Combinatorial Howe duality

Thomas Gerber

(joint with J. Guilhot and C. Lecouvey)

11th Combinatorics Days Lisboa 21 January 2022

Howe duality in type A

Let $n, m \in \mathbb{Z}_{\geq 1}$ and consider the Lie algebras $\mathfrak{gl}_n, \mathfrak{gl}_m$ over \mathbb{C} .

$$\left\{\begin{array}{c} \mathsf{integral} \\ \mathsf{dominant} \\ \mathsf{weights} \ \mathsf{for} \ \mathfrak{gl}_n \end{array}\right\} \quad \leftrightarrow \quad \left\{\begin{array}{c} \mathsf{partitions} \\ \mathsf{of} \ \mathsf{length} \\ \mathsf{at} \ \mathsf{most} \ n \end{array}\right\} \quad \leftrightarrow \quad \left\{\begin{array}{c} \mathsf{Young} \ \mathsf{diagrams} \\ \mathsf{with} \ \mathsf{at} \ \mathsf{most} \\ n \ \mathsf{rows} \end{array}\right\}$$

λ int. dominant gl_n-weight → V_n(λ) irr. highest weight module,
Cⁿ ⊗ C^m natural gl_n × gl_m-module → Sym(Cⁿ ⊗ C^m), Λ(Cⁿ ⊗ C^m).

Howe duality in type A

Let $n, m \in \mathbb{Z}_{\geq 1}$ and consider the Lie algebras $\mathfrak{gl}_n, \mathfrak{gl}_m$ over \mathbb{C} .

$$\left\{\begin{array}{c} \text{integral} \\ \text{dominant} \\ \text{weights for } \mathfrak{gl}_n \end{array}\right\} \leftrightarrow \left\{\begin{array}{c} \text{partitions} \\ \text{of length} \\ \text{at most } n \end{array}\right\} \leftrightarrow \left\{\begin{array}{c} \text{Young diagrams} \\ \text{with at most} \\ n \text{ rows} \end{array}\right\}$$

λ int. dominant gl_n-weight → V_n(λ) irr. highest weight module,
Cⁿ ⊗ C^m natural gl_n × gl_m-module → Sym(Cⁿ ⊗ C^m), Λ(Cⁿ ⊗ C^m).

Theorem (Howe duality)

We have the $\mathfrak{gl}_n \times \mathfrak{gl}_m$ -module decompositions

For n = 3, m = 2, consider the homogeneous component $\Lambda^3(\mathbb{C}^3 \otimes \mathbb{C}^2)$. By the previous theorem, we have, as $\mathfrak{gl}_3 \times \mathfrak{gl}_2$ -modules,

$$\Lambda^{3}(\mathbb{C}^{3}\otimes\mathbb{C}^{2})\simeq V_{3}(\square)\otimes V_{2}(\square)\oplus V_{3}(\square)\otimes V_{2}(\square).$$

For n = 3, m = 2, consider the homogeneous component $\Lambda^3(\mathbb{C}^3 \otimes \mathbb{C}^2)$. By the previous theorem, we have, as $\mathfrak{gl}_3 \times \mathfrak{gl}_2$ -modules,

$$\Lambda^{3}(\mathbb{C}^{3}\otimes\mathbb{C}^{2})\simeq V_{3}(\mathbb{P})\otimes V_{2}(\mathbb{P})\oplus V_{3}(\mathbb{P})\otimes V_{2}(\mathbb{P}).$$

On the other hand, as \mathfrak{gl}_3 -modules,

$$\begin{split} \wedge^{3}(\mathbb{C}^{3}\otimes\mathbb{C}^{2}) &\simeq \wedge^{3}(\mathbb{C}^{3}\oplus\mathbb{C}^{3}) \\ &\simeq \wedge^{3}\mathbb{C}^{3}\oplus(\wedge^{2}\mathbb{C}^{3}\otimes\mathbb{C}^{3})\oplus(\mathbb{C}^{3}\otimes\wedge^{2}\mathbb{C}^{3})\oplus\wedge^{3}\mathbb{C}^{3} \\ &\simeq V_{3}(\underline{\square})\oplus(V_{3}(\underline{\square})\oplus V_{3}(\underline{\square}))\oplus(V_{3}(\underline{\square})\oplus V_{3}(\underline{\square}))\oplus V_{3}(\underline{\square}). \end{split}$$

For n = 3, m = 2, consider the homogeneous component $\Lambda^3(\mathbb{C}^3 \otimes \mathbb{C}^2)$. By the previous theorem, we have, as $\mathfrak{gl}_3 \times \mathfrak{gl}_2$ -modules,

$$\Lambda^3(\mathbb{C}^3\otimes\mathbb{C}^2)\simeq V_3(\textcircled{P})\otimes V_2(\textcircled{P})\oplus V_3(\textcircled{P})\otimes V_2(\textcircled{P}).$$

On the other hand, as \mathfrak{gl}_3 -modules,

$$\begin{split} \wedge^{3}(\mathbb{C}^{3}\otimes\mathbb{C}^{2}) &\simeq \wedge^{3}(\mathbb{C}^{3}\oplus\mathbb{C}^{3}) \\ &\simeq \wedge^{3}\mathbb{C}^{3}\oplus(\wedge^{2}\mathbb{C}^{3}\otimes\mathbb{C}^{3})\oplus(\mathbb{C}^{3}\otimes\wedge^{2}\mathbb{C}^{3})\oplus\wedge^{3}\mathbb{C}^{3} \\ &\simeq V_{3}(\underline{\square})\oplus(V_{3}(\underline{\square})\oplus V_{3}(\underline{\square}))\oplus(V_{3}(\underline{\square})\oplus V_{3}(\underline{\square}))\oplus V_{3}(\underline{\square}). \end{split}$$

We have

$$\begin{array}{rcl} 4 & = & \dim V_2(\square \square) & \text{ copies of } V_3(\square) \\ 2 & = & \dim V_2(\square) & \text{ copies of } V_3(\square) \end{array}$$

This observation holds in general:

$$\Lambda^{N}(\mathbb{C}^{n}\otimes\mathbb{C}^{m})\simeq\bigoplus_{\substack{\nu\in\mathbb{Z}_{\geq0}^{m}\\|\nu|=N}}\underline{\Lambda^{\nu_{1}}\mathbb{C}^{n}\otimes\cdots\otimes\Lambda^{\nu_{m}}\mathbb{C}^{n}}$$

and for $\nu \in [m \times n]$ and a partition $\lambda \in [n \times m]$, we have

$$[\Lambda^{\nu}\mathbb{C}^{n}:V_{n}(\lambda)]=\dim(V_{m}(\lambda'))_{\nu}.$$
(1)

Goal: Give a bijective proof of (1).

For
$$\nu = (\nu_1, \dots, \nu_m) \in [m \times n]$$
, let
 $B_n^{\nu} = \{c_1 \otimes \dots \otimes c_m \mid c_j \subseteq \{1, \dots, n\} \text{ s.t. } |c_j| = \nu_j\}.$

For
$$\nu = (\nu_1, \dots, \nu_m) \in [m \times n]$$
, let
 $B_n^{\nu} = \{c_1 \otimes \dots \otimes c_m \mid c_j \subseteq \{1, \dots, n\} \text{ s.t. } |c_j| = \nu_j\}.$

Theorem

We have a bijection

$$\bigsqcup_{\substack{|\nu|=N\\c_1\otimes\cdots\otimes c_m}} B_n^{\nu} \stackrel{*}{\longrightarrow} \bigsqcup_{\substack{|\lambda|=N\\a_1\otimes\cdots\otimes a_n}} B_m^{\lambda}$$

where

$$d_i = \{1 \leq j \leq m \mid i \in c_j\}.$$

If $b = c_1 \otimes \cdots \otimes c_m \in B_n^{\nu}$, each c_j is called (and represented by) a **column**.

Example Take $n = 4, m = 5, \nu = (3, 0, 2, 3, 2)$.

$$b = 1 \otimes \emptyset \otimes 1 \otimes 1 \otimes 1 \otimes 1 \qquad \longmapsto \qquad 1 \otimes 1 \otimes 1 \otimes 3 = b^*$$

$$2 \qquad 4 \qquad 2 \qquad 3 \qquad \qquad 3 \qquad 4 \qquad 5$$

If $b = c_1 \otimes \cdots \otimes c_m \in B_n^{\nu}$, each c_j is called (and represented by) a **column**.

Example Take $n = 4, m = 5, \nu = (3, 0, 2, 3, 2).$

$$b = 1 \otimes \emptyset \otimes 1 \otimes 1 \otimes 1 \otimes 1 \qquad \longmapsto \qquad 1 \otimes 1 \otimes 1 \otimes 1 \otimes 3 = b^*$$

$$2 \qquad 4 \qquad 2 \qquad 3 \qquad \qquad 3 \qquad 4 \qquad 5$$

Observe that $b \in B_n^{\nu} \Leftrightarrow \operatorname{weight}(b^*) = \nu$. In our example, • $b \in B_4^{(3,0,2,3,2)}$ and $\operatorname{weight}(b^*) = (\#1$'s in $b^*, \ldots, \#m$'s in $b^*) = (3,0,2,3,2)$,

•
$$b^* \in B_5^{(4,2,2,2)}$$
 and weight $(b) = (4,2,2,2)$.

Definition

- An element b ∈ B^ν_n is called Yamanouchi if each prefix of its reading has at least as many i as i + 1 for all 1 ≤ i < n.</p>
- an element a ∈ B^λ_m is called a tableau if removing the symbols "⊗" yields a semistandard Young tableau.

Definition

- An element b ∈ B^ν_n is called Yamanouchi if each prefix of its reading has at least as many i as i + 1 for all 1 ≤ i < n.</p>
- an element a ∈ B^λ_m is called a tableau if removing the symbols "⊗" yields a semistandard Young tableau.

Theorem (Combinatorial Howe duality)

b is Yamanouchi if and only if b^* is a tableau.

Example
$$b = 1 \otimes 1 \otimes 1 \otimes 1 \otimes 2 \Leftrightarrow b^* = 1 \otimes 1 \otimes 4$$

 $2 \qquad 2 \qquad 3 \qquad 2 \qquad 3$
 $3 \qquad 4$

• read $(b) = 121132 \Rightarrow b$ is Yamanouchi.

• b^* yields the tableau 1 1 4.

Why does this prove (1)?

On the one hand, it is well-known that

$$\#\left\{ a\in B_{m}^{\lambda} ext{ tableaux of weight }
u
ight\} =\dim(V(\lambda'))_{
u}.$$

Why does this prove (1)?

On the one hand, it is well-known that

$$\#\left\{ a\in B_{m}^{\lambda} ext{ tableaux of weight }
u
ight\} =\dim(V(\lambda'))_{
u}.$$

On the other hand,

- B_n^{ν} is the **crystal** of the representation $\Lambda^{\nu} \mathbb{C}^n$,
- $b \in B_n^{\nu}$ is Yamanouchi iff b is a **highest weight vertex**.

Therefore, by general crystal theory,

$$\# \{ b \in B_n^{\nu} \text{ Yamanouchi of weight } \lambda \} = [\Lambda^{\nu} \mathbb{C}^n : V(\lambda)].$$

The case of type C

Replacing $\mathfrak{gl}_n, \mathfrak{gl}_m$ by $\mathfrak{sp}_{2n}, \mathfrak{sp}_{2m}$, we have for $\nu \in [m \times 2n]$, $\lambda \in [n \times m]$,

$$[\Lambda^{\nu}\mathbb{C}^{2n}:V_n(\lambda)] = \dim(V_m(\overline{\lambda'}))_{\overline{\nu}}, \qquad (2)$$

where $\overline{(\nu_1,\ldots,\nu_m)} = (n - \nu_m,\ldots,n - \nu_1).$

The case of type C

Replacing $\mathfrak{gl}_n, \mathfrak{gl}_m$ by $\mathfrak{sp}_{2n}, \mathfrak{sp}_{2m}$, we have for $\nu \in [m \times 2n]$, $\lambda \in [n \times m]$,

$$[\Lambda^{\nu}\mathbb{C}^{2n}:V_n(\lambda)] = \dim(V_m(\overline{\lambda'}))_{\overline{\nu}}, \qquad (2)$$

where
$$\overline{(\nu_1,\ldots,\nu_m)} = (n - \nu_m,\ldots,n - \nu_1).$$

Plan of the proof We use

- **(**) an analogous crystal B_n^{ν} and a similar bijection *,
- a combinatorial description of the highest weight vertices in B_n^{ν} , generalising the Yamanouchi property,
- a notion of so-called King tableaux generalising usual tableaux and counting dimensions of the weight spaces.

We conclude by the same argument.

The bijection * in type *C*

For
$$\nu = (\nu_1, \dots, \nu_m) \in [m \times 2n]$$
, let
 $B_n^{\nu} = \{c_1 \otimes \dots \otimes c_m \mid c_j \subseteq \{\overline{n} < \dots < \overline{1} < 1 < \dots < n\} \text{ s.t. } |c_j| = \nu_j\}.$
Similarly, set for $\eta = (\eta_1, \dots, \eta_n) \in [n \times 2m]$,

$$\dot{B}_m^{\eta} = \left\{ d_1 \otimes \cdots \otimes d_n \mid d_i \subseteq \left\{ 1 < \overline{1} < \ldots < n < \overline{n} \right\} \text{ s.t. } |d_i| = \eta_i \right\}.$$

The bijection * in type C

For
$$\nu = (\nu_1, \dots, \nu_m) \in [m \times 2n]$$
, let
 $B_n^{\nu} = \{c_1 \otimes \dots \otimes c_m \mid c_j \subseteq \{\overline{n} < \dots < \overline{1} < 1 < \dots < n\} \text{ s.t. } |c_j| = \nu_j\}.$
Similarly, set for $\eta = (\eta_1, \dots, \eta_n) \in [n \times 2m]$,

$$\dot{B}_m^\eta = \left\{ d_1 \otimes \cdots \otimes d_n \mid d_i \subseteq \left\{ 1 < \overline{1} < \ldots < n < \overline{n} \right\} \text{ s.t. } |d_i| = \eta_i \right\}.$$

Theorem

We have a bijection

$$\bigsqcup_{\substack{|\nu|=N}} B_n^{\nu} \xrightarrow{*} \bigsqcup_{\substack{|\eta|=nm-N}} \dot{B}_m^{\eta}$$

$$c_1 \otimes \cdots \otimes c_m \longmapsto d_1 \otimes \cdots \otimes d_n$$

where $d_i = \{j \in \{1, \ldots, m\} \mid i \in c_j\} \sqcup \{\overline{j} \in \{\overline{1}, \ldots, \overline{m}\} \mid \overline{i} \notin c_j\}.$

Take $n = 5, m = 2, \nu = (4, 6)$.

$$b = \overline{3} \otimes \overline{5} \quad \stackrel{*}{\longmapsto} \quad 1 \otimes \overline{2} \otimes 2 \otimes 1 \otimes 1 = b^{*}$$

$$\overline{2} \quad \overline{2} \qquad \overline{2} \qquad \overline{1} \quad \overline{1} \qquad \overline{1}$$

$$4 \quad \overline{1} \qquad 2$$

$$5 \quad 1 \qquad \overline{2} \qquad \overline{2}$$

$$4$$

Take $n = 5, m = 2, \nu = (4, 6)$.

$$b = \overline{3} \otimes \overline{5} \quad \stackrel{*}{\longmapsto} \quad 1 \otimes \overline{2} \otimes 2 \otimes 1 \otimes 1 = b^{*}$$

$$\overline{2} \quad \overline{2} \qquad \overline{2} \qquad \overline{1} \qquad \overline{1} \qquad \overline{1}$$

$$4 \quad \overline{1} \qquad 2$$

$$5 \quad 1 \qquad \overline{2}$$

$$4$$

Take $n = 5, m = 2, \nu = (4, 6)$.

$$b = \overline{3} \otimes \overline{5} \quad \stackrel{*}{\longmapsto} \quad 1 \otimes \overline{2} \otimes 2 \otimes 1 \otimes 1 = b^{*}$$

$$\overline{2} \quad \overline{2} \quad \overline{2} \quad \overline{1} \quad \overline{1}$$

$$4 \quad \overline{1} \quad 2$$

$$5 \quad 1 \quad \overline{2}$$

$$4$$

Example Take $n = 5, m = 2, \nu = (4, 6)$.

$$b = \overline{3} \otimes \overline{5} \quad \stackrel{*}{\longmapsto} \quad 1 \otimes \overline{2} \otimes 2 \otimes 1 \otimes 1 = b^{*}$$

$$\overline{2} \quad \overline{2} \qquad \overline{2} \qquad \overline{1} \qquad \overline{1} \qquad \overline{1}$$

$$4 \quad \overline{1} \qquad 2$$

$$5 \quad 1 \qquad \overline{2}$$

$$4$$

Moreover, if we define

weight(b) = (
$$\#\overline{n}$$
's - $\#n$'s,..., $\#\overline{1}$'s - $\#1$'s) and
weight(b^{*}) = ($\#m$'s - $\#\overline{m}$'s,..., $\#1$'s - $\#\overline{1}$'s), we have
 $b \in B_n^{\nu} \Leftrightarrow \text{weight}(b^*) = \overline{\nu}$ and $b^* \in B_m^{\eta} \Leftrightarrow \text{weight}(b) = \overline{\eta}$.

Example Above, we have $\nu = (4, 6)$, so that $\overline{\nu} = (-1, 1)$ and $\eta = (0, -2, 1, 1, 0)$ so that $\overline{\eta} = (2, 1, 1, 4, 2)$.

King tableaux

Definition

A semistandard tableau on $\{1 < \overline{1} < \cdots < m < \overline{m}\}$ is called **King** if each entry in row j is at least equal to j.

Example The tableau 1 $\overline{1}$ 2 2 is semistandard but not King. $\overline{1}$ 3 $\overline{3}$ 3

King tableaux

Definition

A semistandard tableau on $\{1 < \overline{1} < \cdots < m < \overline{m}\}$ is called **King** if each entry in row *j* is at least equal to *j*.

Example The tableau 1 $\overline{1}$ 2 2 is semistandard but not King. $\overline{1}$ 3 $\overline{3}$ 3

Moreover, an element b is a highest weight vertex in the crystal B_n^{ν} if and only if each prefix of its reading has partition weight.

```
Remark \dot{B}_m^{\eta} is not a crystal!
```

King tableaux

Definition

A semistandard tableau on $\{1 < \overline{1} < \cdots < m < \overline{m}\}$ is called **King** if each entry in row *j* is at least equal to *j*.

```
Example The tableau 1 \overline{1} 2 2 is semistandard but not King.
\overline{1} 3 \overline{3}
3
```

Moreover, an element b is a highest weight vertex in the crystal B_n^{ν} if and only if each prefix of its reading has partition weight.

Remark \dot{B}_m^{η} is not a crystal!

Theorem (G.-Guilhot-Lecouvey 2021)

b is a highest weight vertex iff b^* is a King tableau.

Take n = 4, m = 3.

$$b = ar{4} \otimes ar{2} \otimes ar{4} \Leftrightarrow b^* = ar{1} \otimes ar{1} \otimes ar{2} \otimes ar{2}$$

 $ar{3} \quad ar{1} \quad ar{3} \quad ar{2} \quad ar{3} \quad ar{3}$
 $ar{1} \quad ar{3} \quad ar{3} \quad ar{3}$

• read(b) = $\overline{43}\overline{2}\overline{1}1\overline{4}\overline{3}3 \Rightarrow b$ is a highest weight vertex,

3

• b^* is a King tableau: 1 1 2 2. $\overline{2}$ 3 $\overline{3}$

Take n = 4, m = 3. $b = \overline{4} \otimes \overline{2} \otimes \overline{4} \Leftrightarrow b^* = 1 \otimes 1 \otimes 2 \otimes 2$ <u>3</u><u>1</u><u>3</u><u>2</u><u>3</u><u>3</u> 1 3 3 • read(b) = $\overline{4}\overline{3}\overline{2}\overline{1}\overline{1}\overline{4}\overline{3}3 \Rightarrow b$ is a highest weight vertex, • b^* is a King tableau: 1 1 2 2. $\bar{2}$ 3 $\bar{3}$ 3

We have

$$\nu = (2,3,3)$$
 so $\overline{\nu} = (1,2,2)$ and $\lambda = (2,1,1,0) =$ so $\overline{\lambda'} = = (4,3,1).$

Generalised Howe duality in type C

It is possible to prove a more general duality.

In (2), replace

$$\Lambda^{
u}\mathbb{C}^{2n} = V_n(1^{
u_1}) \otimes \cdots \otimes V_n(1^{
u_m})$$
 by
 $V_n^{X_1}(\mu^{(1)}) \otimes \cdots \otimes V_n^{X_r}(\mu^{(r)})$

where for all $1 \leq j \leq r$,

• $X_j \in \{A, C\}$, • $\mu^{(j)}$ is a partition in $[n \times m_j]$ with $\sum m_j = m$, • $V_n^{X_j}(\mu^{(j)}) = \text{irr. rep. of type } X_j$ with highest weight $\mu^{(j)}$. For $\boldsymbol{\mu} = (\mu^{(1)}, \dots, \mu^{(r)})$, let $\widehat{\boldsymbol{\mu}} = (\widehat{\mu^{(r)}}, \dots, \widehat{\mu^{(1)}})$ where $\widehat{\alpha} = \overline{\alpha'}$.

Consider the subalgebra $\mathfrak{g} = \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_\mathfrak{r}$ of \mathfrak{sp}_{2n} where

$$\mathfrak{g} = \begin{cases} \mathfrak{gl}_{m_j} & \text{if } X_j = A\\ \mathfrak{sp}_{2m_j} & \text{if } X_j = C. \end{cases}$$

 $\widehat{\mu}$ is a dominant weight for $\mathfrak{g} \rightsquigarrow$ irr. h.w. representation $V_m(\widehat{\mu})$. For $\lambda \in [n \times m]$, set

$$M_{\widehat{\mu}}^{\widehat{\lambda}} =$$
 multiplicity of $V_m(\widehat{\mu})$ in $\operatorname{Res}_{\mathfrak{g}}^{\mathfrak{sp}_{2m}} V_m(\widehat{\lambda})$.

For $\boldsymbol{\mu} = (\mu^{(1)}, \dots, \mu^{(r)})$, let $\widehat{\boldsymbol{\mu}} = (\widehat{\mu^{(r)}}, \dots, \widehat{\mu^{(1)}})$ where $\widehat{\alpha} = \overline{\alpha'}$.

Consider the subalgebra $\mathfrak{g} = \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_{\mathfrak{r}}$ of \mathfrak{sp}_{2n} where

$$\mathfrak{g} = \begin{cases} \mathfrak{gl}_{m_j} & \text{if } X_j = A\\ \mathfrak{sp}_{2m_j} & \text{if } X_j = C. \end{cases}$$

 $\widehat{\mu}$ is a dominant weight for $\mathfrak{g} \rightsquigarrow$ irr. h.w. representation $V_m(\widehat{\mu})$. For $\lambda \in [n \times m]$, set

$$M_{\widehat{\mu}}^{\widehat{\lambda}} = \text{ multiplicity of } V_m(\widehat{\mu}) \text{ in } \operatorname{Res}_{\mathfrak{g}}^{\mathfrak{sp}_{2m}} V_m(\widehat{\lambda}).$$

Theorem (G.-Guilhot-Lecouvey 2021) $M_{\widehat{\mu}}^{\widehat{\lambda}} = [V_n^{X_1}(\mu^{(1)}) \otimes \cdots \otimes V_n^{X_r}(\mu^{(r)}) : V_n(\lambda)].$

Remark $r = m, m_j = 1, X_j = C \Rightarrow$ Identity (2).