
details
Title
Análise de sensibilidades de placa sujeita a obstáculo
Abstract We analyse the sensitivity of the solution of a nonlinear obstacle plate problem, with respect to small perturbations of the middle plane of the plate. This analysis, which generalizes the results for the linear case, is done by application of an abstract variational result, where the sensitivity of parameterized variational inequalities in Banach spaces, without uniqueness of solution, is quantified in terms of a generalized derivative, that is the protoderivative. We prove that the hypotheses required by this abstract sensitivity result are verified for the nonlinear obstacle plate problem. Namely, the constraint set defined by the obstacle is polyhedric and the mapping involved in the definition of the plate problem, considered as a function of the middle plane of the plate, is semidifferentiable. The verification of these two conditions enable to conclude that the sensitivity is characterized by the protoderivative of the solution mapping associated with the nonlinear obstacle plate problem, in terms of the solution of a variational inequality.
Speaker(s)
Carlos Leal, Universidade de Coimbra, Portugal
Date
January 19, 2001 Time
Room
Room 5.5

