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» Shifted (skew) tableaux

» Several variants! Schur P-functions # Schur Q-functions

(For us: southwesternmost i/i’ is always unprimed.)



From geometry to tableaux...

» Remarkable story connecting geometry of curves, Schubert
calculus, tableaux
[Shapiro—Shapiro, Eisenbud—Harris, Mukhin—Tarasov—Varchenko,
Purbhoo, Speyer, Sottile, Halacheva—Kamnitzer—Rybnikov—\Weekes,
Osserman, White, Chan—-Lépez Martin—Pflueger—Teixidor i Bigas,
Gillespie-L, Rodrigues...]
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From geometry to tableaux...

» Remarkable story connecting geometry of curves, Schubert
calculus, tableaux

» Geometry story:
» Define curves in Gr(k, n), OG(n,2n + 1) by intersecting
certain Schubert varieties
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» Monodromy via (shifted) tableaux and tableau algorithms.
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» Monodromy known in type A [Gillespie-L '16] — by jeu de
taquin and ‘crystal’ operators!

In type B, rep theory # geometry.
(q(n) crystals: Grantcharov—Jung—Kang—Kashiwara—Kim '13, Assaf-Oguz
'18, Gillespie-Hawkes—Poh—Schilling '18)

» Key property: the monodromy operator is coplactic: it
commutes with all (shifted) jeu de taquin slides.

What are the natural coplactic operators on shifted tableaux?




Natural operations on tableaux — type A

Any coplactic operation is determined by its action on rectified
tableaux.



Natural operations on tableaux — type A

Any coplactic operation is determined by its action on rectified
tableaux.

Tableaux of shape A = (5, 3), organized by weight:

—_
—_
—_

1[1] 1[1[1][1]2] 1

—_
—_

2[2]




Natural operations on tableaux — type A

Any coplactic operation is determined by its action on rectified
tableaux.

Tableaux of shape A = (5, 3), organized by weight:

—_
—_
—_
—_

D=

F1 Fl F;
)< 1] & [LL1]1]2] 4 |1 2[2] T

£ [212]2 Y, 21212 Y, 212




Natural operations on tableaux — type A

Any coplactic operation is determined by its action on rectified
tableaux.

Tableaux of shape A = (5, 3), organized by weight:

F; F;
T[] A8 [afafafilz] A4 [A(iil2]2] #i
() -—— = = —0
B [2]2]2 Y, 21212 Y, 2122
Action on general tableaux:
F; F;
T I T i S I T 2 it i N N A P
@E|1222 - [1]2]2]2 - [2]2]2]2 0
1 E1 E1




Natural operations on tableaux — type A

Any coplactic operation is determined by its action on rectified
tableaux.

Tableaux of shape A = (5, 3), organized by weight:

F; F;
T[] A8 [afafafilz] A4 [A(iil2]2] #i
() -—— = = —0
B [2]2]2 Y, 21212 Y, 2122
Action on general tableaux:
F; F;
T I T i S I T 2 it i N N A P
@E|1222 - [1]2]2]2 - [2]2]2]2 0
1 E1 E1

E;, Fi: treat i,i+1 as 1,2.
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Type A crystals

1]2] 2[2]
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Fi=—Fh=—
(Fi : changes an i ~~ i+1)

Uniquely determined JDT-invariant graph structure on tableaux.
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Type B: Two operations on shifted Q-tableaux

Shifted tableaux of rectified shape o = (4,1), by weight:
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Type B: Two operations on shifted Q-tableaux
Shifted tableaux of rectified shape o = (4, 1), by weight:
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Type B: Two operations on shifted Q-tableaux

Shifted tableaux of rectified shape o = (4, 1), by weight:
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Analog of a bracketing rule: F;, F!

Theorem (Gillespie-L-Purbhoo '17)

There are direct definitions of Fj, F!, depending only on
w = word(T), via first-quadrant lattice walks.
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» Allows monodromy computations in OG(n,2n + 1) [GLP19]
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Theorem (Gillespie-L-Purbhoo '17)

There are direct definitions of Fj, F!, depending only on
w = word(T), via first-quadrant lattice walks.

» A ‘doubled’ bracketing rule!
» Allows monodromy computations in OG(n,2n + 1) [GLP19]

U[1]2]
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First-quadrant lattice walks

| 2 ‘
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The lattice walk for w = 211'12’22'1’1’ ends at the point (3,2).

‘Cancellation’ away from the axes.
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Example: the crystals B(-H, 3) and B( 17, 3)
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Legend: L, >,



Features of shifted tableau crystals

Key features:

\ » Unique highest-weight element
// i \\\\\
AT \1\1\2\ ST (type B LR tableau)
2] (3]

ru =N 2 » Weighted characters are skew
\ N Schur Q-functions

» Connected components of
ShST(\/p, n) recover skew LR
rule for Schur Q-functions,

ShST(A/p,n) = | |ShST(v, n)fw

Qup = ZfVi\qu"

» Cactus group action by local
reversals (Rodrigues 2020)
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Characterizing the graph structure

» F;, F,-’: the unique lowering operators on shifted Q-tableaux,
coplactic for shifted JDT.

» Induced graph structure is intrinsic. What is this structure?

Theorem (Stembridge '03)

In type A, crystals are characterized by a short list of local
graph-theoretic axioms (relating F;, F;).

Similar statement for shifted tableau crystals:

Theorem (Gillespie-L '18)

Shifted tableau crystals are characterized by a short list of local
graph-theoretic axioms.

Four operators: Fi, F{, Fiy1, F{, 1 ~ 6 pairs.
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Characterizing the graph structure — type A
Theorem (Stembridge '03)

Local axioms in type A:
» Some ‘basic’ rules (vertex weights, ... )

» F;, Fiy1 relation:

/\ implies Q OR g

(depending on local data).
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Axioms for shifted tableau crystals

Theorem (Gillespie-L '18)

Shifted Q-tableau crystals are characterized by a short list of local

axioms (relating F;, F!, F;, FJ’)

Four operators. Other than {F;, F;11}: they mostly commute.
{FivF1}7{FivF2,}7{F{7F2}7{F17F2/}7{F£7F2}

IDEA: Primed operator F/ mostly “doubles” the crystal.

(Certain specific boundary-case exceptions.)



Axioms for shifted tableau crystals

The interesting pair: {Fy, F»}. Four possibilities:

N -
N -

W

Q
=

(depending on local data).

“Doubled” axioms from type A.



Using the axioms
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» Introduce operators F; satisfying the axioms.
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Using the axioms

Theorem (Gillespie-L '18)

Let G be a graph satisfying the local axioms for shifted tableau
crystals. Then each connected component is =~ ShST (o, n) for
some o.
Gives method to prove positivity of a generating function:

» Introduce operators F; satisfying the axioms.

» Done in type A for affine Stanley symmetric functions

[Morse-Schilling "15]

» Q: Can this be done for Schur Q positivity?

Q: Can we use the axioms to compare:

» Shifted tableau crystals and q(n) crystals?
(Schur-P and Schur-Q duality?)

» Shifted tableau crystals and type A crystals by “flattening”?



Thank you!



