Crystals & Trees

António Malheiro (joint work with Alan Cain)

CMA/FCT Universidade Nova de Lisboa

November 30, 2020

Acknowledgement: This work was supported by CMA within the projects UIDB/00297/2020 PTDC/MAT-PUR/31174/2017 financed by 'Fundação para a Ciência e a Tecnologia'

Some 'plactic-like' monoids

1	3	5	7
2	4	8	
6			

Young tableau:

- Rows non-decreasing left to right.
- Columns increasing top to bottom.
- Longer columns to the left.

Standard Young tableau:

contains each symbol in {1,...,n}
(for some n) exactly once.

Schensted's algorithm inserts a symbol $a \in \mathbb{N}$ into a tableau *T*:

- 1. If appending *a* to the end of the top row gives a tableau, this is the result.
- Otherwise, let *b* the leftmost symbol of the top row such that *b* > *a*. Replace *b* with *a* ('bumping *b*').
- 3. Recursively insert *b* into the tableau formed by all rows below the topmost.

Schensted's algorithm inserts a symbol $a \in \mathbb{N}$ into a tableau *T*:

- 1. If appending *a* to the end of the top row gives a tableau, this is the result.
- Otherwise, let *b* the leftmost symbol of the top row such that *b* > *a*. Replace *b* with *a* ('bumping *b*').
- 3. Recursively insert *b* into the tableau formed by all rows below the topmost.

Schensted's algorithm inserts a symbol $a \in \mathbb{N}$ into a tableau *T*:

- 1. If appending *a* to the end of the top row gives a tableau, this is the result.
- Otherwise, let *b* the leftmost symbol of the top row such that *b* > *a*. Replace *b* with *a* ('bumping *b*').
- 3. Recursively insert *b* into the tableau formed by all rows below the topmost.

1	1	2	3
2	3	4	
5	6		

Schensted's algorithm inserts a symbol $a \in \mathbb{N}$ into a tableau *T*:

- 1. If appending *a* to the end of the top row gives a tableau, this is the result.
- Otherwise, let *b* the leftmost symbol of the top row such that *b* > *a*. Replace *b* with *a* ('bumping *b*').
- 3. Recursively insert *b* into the tableau formed by all rows below the topmost.

1	1	2	3
2	3	4	
5	6		

Schensted's algorithm inserts a symbol $a \in \mathbb{N}$ into a tableau *T*:

- 1. If appending *a* to the end of the top row gives a tableau, this is the result.
- Otherwise, let *b* the leftmost symbol of the top row such that *b* > *a*. Replace *b* with *a* ('bumping *b*').
- 3. Recursively insert *b* into the tableau formed by all rows below the topmost.

Result is denoted $T \leftarrow a$.

Schensted's algorithm inserts a symbol $a \in \mathbb{N}$ into a tableau *T*:

- 1. If appending *a* to the end of the top row gives a tableau, this is the result.
- Otherwise, let *b* the leftmost symbol of the top row such that *b* > *a*. Replace *b* with *a* ('bumping *b*').
- 3. Recursively insert *b* into the tableau formed by all rows below the topmost.

Result is denoted $T \leftarrow a$.

Schensted's algorithm inserts a symbol $a \in \mathbb{N}$ into a tableau *T*:

- 1. If appending *a* to the end of the top row gives a tableau, this is the result.
- Otherwise, let *b* the leftmost symbol of the top row such that *b* > *a*. Replace *b* with *a* ('bumping *b*').
- 3. Recursively insert *b* into the tableau formed by all rows below the topmost.

Result is denoted $T \leftarrow a$.

Schensted's algorithm inserts a symbol $a \in \mathbb{N}$ into a tableau *T*:

- 1. If appending *a* to the end of the top row gives a tableau, this is the result.
- Otherwise, let *b* the leftmost symbol of the top row such that *b* > *a*. Replace *b* with *a* ('bumping *b*').
- 3. Recursively insert *b* into the tableau formed by all rows below the topmost.

Result is denoted $T \leftarrow a$.

Schensted's algorithm inserts a symbol $a \in \mathbb{N}$ into a tableau *T*:

- 1. If appending *a* to the end of the top row gives a tableau, this is the result.
- Otherwise, let *b* the leftmost symbol of the top row such that *b* > *a*. Replace *b* with *a* ('bumping *b*').
- 3. Recursively insert *b* into the tableau formed by all rows below the topmost.

Result is denoted $T \leftarrow a$.

 $P_{\rm plac}(21513264)$

Let $\mathcal{A}_n = \{1 < 2 < \ldots < n\}$. From a word $w = w_1 \cdots w_n \in \mathcal{A}_n^*$:

• compute a tableau $P_{\text{plac}}(w)$ by inserting w_1, \ldots, w_n .

 $P_{\rm plac}(21513264)$

1	3	5	7
2	4	8	
6			

 $Q_{\rm plac}(21513264)$

Let $\mathcal{A}_n = \{1 < 2 < \ldots < n\}$. From a word $w = w_1 \cdots w_n \in \mathcal{A}_n^*$:

▶ compute a tableau P_{plac}(w) by inserting w₁,..., w_n.

$$P_{plac}(21513264) \leftarrow 3$$

1	3	5	7
2	4	8	
6			

 $Q_{\rm plac}(21513264)$

Let $\mathcal{A}_n = \{1 < 2 < \ldots < n\}$. From a word $w = w_1 \cdots w_n \in \mathcal{A}_n^*$:

• compute a tableau $P_{\text{plac}}(w)$ by inserting w_1, \ldots, w_n .

1	1	2	3
2	3	4	
5	6		

 $P_{\rm plac}(215132643)$

1	3	5	7
2	4	8	
6	9		

 $Q_{\rm plac}(215132643)$

Let $\mathcal{A}_n = \{1 < 2 < \ldots < n\}$. From a word $w = w_1 \cdots w_n \in \mathcal{A}_n^*$:

▶ compute a tableau P_{plac}(w) by inserting w₁,..., w_n.

1	૧	5	7
-	0	0	
2	4	8	
6	9		

Let $\mathcal{A}_n = \{1 < 2 < \ldots < n\}$. From a word $w = w_1 \cdots w_n \in \mathcal{A}_n^*$:

▶ compute a tableau P_{plac}(w) by inserting w₁,..., w_n.

Let $\mathcal{A}_n = \{1 < 2 < \ldots < n\}$. From a word $w = w_1 \cdots w_n \in \mathcal{A}_n^*$:

▶ compute a tableau P_{plac}(w) by inserting w₁,..., w_n.

1	3	5	7
2	4	8	
6	9		

compute a standard tableau
Q_{plac}(w) (the recording tableau)
by labelling in order the new
squares.

$$w \stackrel{\text{1:1}}{\longleftrightarrow} (\mathbf{P}_{\text{plac}}(w), \mathbf{Q}_{\text{plac}}(w))$$

Robinson–Schensted correspondence

 $P_{\rm plac}(521\,631\,42\,3)$

Column reading of a tableau:

- From leftmost column to rightmost.
- In each column, from bottom to top.

Result is a tableau word.

 $P_{\rm plac}(521\,631\,42\,3)$

1	4	7	9
2	5	8	
3	6		

 $Q_{plac}(521\,631\,42\,3)$

Column reading of a tableau:

- From leftmost column to rightmost.
- In each column, from bottom to top.

Result is a tableau word.

Recording tableau where columns are filled from top to bottom with consecutive numbers.

 $P_{\rm plac}(521\,631\,42\,3)$

1	4	7	9
2	5	8	
3	6		

 $Q_{plac}(521\,631\,42\,3)$

Column reading of a tableau:

- From leftmost column to rightmost.
- In each column, from bottom to top.

Result is a tableau word.

Recording tableau where columns are filled from top to bottom with consecutive numbers.

By holding P and varying Q over all standard tableau of the same shape, we get all words w such that $P_{plac}(w) = P$. (Hook length formula)

Plactic monoid

Theorem (Knuth 1970)

The relation \equiv_{plac} defined by $u \equiv_{\text{plac}} v \iff P_{\text{plac}}(u) = P_{\text{plac}}(v)$ is a congruence on \mathcal{A}_n^* .

The factor monoid $plac_n = A_n^* / \equiv_{plac}$ is the Plactic monoid of rank n.

 plac_n is presented by $\left< \mathcal{A}_n \left| \mathcal{R}_{\operatorname{plac}} \right> \right>$, where

$$\mathcal{R}_{\text{plac}} = \left\{ (acb, cab) : a \le b < c \right\} \\ \cup \left\{ (bac, bca) : a < b \le c \right\}.$$

Tableaux form a cross-section.

- ▶ Indexes representations of the special linear Lie algebra \mathfrak{sl}_{n+1} .
- ► Analogous plactic monoids corresponding to other Lie algebras sp_n, so_{2n+1}, so_{2n}, and the exceptional Lie algebra G₂.
- Each of these monoids has a notion of tableaux and an insertion algorithm.

Crystal graph for plac_n

In purely combinatorial, monoid-theoretic terms:

- A crystal graph is a labelled directed graph, with vertices being words in the free monoid A^{*}_n.
- Isomorphisms between connected components correspond to the congruence ≡_{plac} on A^{*}_n.
- 'Isomorphism' means 'weight-preserving labelled digraph isomorphism'

Crystal graph for $plac_n$

In purely combinatorial, monoid-theoretic terms:

- A crystal graph is a labelled directed graph, with vertices being words in the free monoid A^{*}_n.
- Isomorphisms between connected components correspond to the congruence ≡_{plac} on A^{*}_n.
- 'Isomorphism' means 'weight-preserving labelled digraph isomorphism'

The crystal graph for $plac_n$ is defined by:

- \blacktriangleright vertex set \mathcal{A}_n^*
- \blacktriangleright edges $w \xrightarrow{i} \tilde{f}_i(w)$ and $\tilde{e}_i(w) \xrightarrow{i} w$, whenever defined.

The crystal graph for $plac_n$ is defined by:

• vertex set \mathcal{A}_n^*

 \blacktriangleright edges $w \stackrel{i}{\longrightarrow} \tilde{f}_i(w)$ and $\tilde{e}_i(w) \stackrel{i}{\longrightarrow} w$, whenever defined.

The operators \tilde{e}_i and \tilde{f}_i are mutually inverse when defined:

- if $\tilde{e}_i(w)$ is defined, then $w = \tilde{f}_i \tilde{e}_i(w)$;
- if $\tilde{f}_i(w)$ is defined, then $w = \tilde{e}_i \tilde{f}_i(w)$.

The crystal graph for $plac_n$ is defined by:

• vertex set \mathcal{A}_n^*

 \blacktriangleright edges $w \stackrel{i}{\longrightarrow} \tilde{f}_i(w)$ and $\tilde{e}_i(w) \stackrel{i}{\longrightarrow} w$, whenever defined.

The operators \tilde{e}_i and \tilde{f}_i are mutually inverse when defined:

• if
$$\tilde{e}_i(w)$$
 is defined, then $w = \tilde{f}_i \tilde{e}_i(w)$;

• if $\tilde{f}_i(w)$ is defined, then $w = \tilde{e}_i \tilde{f}_i(w)$.

The definition of the (partial) Kashiwara operators \tilde{e}_i and \tilde{f}_i starts from the crystal basis for plac_n:

$$1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \dots \xrightarrow{n-2} n-1 \xrightarrow{n-1} n$$

The crystal graph for $plac_n$ is defined by:

• vertex set \mathcal{A}_n^*

 \blacktriangleright edges $w \stackrel{i}{\longrightarrow} \tilde{f}_i(w)$ and $\tilde{e}_i(w) \stackrel{i}{\longrightarrow} w$, whenever defined.

The operators \tilde{e}_i and \tilde{f}_i are mutually inverse when defined:

• if
$$\tilde{e}_i(w)$$
 is defined, then $w = \tilde{f}_i \tilde{e}_i(w)$;

• if $\tilde{f}_i(w)$ is defined, then $w = \tilde{e}_i \tilde{f}_i(w)$.

The definition of the (partial) Kashiwara operators \tilde{e}_i and \tilde{f}_i starts from the crystal basis for plac_n:

$$1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \dots \xrightarrow{n-2} n-1 \xrightarrow{n-1} n$$

Define on $\mathcal{A}_n^* \setminus \mathcal{A}_n$ by using the bracketing rule: compute $\tilde{e}_2(w)$ and $\tilde{f}_2(w)$;

 $1\ 2\ 2\ 3\ 1\ 2\ 3\ 3\ 1\ 1\ 2\ 2\ 3$

The crystal graph for $plac_n$ is defined by:

• vertex set \mathcal{A}_n^*

 \blacktriangleright edges $w \stackrel{i}{\longrightarrow} \tilde{f}_i(w)$ and $\tilde{e}_i(w) \stackrel{i}{\longrightarrow} w$, whenever defined.

The operators \tilde{e}_i and \tilde{f}_i are mutually inverse when defined:

• if
$$\tilde{e}_i(w)$$
 is defined, then $w = \tilde{f}_i \tilde{e}_i(w)$;

• if $\tilde{f}_i(w)$ is defined, then $w = \tilde{e}_i \tilde{f}_i(w)$.

The definition of the (partial) Kashiwara operators \tilde{e}_i and \tilde{f}_i starts from the crystal basis for plac_n:

$$1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \dots \xrightarrow{n-2} n-1 \xrightarrow{n-1} n$$

$$\begin{array}{c}1&2&2&3&1&2&3&3&1&1&2&2&3\\ &++-&+--&&++-\end{array}$$

The crystal graph for $plac_n$ is defined by:

• vertex set \mathcal{A}_n^*

 \blacktriangleright edges $w \stackrel{i}{\longrightarrow} \tilde{f}_i(w)$ and $\tilde{e}_i(w) \stackrel{i}{\longrightarrow} w$, whenever defined.

The operators \tilde{e}_i and \tilde{f}_i are mutually inverse when defined:

• if
$$\tilde{e}_i(w)$$
 is defined, then $w = \tilde{f}_i \tilde{e}_i(w)$;

• if $\tilde{f}_i(w)$ is defined, then $w = \tilde{e}_i \tilde{f}_i(w)$.

The definition of the (partial) Kashiwara operators \tilde{e}_i and \tilde{f}_i starts from the crystal basis for plac_n:

$$1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \dots \xrightarrow{n-2} n-1 \xrightarrow{n-1} n$$

The crystal graph for $plac_n$ is defined by:

• vertex set \mathcal{A}_n^*

 \blacktriangleright edges $w \stackrel{i}{\longrightarrow} \tilde{f}_i(w)$ and $\tilde{e}_i(w) \stackrel{i}{\longrightarrow} w$, whenever defined.

The operators \tilde{e}_i and \tilde{f}_i are mutually inverse when defined:

• if
$$\tilde{e}_i(w)$$
 is defined, then $w = \tilde{f}_i \tilde{e}_i(w)$;

• if $\tilde{f}_i(w)$ is defined, then $w = \tilde{e}_i \tilde{f}_i(w)$.

The definition of the (partial) Kashiwara operators \tilde{e}_i and \tilde{f}_i starts from the crystal basis for plac_n:

$$1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \dots \xrightarrow{n-2} n-1 \xrightarrow{n-1} n$$

$$\begin{array}{c}1&2&2&3&1&2&3&3&1&1&2&2&3\\&++&&-\\\end{array}$$

The crystal graph for $plac_n$ is defined by:

• vertex set \mathcal{A}_n^*

 \blacktriangleright edges $w \stackrel{i}{\longrightarrow} \tilde{f}_i(w)$ and $\tilde{e}_i(w) \stackrel{i}{\longrightarrow} w$, whenever defined.

The operators \tilde{e}_i and \tilde{f}_i are mutually inverse when defined:

• if
$$\tilde{e}_i(w)$$
 is defined, then $w = \tilde{f}_i \tilde{e}_i(w)$;

• if $\tilde{f}_i(w)$ is defined, then $w = \tilde{e}_i \tilde{f}_i(w)$.

The definition of the (partial) Kashiwara operators \tilde{e}_i and \tilde{f}_i starts from the crystal basis for plac_n:

$$1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \dots \xrightarrow{n-2} n-1 \xrightarrow{n-1} n$$

$$\begin{array}{c} 1\ 2\ 2\ 3\ 1\ 2\ 3\ 3\ 1\ 1\ 2\ 2\ 3\\ ++ & -\\ \tilde{e}_2(w) = 1223123311222 \qquad \qquad \tilde{f}_2(w) = 1233123311223 \end{array}$$

Some isomorphic components of the graph for $plac_3$

Some 'plactic-like' monoids

Properties of crystals

For the plactic monoid:

- ► Kashiwara operators \tilde{e}_i and \tilde{f}_i raise and lower weights.
- \tilde{e}_i and \tilde{f}_i preserve shapes of tableaux.
- Every connected component contains a unique highest-weight word.
- ► Isomorphisms of connected components correspond to $\equiv_{\rm plac}$.
- Connected components are indexed by recording tableaux.

Question

Do the hypoplactic and the sylvester monoids admit a 'quasi-crystal structure' with these features? (Mutatis mutandis)

$$1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \dots \xrightarrow{n-2} n-1 \xrightarrow{n-1} n$$

Define $\ddot{e}_i, \, \ddot{f}_i \text{ on } \mathcal{A}_n \text{ by } a \stackrel{i}{\longrightarrow} \ddot{f}_i(a) \text{ and } \ddot{e}_i(a) \stackrel{i}{\longrightarrow} a$.

For $w \in \mathcal{A}_n^* \setminus \mathcal{A}_n$, compute $\ddot{e}_i(w)$ and $\ddot{f}_i(w)$:

Replace each symbol a of w with

+ if a = i, - if a = i + 1, ε if $a \notin \{i, i + 1\}$.

- ▶ If there is a subword -+, then $\ddot{e}_i(w)$ and $\ddot{f}_i(w)$ are undefined.
- ▶ *ë_i(w)* is obtained by applying *ë_i* to the symbol that was replaced by the leftmost – (if present).
- ▶ $\ddot{f}_i(w)$ is obtained by applying \ddot{f}_i to the symbol that was replaced by the rightmost + (if present).

Let w = 231311. Computing $\ddot{e}_2(w)$ and $\ddot{f}_2(w)$:

 $2\;3\;1\;3\;1\;1$

$$1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \dots \xrightarrow{n-2} n-1 \xrightarrow{n-1} n$$

Define $\ddot{e}_i, \, \ddot{f}_i \text{ on } \mathcal{A}_n \text{ by } a \stackrel{i}{\longrightarrow} \ddot{f}_i(a) \text{ and } \ddot{e}_i(a) \stackrel{i}{\longrightarrow} a$.

For $w \in \mathcal{A}_n^* \setminus \mathcal{A}_n$, compute $\ddot{e}_i(w)$ and $\ddot{f}_i(w)$:

Replace each symbol a of w with

+ if a = i, - if a = i + 1, ε if $a \notin \{i, i + 1\}$.

- ▶ If there is a subword -+, then $\ddot{e}_i(w)$ and $\ddot{f}_i(w)$ are undefined.
- ▶ *ë_i(w)* is obtained by applying *ë_i* to the symbol that was replaced by the leftmost – (if present).
- ▶ $\ddot{f}_i(w)$ is obtained by applying \ddot{f}_i to the symbol that was replaced by the rightmost + (if present).

Let w = 231311. Computing $\ddot{e}_2(w)$ and $\ddot{f}_2(w)$:

 $2\ 3\ 1\ 3\ 1\ 1$ +- -

 $1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \dots \xrightarrow{n-2} n-1 \xrightarrow{n-1} n$

Define $\ddot{e}_i,\,\ddot{f}_i$ on \mathcal{A}_n by $a \stackrel{i}{\longrightarrow} \ddot{f}_i(a)$ and $\ddot{e}_i(a) \stackrel{i}{\longrightarrow} a$.

For $w \in \mathcal{A}_n^* \setminus \mathcal{A}_n$, compute $\ddot{e}_i(w)$ and $\ddot{f}_i(w)$:

Replace each symbol a of w with

 $+ \quad \text{if } a=i, \qquad - \quad \text{if } a=i+1, \qquad \varepsilon \quad \text{if } a\notin \{i,i+1\}.$

- ▶ If there is a subword -+, then $\ddot{e}_i(w)$ and $\ddot{f}_i(w)$ are undefined.
- ▶ *ë_i(w)* is obtained by applying *ë_i* to the symbol that was replaced by the leftmost – (if present).
- ▶ $\ddot{f}_i(w)$ is obtained by applying \ddot{f}_i to the symbol that was replaced by the rightmost + (if present).

Let w = 231311. Computing $\ddot{e}_2(w)$ and $\ddot{f}_2(w)$:

$$2\ 3\ 1\ 3\ 1\ 1$$

+- -

 $\ddot{e}_2(w) = 221311$ $\ddot{f}_2(w) = 331311$

$$1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \dots \xrightarrow{n-2} n-1 \xrightarrow{n-1} n$$

Define $\ddot{e}_i, \, \ddot{f}_i \text{ on } \mathcal{A}_n \text{ by } a \stackrel{i}{\longrightarrow} \ddot{f}_i(a) \text{ and } \ddot{e}_i(a) \stackrel{i}{\longrightarrow} a$.

For $w \in \mathcal{A}_n^* \setminus \mathcal{A}_n$, compute $\ddot{e}_i(w)$ and $\ddot{f}_i(w)$:

Replace each symbol a of w with

+ if a = i, - if a = i + 1, ε if $a \notin \{i, i + 1\}$.

- ▶ If there is a subword -+, then $\ddot{e}_i(w)$ and $\ddot{f}_i(w)$ are undefined.
- ▶ *ë_i(w)* is obtained by applying *ë_i* to the symbol that was replaced by the leftmost – (if present).
- ▶ $\ddot{f}_i(w)$ is obtained by applying \ddot{f}_i to the symbol that was replaced by the rightmost + (if present).

Let w = 231311. Computing $\ddot{e}_1(w)$ and $\ddot{f}_1(w)$:

 $2\;3\;1\;3\;1\;1$

$$1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \dots \xrightarrow{n-2} n-1 \xrightarrow{n-1} n$$

Define $\ddot{e}_i, \, \ddot{f}_i \text{ on } \mathcal{A}_n \text{ by } a \stackrel{i}{\longrightarrow} \ddot{f}_i(a) \text{ and } \ddot{e}_i(a) \stackrel{i}{\longrightarrow} a$.

For $w \in \mathcal{A}_n^* \setminus \mathcal{A}_n$, compute $\ddot{e}_i(w)$ and $\ddot{f}_i(w)$:

Replace each symbol a of w with

+ if a = i, - if a = i + 1, ε if $a \notin \{i, i + 1\}$.

- ▶ If there is a subword -+, then $\ddot{e}_i(w)$ and $\ddot{f}_i(w)$ are undefined.
- ▶ *ë_i(w)* is obtained by applying *ë_i* to the symbol that was replaced by the leftmost – (if present).
- ▶ $\ddot{f}_i(w)$ is obtained by applying \ddot{f}_i to the symbol that was replaced by the rightmost + (if present).

Let w = 231311. Computing $\ddot{e}_1(w)$ and $\ddot{f}_1(w)$:

 $2\ 3\ 1\ 3\ 1\ 1$ - + ++

 $1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \dots \xrightarrow{n-2} n-1 \xrightarrow{n-1} n$

Define $\ddot{e}_i,\,\ddot{f}_i$ on \mathcal{A}_n by $a \stackrel{i}{\longrightarrow} \ddot{f}_i(a)$ and $\ddot{e}_i(a) \stackrel{i}{\longrightarrow} a$.

For $w \in \mathcal{A}_n^* \setminus \mathcal{A}_n$, compute $\ddot{e}_i(w)$ and $\ddot{f}_i(w)$:

Replace each symbol a of w with

 $+ \quad \text{if } a=i, \qquad - \quad \text{if } a=i+1, \qquad \varepsilon \quad \text{if } a\notin \{i,i+1\}.$

- ▶ If there is a subword -+, then $\ddot{e}_i(w)$ and $\ddot{f}_i(w)$ are undefined.
- ▶ *ë_i(w)* is obtained by applying *ë_i* to the symbol that was replaced by the leftmost – (if present).
- ▶ $\ddot{f}_i(w)$ is obtained by applying \ddot{f}_i to the symbol that was replaced by the rightmost + (if present).

Let w = 231311. Computing $\ddot{e}_1(w)$ and $\ddot{f}_1(w)$:

 $2\ 3\ 1\ 3\ 1\ 1$ - + ++

 $\ddot{e}_1(w)$ and $\ddot{f}_1(w)$ are undefined.

Crystals and quasi-crystals

Crystals and quasi-crystals

To standardize 241341:

 $2\ 4\ 1\ 3\ 4\ 1$

To standardize 241341:

To standardize 241341:

To standardize 241341:

So std(241341) = 351462.

To standardize 241341:

So std(241341) = 351462. $2 \ 2 \ 4 \ 1 \ 3 \ 4 \ 1$ $2 \rightarrow 2 \ 3 \ 4 \ 1 \ 3 \ 4 \ 1$ ++ - $2 \rightarrow 2 \ 3 \ 4 \ 1 \ 3 \ 4 \ 1$ \downarrow std \downarrow std \downarrow std $2_{1}2_{2}4_{1}1_{3}4_{2}1_{2}$ $2_{1}3_{1}4_{1}1_{3}2_{4}2_{1}2_{2}$ $3 \ 4 \ 6 \ 1 \ 5 \ 7 \ 2 \qquad 3 \ 4 \ 6 \ 1 \ 5 \ 7 \ 2$

To standardize 241341:

So std(241341) = 351462. $2 \ 3 \ 4 \ 1 \ 3 \ 4 \ 1$ 2 2 4 1 3 4 1 $\mathbf{2}$ ++std std $2_12_24_11_13_14_21_2$ $2_13_14_11_13_24_21_2$ $3\ 4\ 6\ 1\ 5\ 7\ 2$ $3\ 4\ 6\ 1\ 5\ 7\ 2$

▶ So std $\circ \ddot{e}_i$ = std.

Infinite-rank crystals

• u and v lie in the same connected component iff std(u) = std(v).

Some 'plactic-like' monoids

Binary search tree (BST):

- labelled rooted binary tree;
- the label of each node is
 - greater than or equal to the label of every node in its left subtree, and
 - strictly less than the label of every node in its right subtree.

Binary search tree (BST):

- labelled rooted binary tree;
- the label of each node is
 - greater than or equal to the label of every node in its left subtree, and
 - strictly less than the label of every node in its right subtree.

Decreasing tree:

- labelled rooted binary tree;
- the label of each node is greater than the label of its children.

To insert x into a BST T:

Add x as a leaf node in the unique position that yields a BST.

Result is denoted $T \leftarrow a$.

To insert x into a BST T:

Add x as a leaf node in the unique position that yields a BST.

Result is denoted $T \leftarrow a$.

From a word $w_n \cdots w_1 \in \mathcal{A}_n^*$:

- start with an empty BST;
- insert w_1 , then w_2 , ..., finally w_n ;
- call the resulting BST $P_{sylv}(w)$.

From a word $w_n \cdots w_1 \in \mathcal{A}_n^*$:

- start with an empty BST;
- insert w_1 , then w_2 , ..., finally w_n ;
- call the resulting BST $P_{sylv}(w)$.

 compute a decreasing tree by labelling in order the nodes where symbols are inserted

 $P_{\rm sylv}(61455314) \leftarrow 2$

9 3 7 5 2 4 $Q_{svlv}(261455314)$ From a word $w_n \cdots w_1 \in \mathcal{A}_n^*$:

- start with an empty BST;
- insert w_1 , then w_2 , ..., finally w_n ;
- call the resulting BST $P_{sylv}(w)$.

 compute a decreasing tree by labelling in order the nodes where symbols are inserted

 $P_{\rm sylv}(261455314)$

From a word $w_n \cdots w_1 \in \mathcal{A}_n^*$:

- start with an empty BST;
- insert w_1 , then w_2 , ..., finally w_n ;
- call the resulting BST $P_{sylv}(w)$.

 compute a decreasing tree by labelling in order the nodes where symbols are inserted

From a word $w_n \cdots w_1 \in \mathcal{A}_n^*$:

- start with an empty BST;
- insert w_1 , then w_2 , ..., finally w_n ;
- call the resulting BST $P_{sylv}(w)$.

 compute a decreasing tree by labelling in order the nodes where symbols are inserted

This process can be reversed.

From a word $w_n \cdots w_1 \in \mathcal{A}_n^*$:

- start with an empty BST;
- insert w_1 , then w_2 , ..., finally w_n ;
- call the resulting BST $P_{sylv}(w)$.

 compute a decreasing tree by labelling in order the nodes where symbols are inserted

This process can be reversed.

9

6

5

2

8

7

3

From a word $w_n \cdots w_1 \in \mathcal{A}_n^*$:

- start with an empty BST;
- insert w_1 , then w_2 , ..., finally w_n ;
- call the resulting BST $P_{sylv}(w)$.

 compute a decreasing tree by labelling in order the nodes where symbols are inserted

This process can be reversed.

 $w \stackrel{\text{1:1}}{\longleftrightarrow} (P_{sylv}(w), Q_{sylv}(w))$ Robinson–Schensted correspondence

Sylvester monoid

$$\mathsf{Define} \equiv_{\mathrm{sylv}} \mathsf{on} \ A^* \ \mathsf{by} \ u \equiv_{\mathrm{sylv}} v \iff \mathrm{P}_{\mathrm{sylv}}(u) = \mathrm{P}_{\mathrm{sylv}}(v).$$

Theorem (Hivert et al. 2005)

The relation \equiv_{sylv} is a congruence on \mathcal{A}_n^* .

The factor monoid $\operatorname{sylv}_n = \mathcal{A}_n^* / \equiv_{\operatorname{sylv}}$ is the sylvester monoid of rank n

 $sylv_n$ is presented by

$$\langle \mathcal{A}_n | \mathcal{R}_{sylv} \rangle,$$

where

$$\mathcal{R}_{sylv} = \left\{ (cavb, acvb) : a \le b < c, v \in \mathcal{A}_n^* \right\};$$

- Binary search trees form a cross-section.
- hypo_n is a quotient of $sylv_n$.

Abstract shape

An abstract shape is a map $\sigma : \mathcal{A}^* \to S$ satisfying:

- S1 The map σ is invariant under standardization, i.e., for all $u \in A^*$, $\sigma(u) = \sigma(\operatorname{std}(u))$.
- S2 For all $u, v \in \mathcal{A}^*$ and $a \in \mathcal{A}$, if wt(u) = wt(v) and $\sigma(u) = \sigma(v)$, then $\sigma(ua) = \sigma(va)$ and $\sigma(au) = \sigma(av)$.
Abstract shape

An abstract shape is a map $\sigma : \mathcal{A}^* \to S$ satisfying:

- S1 The map σ is invariant under standardization, i.e., for all $u \in A^*$, $\sigma(u) = \sigma(\operatorname{std}(u))$.
- S2 For all $u, v \in \mathcal{A}^*$ and $a \in \mathcal{A}$, if wt(u) = wt(v) and $\sigma(u) = \sigma(v)$, then $\sigma(ua) = \sigma(va)$ and $\sigma(au) = \sigma(av)$.

A quasi-crystal isomorphism $\theta: \Gamma(\mathrm{hypo}, u) \to \Gamma(\mathrm{hypo}, v)$ is shape-preserving if

$$\sigma(u) = \sigma(v).$$

Define a relation \sim_{σ} on \mathcal{A}^* by:

 $u \sim_{\sigma} v \quad \Leftrightarrow \exists \ \theta : \Gamma(\mathrm{hypo}, u) \to \Gamma(\mathrm{hypo}, v), \ \theta(u) = v, \ \text{s.-p. isom.}.$

Abstract shape

An abstract shape is a map $\sigma : \mathcal{A}^* \to S$ satisfying:

- S1 The map σ is invariant under standardization, i.e., for all $u \in A^*$, $\sigma(u) = \sigma(\operatorname{std}(u))$.
- S2 For all $u, v \in \mathcal{A}^*$ and $a \in \mathcal{A}$, if wt(u) = wt(v) and $\sigma(u) = \sigma(v)$, then $\sigma(ua) = \sigma(va)$ and $\sigma(au) = \sigma(av)$.

A quasi-crystal isomorphism $\theta : \Gamma(hypo, u) \to \Gamma(hypo, v)$ is shape-preserving if

$$\sigma(u) = \sigma(v).$$

Define a relation \sim_{σ} on \mathcal{A}^* by:

$$u \sim_{\sigma} v \quad \Leftrightarrow \exists \ \theta : \Gamma(\mathrm{hypo}, u) \to \Gamma(\mathrm{hypo}, v), \ \theta(u) = v, \ \text{s.-p. isom.}.$$

Proposition

The relation \sim_{σ} is a congruence on the free monoid \mathcal{A}^* .

Sylvester monoid

- ► S the set of unlabelled binary trees;
- development of notion of abstract shape σ_{sylv} ;
- ▶ $\sigma_{\text{sylv}}(u) = \text{Sh}(\text{DecT}(\text{std}(u)^{-1}))$ for all $u \in \mathcal{A}^*$.

Sylvester monoid

- S the set of unlabelled binary trees;
- development of notion of abstract shape σ_{svlv} ;

2

 $\sigma_{\text{sylv}}(u) = \text{Sh}(\text{DecT}(\text{std}(u)^{-1}))$ for all $u \in \mathcal{A}^*$.

Counting

► The number of right strict binary search trees of shape T labelled by symbols from A_n is

$$\begin{cases} \binom{n+|T|-\ell}{n-\ell} & \text{if } \ell \leq n\\ 0 & \text{if } \ell > n, \end{cases}$$

where ℓ is the number of parts of the right interval partition.

Counting

► The number of right strict binary search trees of shape T labelled by symbols from A_n is

$$\begin{cases} \binom{n+|T|-\ell}{n-\ell} & \text{if } \ell \le n\\ 0 & \text{if } \ell > n, \end{cases}$$

where ℓ is the number of parts of the right interval partition.

The number of distinct factorizations of a right strict binary search tree of shape T, into elements that correspond to right strict binary search trees of shapes U and V, is dependent only of T, U, and V, and not on the content of the element.

Relationship of $plac_n$, $hypo_n$, $sylv_n$ and friends

(Quasi-)-Kashiwara operators & shapes

T	H	E		
		E	N	D