The hidden forest in powers of differential operators

Pedro Fernandes

Universität Bonn

January 24, 2022

Tutor: Professor Samuel Lopes

11th Combinatorics Days

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let h(x) be a smooth function and let ∂ = a/dx.
What is the normally ordered form of the operator (h∂)ⁿ, n ∈ N₀?

 $(h\partial)^1=1h\partial$

 $(h\partial)^2 = (h\partial)(h\partial) = 1h\partial(h)\partial + 1h^2\partial^2$

 $(h\partial)^3 = (h\partial)(h\partial(h)\partial + h^2\partial^2) =$ $1h(\partial(h))^2\partial + 1h^2\partial^2(h)\partial + 3h^2\partial(h)\partial^2 + 1h^3\partial^3$

伺下 イヨト イヨト

• Let h(x) be a smooth function and let $\partial = \frac{d}{dx}$.

 What is the normally ordered form of the operator (h∂)ⁿ, n ∈ N₀?

 $(h\partial)^1=1h\partial$

 $(h\partial)^2 = (h\partial)(h\partial) = 1h\partial(h)\partial + 1h^2\partial^2$

 $(h\partial)^3 = (h\partial)(h\partial(h)\partial + h^2\partial^2) =$ $1h(\partial(h))^2\partial + 1h^2\partial^2(h)\partial + 3h^2\partial(h)\partial^2 + 1h^3\partial^3$

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let h(x) be a smooth function and let $\partial = \frac{d}{dx}$.
- What is the normally ordered form of the operator $(h\partial)^n$, $n \in \mathbb{N}_0$?

```
(h\partial)^1 = 1h\partial

(h\partial)^2 = (h\partial)(h\partial) = 1h\partial(h)\partial + 1h^2\partial^2

(h\partial)^3 = (h\partial)(h\partial(h)\partial + h^2\partial^2) =

1h(\partial(h))^2\partial + 1h^2\partial^2(h)\partial + 3h^2\partial(h)\partial^2 + 1h^3\partial^3
```

伺 ト イヨト イヨト

- Let h(x) be a smooth function and let $\partial = \frac{d}{dx}$.
- What is the normally ordered form of the operator $(h\partial)^n$, $n \in \mathbb{N}_0$?

 $(h\partial)^1 = \mathbf{1}h\partial$

 $(h\partial)^2 = (h\partial)(h\partial) = 1h\partial(h)\partial + 1h^2\partial^2$

 $egin{aligned} (h\partial)^3 &= (h\partial)(h\partial(h)\partial + h^2\partial^2) = \ 1h(\partial(h))^2\partial + 1h^2\partial^2(h)\partial + 3h^2\partial(h)\partial^2 + 1h^3\partial^3 \end{aligned}$

直 ト イヨ ト イヨト

- Let h(x) be a smooth function and let $\partial = \frac{d}{dx}$.
- What is the normally ordered form of the operator $(h\partial)^n$, $n \in \mathbb{N}_0$?

$$(h\partial)^1 = \mathbf{1}h\partial$$

 $(h\partial)^2 = (h\partial)(h\partial) = \mathbf{1}h\partial(h)\partial + \mathbf{1}h^2\partial^2$

 $(h\partial)^3 = (h\partial)(h\partial(h)\partial + h^2\partial^2) =$ $1h(\partial(h))^2\partial + 1h^2\partial^2(h)\partial + 3h^2\partial(h)\partial^2 + 1h^3\partial^3$

直 ト イヨ ト イヨト

- Let h(x) be a smooth function and let $\partial = \frac{d}{dx}$.
- What is the normally ordered form of the operator $(h\partial)^n$, $n \in \mathbb{N}_0$?

$$(h\partial)^1 = 1h\partial$$

$$(h\partial)^2 = (h\partial)(h\partial) = \mathbf{1}h\partial(h)\partial + \mathbf{1}h^2\partial^2$$

$$(h\partial)^{3} = (h\partial)(h\partial(h)\partial + h^{2}\partial^{2}) = \\ 1h(\partial(h))^{2}\partial + 1h^{2}\partial^{2}(h)\partial + 3h^{2}\partial(h)\partial^{2} + 1h^{3}\partial^{3}$$

Image: A Image: A

Generalization

Jackson Derivative

Usual derivative:

$$\partial(f) = \lim_{q \to 1} \frac{f(qx) - f(x)}{qx - x}$$

• Jackson derivative:

$$\partial_q(f) = \frac{f(qx) - f(x)}{qx - x}$$

・ロト ・回ト ・ヨト ・ヨト

æ

Jackson Derivative

• Usual derivative:

$$\partial(f) = \lim_{q \to 1} \frac{f(qx) - f(x)}{qx - x}$$

Jackson derivative:

$$\partial_q(f) = \frac{f(qx) - f(x)}{qx - x}$$

イロト イヨト イヨト イヨト

Jackson Derivative

Usual derivative:

$$\partial(f) = \lim_{q \to 1} \frac{f(qx) - f(x)}{qx - x}$$

• Jackson derivative:

$$\partial_q(f) = \frac{f(qx) - f(x)}{qx - x}$$

• • = • • = •

Leibniz Rule

$$\partial(ab) = \partial(a)b + a\partial(b)$$

< ロ > < 回 > < 回 > < 回 > < 回 >

New "Leibniz Rule"

$$\partial_q(ab) = \partial_q(a)b + \sigma_q(a)\partial_q(b)$$

where $\sigma_q(f(x)) = f(qx)$

$\partial_q \circ \sigma_q = q \cdot \sigma_q \circ \partial_q$

$(h\partial_q)^n = ??$

・ロト ・回ト ・ヨト ・ヨト

New "Leibniz Rule"

$$\partial_q(ab) = \partial_q(a)b + \sigma_q(a)\partial_q(b)$$

where $\sigma_q(f(x)) = f(qx)$

$$\partial_{\boldsymbol{q}} \circ \sigma_{\boldsymbol{q}} = \boldsymbol{q} \cdot \sigma_{\boldsymbol{q}} \circ \partial_{\boldsymbol{q}}$$

$(h\partial_q)^n = ??$

・ロト ・回ト ・ヨト ・ヨト

New "Leibniz Rule"

$$\partial_q(ab) = \partial_q(a)b + \sigma_q(a)\partial_q(b)$$

where $\sigma_q(f(x)) = f(qx)$

$$\partial_{\boldsymbol{q}} \circ \sigma_{\boldsymbol{q}} = \boldsymbol{q} \cdot \sigma_{\boldsymbol{q}} \circ \partial_{\boldsymbol{q}}$$

$$(h\partial_q)^n = ??$$

< ロ > < 回 > < 回 > < 回 > < 回 >

 $(h\partial)^{1} = 1h\partial$ $(h\partial)^{2} = (h\partial)(h\partial) = 1h\partial(h)\partial + 1h\sigma(h)\partial^{2}$ $(h\partial)^{3} = (h\partial(h)\partial + h\sigma(h)\partial^{2})(h\partial) =$ $= 1h\sigma(h)\partial^{2}(h)\partial + 1h(\partial(h))^{2}\partial + 1h\partial(h)\sigma(h)\partial^{2} +$ $+ (1+q)h\sigma(h)\sigma(\partial(h))\partial^{2} + 1h\sigma(h)\sigma^{2}(h)\partial^{3}$

イロト イボト イヨト イヨト

$(h\partial)^1 = \mathbf{1}h\partial$

 $(h\partial)^2 = (h\partial)(h\partial) = 1h\partial(h)\partial + 1h\sigma(h)\partial^2$

 $(h\partial)^3 = (h\partial(h)\partial + h\sigma(h)\partial^2)(h\partial) =$

 $=1h\sigma(h)\partial^2(h)\partial+1h(\partial(h))^2\partial+1h\partial(h)\sigma(h)\partial^2+$

 $+(1+q)h\sigma(h)\sigma(\partial(h))\partial^2+1h\sigma(h)\sigma^2(h)\partial^3$

< 回 > < 回 > < 回 >

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

 $(h\partial)^1 = 1h\partial$

 $(h\partial)^2 = (h\partial)(h\partial) = 1h\partial(h)\partial + 1h\sigma(h)\partial^2$

 $egin{aligned} &(h\partial)^3 = (h\partial(h)\partial + h\sigma(h)\partial^2)(h\partial) = \ &= 1h\sigma(h)\partial^2(h)\partial + 1h(\partial(h))^2\partial + 1h\partial(h)\sigma(h)\partial^2 + \ &+ (1+q)h\sigma(h)\sigma(\partial(h))\partial^2 + 1h\sigma(h)\sigma^2(h)\partial^3 \end{aligned}$

*ロ * * @ * * 注 * * 注 * … 注

$$(h\partial)^{2} = (h\partial)(h\partial) = 1h\partial(h)\partial + 1h\sigma(h)\partial^{2}$$
$$(h\partial)^{3} = (h\partial(h)\partial + h\sigma(h)\partial^{2})(h\partial) =$$
$$= 1h\sigma(h)\partial^{2}(h)\partial + 1h(\partial(h))^{2}\partial + 1h\partial(h)\sigma(h)\partial^{2} +$$
$$+ (1+q)h\sigma(h)\sigma(\partial(h))\partial^{2} + 1h\sigma(h)\sigma^{2}(h)\partial^{3}$$

$$(h\partial)^2 = (h\partial)(h\partial) = \mathbf{1}h\partial(h)\partial + \mathbf{1}h\sigma(h)\partial^2$$

$$(h\partial)^1 = 1h\partial$$

Definition

Binomial Coefficient

 $\binom{m}{n} \in \mathbb{N}_0$ represents the number of binary sequences of length m where n digits are equal to 1.

Gaussian Coefficient

 $\binom{m}{n}_q \in \mathbb{Z}[q]$ is such that the coefficient of q^k represents the number of binary sequences of length m where n digits are equal to 1 with k **inversions**, where an inversion is a pair of digits in the sequence such that the leftmost one is 1 and the other is 0.

イロト イボト イヨト イヨト

Definition

Binomial Coefficient

 $\binom{m}{n} \in \mathbb{N}_0$ represents the number of binary sequences of length m where n digits are equal to 1.

Gaussian Coefficient

 $\binom{m}{n}_q \in \mathbb{Z}[q]$ is such that the coefficient of q^k represents the number of binary sequences of length m where n digits are equal to 1 with k **inversions**, where an inversion is a pair of digits in the sequence such that the leftmost one is 1 and the other is 0.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Definition

Binomial Coefficient

 $\binom{m}{n} \in \mathbb{N}_0$ represents the number of binary sequences of length m where n digits are equal to 1.

Gaussian Coefficient

 $\binom{m}{n}_q \in \mathbb{Z}[q]$ is such that the coefficient of q^k represents the number of binary sequences of length m where n digits are equal to 1 with k **inversions**, where an inversion is a pair of digits in the sequence such that the leftmost one is 1 and the other is 0.

(日本) ・ (日本) ・ (日本)

Essence

Essence: The gaussian coefficients are a **detailed version** of the binomial coefficients, taking in account the notion of **inversions**.

We can retrieve the binomial coefficient from the gaussian coefficient by taking q = 1.

Essence

Essence: The gaussian coefficients are a **detailed version** of the binomial coefficients, taking in account the notion of **inversions**.

We can retrieve the binomial coefficient from the gaussian coefficient by taking q = 1.

Example

- If m = 3, n = 2, there are 3 sequences: 011, 101, 110 • Thus $\binom{3}{2} = 2$
- The first one has 0 inversions, the second one has 1 inversion, and the third one has 2 inversions:

$$\binom{3}{2}_{q} = 1 \cdot q^{0} + 1 \cdot q^{1} + 1 \cdot q^{2} = 1 + q + q^{2}.$$

イロト イボト イヨト イヨト

Example

If m = 3, n = 2, there are 3 sequences: 011, 101, 110

 The first one has 0 inversions, the second one has 1 inversion, and the third one has 2 inversions:

$$\binom{3}{2}_{q} = 1 \cdot q^{0} + 1 \cdot q^{1} + 1 \cdot q^{2} = 1 + q + q^{2}.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example

If m = 3, n = 2, there are 3 sequences: 011, 101, 110
Thus, (³₂) = 3.

 The first one has 0 inversions, the second one has 1 inversion, and the third one has 2 inversions:

 $\binom{3}{2}_q = 1 \cdot q^0 + 1 \cdot q^1 + 1 \cdot q^2 = 1 + q + q^2$

伺 ト イヨト イヨト

Example

- If *m* = 3, *n* = 2, there are 3 sequences: 011, 101, 110
- Thus, $\binom{3}{2} = 3$.
- The first one has 0 inversions, the second one has 1 inversion, and the third one has 2 inversions:

$$\binom{3}{2}_{q} = 1 \cdot q^{0} + 1 \cdot q^{1} + 1 \cdot q^{2} = 1 + q + q^{2}.$$

Normal pseudo-compositions (NPCs)

Definitions

Definitions

Given $n \in \mathbb{N}_0$ e $\lambda = (\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{N}_0^n$, we have the following definitions:

- $|\lambda| \coloneqq n$ is the **length** of λ ;
- $s_k^\lambda := \sum_{i=0}^k \lambda_i$, $\forall k \ge 0$; also, we define $s_{-1}^\lambda := 0$;
- We write

$\lambda \models S$

when S is the sum of the entries of λ , and we say that λ is a **pseudo-composition** of S; also, we define $S(\lambda) := S$;

• If $s_k^{\lambda} \leq k$, $\forall k \geq 0$, we say that λ is normal.

イロト イボト イヨト イヨト

Normal pseudo-compositions (NPCs)

Definitions

Definitions

Given $n \in \mathbb{N}_0$ e $\lambda = (\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{N}_0^n$, we have the following definitions:

• $|\lambda| \coloneqq n$ is the **length** of λ ;

•
$$s_k^\lambda := \sum_{i=0}^k \lambda_i$$
, $\forall k \ge 0$; also, we define $s_{-1}^\lambda := 0$;

We write

$$\lambda \models S$$

when S is the sum of the entries of λ , and we say that λ is a **pseudo-composition** of S; also, we define $S(\lambda) := S$;

• If $s_k^{\lambda} \leq k$, $\forall k \geq 0$, we say that λ is **normal**.

Example

Let n = 5 and let $\lambda = (0, 0, 2, 0, 2)$. Then:

• λ has length 5: $|\lambda| = 5$;

• •
$$s_{-1}^{\lambda} = 0;$$

• $s_{0}^{\lambda} = 0;$
• $s_{1}^{\lambda} = 0 + 0 = 0;$
• $s_{2}^{\lambda} = 0 + 0 + 2 = 2;$
• $s_{3}^{\lambda} = 0 + 0 + 2 + 0 = 2;$
• $s_{4}^{\lambda} = 0 + 0 + 2 + 0 + 2 =$

• λ is normal.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Example

Let n = 5 and let $\lambda = (0, 0, 2, 0, 2)$. Then:

- λ has length 5: $|\lambda| = 5$;
- $s_{-1}^{-1} = 0;$ • $s_0^{\lambda} = 0;$ • $s_1^{\lambda} = 0 + 0 = 0;$ • $s_2^{\lambda} = 0 + 0 + 2 = 2;$ • $s_3^{\lambda} = 0 + 0 + 2 + 0 = 2;$ • $s_4^{\lambda} = 0 + 0 + 2 + 0 + 2 = 4$
- λ is normal.

伺 ト イヨ ト イヨト

Example

Let n = 5 and let $\lambda = (0, 0, 2, 0, 2)$. Then:

```
• \lambda has length 5: |\lambda| = 5;
```

• $s_{11}^{\perp} = 0;$ • $s_{0}^{\lambda} = 0;$ • $s_{1}^{\lambda} = 0 + 0 = 0;$ • $s_{2}^{\lambda} = 0 + 0 + 2 = 2;$ • $s_{3}^{\lambda} = 0 + 0 + 2 + 0 = 2;$ • $s_{4}^{\lambda} = 0 + 0 + 2 + 0 + 2 = 4$

• λ is normal.

伺 ト イヨ ト イヨト

-

Example

Let
$$n = 5$$
 and let $\lambda = (0, 0, 2, 0, 2)$. Then:
• λ has length 5: $|\lambda| = 5$;
• $s_{-1}^{\lambda} = 0$;
• $s_{0}^{\lambda} = 0$;
• $s_{1}^{\lambda} = 0 + 0 = 0$;
• $s_{2}^{\lambda} = 0 + 0 + 2 = 2$;
• $s_{3}^{\lambda} = 0 + 0 + 2 + 0 = 2$;
• $s_{4}^{\lambda} = 0 + 0 + 2 + 0 + 2 = 4$;

• λ is normal.

э

• • • • • • •

Example

Let
$$n = 5$$
 and let $\lambda = (0, 0, 2, 0, 2)$. Then:
• λ has length 5: $|\lambda| = 5$;
• $s_{-1}^{\lambda} = 0$;
• $s_{0}^{\lambda} = 0$;
• $s_{1}^{\lambda} = 0 + 0 = 0$;
• $s_{2}^{\lambda} = 0 + 0 + 2 = 2$;
• $s_{3}^{\lambda} = 0 + 0 + 2 + 0 = 2$;
• $s_{4}^{\lambda} = 0 + 0 + 2 + 0 + 2 = 4$;

• λ is normal.

∃ ► < ∃ ►</p>

Definition

We define Γ_n as the set of all normal pseudo-compositions of length n.

► < Ξ > <</p>

Normally ordered form of $(h\partial_q)^n$

l heorem

Let *n* be a non-negative integer. Then,

$$(h\partial_q)^n = \sum_{\lambda\in\Gamma_n} c_\lambda(q)\cdot h^{[\lambda]},$$

where

$$h^{[\lambda]} = \left(\prod_{k=0}^{|\lambda|-1} \sigma^{k-s_k^{\lambda}}(\partial_q^{\lambda_k}(h))\right) \partial_q^{n-S(\lambda)}$$

and

$$c_\lambda(q) = \prod_{k=0}^{|\lambda|-1} {k-s_{k-1}^\lambda \choose \lambda_k}_q$$

イロト イ団ト イヨト イヨト

Theorem

Let n be a non-negative integer. Then,

$$(h\partial_q)^n = \sum_{\lambda \in \Gamma_n} c_\lambda(q) \cdot h^{[\lambda]},$$

where

$$h^{[\lambda]} = \left(\prod_{k=0}^{|\lambda|-1} \sigma^{k-s_k^{\lambda}}(\partial_q^{\lambda_k}(h))\right) \partial_q^{n-S(\lambda)}$$

and

$$c_\lambda(q) = \prod_{k=0}^{|\lambda|-1} inom{k-s_{k-1}^\lambda}{\lambda_k}_q.$$

→ < Ξ → <</p>

Generalization of the Theorem

Definitions

Definition

Given $n \in \mathbb{N}_0$ and $\lambda = (\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{N}_0^n$, we say that λ is *d*-normal if $s_k^{\lambda} \leq dk$, $\forall k \geq 0$.

Definition

We define Γ_n^d as the set of all *d*-normal pseudo-compositions of length *n*.

• • = • • = •

Generalization of the Theorem

Normally ordered form of $(h\partial_q^d)^n$

Theorem

Let n be a non-negative integer and let d be a positive integer. Then,

$$(h\partial_q^d)^n = \sum_{\lambda\in \Gamma_n^d} c_\lambda^d(q)\cdot h^{[\lambda]},$$

where

$$h^{[\lambda]} = \left(\prod_{k=0}^{|\lambda|-1} \sigma^{kd-s_k^{\lambda}}(\partial_q^{\lambda_k}(h))\right) \partial_q^{n-S(\lambda)}$$

and

$$c_\lambda^d(q) = \prod_{k=0}^{|\lambda|-1} inom{kd-s_{k-1}^\lambda}{\lambda_k}_q$$

-

Combinatorial study of the coefficients $c_{\lambda}(q)$

How many normal pseudo-compositions are there?

Proposition

Let *n* be a non-negative integer. Then,

$$|\Gamma_n|=C_n,$$

where $C_n = rac{1}{n+1} {2n \choose n}$ is the $n^{
m th}$ Catalan number.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let n be a non-negative integer. Then,

$$|\Gamma_n|=C_n,$$

where $C_n = \frac{1}{n+1} {\binom{2n}{n}}$ is the *n*th Catalan number.

ヨトイヨト

Catalan numbers

Closed Formula:

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

• Combinatorial Interpretation: C_n = number of **Dyck Paths** on an $n \times n$ board.

・ロト ・回 ト ・ ヨト ・ ヨト …

Catalan numbers

• Closed Formula:

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

• <u>Combinatorial Interpretation</u>: C_n = number of **Dyck Paths** on an $n \times n$ board.

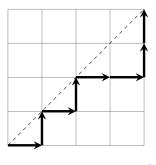
・ロト ・回ト ・ヨト ・ヨト

Catalan numbers

• Closed Formula:

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

• Combinatorial Interpretation: C_n = number of **Dyck Paths** on an $n \times n$ board.



()

Let *n* be a non-negative integer. Then,

 $\sum_{\lambda\in {\sf F}_n} c_\lambda(1) = n!$

• Which combinatorial objects are counted by factorials?

Let n be a non-negative integer. Then,

$$\sum_{\lambda\in\Gamma_n}c_\lambda(1)=n!$$

• Which combinatorial objects are counted by factorials?

▲御▶ ▲ 臣▶ ▲ 臣▶

Let n be a non-negative integer. Then,

$$\sum_{\lambda\in\Gamma_n}c_\lambda(1)=n!$$

• Which combinatorial objects are counted by factorials?

An **increasing tree** with n + 1 vertices is a rooted tree with vertices $0, \ldots, n$ such that $father(i) < i, \forall i \in [n]$.

<u>n = 8</u>

・ロト ・四ト ・ヨト ・ヨト

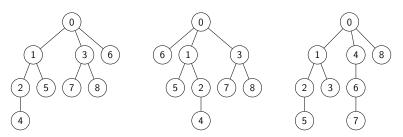
æ

An **increasing tree** with n + 1 vertices is a rooted tree with vertices 0, ..., n such that father $(i) < i, \forall i \in [n]$.

御 と く き と く き と

An **increasing tree** with n + 1 vertices is a rooted tree with vertices 0, ..., n such that father $(i) < i, \forall i \in [n]$.

<u>*n* = 8:</u>



★ Ξ →

A subdiagonal function of domain [n] is a function $f : [n] \rightarrow \{0\} \cup [n]$ such that $f(i) < i, \forall i \in [n]$.

n = 8:

・ロト ・回ト ・ヨト ・ヨト

3

Subdiagonal functions

Definition

A subdiagonal function of domain [n] is a function $f : [n] \rightarrow \{0\} \cup [n]$ such that $f(i) < i, \forall i \in [n]$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A subdiagonal function of domain [n] is a function $f : [n] \rightarrow \{0\} \cup [n]$ such that $f(i) < i, \forall i \in [n]$.

<u>*n* = 8:</u>

n	1	2	3	4	5	6	7	8
f(n)	0	1	0	2	1	0	3	3

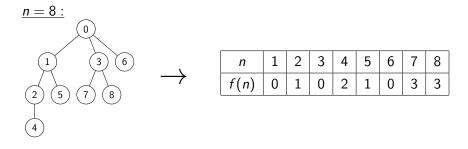
	n	1	2	3	4	5	6	7	8
f(n)	0	1	1	0	2	4	6	0

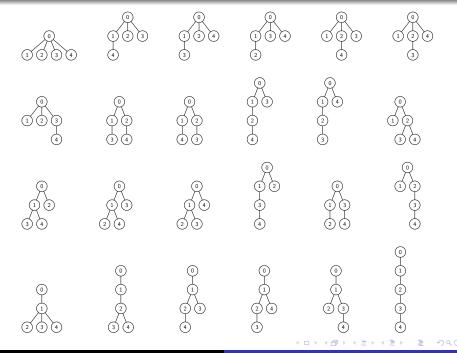
伺 ト イヨ ト イヨト

-

Bijection between increasing trees and subdiagonal functions

 There exists a bijection between the set of increasing trees with n + 1 vertices and the set of subdiagonal functions of domain [n], which associates with each tree the function that sends each (non-root) vertex to its father.

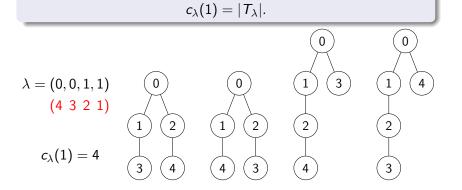




Let $n \in \mathbb{N}_0$ and $\lambda \in \Gamma_n$, and let T_λ be the set of increasing trees with n + 1 vertices such that, for each $i \in [n]$, vertex i has λ_{n-i} children. Then,

$$c_{\lambda}(1) = |T_{\lambda}|.$$

Let $n \in \mathbb{N}_0$ and $\lambda \in \Gamma_n$, and let T_λ be the set of increasing trees with n + 1 vertices such that, for each $i \in [n]$, vertex i has λ_{n-i} children. Then,



Proposition (Dual)

Let $n \in \mathbb{N}_0$ and $\lambda \in \Gamma_n$, and let F_λ be the set of the subdiagonal functions, f, of domain [n], such that, for each $i \in [n]$, $|f^{-1}(\{i\})| = \lambda_{n-i}$. Then,

$$c_{\lambda}(1) = |F_{\lambda}|.$$

Proposition (Dual)

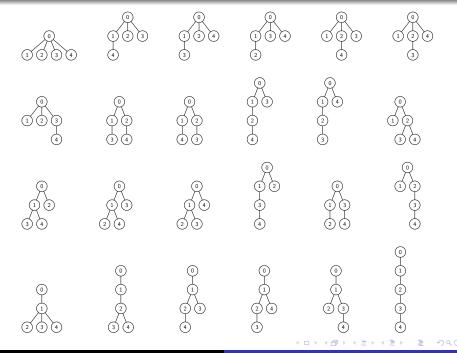
Let $n \in \mathbb{N}_0$ and $\lambda \in \Gamma_n$, and let F_λ be the set of the subdiagonal functions, f, of domain [n], such that, for each $i \in [n]$, $|f^{-1}(\{i\})| = \lambda_{n-i}$. Then,

$$c_{\lambda}(1) = |F_{\lambda}|.$$

	n	1	2	3	4	n	1	2	3	4
$\lambda = (0,0,1,1)$	f(n)	0	0	1	2	f(n)	0	1	0	2
(4 3 2 1)										
$c_\lambda(1)=4$	n	1	2	3	4	n	1	2	3	4

伺 ト イヨ ト イヨ ト

3





Pedro Fernandes The hidden forest in powers of differential operators

Given a function $f : [n] \rightarrow \{0\} \cup [n]$, an **inversion** is a pair $(a, b) \in [n] \times [n]$ such that a < b and f(a) > f(b).

Definition (Dual)

Given an increasing tree with n + 1 vertices, an **inversion** is a pair $(a, b) \in [n] \times [n]$ such that a < b and father(a) > father(b).

æ

Given a function $f : [n] \to \{0\} \cup [n]$, an **inversion** is a pair $(a, b) \in [n] \times [n]$ such that a < b and f(a) > f(b).

Definition (Dual)

Given an increasing tree with n + 1 vertices, an **inversion** is a pair $(a, b) \in [n] \times [n]$ such that a < b and father(a) > father(b).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Pedro Fernandes The hidden forest in powers of differential operators

Given a function $f : [n] \to \{0\} \cup [n]$, an **inversion** is a pair $(a, b) \in [n] \times [n]$ such that a < b and f(a) > f(b).

Definition (Dual)

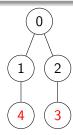
Given an increasing tree with n + 1 vertices, an **inversion** is a pair $(a, b) \in [n] \times [n]$ such that a < b and father(a) > father(b).

伺 と く ヨ と く ヨ と

Given a function $f : [n] \to \{0\} \cup [n]$, an **inversion** is a pair $(a, b) \in [n] \times [n]$ such that a < b and f(a) > f(b).

Definition (Dual)

Given an increasing tree with n + 1 vertices, an **inversion** is a pair $(a, b) \in [n] \times [n]$ such that a < b and father(a) > father(b).



n	1	2	3	4
f(n)	0	1	2	0

Let $n \in \mathbb{N}_0$, $\lambda \in \Gamma_n$ and $k \in \mathbb{N}_0$. Then, $c_{\lambda}[k]$ is the number of functions in F_{λ} with k inversions.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let $n \in \mathbb{N}_0$, $\lambda \in \Gamma_n$ and $k \in \mathbb{N}_0$. Then, $c_{\lambda}[k]$ is the number of functions in F_{λ} with k inversions.

$\lambda = (0,0,1,1)$	n	1	2	3	4	n	1	2	3	4
(4 3 2 1)	<i>f</i> (<i>n</i>)	0	0	1	2	f(n)	0	1	0	2
$c_\lambda(q) =$	n	1	2	3	4	n	1	2	3	4
$q^0 + 2q^1 + q^2$	f(n)	0	0	2	1	f(n)	0	1	2	0

• • = • • = •

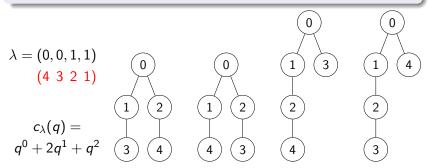
Proposition (Dual)

Let $n \in \mathbb{N}_0$, $\lambda \in \Gamma_n$ and $k \in \mathbb{N}_0$. Then, $c_{\lambda}[k]$ is the number of trees in T_{λ} with k inversions.

∃ ▶ ∢

Proposition (Dual)

Let $n \in \mathbb{N}_0$, $\lambda \in \Gamma_n$ and $k \in \mathbb{N}_0$. Then, $c_{\lambda}[k]$ is the number of trees in T_{λ} with k inversions.

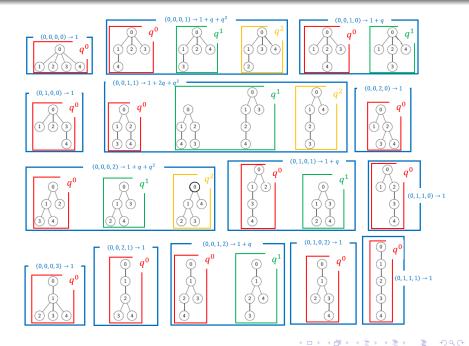


A B M A B M

-

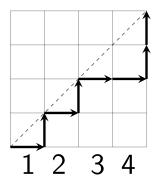


Pedro Fernandes The hidden forest in powers of differential operators



Pedro Fernandes The hidden forest in powers of differential operators

How many normal pseudo-compositions are there?



n	1	2	3	4
f(n)	0	1	2	2