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Precedents
E. Briand, S. Lopes, M. Rosas

Let h(x) be a smooth function and let ∂ = d
dx .

What is the normally ordered form of the operator (h∂)n,

n ∈ N0?

(h∂)1 = 1h∂

(h∂)2 = (h∂)(h∂) = 1h∂(h)∂ + 1h2∂2

(h∂)3 = (h∂)(h∂(h)∂ + h2∂2) =

1h(∂(h))2∂ + 1h2∂2(h)∂ + 3h2∂(h)∂2 + 1h3∂3
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Generalization
Jackson Derivative

Usual derivative:

∂(f ) = lim
q→1

f (qx)− f (x)

qx − x

Jackson derivative:

∂q(f ) =
f (qx)− f (x)

qx − x
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Generalization

Leibniz Rule

∂(ab) = ∂(a)b + a∂(b)

.

∂q ◦ σq = q · σq ◦ ∂q

(h∂q)n =??
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Small n

(h∂)1 = 1h∂

(h∂)2 = (h∂)(h∂) = 1h∂(h)∂ + 1hσ(h)∂2

(h∂)3 = (h∂(h)∂ + hσ(h)∂2)(h∂) =

= 1hσ(h)∂2(h)∂ + 1h(∂(h))2∂ + 1h∂(h)σ(h)∂2+

+(1 + q)hσ(h)σ(∂(h))∂2 + 1hσ(h)σ2(h)∂3
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Gaussian Coefficients
Definition

Binomial Coefficient(m
n

)
∈ N0 represents the number of binary sequences of length m

where n digits are equal to 1.

Gaussian Coefficient(m
n

)
q ∈ Z[q] is such that the coefficient of qk represents the

number of binary sequences of length m where n digits are equal to

1 with k inversions, where an inversion is a pair of digits in the

sequence such that the leftmost one is 1 and the other is 0.
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Gaussian Coefficients
Essence

Essence: The gaussian coefficients are a detailed version of the

binomial coefficients, taking in account the notion of inversions.

We can retrieve the binomial coefficient from the gaussian

coefficient by taking q = 1.
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Gaussian Coefficients
Example

If m = 3, n = 2, there are 3 sequences:

011, 101, 110

Thus,
(3

2

)
= 3.

The first one has 0 inversions, the second one has 1 inversion,

and the third one has 2 inversions:(3
2

)
q

= 1 · q0 + 1 · q1 + 1 · q2 = 1 + q + q2.
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Normal pseudo-compositions (NPCs)
Definitions

Definitions

Given n ∈ N0 e λ = (λ0, . . . , λn−1) ∈ Nn
0, we have the following

definitions:

|λ| := n is the length of λ;

sλk :=
∑k

i=0 λi , ∀k ≥ 0; also, we define sλ−1 := 0;

We write

λ � S

when S is the sum of the entries of λ, and we say that λ is a

pseudo-composition of S ; also, we define S(λ) := S ;

If sλk ≤ k, ∀k ≥ 0, we say that λ is normal.
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Normal pseudo-compositions
Example

Let n = 5 and let λ = (0, 0, 2, 0, 2). Then:

λ has length 5: |λ| = 5;

sλ−1 = 0;

sλ0 = 0;

sλ1 = 0 + 0 = 0;

sλ2 = 0 + 0 + 2 = 2;

sλ3 = 0 + 0 + 2 + 0 = 2;

sλ4 = 0 + 0 + 2 + 0 + 2 = 4;

λ is normal.
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Γ sets

Definition

We define Γn as the set of all normal pseudo-compositions of

length n.
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Normally ordered form of (h∂q)n

Theorem

Let n be a non-negative integer. Then,

(h∂q)n =
∑
λ∈Γn

cλ(q) · h[λ],

where

h[λ] =

|λ|−1∏
k=0

σk−s
λ
k (∂λk

q (h))

 ∂
n−S(λ)
q

and

cλ(q) =

|λ|−1∏
k=0

(
k − sλk−1

λk

)
q

.
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Generalization of the Theorem
Definitions

Definition

Given n ∈ N0 and λ = (λ0, . . . , λn−1) ∈ Nn
0, we say that λ is

d-normal if sλk ≤ dk, ∀k ≥ 0.

Definition

We define Γd
n as the set of all d-normal pseudo-compositions of

length n.
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Generalization of the Theorem
Normally ordered form of (h∂d

q )n

Theorem

Let n be a non-negative integer and let d be a positive integer.

Then,

(h∂dq )n =
∑
λ∈Γd

n

cdλ (q) · h[λ],

where

h[λ] =

|λ|−1∏
k=0

σkd−s
λ
k (∂λk

q (h))

 ∂
n−S(λ)
q

and

cdλ (q) =

|λ|−1∏
k=0

(
kd − sλk−1

λk

)
q

.
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Combinatorial study of the coefficients cλ(q)
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How many normal pseudo-compositions are there?

Proposition

Let n be a non-negative integer. Then,

|Γn| = Cn,

where Cn = 1
n+1

(2n
n

)
is the nth Catalan number.
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Catalan numbers

Closed Formula:

Cn =
1

n + 1

(
2n

n

)

Combinatorial Interpretation: Cn = number of Dyck Paths

on an n × n board.
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Proposition

Let n be a non-negative integer. Then,∑
λ∈Γn

cλ(1) = n!

Which combinatorial objects are counted by factorials?
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Increasing trees

Definition

An increasing tree with n + 1 vertices is a rooted tree with

vertices 0, . . . , n such that father(i) < i , ∀i ∈ [n].

n = 8:

0

1

2

4

5

3

7 8

6

0

6 1

5 2

4

3

7 8

0

1

2

5

3

4

6

7

8
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Subdiagonal functions

Definition

A subdiagonal function of domain [n] is a function

f : [n]→ {0} ∪ [n] such that f (i) < i , ∀i ∈ [n].

n = 8:

n 1 2 3 4 5 6 7 8

f (n) 0 1 0 2 1 0 3 3

n 1 2 3 4 5 6 7 8

f (n) 0 1 1 0 2 4 6 0
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Bijection between increasing trees and subdiagonal

functions

There exists a bijection between the set of increasing trees

with n + 1 vertices and the set of subdiagonal functions of

domain [n], which associates with each tree the function that

sends each (non-root) vertex to its father.

n = 8 :
0

1

2

4

5

3

7 8

6 → n 1 2 3 4 5 6 7 8

f (n) 0 1 0 2 1 0 3 3
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1 2 3 4

0

1

4

2 3

0

1

3

2 4

0

1

2

3 4

0

1 2

4

3

0

1 2

3

4

0

1 2 3

4

0

1

3

2

4

0

1

4

2

3

0

1

2

4

3

0

1

2

3

4 0

1 2

3 4

0

1

3 4

2

0

1

2 4

3

0

1

2 3

4

0

1

3

4

2 0

1

2

3

4

0

1 2

3

4

0

1

2 3 4

0

1

2

3 4

0

1

2

4

3

0

1

2

3

4

0

1

2 3

4

0

1

2

3

4
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Proposition

Let n ∈ N0 and λ ∈ Γn, and let Tλ be the set of increasing trees

with n + 1 vertices such that, for each i ∈ [n], vertex i has λn−i

children. Then,

cλ(1) = |Tλ|.

λ = (0, 0, 1, 1)

λ = (4, 3, 2, 1)

cλ(1) = 4

0

1

3

2

4

0

1

4

2

3

0

1

2

4

3

0

1

2

3

4
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Proposition (Dual)

Let n ∈ N0 and λ ∈ Γn, and let Fλ be the set of the subdiagonal

functions, f , of domain [n], such that, for each i ∈ [n],∣∣f −1({i})
∣∣ = λn−i . Then,

cλ(1) = |Fλ|.

λ = (0, 0, 1, 1)

λ = (4, 3, 2, 1)

cλ(1) = 4

n 1 2 3 4

f (n) 0 0 1 2

n 1 2 3 4

f (n) 0 0 2 1

n 1 2 3 4

f (n) 0 1 0 2

n 1 2 3 4

f (n) 0 1 2 0
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Proposition (Dual)

Let n ∈ N0 and λ ∈ Γn, and let Fλ be the set of the subdiagonal

functions, f , of domain [n], such that, for each i ∈ [n],∣∣f −1({i})
∣∣ = λn−i . Then,

cλ(1) = |Fλ|.
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Inversions

Definition

Given a function f : [n]→ {0} ∪ [n], an inversion is a pair

(a, b) ∈ [n]× [n] such that a < b and f (a) > f (b).

Definition (Dual)

Given an increasing tree with n + 1 vertices, an inversion is a pair

(a, b) ∈ [n]× [n] such that a < b and father(a) > father(b).

0
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n 1 2 3 4

f (n) 0 1 2 0
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Proposition

Let n ∈ N0, λ ∈ Γn and k ∈ N0. Then, cλ[k] is the number of

functions in Fλ with k inversions.

λ = (0, 0, 1, 1)

λ = (4, 3, 2, 1)

cλ(q) =

q0 + 2q1 + q2

n 1 2 3 4

f (n) 0 0 1 2

n 1 2 3 4

f (n) 0 0 2 1

n 1 2 3 4

f (n) 0 1 0 2

n 1 2 3 4

f (n) 0 1 2 0
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Proposition (Dual)

Let n ∈ N0, λ ∈ Γn and k ∈ N0. Then, cλ[k] is the number of

trees in Tλ with k inversions.

λ = (0, 0, 1, 1)

λ = (4, 3, 2, 1)

cλ(q) =

q0 + 2q1 + q2
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How many normal pseudo-compositions are there?

..1..2...3..4

→ n 1 2 3 4

f (n) 0 1 2 2
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