Analysis of an economic stochastic differential game with non-market interactions for N players and its finite element approximation

Jens Vogelgesang**

Abstract

We consider the following systems of N-nonlinear parabolic equations with quadratic growth conditions

 $\partial_t \mathbf{u} - \Delta \mathbf{u} + \mathbf{F}(x, t, \mathbf{u}, \nabla \mathbf{u}) = \mathbf{H}(x, t, \mathbf{u}, \nabla \mathbf{u}) + \mathbf{G}(x, t)$

which correspond to a stochastic differential games with discount control. It is assumed that \mathbf{F} and \mathbf{H} have quadratic growth in $\nabla \mathbf{u}$. Moreover, \mathbf{F} satisfies some positiveness conditions, that is, $\mathbf{u} \cdot \mathbf{F}(x, t, \mathbf{u}, \nabla \mathbf{u}) \geq 0$ and its Jacobian $\mathbf{F}_{\mathbf{u}}$ is positive definite. In economy and social science the above models strategic situations in which decision makers cannot make binding agreements to cooperate. The solution \mathbf{u} of the system represent a Nash equilibrium point of the corresponding stochastic game. The function \mathbf{F} describes the influence of a player on its own discount factor and the Hamiltonian \mathbf{H} models non-market interaction and the utility function of each player. Recent analytical results are given. A fully discrete Galerkin approximation is proposed using C^0 -piecewise linear finite elements in space and a backward Euler time discretization. We present some numerical results. This is a joint work with Carsten Ebmeyer.

 $^{^{\}ast\ast}$ Institut für Angewandte Mathematik, Universität Bonn, D-53115 Bonn, Germany, vjens@unibonn.de