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Definitions and notation

∗ Let’s consider G as a simple graph (without multiple edges and
loops).

∗ The set of vertices of G is denoted as V (G ).

∗ The set of edges of G is denoted as E (G ).

∗ A complete graph is a graph in which every pair of vertices is
adjacent.

∗ A clique is a subset of V (G ) that induces a complete subgraph.

∗ A clique doesn’t induce necessarily a maximal complete subgraph.
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Inês Serôdio Costa (CIDMA - DMat-UA) Lower bound on the least eigenvalue 22nd January, 2022 4 / 21



Definitions and notation

∗ Let’s consider G as a simple graph (without multiple edges and
loops).

∗ The set of vertices of G is denoted as V (G ).

∗ The set of edges of G is denoted as E (G ).

∗ A complete graph is a graph in which every pair of vertices is
adjacent.

∗ A clique is a subset of V (G ) that induces a complete subgraph.

∗ A clique doesn’t induce necessarily a maximal complete subgraph.
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Inês Serôdio Costa (CIDMA - DMat-UA) Lower bound on the least eigenvalue 22nd January, 2022 4 / 21



Edge clique partition

An edge clique partition (ECP for short), introduced in [12, Orlin 1977],
is a partition of E (G ) by cliques.
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Figure: A graph G and an ECP of G , on the right, where the edges with the same
color belong to the same part.

The content of a graph G , denoted by C (G ), was defined as the minimum
number of edge disjoint cliques whose union includes all the edges of G .

Such minimum ECP is called in [12] content decomposition of G . As
proved in [12], in general, the determination of C (G ) is NP-Complete.
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Edge clique partition

Consider a graph G and an ECP, P = {Ei | i ∈ I}. Then Vi = V (G [Ei ]) is
a clique of G for every i ∈ I .

Clique degree

The clique degree of v relative to P, denoted mv (P), is the number of
cliques Vi containing the vertex v .

mv (P) = |{i ∈ I | v ∈ V (G [Ei ])}|, ∀v ∈ V (G )

Maximum clique degree

The maximum clique degree of G relative to P, denoted mG (P), is the
maximum of clique degrees of the vertices of G relative to P.

mG (P) = max{mv | v ∈ V (G )}
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Edge clique partition

1
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P = {{12, 23, 31}, {34, 45, 53}, {25}} is a content
decomposition of G .

mv (P) = 2, if v ∈ {2, 3, 5}
mv (P) = 1, if v ∈ {1, 4}.

Therefore, mG (P) = 2.

It is clear that if P is an ECP of G , then mG (P) ≤ |P|.

In particular, if P is a content decomposition of G , then mG (P) ≤ C (G ).
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Edge clique partition

Theorem

For every integer k ≥ 2, there exists a connected graph Gk that admits an
ECP, Pk , such that mGk

(Pk) = k .

Proof idea
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A lower bound on the least eigenvalue of a graph

Theorem

Let P = {Ei | i ∈ I} be an ECP of a graph G , m = mG (P) and
mv = mv (P) for every v ∈ V (G ). Then

1. If µ is an eigenvalue of G , then µ ≥ −m.

2. −m is an eigenvalue of G if and only if there exists a vector X ̸= 0
such that

(a)
∑

j∈V (G [Ei ])
xj = 0 for every i ∈ I and

(b) ∀v ∈ V (G ), xv = 0 whenever mv ̸= m

In the positive case, X is an eigenvector associated with the eigenvalue
−m.

1

2

3

4

5

G

Since mG (P) = 2, for every µ ∈ σ(G ), µ ≥ −2.

σ(G ) = {−1.473,−0.463, 0.118, 0.618, 2.935}
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A lower bound on the least eigenvalue of a graph

The last theorem provides the spectral lower bound for the content of a
graph which appears in [10, Hoffman 1972].

Corollary

Let µ be the least eigenvalue of a graph G . Then −µ ≤ C (G ).

Corollary

Let G be a graph of order n and let X be a vector of Rn\{0}. Then
X ∈ EG (−m) if and only if the conditions 2a and 2b of the previous
Theorem hold.

Corollary

Let P be an ECP of a graph G . If −mG (P) is an eigenvalue of G , then for
every ECP of G , P ′, mG (P

′) ≥ mG (P).
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An example

Consider the graph G and the ECP, P, depicted in figure below.
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Sincemv (P) = 2 for every v ∈ V (G ), mG (P) = 2 and then every eigenvalue
of G if greater or equal to −2.

The vector X = [1,−1, 0,−1, 1]T (on the right) fulls the necessary and suffi-
cient conditions 2a and 2b of previous theorem and thus the least eigenvalue
of G is equal to −2.
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Application to n-Queens’ graph

Q(n)

n-Queen’s graph, Q(n), associated to n×n chessboard has n×n vertices,
corresponding to each square of the n × n chessboard.
Two vertices of Q(n) are adjacent if and only if they are in the same row
or column or diagonal of the chessboard.

1 2 3

4 5 6

7 8 9

Figure: Q(3).

For Q(n), we will consider the ECP with maximal
cliques in all the 4 edge directions, that is, each
block of this partition is the clique defined by the
edges whose vertices are in each row, each column
and each diagonal of the chessboard.
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Application to n-Queens’ graph

Theorem

Let n ∈ N such that n ≥ 4.

1 If µ is an eigenvalue of Q(n), then µ ≥ −4.

2 −4 ∈ σ(Q(n)) if and only if there exists a vector X ∈ Rn2 \ {0} such
that

1

n∑
j=1

x(k,j) = 0 and
n∑

i=1

x(i,k) = 0, for every k ∈ [n],

2
∑

i+j=k+2

x(i,j) = 0, for every k ∈ [2n − 3],

3
∑

i−j=k+1−n

x(i,j) = 0, for every k ∈ [2n − 3],

4 x(1,1) = x(1,n) = x(n,1) = x(n,n) = 0.

In the positive case, X is an eigenvector associated with the
eigenvalue −4.
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Application to n-Queens’ graph

For an easier representation of the vectors, they are displayed over the chess-
board.

We need to introduce the family of vectors

Fn = {X (a,b)
n ∈ Rn2 | (a, b) ∈ [n − 3]2}

where X
(a,b)
n is the vector defined by

[
X

(a,b)
n

]
(i ,j)

=

{[
X4

]
(i−a+1,j−b+1)

, if (i , j) ∈ A× B;

0, otherwise,
(1)

with A = {a, a+ 1, a+ 2, a+ 3}, B = {b, b + 1, b + 2, b + 3} and

X4 =
0 1 -1 0
-1 0 0 1
1 0 0 -1
0 -1 1 0

.
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Application to n-Queens’ graph

For instance, for n = 5, F5 is the family of four vectors depicted in the next
figure.

0 1 -1 0 0
-1 0 0 1 0
1 0 0 -1 0
0 -1 1 0 0
0 0 0 0 0

0 0 1 -1 0
0 -1 0 0 1
0 1 0 0 -1
0 0 -1 1 0
0 0 0 0 0

0 0 0 0 0
0 1 -1 0 0
-1 0 0 1 0
1 0 0 -1 0
0 -1 1 0 0

0 0 0 0 0
0 0 1 -1 0
0 -1 0 0 1
0 1 0 0 -1
0 0 -1 1 0

Figure: The vectors X
(1,1)
5 , X

(1,2)
5 , X

(2,1)
5 , and X

(2,2)
5 .

Theorem

For n ≥ 4, −4 is an eigenvalue of Q(n) with multiplicity (n − 3)2 and Fn

is a basis for EQ(n)(−4).
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