
Electoral Cells of Largest Remainders Method

Abstract
In an election process, p parties compete for S seats in a parliament. After votes are cast, the electoral result may be thought of as an element x in Rp. Given x, the so-called largest remainders method determines the number ai of seats party i gets in the parliament. The electoral cell determined by (a1,...,ap) is the closure of the set of all results x that determine ai seats for party i, 1<= i<= p. The electoral cells are convex polytopes and tile a hyperplane of Rp.

In this paper we give a description of the electoral cells. For a single cell we identify and classify the cell's faces, completely describe its face lattice, and determine its group of automorphisms. It turns out that each face of dimension d arises from a d-unit-cube by a co pression along a diagonal.

Preprint series
Pré-publicações do Departamento de Matemática da Universidade de Coimbra

Issue
03-12

Year
2003

 
     
 

CMUC
Apartado 3008,
3001 - 454 Coimbra, Portugal
T:+351 239 791 150
F:+351 239 793 069
cmuc@mat.uc.pt
-
developed by Flor de Utopia