Shifted tableau crystals

Jake Levinson (SFU) joint with Maria Gillespie (CSU), Kevin Purbhoo (Waterloo)

> "in Lisbon" 7 December 2020

Ordinary and shifted tableaux

► Semistandard (skew) tableaux

		1	3	
2	2	4		:
3				

• geometry of Grassmannians, rep theory of GL_n and S_n , combinatorics of symmetric functions, jeu de taquin.

Shifted (skew) tableaux

• Geometry of odd orthogonal Grassmannians OG(2n + 1), representation theory of $\mathfrak{q}(n)$, projective S_n representations

Ordinary and shifted tableaux

► Semistandard (skew) tableaux

		1	3	
2	2	4		:
3				

• geometry of Grassmannians, rep theory of GL_n and S_n , combinatorics of symmetric functions, jeu de taquin.

Shifted (skew) tableaux

- Geometry of odd orthogonal Grassmannians OG(2n + 1), representation theory of $\mathfrak{q}(n)$, projective S_n representations
- Several variants! Schur P-functions ≠ Schur Q-functions

Ordinary and shifted tableaux

► Semistandard (skew) tableaux

		1	3	
2	2	4		:
3				

• geometry of Grassmannians, rep theory of GL_n and S_n , combinatorics of symmetric functions, jeu de taquin.

Shifted (skew) tableaux

- Geometry of odd orthogonal Grassmannians OG(2n + 1), representation theory of $\mathfrak{q}(n)$, projective S_n representations
- Several variants! Schur P-functions \neq Schur Q-functions (For us: southwesternmost i/i' is always unprimed.)

From geometry to tableaux...

 Remarkable story connecting geometry of curves, Schubert calculus, tableaux

[Shapiro-Shapiro, Eisenbud-Harris, Mukhin-Tarasov-Varchenko, Purbhoo, Speyer, Sottile, Halacheva-Kamnitzer-Rybnikov-Weekes, Osserman, White, Chan-López Martín-Pflueger-Teixidor i Bigas, Gillespie-L, **Rodrigues**...]

From geometry to tableaux...

 Remarkable story connecting geometry of curves, Schubert calculus, tableaux

From geometry to tableaux...

- Remarkable story connecting geometry of curves, Schubert calculus, tableaux
- Geometry story:
 - ▶ Define curves in Gr(k, n), OG(n, 2n + 1) by intersecting certain Schubert varieties

Monodromy via (shifted) tableaux and tableau algorithms.

► Monodromy known in type A [Gillespie-L '16] — by jeu de taquin and crystal operators!

Monodromy known in type A [Gillespie-L '16] – by jeu de taquin and crystal operators!

```
In type B, rep theory \neq geometry.

(q(n) crystals: Grantcharov–Jung–Kang–Kashiwara–Kim '13, Assaf–Oguz '18, Gillespie–Hawkes–Poh–Schilling '18)
```

Monodromy known in type A [Gillespie-L '16] – by jeu de taquin and 'crystal' operators!

```
In type B, rep theory \neq geometry.

(q(n) crystals: Grantcharov–Jung–Kang–Kashiwara–Kim '13, Assaf–Oguz '18, Gillespie–Hawkes–Poh–Schilling '18)
```

Monodromy known in type A [Gillespie-L '16] – by jeu de taquin and 'crystal' operators!

```
In type B, rep theory ≠ geometry.

(q(n) crystals: Grantcharov–Jung–Kang–Kashiwara–Kim '13, Assaf–Oguz '18, Gillespie–Hawkes–Poh–Schilling '18)
```

Key property: the monodromy operator is coplactic: it commutes with all (shifted) jeu de taquin slides.

Monodromy known in type A [Gillespie-L '16] – by jeu de taquin and 'crystal' operators!

```
In type B, rep theory \neq geometry.

(q(n) crystals: Grantcharov–Jung–Kang–Kashiwara–Kim '13, Assaf–Oguz '18, Gillespie–Hawkes–Poh–Schilling '18)
```

 Key property: the monodromy operator is coplactic: it commutes with all (shifted) jeu de taquin slides.

Question

What are the natural coplactic operators on shifted tableaux?

Any coplactic operation is determined by its action on **rectified** tableaux.

Any coplactic operation is determined by its action on **rectified** tableaux.

Tableaux of shape $\lambda = (5,3)$, organized by weight:

1	1	1	1	1
9	2	2		

Any coplactic operation is determined by its action on **rectified** tableaux.

Tableaux of shape $\lambda = (5,3)$, organized by weight:

Any coplactic operation is determined by its action on **rectified** tableaux.

Tableaux of shape $\lambda = (5,3)$, organized by weight:

Action on general tableaux:

Any coplactic operation is determined by its action on **rectified** tableaux.

Tableaux of shape $\lambda = (5,3)$, organized by weight:

Action on general tableaux:

$$\emptyset \stackrel{\bullet}{\longleftarrow} \begin{array}{c|c} \hline 1 & 1 & 1 & 1 \\ \hline 1 & 2 & 2 & 2 \\ \hline \end{array} \stackrel{F_1}{\longleftarrow} \begin{array}{c|c} \hline 1 & 1 & 1 & 2 \\ \hline 1 & 2 & 2 & 2 \\ \hline \end{array} \stackrel{F_1}{\longleftarrow} \begin{array}{c|c} \hline 1 & 1 & 1 & 2 \\ \hline E_1 & 2 & 2 & 2 & 2 \\ \hline \end{array} \stackrel{F_1}{\longleftarrow} \emptyset$$

 E_i, F_i : treat i, i+1 as 1, 2.

General action of F_1 is nontrivial to describe directly.

Works by a **bracketing rule**:

Result:

Uniquely determined JDT-invariant graph structure on tableaux.

Shifted tableaux of rectified shape $\sigma=(4,1)$, by weight:

Shifted tableaux of rectified shape $\sigma = (4,1)$, by weight:

Shifted tableaux of rectified shape $\sigma = (4,1)$, by weight:

Shifted tableaux of rectified shape $\sigma = (4,1)$, by weight:

Shifted tableaux of rectified shape $\sigma = (4,1)$, by weight:

$$\begin{array}{c|c}
F_1 & F_1 \\
\hline
\hline
 & F_1 \\
\hline
 & F_1$$

By coplacticity: unique operators $\xrightarrow{F_1}$, $\xrightarrow{F_1'}$ on all skew shifted tableaux.

Analog of a bracketing rule: F_i, F'_i

Theorem (Gillespie-L-Purbhoo '17)

There are direct definitions of F_i , F'_i , depending only on w = word(T), via first-quadrant lattice walks.

- A 'doubled' bracketing rule!
- Allows monodromy computations in OG(n, 2n + 1) [GLP19]

Analog of a bracketing rule: F_i, F'_i

Theorem (Gillespie-L-Purbhoo '17)

There are direct definitions of F_i , F'_i , depending only on w = word(T), via first-quadrant lattice walks.

- A 'doubled' bracketing rule!
- Allows monodromy computations in OG(n, 2n + 1) [GLP19]

First-quadrant lattice walks

The **lattice walk** for w = 211'12'22'1'1' ends at the point (3, 2).

'Cancellation' away from the axes.

Example: the crystals $\mathcal{B}(\square, 3)$ and $\mathcal{B}(\square, 3)$

Features of shifted tableau crystals

Key features:

- Unique highest-weight element (type B LR tableau)
- Weighted characters are skew Schur Q-functions
- Connected components of $\mathrm{ShST}(\lambda/\mu, n)$ recover **skew LR rule** for Schur Q-functions,

$$\begin{split} \mathrm{ShST}(\lambda/\mu,n) &\,\cong\,\, \bigsqcup_{\nu} \mathrm{ShST}(\nu,n)^{f_{\nu,\mu}^{\lambda}} \\ Q_{\lambda/\mu} &\,=\,\, \sum_{\nu} f_{\nu,\mu}^{\lambda} Q_{\nu}. \end{split}$$

 Cactus group action by local reversals (Rodrigues 2020)

Characterizing the graph structure

- F_i , F'_i : the **unique** lowering operators on shifted Q-tableaux, coplactic for shifted JDT.
- Induced graph structure is intrinsic. What is this structure?

Characterizing the graph structure

- F_i, F'_i : the **unique** lowering operators on shifted Q-tableaux, coplactic for shifted JDT.
- Induced graph structure is intrinsic. What is this structure?

Theorem (Stembridge '03)

In type A, crystals are characterized by a short list of local graph-theoretic axioms (relating F_i , F_j).

Similar statement for shifted tableau crystals:

Theorem (Gillespie-L '18)

Shifted tableau crystals are characterized by a short list of local graph-theoretic axioms.

Four operators: $F_i, F'_i, F_{i+1}, F'_{i+1} \rightsquigarrow 6$ pairs.

Theorem (Stembridge '03)

Local axioms in type A:

Theorem (Stembridge '03)

Local axioms in type A:

Some 'basic' rules (vertex weights, . . .)

Theorem (Stembridge '03)

Local axioms in type A:

- Some 'basic' rules (vertex weights, . . .)
- $ightharpoonup F_i, F_{i+1}$ relation:

Theorem (Stembridge '03)

Local axioms in type A:

- ▶ Some 'basic' rules (vertex weights, . . .)
- $ightharpoonup F_i, F_{i+1}$ relation:

Theorem (Gillespie-L '18)

Shifted Q-tableau crystals are characterized by a short list of local axioms (relating F_i , F'_i , F_j , F'_j).

Theorem (Gillespie-L '18)

Shifted Q-tableau crystals are characterized by a short list of local axioms (relating F_i , F'_i , F_j , F'_j).

Four operators. Other than $\{F_i, F_{i+1}\}$: they mostly commute.

Theorem (Gillespie-L '18)

Shifted Q-tableau crystals are characterized by a short list of local axioms (relating F_i , F'_i , F_j , F'_j).

Four operators. Other than $\{F_i, F_{i+1}\}$: they mostly commute.

$$\{F_1',F_1\},\{F_1',F_2'\},\{F_1',F_2\},\{F_1,F_2'\},\{F_2',F_2\}$$

(Certain specific boundary-case exceptions.)

Theorem (Gillespie-L '18)

Shifted Q-tableau crystals are characterized by a short list of local axioms (relating F_i , F'_i , F_j , F'_j).

Four operators. Other than $\{F_i, F_{i+1}\}$: they mostly commute.

$$\{F_1', F_1\}, \{F_1', F_2'\}, \{F_1', F_2\}, \{F_1, F_2'\}, \{F_2', F_2\}$$

(Certain specific boundary-case exceptions.)

IDEA: Primed operator F'_i mostly "doubles" the crystal.

The interesting pair: $\{F_1, F_2\}$. Four possibilities:

"Doubled" axioms from type A.

Using the axioms

Theorem (Gillespie-L '18)

Let G be a graph satisfying the local axioms for shifted tableau crystals. Then each connected component is $\cong ShST(\sigma, n)$ for some σ .

Gives method to prove positivity of a generating function:

▶ Introduce operators F_i satisfying the axioms.

Using the axioms

Theorem (Gillespie-L '18)

Let G be a graph satisfying the local axioms for shifted tableau crystals. Then each connected component is $\cong ShST(\sigma, n)$ for some σ .

Gives method to prove positivity of a generating function:

- ▶ Introduce operators F_i satisfying the axioms.
- Done in type A for affine Stanley symmetric functions [Morse-Schilling '15]
- Q: Can this be done for Schur Q positivity?

Using the axioms

Theorem (Gillespie-L '18)

Let G be a graph satisfying the local axioms for shifted tableau crystals. Then each connected component is $\cong ShST(\sigma, n)$ for some σ .

Gives method to prove positivity of a generating function:

- ▶ Introduce operators F_i satisfying the axioms.
- Done in type A for affine Stanley symmetric functions [Morse-Schilling '15]
- Q: Can this be done for Schur Q positivity?

Q: Can we use the axioms to compare:

- Shifted tableau crystals and q(n) crystals? (Schur-P and Schur-Q duality?)
- Shifted tableau crystals and type A crystals by "flattening"?

Thank you!