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Plactic

Young tableau:
» Rows non-decreasing left to right.

1 4
213 » Columns increasing top to bottom.
5 » Longer columns to the left.
Standard Young tableau:
. » contains each symbol in {1,...,n}

(for some n) exactly once.
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Plactic

Schensted’s algorithm inserts a
4 <3 symbol a € N into a tableau 7"

1. If appending «a to the end of the
top row gives a tableau, this is the
result.

2. Otherwise, let b the leftmost
symbol of the top row such that
b > a. Replace b with a (‘bumping
b).

3. Recursively insert b into the
tableau formed by all rows below
the topmost.

Result is denoted T < a.
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Plactic
Let A, ={1<2<...<n}.
From aword w = wy -+ - w,, € AX:

> compute a tableau Ppjac(w) by
inserting wy, ..., wy.
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Qplac(21513264)

Let A, ={1<2<...<n}.
Fromaword w = wy - --w,, € A}:

> compute a tableau Ppjac(w) by
inserting wy, ..., wy.

» compute a standard tableau
Qplac(w) (the recording tableau)
by labelling in order the new
squares.
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Let A, ={1<2<...<n}.
Fromaword w = wy - --w,, € A}:

> compute a tableau Ppjac(w) by
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Plactic

Let A, ={1<2<...<n}.
Fromaword w = wy - --w,, € A}:

3 > compute a tableau Ppjac(w) by
inserting wy, ..., wy.
» compute a standard tableau
13 v Qplac(w) (the recording tableau)
4 by labelling in order the new
9 squares.

w &N (Ppiac(w), Qpiac(w)) Robinson—Schensted correspondence



Plactic

Column reading of a tableau:
1\2]s] » From leftmost column to
2|3 4 rightmost.
é » In each column, from bottom to
top.
Pplac(5216314233) Result is a tableau word.
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Pplac(521631423)

14/7]9]

Qplac (521 63142 3)

Column reading of a tableau:

» From leftmost column to
rightmost.
» In each column, from bottom to
top.
Result is a tableau word.
Recording tableau where columns are

filled from top to bottom with
consecutive numbers.



Plactic

Pplac(521631423)

14/7]9]

Qplac (521 63142 3)

Column reading of a tableau:

» From leftmost column to
rightmost.

» In each column, from bottom to
top.
Result is a tableau word.

Recording tableau where columns are
filled from top to bottom with
consecutive numbers.

By holding P and varying Q over all
standard tableau of the same shape,
we get all words w such that
Pplac(w) = P. (Hook length formula)



Plactic monoid
Theorem (Knuth 1970)

The relation =, defined by © =pjac v <= Pplac(u) = Ppiac(v) is a
congruence on A.

The factor monoid plac,, = A’/=,1.c is the Plactic monoid of rank n.
plac,, is presented by ( A, | Rpuac ), Where

Rplac = {(acb,cab) a<b< c}
U { (bac,bca) :a <b<c}.

» Tableaux form a cross-section.
» Indexes representations of the special linear Lie algebra sl,, 1.

» Analogous plactic monoids corresponding to other Lie algebras
sp,,, §02,41, 502, and the exceptional Lie algebra Gs.

» Each of these monoids has a notion of tableaux and an insertion
algorithm.



Crystal graph for plac,,

€ 11 111
ll ll
1 12 . 21 112 . ) 2 )
b N kAN AN AN
22 113 122 212 1 1
lQ x )A ll )A 1 2 1|2 1
3 23 32 123 222 213 312 231 132

333 321
In purely combinatorial, monoid-theoretic terms:

> A crystal graph is a labelled directed graph, with vertices being
words in the free monoid A.

» |somorphisms between connected components correspond to
the congruence =y, On A;.

> ‘Isomorphism’ means ‘weight-preserving labelled digraph
isomorphism’
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Building the crystal graph
The crystal graph for plac,, is defined by:
> vertex set A”

> edges w —i fi(w) and & (w) —“— w, whenever defined.
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Building the crystal graph
The crystal graph for plac,, is defined by:
> vertex set A”
> edges w —i f,(w) and é(w) —'+ w , whenever defined.
The operators ¢; and f; are mutually inverse when defined:
> if ¢;(w) is defined, then w = f;é;(w);
> if f;(w) is defined, then w = ¢&; f;(w).

The definition of the (partial) Kashiwara operators ¢; and f; starts
from the crystal basis for plac,,:

1—L 392 43 3, n=2, gnl,

Define on A;; \ A, by using the bracketing rule: compute é;(w) and

fa(w);
1223123311223
++ -

&2 (w) = 1223123311222 fo(w) = 1233123311223
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Properties of crystals

For the plactic monoid:
» Kashiwara operators ¢; and f; raise and lower weights.
> ¢ and f; preserve shapes of tableaux.

» Every connected component contains a unique highest-weight
word.

> |somorphisms of connected components correspond t0 =jac.
» Connected components are indexed by recording tableaux.

Question
Do the hypoplactic and the sylvester monoids admit a ‘quasi-crystal
structure’ with these features? (Mutatis mutandis)



Quasi-Kashiwara operators

1—L 392 43 3, n=2, g.on-l,

Define &, f; on A, by a—i— fi(a) and &(a) —i>a.

Forw € A* \ A, compute é;(w) and f;(w):
» Replace each symbol a of w with
+ ifa=1, — ifa=1i+1, e ifaé¢ {i,i+1}.
> |f there is a subword —+, then é;(w) and f;(w) are undefined.

> ¢;(w) is obtained by applying é; to the symbol that was replaced
by the leftmost — (if present).

> fi(w) is obtained by applying f; to the symbol that was replaced
by the rightmost + (if present).

Let w = 231311. Computing é,(w) and f(w):

231311
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Quasi-Kashiwara operators

1—L 392 43 3, n=2, g.on-l,

Define &, f; on A, by a—i— fi(a) and &(a) —i>a.

Forw € A* \ A, compute é;(w) and f;(w):
» Replace each symbol a of w with
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é¢1(w) and fi(w) are undefined.
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Crystals and quasi-crystals

2111 1211
3111 2112 1311 1212
3112 4111 2113 2122 1312 1411 1213 2212
3122 4112 3113 2114 21\153 1322 1412 1313 1214 2213
e
3222 4122 4113 3123 3114 2ili/’>3 2124 2322 1422 1413 1323 1314 2313 2214
L INDN DN
42l/22 41153 32%3 31%4 4114 3%3 2il?34 2422 1423 2323 1324 1414 3313 2314
" b NN LS e
42\153 4115’)3 32%4 42[154 351333 3il;34 2144 241153 1411533 2?\1154 1411/24 3323 3314 2414
'
4233 4224 4134 3234 3144 2433 241154 14111/34 3324 3414
/ /| / '
4?:12/33 42\%4 3%1214 4il:14 3411'/33 2411:714 3;%4 441114
4334 4244 3434 4424

4344 4434



Crystals and quasi-crystals

2111 1211
3111 "")2112___4 1311 e 1212
3112 4111 2113 9122 1312 1411 1213 ""}2112
3122 4112 3113\i114"" A 21i3\‘ 1112%11\2\{ 1:11<‘2£4__u "'*‘22£3\N
322\712)711 3123\;9,1114\N 21f<;f4 232}7413/14'1“ 132§3l4\ 2313 2214
4222 4123 #3993 3124 4114 3133 2134 51423 792323 1324 1414 3313 2314
L1 L/ A NN /0 L5 NN
4223 4133 3224 4124 3233 3134 2144 2423 1433 2324 1424 3323 3314 2414
/ i ,,,,, vy e, / l ,,,,, g
4233 4224 4134 3234 3144 2433 2424 1434 3324 3414
N 1 Y I A
4333 4234 3244 4144 3433 2434 3424 4414
4334 4244 3434 4424
A S



Standardization and quasi-Kashiwara operators
To standardize 241341:
241341
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Standardization and quasi-Kashiwara operators
To standardize 241341:

241341
214111314219
351462

So std(241341) = 351462.

2241341 2 2341341
++ - }

std std
21224111314212 21314111324515
3461572 3461572

» So std o é; = std.



Infinite—rank crystals

I'(hypo, 1212) I'(hypo, 2121) I'(hypo, 1221)
1212 2121 1221
2 2 2
1213 2131 1231
3K 3K 3K
1214 1313 2141 3131 1241 1331
DN RPN PN
1215 1314 1323 2151 3141 3231 1251 1341 1332

AR IR TN TR

» v and v lie in the same connected component iff std(u) = std(v).



Some ‘plactic-like’ monoids

Crystals
Young tableaux _ 11
Symmetric ‘ ‘ Plactic
functions 1]1/2]3 monoid 12—513
2|4
22—»23—>33
3]
) Quasi-ribbon
Quasi- tableaux Hypoplactic )
symmetric : ‘
. 11 monoid
functions
2121313
4]
Binary search
trees
Loday—Ronco e Sylvester o)
9 9 monoid .

Hopf algebra




Sylvester

Binary search tree (BST):
> labelled rooted binary tree;
» the label of each node is

> greater than or equal to the label of
every node in its left subtree, and

> strictly less than the label of every
node in its right subtree.




Sylvester

Binary search tree (BST):
> labelled rooted binary tree;
» the label of each node is

> greater than or equal to the label of
every node in its left subtree, and

> strictly less than the label of every
node in its right subtree.

Decreasing tree:
> labelled rooted binary tree;

> the label of each node is greater than the
label of its children.




Sylvester

e 92 To insert x into a BST T

e » Add z as a leaf node in the unique
o position that yields a BST.

(1) ) () () Result is denoted T + a.
@



Sylvester

e To insert = into a BST T':

o e » Add z as a leaf node in the unique
position that yields a BST.

(1) (3) (5) (6) Result is denoted T + a.
@ @



Sylvester

From a word w,, - - - wy € A%:
» start with an empty BST;
> insert wy, then wa, ..., finally w,;
» call the resulting BST Py, (w).

Pyy1y (61455314)
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» call the resulting BST Py, (w).

» compute a decreasing tree by labelling in
order the nodes where symbols are
inserted
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Sylvester

From a word w,, - - - wy € A%:
(4 2 > start with an empty BST;
o e > insert wy, then wa, ..., finally w,;

» call the resulting BST Py, (w).
OONONO
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» compute a decreasing tree by labelling in
order the nodes where symbols are
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Sylvester

From a word w,, - - - wy € A%:
e » start with an empty BST;
o e > insert wy, then wa, ..., finally w,;

» call the resulting BST Py, (w).
ORONONO
2 W

Poy1v(261455314)
9 » compute a decreasing tree by labelling in
e @ order the nodes where symbols are
inserted

Quylv (261455314)



Sylvester

From a word w,, - - - wy € A%:
e » start with an empty BST;
o e > insert wy, then wa, ..., finally w,;
» call the resulting BST Py, (w).

9 » compute a decreasing tree by labelling in
e @ order the nodes where symbols are
inserted

9 0 e e This process can be reversed.
@ @



Sylvester

From a word w,, - - - wy € A%:
(0«2 > start with an empty BST;
o e > insert wy, then wa, ..., finally w,;
» call the resulting BST Py, (w).

» compute a decreasing tree by labelling in
order the nodes where symbols are
inserted

This process can be reversed.




Sylvester

(4«2

w (2) (Psylv (’UJ), QS)’IV (w))

From a word w,, - - - wy € A%:
» start with an empty BST;
> insert wy, then wa, ..., finally w,;
» call the resulting BST Py, (w).

» compute a decreasing tree by labelling in
order the nodes where symbols are
inserted

This process can be reversed.

Robinson—Schensted correspondence



Sylvester monoid

Define =gy1v 0N A* by u =gy1v v <= Pgyiv(u) = Payiv (v).

Theorem (Hivert et al. 2005)
The relation =1, is a congruence on A4;;.

The factor monoid sylv,, = A}/=,1, is the sylvester monoid of rank n

sylv,, is presented by
<An ‘ Rsylv >7

where
Reylv = { (cavb,acvd) :a <b < c,v € A };

» Binary search trees form a cross-section.
» hypo,, is a quotient of sylv,,.



Abstract shape

An abstract shape is a map o : A* — S satisfying:

S1 The map o is invariant under standardization, i.e., for all u € A*,
o(u) = o(std(u)).

S2 Forallu,v € A* and a € A, if wt(u) = wt(v) and o(u) = o(v),
then o(ua) = o(va) and o(au) = o(av).
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S1 The map o is invariant under standardization, i.e., for all u € A*,
o(u) = o(std(u)).
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then o(ua) = o(va) and o(au) = o(av).

A quasi-crystal isomorphism 6 : T'(hypo, u) — I'(hypo,v) is

shape-preserving if
o(u) =o(v).

Define a relation ~, on A* by:

u~yv < 30 :T(hypo,u) — I'(hypo,v), 8(u) = v, s.-p. isom..



Abstract shape

An abstract shape is a map o : A* — S satisfying:

S1 The map o is invariant under standardization, i.e., for all u € A*,
o(u) = o(std(u)).

S2 Forallu,v € A* and a € A, if wt(u) = wt(v) and o(u) = o(v),
then o(ua) = o(va) and o(au) = o(av).

A quasi-crystal isomorphism 6 : T'(hypo, u) — I'(hypo,v) is

shape-preserving if
o(u) =o(v).

Define a relation ~, on A* by:

u~yv < 30 :T(hypo,u) — I'(hypo,v), 8(u) = v, s.-p. isom..

Proposition
The relation ~,, is a congruence on the free monoid A*.



Sylvester monoid

> S - the set of unlabelled binary trees;
» development of notion of abstract shape - o4yiv;
> ogyiv(u) = Sh(DecT(std(u) 1)) for all u € A*.



Sylvester monoid

> S - the set of unlabelled binary trees;

» development of notion of abstract shape - o4yiv;

> ogyiv(u) = Sh(DecT(std(u) 1)) for all u € A*.
[(sylv, 1221) [(sylv,2121) [(sylv, 1212)

2121

2131

SN G




Counting

» The number of right strict binary search trees of shape 7' labelled
by symbols from A, is

(ML) ife<n
0 if £ > n,

where ¢ is the number of parts of the right interval partition.



Counting

» The number of right strict binary search trees of shape 7' labelled
by symbols from A, is

{(’”*f'ﬂ) fe<n

0 if £ > n,

where ¢ is the number of parts of the right interval partition.

» The number of distinct factorizations of a right strict binary
search tree of shape T, into elements that correspond to right
strict binary search trees of shapes U and V, is dependent only
of T, U, and V/, and not on the content of the element.



Relationship of plac,,, hypo,, sylv,, and friends

n’

Half-plactic
monoid baxt,,
half,, /
plac,, sylv,, stal,,
hypo,, taig,,
Taiga monoid Stalactite monoid Baxter monoid
taig,, stal,, baxt,,

BSTs with multiplicities Stalactite tableaux  Pairs of twin binary search trees

4

@) ) !
@)

‘I\D N DN
‘w‘w w



(Quasi-)-Kashiwara operators & shapes

&% %
e & D,
T Y,
L S %
F & %, %
& & 7
<o . 0
e ? O"q& .
& 05,5,
© o
& G
lv
lac 5y
P baxt

hypo



T|H|E
E|N|D|



